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Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal out-

come. However, a puzzling infantile disorder, long known as ‘benign cytochrome c oxidase deficiency myopathy’ is an exception

because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those

with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive

care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T4C

mt-tRNAGlu mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation

and show that tissue-specific mechanisms downstream of tRNAGlu may explain the spontaneous recovery. This study provides the

rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.
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Introduction
Mitochondrial diseases are a large and clinically heterogeneous

group of disorders that result from deficiencies in cellular energy

production and have an estimated birth incidence of 1 : 5000,

making them among the most common inherited metabolic dis-

eases (Schaefer et al., 2008). More than 200 mitochondrial DNA

(mtDNA) point mutations have been identified as primary causes

of mitochondrial disease, predominantly in mitochondrial transfer

RNA (mt-tRNA) genes (DiMauro and Hirano, 2005; Taylor and

Turnbull, 2005; Pereira et al., 2009). In addition, mutations in

nuclear genes may also affect single or multiple respiratory chain

(RC) enzymes, causing diseases inherited as Mendelian traits

(DiMauro and Hirano, 2005). Affected children often suffer from

multisystem disorders and die in childhood. The underlying genetic

defect in many patients remains unknown and there are no effec-

tive treatments (Shoubridge, 2001; Debray et al., 2007). However,

a puzzling clinical syndrome, initially termed ‘benign infantile mito-

chondrial myopathy due to reversible cytochrome c oxidase (COX)

deficiency’ stands out by showing complete (or almost complete)

spontaneous recovery (DiMauro et al., 1981). Affected children

uniformly present with severe muscle weakness and hypotonia in

the first days or weeks of life and often require assisted ventila-

tion. However, they improve spontaneously between 5 and

20 months of age and are usually normal by 2 or 3 years of

age (DiMauro et al., 1981, 1983; Roodhooft et al., 1986;

Zeviani et al., 1987; Nonaka et al., 1988; Tritschler et al., 1991;

Salo et al., 1992; Wada et al., 1996). Although potentially benign,

this myopathy is life-threatening in the first months of life and

patients require vigorous life-sustaining measures. Muscle biopsies

taken in the neonatal period are essentially identical to those of

children with irreversible and fatal COX deficiency. There are

numerous ragged-red fibres (RRF) indicative of mitochondrial

accumulation and the histochemical reaction for COX activity is

absent in virtually all fibres, although present in spindles and

intramuscular blood vessels, emphasizing that skeletal muscle is

the only affected tissue (Tritschler et al., 1991). However, biopsies

taken at later times show no RRF and increasing numbers of

COX-positive fibres, in parallel with the clinical and biochemical

recovery (Salo et al., 1992; Wada et al., 1996).

Despite thorough investigations, until now no specific test was

available to distinguish children with the reversible disease from

those with the lethal COX-deficiency. It was speculated that the

defect might involve a nuclear-encoded COX subunit that is not

only tissue specific, but also developmentally regulated (Tritschler

et al., 1991). Mutations of a foetal or neonatal muscle isoform

would be overcome on expression of the mature isoform, as seen

for example, in the rare congenital myasthenic Escobar syndrome

(Hoffmann et al., 2006). However, sequencing of the genes

encoding the obvious candidates, COXVIa and COXVIIa, did not

reveal any mutations (Tritschler et al., 1991). Early differential

diagnosis between fatal and benign mitochondrial myopathies is

of critical importance for prognosis and management of these

infants, because the benign form is initially life threatening but

ultimately reversible. Here, we define a simple molecular test

that will identify children with reversible COX deficiency.

Supportive care should not be withdrawn from these children

early in life.

Materials and methods

Patients
The study included 17 patients with the clinical phenotype of rever-

sible COX deficiency (Table 1). All patients were white Caucasians, but

from different ethnic groups (American, Swedish, German, Brazilian

and Italian).

Muscle histology and biochemistry
Muscle histology was performed by standard methods. Activities of RC

complexes I–IV were determined in skeletal muscle and cultured cells

(myoblasts and fibroblasts) as described (Fischer et al., 1986; Tulinius

et al., 1991).

Molecular genetic studies
Sequencing of the mtDNA, Southern blot and long-range PCR for

mtDNA rearrangements and real-time PCR for assessment of mtDNA

copy numbers were carried out using standard methods.

Levels of m.14674T4C mutant mtDNA were assessed by last hot

cycle PCR/RFLP. DNA samples were processed as described by Taylor

et al. (2003) with the following modifications. PCR amplifications were

performed using the forward mismatch primer L14651 (nt positions

14651–14673) 50-AACAGAAACAAAGCATACACCAT-30 (mismatch

base shown in bold) and the M13-tagged reverse primer M13-

H14810 (nt positions 14810–14791) 50-CAGGAAACAGCTATGACC

GGAGGTCGATGAATGAGTGG-30 with an annealing temperature

of 60�C, generating a 182-bp fragment that encompasses

the m.14674T4C mutation site. Equal amounts of (alpha-

32P)-deoxycytidinetriphosphate-labelled PCR products were then

digested with 10 U BccI (New England Biolabs, Hitchin, UK). Wild-

type amplicons contain a single BccI recognition site and on digestion,

two fragments of 108 and 74 bp are generated. In PCR products har-

bouring the m.14674T4C mutation, the mismatch primer creates an

additional BccI site, producing three fragments of 108, 46 and 28 bp.

High-resolution northern blot analysis
Total RNA from skeletal muscle and from 1�106 to 2�106 cultured

primary fibroblasts, myoblast and differentiated myoblast (myotubes)

lines was extracted using Trizol reagent (Life Technologies, Paisley,

UK) according to the manufacturer’s instructions. High-resolution

northern blot analysis of total RNA (1mg) was performed as previously
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described (Tuppen et al., 2008). The human mt-tRNALeu(UUR) probe

was generated using the forward primer L3200 (positions 3200–3219)

50-TATACCCACACCCACCCAAG-30 and reverse primer H3353 (posi-

tions 3353–3334) 50-GCGATTAGAATGGGTACAAT-30. The human

mt-tRNAGlu probe was generated using the forward primer L14635

(positions 14 810–14 791) 50-TACTAAACCCACACTCAACAG-30 and

reverse primer H14810 (positions 14 810–14 791) 50-GGAGGTCG

ATGAATGAGTGG-30. The radioactive signal for the mt-tRNAGlu

probe was normalized to that of the tRNALeu(UUR) probe for each

sample.

Immunoblotting
Aliquots of 10–20 mg protein from skeletal muscle or cell homogenates

were loaded on 15% SDS–polyacrylamide gels and tested with anti-

bodies recognizing COXII, CI-20/NDUFB8, CII-70 kDa (Mitosciences,

Eugene, Oregon, USA), COXI and Porin (Molecular Probes, Eugene,

Oregon, USA) according to the supplier’s recommendations.

Cell culture experiments
Human primary fibroblasts and myoblasts were obtained from Patients

7 and 14. Control cells were requested from the Muscle Tissue Culture

Collection (Friedrich-Baur Institute Munich). Muscle cells were grown

in skeletal muscle growth medium (SGM; PromoCell, Heidelberg,

Germany), supplemented with 4 mM L-glutamine and 10% foetal

bovine serum (FBS). Differentiation and fusion into multinucleated

myotubes was induced at 70% confluence by replacing skeletal

muscle growth medium with serum-reduced fusion medium

(Dulbecco’s modified Eagle’s medium supplemented with 2% horse

serum and 2 mM glutamine) for 6 days. All cells were analysed by

in vivo 35S-metabolic labelling studies (Chomyn et al., 1996), high-

resolution northern blot analysis (Tuppen et al., 2008) and immuno-

blotting as described.

In vivo labelling and analysis of
mitochondrial protein synthesis
In vivo 35S-metabolic labelling studies were performed as described

previously (Chomyn et al., 1996) with the following modifications.

Cells, cultured to 60–70% confluency in T25 mm flasks, were pre-

treated with Dulbecco’s modified Eagle’s medium (DMEM; Sigma,

Poole, UK) containing 10% (v/v) FBS, 50 mg/ml uridine and

50 mg/ml chloramphenicol for 15 h at 37�C/5% CO2. Cells were sub-

sequently washed with phosphate-buffered saline (PBS; Sigma, Poole,

UK) and incubated for 15 min at 37�C/5% CO2 in methionine/

cysteine and FBS-free DMEM, supplemented with 5% (v/v) dialysed

FBS, 0.1 mg/ml anisomycin (Sigma, Poole, UK). Following addition of

200 mCi/ml 35S-methionine/cysteine (35S EasyTag EXPRESS; Perkin

Elmer, Beaconsfield, UK), cells were incubated for 2 h at 37�C/5%

CO2, then washed with PBS and a cell pellet was prepared. Total

protein yield was calculated by Bradford assay and equal quantities

of total protein (50mg) were pretreated with 1 U Benzonase

Endonuclease (Merck & Co., Inc, New Jersey, USA) for 1 h.

Pretreated samples were then separated by sodium dodecyl sulphate

Table 1 Summary of the clinical presentation of reversible COX deficiency in 17 patients

Patient Affected relatives Onset Clinical presentation Improved Last control Reference

Muscle Ventilation Tube
feeding

Liver

P1/M – 36 h + + + – 5–16 months 33 months mild
myopathy

DiMauro,
1983

P2/M – 6 weeks + + + – 6–15 months 20 months mild
myopathy

Zeviani,
1987

P3/M Sibling (P4) 3 weeks + + + + 5–20 months 4 years healthy Salo, 1992

P4/F Sibling (P3) 12 weeks + – + – From 6 months 13 months mild
myopathy

Salo, 1992

P5/F Sibling 24 days + + + – None Died at 39 days This article

P6/F – 4 weeks + + + – 7–12 months 7.5 years myopathy,
epilepsy

This article

P7/M a 15 days + + + – 5 months 22 months stands with
support

This article

P8/M – Birth + – – – 4 months 5 years normal This article

P9/M Maternal uncle (P10) 1 month + – + + 10–22 months 22 years mild prox.
myopathy

Houshmand,
1994

P10/M Maternal nephew (P9) 1 month + + + – 7–18 months 7 years healthy This article

P11/F – Birth + – + – 9–36 months 17 years mild
myopathy

Houshmand,
1994

P12/M – 2 months + – + – 5–19 months 7 years healthy This article

P13/F – 1 month + – + – 11–17 months 11 years healthy This article

P14/M Sibling (P15), maternal sibs
(P17, P16)

Birth + + + + 6–30 months 11 years mild
myopathy

This article

P15/M Sibling (P14), maternal sibs
(P17, P16)

2.5 months + + + – 5–20 months 9 years healthy This article

P16/F Sibling (P17), maternal
nephews (P14,15)

1 month + – + – 6–24 months 26 years healthy This article

P17/M Sibling (P16), maternal
nephews (P14, 15)

1 month + – + – 5–18 months 26 years healthy This article

a Mild motor developmental delay in the mother, disturbed weight gain and anaemia in one sibling.
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polyacrylamide gel electrophoresis (SDS/PAGE). Radiolabelled proteins

were visualized by PhosphorImager analysis (Amersham Biosciences,

Little Chalfont, UK) and equal protein loading was confirmed by

Coomassie blue staining.

Results

Clinical presentation
The disease affects skeletal muscle selectively and in a strictly age-

specific manner, since all patients had profound hypotonia,

respiratory and feeding difficulties in the first days or weeks of

life, together with highly increased serum lactate. One patient

died of pneumonia at 39 days as a consequence of the severe

muscular hypotonia and respiratory insufficiency, but all others

improved spontaneously between 4 and 20 months of age

(Table 1). However, a mild residual myopathy frequently persisted

later in life (Fig. 1). Some children showed mild, reversible involve-

ment of other organs (liver, heart), but only during the most

severe metabolic crises, when increased CK and low carnitine

levels were also found occasionally (Table 2). Brain, peripheral

nerves and cognitive development were unaffected in all patients

in the initial phase of the disease, although Patient 6 developed

neurological symptoms at a later stage. Family history suggested

maternal inheritance in three families (Fig. 1) and siblings were

affected in three families without parental consanguinity.

Muscle histology and biochemistry
The first muscle biopsy was performed in all children in the acute

phase of the disease (1–5 months of age). In seven patients,

follow-up biopsies were also obtained (Table 2). In summary,

early biopsies confirmed severe mitochondrial myopathy with

RRF and even more numerous COX-negative fibres and ultrastruc-

turally abnormal mitochondria in all patients. These changes sig-

nificantly improved, but usually did not completely disappear on

later biopsies (Fig. 2). On routine morphology, many muscle fibres

appeared normal but vacuolar changes and mild structural

abnormalities with lipid and/or glycogen accumulation were

detected in most cases. Electron microscopy was performed in

four patients and showed giant mitochondria with very character-

istic multilamellar paracrystalline inclusions.

Biochemical analysis of RC enzymes in muscle revealed com-

bined RC deficiencies, most severely affecting COX in early biop-

sies (Table 2). This was accompanied by a defect of complex I

and, less commonly, of other complexes containing mtDNA-

encoded subunits. In the recovery phase, all RC activities returned

to normal or supernormal levels, indicating the involvement of

compensatory mechanisms.

Molecular genetic analysis
Molecular genetic analysis revealed no mtDNA deletions and

normal mtDNA copy number in muscle from all patients tested

and there were no significant differences between follow-up biop-

sies. Sequencing of the entire mitochondrial genome revealed sev-

eral nucleotide variations from the revised Cambridge reference

sequence, represented on publicly available databases (http://

www.mitomap.org/; http://www.genpat.uu.se/mtDB/). A single

homoplasmic variant, m.14674T4C (Fig. 4A), was detected in all

17 patients and in all maternal family members (Fig. 1). The muta-

tion analysis in the relatives of the probands was performed in

DNA extracted from blood leukocytes. This mutation affects a

poorly conserved nucleotide, but we could not detect it in 200

German control individuals. It is reported in 3 out of 2704 samples

in both the mtDB and the MITOMAP databases as a neutral

polymorphism labelled haplogroup M27b, although retrospective

analysis of the subjects listed in MITOMAP revealed that these

individuals did in fact present with a clinical phenotype similar to

that reported here (Patients 9 and 11 in this study) (Houshmand

et al., 1994). The patients belong to different major mtDNA hap-

logroups (H, U, V).

High-resolution northern blot analysis
Northern blotting of skeletal muscle of Patients 7, 11 and 14 and

primary cell cultures of Patients 7 and 14 indicated that the

steady-state level of mt-tRNAGlu was significantly decreased com-

pared to controls (Fig. 3A). The decrease was most severe

(16–30% of age-matched controls) in skeletal muscle taken at

1–3 months of age. The steady-state level of the mt-tRNAGlu in

the second muscle biopsy after recovery and also in clinically

healthy mothers of Patients 7 and 11 was less severely decreased

(30–60%) and similar to that detected in myoblasts.

Immunoblotting
Immunoblotting with monoclonal antibodies against mitochondrial

-encoded COX and complex I subunits showed markedly

decreased levels in early biopsies, when the children showed

severe symptoms, but were normal in biopsies after recovery

and in healthy mothers (Fig. 3B).

In vivo labelling and analysis of
mitochondrial protein synthesis
Pulse labelling experiments with 35S methionine in myoblasts of

Patients 14 and 7 showed normal intensity for most mitochondrial

proteins (Fig. 4B). Immunoblotting with antibodies against mito-

chondrial proteins confirmed the normal (or increased) levels of

COX and complex I subunits in the patient’s cells (Fig. 3B).

Further evidence for the rescue in vitro is provided by the

normal RC activities on direct enzyme measurement. These

findings were unexpected because the steady-state level of

mt-tRNAGlu was still low (50% of controls).

Discussion
The homoplasmic m.14674T4C mutation was detected in

17 affected individuals from 12 independent families of different

ethnic origins. The different mtDNA haplogroup backgrounds indi-

cate that the same mt-tRNAGlu mutation has arisen independently,
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on multiple occasions, causing the same disease. Seven out of 22

maternal family members from three families (Fig. 1) developed

severe, mostly isolated muscle hypotonia and weakness requiring

intensive care, but most homoplasmic carriers never experienced

muscle weakness. The penetrance of the disease is variable, as

seen in other mtDNA mutations, but the strong association with

the phenotype and the reduced levels of mt-tRNAGlu transcript

observed in the biopsies are highly suggestive of a pathogenic link.

This is also the case for other homoplasmic mtDNA mutations,

as in Leber’s hereditary optic neuropathy (LHON) (Yu-Wai-Man

et al., 2009). In LHON, the variable penetrance was attributed to

the modifying role of nuclear factors, to mtDNA background, and

Mip1C

Patient 7

II:1
P9

I:1 I:2

II:2II:3

III:1
P10

II:1 II:2

III:1
P14

III:2
P15

I:1 I:2

II:3 II:4
P16

II:5
P17

II:7 II:8II:9

III:3

Patients 14-17

I:1 I:2

II:1 II:2 II:3 II:4 II:5 II:6 II:8
P7

II:9

182

108

74

46

26

U  P14 P15 P16 P17 II:2 II:3 II:7  II:1  II:7  II:8  I:2

RFLP for m.14674T>C 

II:2 III:2 III:3

III:2

Patients 9, 10

II:4III:1

III:1

Figure 1 Pedigrees of three families suggested a maternal inheritance. RFLP analysis for m.14674T4C in the family of Patient 14

revealed that the mutation is homoplasmic in all maternal individuals and absent in the fathers. The two brothers, at ages 8 and 10

years, showed signs of a mild residual myopathy. P14 (III:1) has a myopathic face and both patients (III:1, III:2) show scapular winging.
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to environmental influences (Yu-Wai-Man et al., 2009). Similar

mechanisms are likely to underlie the manifestation of reversible

COX deficiency myopathy. To identify other potential modifiers, a

better understanding of the disease pathogenesis is required,

although we were not able to define any epistatic, epigenetic or

environmental modifying factors in the 17 cases studied here.

What is the pathological mechanism
of the disease?
To date, six pathogenic mutations have been described in mt-

tRNAGlu (http://www.mitomap.org/), all of which tend to reach

either a very high level of heteroplasmy or homoplasmy in the

skeletal muscle of affected individuals. Although the clinical

phenotype is variable, there is constant and predominant involve-

ment of skeletal muscle. However, none of these patients had a

truly reversible phenotype, implying that reversible COX deficiency

myopathy is not a generic consequence of mutations in mt-

tRNAGlu, but specifically of m.14674T4C.

This mutation affects the discriminator base of mt-tRNAGlu. This

is the last base at the 30-end of the molecule, where the amino

acid is attached to the molecule via the terminal CCA. No patho-

genic mutation has previously been described in this crucial posi-

tion in any of the other 21 mitochondrial transfer RNAs.

The m.14674T4C mutation in mt-tRNAGlu is thought to impair

mitochondrial translation, as reflected by the RRF/COX-negative

fibres and the multiple RC defects in skeletal muscle. The predo-

minant involvement of the mitochondrial COX subunits (Tritschler

et al., 1991) may be explained by their high glutamic acid content

or by the locations of the glutamic acid residues. The expression of

stable mt-tRNAs relies on a number of post-transcriptional mod-

ification steps including: (i) 50 and 30 processing from the large

polycistronic transcript by mitochondrial RNaseP (and presumably

by tRNase Z); (ii) addition of the CCA trinucleotide to the 30-end

of the mt-tRNA transcript by [CCA] nucleotidyltransferase;

Table 2 Laboratory investigations and muscle biopsy findings of 17 patients with reversible COX deficiency

Patient Laboratory results Muscle histology EM RC

Lactate CK Carn RRF/COX– Lipid Glycogen Other findings COX Other RC

P1 """ Norm 1 month: +++ + – Normal 6% Norm

7 months: ++ ++ + Few atrophic fibres Giant mt, crista path 50% Norm

36 months: – – – Fibrosis, atrophy " Norm

P2 """ " 662 # 2 months: +++ + – Normal n.d. n.d.

4 months: +++ + + Normal 11% Norm

11 month: – – – Fibrosis, atrophy 57% Norm

P3 """ "" 1402 ## 3 months: +++ + + Necrotic/split fibres Giant mt, crista path 25% Norm

16 months: – – – Normal n.d. n.d.

P4 """ " 798 # 3 months: +++ + + Necrotic/split fibres 25% Norm

13 months: + – – Mild myopathy n.d. n.d.

P5 """ n.d. 1 month: +++ + – Normal n.d. n.d.

P6 """ 119 # 1 month: ++ + – Vacuolar myopathy 29% Norm

P7 """ Mild" 3 months: +++ + + Normal 29% Norm

13 months: normal – – Normal 121% Norm

P8 """ n.d. 5 months: +++ + – Normal 52% Norm

P9 """ " 2 months: +++ + – Abnormal mt ### CI ###

5 years 4 months: + – – Mild myopathy Norm CI #

14 years 5 months: + – – Necrotic/mild myopathy # CI #

P10 """ Norm 1 month: +++ – – Normal ### CI ###

P11 """ " 1 month: +++ + – Abnormal mt ### CI ###

8 years 9 months: + – – Mild myopathy Norm Norm

P12 "" " # 3 months: +++ – – Normal ### CI ##

P13 """ " 1 month: +++ – – Normal n.d. n.d.

P14 """ Norm # 1 month: +++ + + Abnormal mt Giant mt, crista path 5% CI 25%

10 years: + – – Normal 110% Norm

P15 """ Norm 1 month: +++ + + Abnormal mt Giant mt, crista path 3% CI 15%

P16 """ Norm n.d. n.d. n.d. n.d. n.d. n.d. n.d.

P17 """ Norm n.d. n.d. n.d. n.d. n.d. n.d. n.d.

+++ = severe (425%); ++ = moderate (5%–25%); += mild (55%); """= severely increased; ""= moderately increased; "= mildly increased; CI = complex I; mt = mi-

tochondria; n.d = no data.

3170 | Brain 2009: 132; 3165–3174 R. Horvath et al.

http://www.mitomap.org/


base modification by a variety of mt-tRNA modifying enzymes;

and (iii) aminoacylation of mt-tRNA by the cognate aminoacyl

mt-tRNA synthetase (Levinger et al., 2004). It had been shown

that mutations in the proximity of a discriminator base affect RNA

processing (Levinger et al., 2004), but we are not aware of any

functional data on mutations affecting the discriminator base itself,

and northern blot analysis gave no indication of unprocessed inter-

mediates in our patients’ samples. As a consequence of the muta-

tion, the steady-state level of mt-tRNAGlu was decreased in

skeletal muscle from three patients (Fig. 3A). Counter intuitively,

the steady-state level of mt-tRNAGlu showed only a slight increase

in the follow-up muscle biopsy, when the children were almost

asymptomatic, and remained low (30–60%) in cells from

patients and in muscle from clinically healthy mothers. The slight

recovery of the steady-state level of mt-tRNAGlu in the face of

dramatic clinical improvement indicates that either this mild

increase of mt-tRNAGlu steady-state level is sufficient to regain

normal mitochondrial translation, or that other mechanisms down-

stream of mt-tRNAGlu explain the clinical and biochemical

improvement in vivo. Concerning the apparent surplus of mt-

tRNA, it is interesting to note that normal levels of mitochondrial

translation can be maintained by surprisingly low steady-state

levels (�10%) of the homoplasmic mt-tRNAVal, m.1624C4T at

least in cultured myoblasts, fibroblasts and transmitochondrial

cybrids (Rorbach et al., 2008).

In vitro pulse-labelling experiments in two patients (7 and 14)

showed normal mitochondrial translation in myoblasts compared

to normal controls (Fig. 4B). This result was bolstered by

* *

BA

C D

E F

Figure 2 Histochemical staining of the muscle biopsy from Patient 7 at 3 months of age (A and B) and 9 years (C and D) and of the

muscle from his asymptomatic mother (E and F). The early biopsy confirmed severe mitochondrial myopathy with RRF (A) and even

more COX-negative fibres (B). These changes significantly improved but did not completely disappear at 9 years of age (C and D). The

muscle biopsy from the mother revealed a few COX-negative (F), SDH hyper-reactive (E) fibres (stars). A, C: Gomori trichrome; B, D, F:

COX; E: SDH stain. Magnification: A, B 100�, C, D, E, F 200�.
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immunoblotting that showed normal or even hyperintense bands

for mtDNA-encoded proteins (Fig. 3B) and by the normal RC

enzyme activities. Experiments on cybrid cells would not have

been informative, since cells homoplasmic for the mt-tRNA muta-

tion do not display a clear biochemical defect. It is worth noting

again that the same cells showed 40–50% decreased mt-tRNAGlu

steady-state levels.

Why do symptoms start in early
neonatal life and what is the
mechanism of the spontaneous
recovery?
Although our data provide strong evidence for a pathogenic role

of m.14674T4C, they do not explain why all patients develop

severe isolated myopathy in the neonatal period and, most impor-

tantly, what triggers the timed spontaneous recovery. We suggest

that tissue-specific, developmentally timed processes play a role

both in the age-dependent expression and in the reversibility.

One hypothesis is that an increase in mtDNA copy number and

the consequent increase in the number of tRNAGlu molecules

would compensate for the defect and may overcome the func-

tional consequences of the homoplasmic tRNA mutation in skeletal

muscle. Morten et al. (2007) showed that the mtDNA content of

liver increases rapidly over the perinatal period up to 1 year of

age. In muscle, a similar progressive increase in mtDNA copy

number, RC activity, and muscle power was also detected.

Comparative studies of muscle mtDNA from 54 patients showed

that patients 7–12 months of age had slightly higher mtDNA copy

number than patients56 months of age (Macmillan et al., 1996),

but the increase was not statistically significant. Another study on

300 muscle DNA samples showed that mtDNA content in muscle

increases steadily from birth to about 5 years of age (Bai et al.,

2004). We measured mtDNA copy numbers in muscle DNA

extracted from consecutive biopsies but did not get any significant

changes compared to normal controls, indicating that the recovery

in benign COX deficiency cannot be explained by a change in

mtDNA copy number.

Another explanation would relate the recovery to the modifying

effects of muscle-specific genes that are developmentally regu-

lated and display isoform switching. Many of these genes

encode contractile proteins or enzymes involved in energy metab-

olism. It was shown that the nuclear-encoded COXVIa and

C         C      C      P11

mt-tRNALeu(UUR)

mt-tRNAGlu

C        C C       M       P11

1         1       0.96 0.55 0.3 1        1      0.8 0.5

C       C       C      P14

MyoblastsSkeletal Muscle 

> 1 yr - adult0-3 months 

Porin 39 kDa

CII-70      70 kDa

COXI        57 kDa

C        C       C     P11 C        C  C      P11     M C        C    C      P14

> 1 yr - adult0-3 months Myoblasts

COX II      25.5 kDa

NDUFB8   20 kDa

A   Northern blots

B  Immunoblotting

Figure 3 (A) Northern blot for mt-tRNAGlu showed severely decreased steady-state levels in skeletal muscle of Patient 11 at 1 month

of age and slightly higher, but still significantly decreased levels, after clinical recovery at 9 years of age, as well as in muscle biopsies of

her asymptomatic mother (M). Data from skeletal muscle are not shown for Patients 7 and 14. Myoblasts of Patient 14 showed steady-

state levels similar to late biopsies and to biopsies of a healthy mother. Patient mt-tRNAGlu steady-state levels normalized to

mt-tRNALeu(UUR) levels are expressed relative to normalized control levels. (B) Immunoblotting showed decreased levels of the mito-

chondrial COXI, COXII and complex I (NDUFB8) subunits in the biopsy of Patient 11 at 1 month of age, which returned to normal at 9

years of age, and was also normal in her asymptomatic mother. The same subunits were slightly increased in myoblasts of Patient 14.
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COXVIIa subunits also undergo complex changes during

development (Tritschler et al., 1991) and switch from foetal or

ubiquitous isoforms to the corresponding muscle isoforms as

development progresses. However, the exact timing of such

changes needs to be further evaluated. These data may also sup-

port a developmental switch in the control strength of mitochon-

drial transfer RNAs and, in particular, mt-tRNAGlu in mitochondrial

translation, suggesting that 16–30% steady-state levels of mt-

tRNAGlu may have a profound effect on translation in muscle of

neonates but may become less critical at later stages of

development.

In summary, we provide evidence that reversible COX defi-

ciency myopathy is caused by a homoplasmic mt-tRNAGlu muta-

tion m.14674T4C. This is critically important because severe

mitochondrial myopathy in early life is usually irreversible, prompt-

ing clinicians and parents to face end-of-life decisions for a young

child. We suggest that floppy infants with suspected mitochondrial

myopathy should be screened for this mutation. This simple

genetic test is of critical importance for prognosis and manage-

ment of these infants because the benign form is initially life

threatening but ultimately reversible.
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