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ABSTRACT

A common goal in the discovery of rare functional
DNA variants via medical resequencing is to incur a
relatively lower proportion of false positive base-
calls. We developed a novel statistical method for
resequencing arrays (SRMA, sequence robust
multi-array analysis) to increase the accuracy of de-
tecting rare variants and reduce the costs in subse-
quent sequence verifications required in medical
applications. SRMA includes single and multi-array
analysis and accounts for technical variables as well
as the possibility of both low- and high-frequency
genomic variation. The confidence of each
base-call was ranked using two quality measures.
In comparison to Sanger capillary sequencing, we
achieved a false discovery rate of 2% (false
positive rate 1.2�10�5, false negative rate 5%),
which is similar to automated second-generation
sequencing technologies. Applied to the analysis
of 39 nuclear candidate genes in disorders of mito-
chondrial DNA (mtDNA) maintenance, we confirmed
mutations in the DNA polymerase gamma POLG
in positive control cases, and identified novel
rare variants in previously undiagnosed cases in
the mitochondrial topoisomerase TOP1MT, the
mismatch repair enzyme MUTYH, and the apurinic-
apyrimidinic endonuclease APEX2. Some patients
carried rare heterozygous variants in several func-
tionally interacting genes, which could indicate
synergistic genetic effects in these clinically
similar disorders.

INTRODUCTION

Rare functional DNA variants (�1% minor allele fre-
quency, MAF) cause most Mendelian disorders, and
they may underlie a large proportion of the inherited sus-
ceptibility to common human traits (1,2). These low fre-
quency variants could be located in a variety of different
genes, potentially interacting with other variants, and
could be associated with variable clinical disease pheno-
types. The identification of DNA variants in medical
resequencing is traditionally performed using Sanger ca-
pillary sequencing. This method’s per-base accuracy is as
high as 99.999% (3), although laborious manual inspec-
tions of multiple target reads are required to sequence
each position. Due to substantial variability within a
single read, automated base-calling of Sanger traces
has been particularly limited in the detection of rare
DNA variants in diploid genomes (4). As an alternative
method, sequencing by hybridization (SBH) has provided
a potentially more cost-effective resequencing strategy
(5,6). SBH is based on the principle that the differential
hybridization of target DNA to an array of oligonucleo-
tide probes can be used to decode its primary DNA
sequence (3). Resequencing array applications have suc-
cessfully identified novel and potentially pathological
variants in many genes and samples (7–11). A key limita-
tion of this technology has been the high false positive rate
(FPR) (estimated at 3%) in the detection of heterozygous
signals (3,12) leading to relatively higher costs in subse-
quent data verifications. Innovative DNA sample pre-
processing methods coupled with array-based sequencing
have recently lowered the FPRs (<10�5) and false negative
rates (FNR, 10%) (13), which is a performance level com-
parable to second-generation sequencing platforms (14).
However, these newer sequencing methods are often not
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available to individual investigator laboratories interested
in identifying rare variants in many samples and candidate
genes.

In this study we developed and validated new statistical
methods for resequencing array data analysis in order to
improve the accuracy of this technology. Our goal was
to maximize the number of: (i) called sequence bases
(call rate); (ii) correct discoveries among all true variants
(1–FNR); and (iii) correct discoveries among all variant
calls [1 – false discovery rate (FDR)]. Specifically, we ad-
dressed limitations that are unique to resequencing arrays
(Supplementary Table S1) including: (i) the heterogeneity
in the data quality of array and oligonucleotide probe
signals across a large number of target sequences; (ii) the
detection of all variants in diploid samples, which occur at
frequencies of 1 in 1000 bp or lower (15); and (iii) the
identification of spurious signals due to technical and ex-
perimental errors to be distinguished from true signals due
to sequence variation. To this end, our new methods
increase the accuracy of detecting DNA variants and
reduce the resequencing costs.

We applied our methods to the analysis of 39 candidate
genes for disorders of mtDNA maintenance in 40 medical
cases and controls using a customized Affymetrix
resequencing array. Rare mutations in some of these
nuclear-encoded genes (the proteins localize to mito-
chondria) cause secondary mtDNA deletions and deple-
tions that are associated with debilitating multi-system
diseases (16–18). While these disorders display consider-
able clinical overlap and often resemble those caused by
mtDNA defects, they follow recessive, dominant or
complex inheritance patterns (19). The medical cases we
studied included eight patients with known disease muta-
tions serving as positive controls, and 19 cases with an
mtDNA maintenance disorder but unknown gene defect.
Through comparative Sanger sequencing of all genes and
samples (4.3 Mb), we show that our improved statistical
methods for resequencing array analysis is powerful
enough to detect 95% (FDR 2%) of both common
and rare genetic variants in each individual. Some cases
carried novel and predicted functional heterozygous
variants in multiple genes indicating the need for parallel
resequencing of many genes. The integrative analysis of
gene and disease data with functional mitochondrial par-
ameters remains important to establishing a definitive
diagnosis.

MATERIALS AND METHODS

Selection of candidate genes and study population

We selected 39 nuclear genes based on evidence of the
localization of their gene products to human mitochondria
and functions in mitochondrial DNA (mtDNA) mainten-
ance (Supplementary Table S2). Mutations in some
genes are associated with mtDNA maintenance disorders
including progressive external ophthalmoplegia (PEO)
and Alpers syndrome (17,18). To prioritize novel candi-
date genes for these disorders, we compiled data on gene–
functional (20) and disease–phenotypic (21) associations of
these disease genes from two recent studies. In 27 patients

(Supplementary Table S3), single or multiple mtDNA
deletions were detected with polymerase chain reactions
(PCRs) and compared through Southern blot analysis
using established protocols (22). Written consent was
obtained from the patient’s families and the study was
approved by the institutional review boards. DNA
samples were available only from index cases and not
their family members. We also studied 12 healthy
controls and a haploid sample (Coriell Repository:
NA7489a).

Custom-designed Affymetrix resequencing array and
DNA sample preparation

We designed a medical resequencing array (Affymetrix
Inc., CA) for DNA sequencing of the entire coding
region and exon-splice sites of the 39 candidate genes
(452 exons; 106 337 bases). We downloaded exon se-
quences from Ensembl’s Martview (NCBI Build 36) and
designed oligo primers (Supplementary Table S4) using
automated Primer3 (http://primer3.sourceforge.net).
Shorter exons separated by short introns were paired
and amplified together as one amplicon, and longer
exons (>600 bp) were amplified using multiple over-
lapping amplicons resulting in 438 unique amplicons.
These were PCR-amplified using AmpliTaq Gold DNA
Polymerase (Applied Biosystems) and established proto-
cols in each sample and analyzed using both resequencing
arrays and bidirectional Sanger capillary sequencing. In
addition, all identified non-synonymous DNA variants
were verified by a second round of Sanger sequencing
from a newly amplified PCR product. To obtain sufficient
amounts of starting material from genomic DNA
(�100 ng), we performed whole genome amplification
(WGA) using the REPLI-g Mini Kit (Qiagen, Inc., CA)
following Qiagen’s protocol. DNA amounts were
quantified using PicoGreen reagent (Invitrogen, Inc.,
CA). The PCR amplicons for each sample were inspected
by 1.2% Agarose gel electrophoresis, pooled together in
equimolar amounts and then purified using the QIAquick
PCR Purification Kit (Qiagen, Inc., CA). Array process-
ing was performed according to Affymetrix’ user manuals.

Overview of the SRMA algorithm

For each nucleotide position i and each array j, we
obtained eight numbers, which are log2 probe intensities
and denoted by (�0,+, �1,+, �2,+, �3,+) and (�0,–, �1,–, �2,–,
�3,–), where 0 denotes the reference match (RM) probe and
1, 2 and 3 denote the three alternative match (AM) probes,
respectively. We kept sense (+) and antisense (–) values
separate as they provide correlated but also different
informative signals (23,24). An example of �’s on sense
strand is shown in Figure 1. SRMA performs base-calling
in the following steps.

Amplicon pre-processing

We used the R package aroma.affymetrix to read in raw
intensity (.CEL) files and to perform data formatting. We
implemented one strand base position normalization in
aroma.affymetrix. To evaluate the quality and quantity
of the amplified targets, we calculated three measures for
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amplicon k, which are averages of the corresponding
strand specific values (denoted by s):

(i) The median of the average (log2) probe intensity:
Tk,s=mediani= 1,2,. . .,Ik

(�k,i,0,s+maxa=1,2,3 �k,i,a,s)/2,
(ii) The median of the log ratios: Dk,s=

mediani= 1,2, . . ., Ik
(�k,i,0,s – maxa=1,2,3 �k,i,a,s).

(iii) The reference call rate: Rk=#{i: (�k,i,0,+ +
�k,i,0,�)>maxa=1,2,3 (�k,i,a,++�k,i,a,�)}/Ik,
where Ik denotes the amplicon length and a denotes
the alternative alleles.

These three measures together provide quantitative infor-
mation about the target amplification and hybridization
experiments. We used a simple and conservative criterion
R< 0.9 to identify failed amplicons that were not suitable
for base-calling (Supplementary Figures S2 and S3). In
order to remove some of the unwanted array-to-array
variations, we performed quantile normalization on

log intensities (�’s) in the quality-controlled data. Log
intensities in the failed amplicons are replaced with
NA and are not included in the normalization. Because
the identity of failed amplicons varies across samples, we
divided each array into sets of probes from the 438
amplicons, and performed quantile normalization within
each amplicon unit, and across samples with good log
intensities.

Clustering of DNA variants

For each nucleotide position i, sample j, alternative allele
a and strand s, we computed the differences and the
averages of the signal intensities:

�a,i,j,s ¼ �0,i,j,s� �a,i,j,s, ð1Þ

Aa;i;j;s ¼
�0;i;j;s þ �a;i;j;s
� �

2
: ð2Þ

10
12

14
16

Base Position

Lo
g 2

 P
ro

be
 In

te
ns

ity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T C C G A A A A T T G G A A T

T G C A
10

12
14

16

Base Position

Lo
g 2

 P
ro

be
 In

te
ns

ity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A T A G T G A C C G T G A A C

T G C A

6
8

10
14

Base Position

Lo
g 2

 P
ro

be
 In

te
ns

ity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A T A A G A A A C T T G T T C

T G C A

A

B

C

Figure 1. Probe intensity data for array-based resequencing in three regions. In each region, the log2 intensities of four probes for the sense strand in
15 consecutive base positions are depicted. Each point represents one 25mer probe, coded for the base of interest in its center position (T—black
circle; G—red square; C—green diamond; A—blue triangle), with reference sequences shown on the top of each panel. The only variants in these
regions are at position 8 as confirmed by Sanger sequencing. The heterozygous AG in region (A) has equal intensities in probes RMA and AMG,
whereas the heterozygous CA in region (B) has higher intensity in probe RMC than AMA, which in turn is higher than the other AM probes. This
suggests region (B) is a harder position to call heterozygous. The homozygous variant GG (versus reference AA) in region (C) causes lower probe
intensities in all flanking positions, all of which (RMs and AMs) have one off-center base mismatching the target sequence. This phenomenon is
called the footprint effect.
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It has been shown with SNP arrays that a single-chip
Bayes classifier on � can provide an approximate assign-
ment to the variant classes for all nucleotide positions, and
a subsequent multi-chip classification at each position can
then designate the exact genotype classes to the biological
samples (23,25). Extending this single-chip followed by
multi-chip approach, our algorithm has the following
steps.

Single-chip model. In chip j (notation dropped below), for
each nucleotide position i and alternative allele a, we
assess the probability of the position being one of the
three variant classes: RR—with two copies of the reference
allele; RS—with one copy of the reference allele; and
SS—with no copy of the reference allele, given (�a,i,+,
�a,i,–) and explanatory variables Xa,i (explained below).
We use the following formula for these probabilities:

Pr Za,i ¼ zj�a,i,+,�a,i,�,Xa,i

� �

¼
Pr �a,i,+,�a,i,�jZa,i ¼ z,Xa,i

� �
Pr Za,i ¼ z
� �

P
h Pr �a,i,+,�a,i,�jZa,i ¼ h,Xa,i

� �
Pr Za,i ¼ h
� � ,

ð3Þ

where Z denotes variant class and the variables X are
(functions of) average intensity A, amplicon length,
probe GC content and central base pair composition, i.e.
the central allele in the probe sequence strand versus the
central allele in the target sequence strand. We assume a
Gaussian distribution for �a,i given Za,i and Xa,i, and iden-
tical and independent distributions for each strand.
The prior probabilities for the three variant classes are
(0.998, 0.002, 0.000001) assuming an expected variant
allele frequency of 0.001 (15) and Hardy–Weinberg
Equilibrium.

Based on previous methods in SNP arrays, we account
for the effect of X on log ratio � using linear regression
model within each variant class z (23). However, we
cannot implement exactly the same EM procedure as
that used in (23) for SNP genotyping. Because there are
three pairs of log ratios at each base position, we usually
do not know the principal non-reference allele, and many
fewer data points are present within the non-reference
clusters (Supplementary Figure S4). We therefore imple-
mented an iterative procedure: (i) because >99% of the
nucleotide positions are expected to be reference, we used
data on all positions to estimate the coefficients for Xa,i at
Za,i=RR using least squares. (ii) Based on observations
in SNP arrays (23), we assume no effect from all the X’s
for the RS class, and symmetry about zero for the SS and
the RR classes (Supplementary Figure S4). We then
calculated the single-chip posterior probabilities shown
in Equation (3). (iii) Using the posterior probabilities
calculated for all arrays, we choose one alternative allele
out of three choices at each position (see ‘From single-chip
to multi-chip’ subsection) and then perform (i) and (ii) on
only the chosen alternative allele to obtain the final
single-chip posterior probabilities and base calls.

The motivation for taking an iterative procedure as
described above is that we aim to achieve two tasks at
once, namely to distinguish a variant from a reference
position and to determine the identity of the alternative

allele for a variant. We have no information on either
a priori and so first simplify these problems to the
reference and fixed alternative alleles and then identify
the few variants across all positions. We also observed
heteroscedasticity during model fitting and used the
weighted least squares method in the second iteration.
Our weights come from the variance functions
�2(v)= (b+vc), where v is the fitted value based on
ordinary least squares (26). These weights were computed
using the R package nlme.

From single-chip to multi-chip. Assuming all variants are
bi-allelic, we selected the alternative allele a at each nu-
cleotide position i, in order to later perform genotyping.
This selection enriches the variant signals by a factor
of three and represents a projection of the six �’s to the
corresponding 2D space, in the case of variants. In het-
erozygous variants, the �’s in the other four dimensions
present approximately reference signals that are orthog-
onal to those in the chosen pair of �’s (Supplementary
Figure S5). In homozygous variants, these �’s present
heterozygous signals that are collinear (Supplementary
Figure S6). Their contribution to calling homozygous
variants will be limited because homozygous variants
occur less often than heterozygous variants, and the 2D
data alone present strong signals for base-calling. Thus,
using single-chip posterior probabilities, we choose the al-
ternative allele as follows:

A¼ argmaxa
X

j

PrðZa,i,j¼SSj�a,i,j,+,�a,i,j,�,Xa,i,jÞ ð4Þ

In other words, we choose the alternative allele that maxi-
mizes the expected number of homozygous variants, given
the data. We compared our chosen alternative allele with
the known alternative at all dbSNP positions that pre-
sented variants in our samples (168 in total), and found
no errors. For each nucleotide position i, we made an
initial genotype designation for each sample j based on
their single-chip posterior probabilities. At positions
where all samples were designated as RR with the corres-
ponding posterior probabilities >0.999, we concluded they
are reference-only without going to the multi-chip model.
For the remaining selected positions, we calculated the
minor allele count (MAC) as the total number of alterna-
tive alleles across all samples.

Multi-chip model. At each of the selected positions, we
use a Gaussian mixture model to genotype all samples
based on the �a’s (sense and antisense strands and
selected a, see Figure 3) as previously introduced to micro-
array analysis (27,28). We considered positions with
MAC� 4 as likely common variants and positions with
MAC< 4 as likely rare variants. At likely common
variant positions, we obtained maximum likelihood esti-
mates for the model parameters (m for the centers and v
for the covariance matrices) using the EM algorithm (29).
We allowed the orientation, volume and shape of the com-
ponent distributions to vary, as determined by the covari-
ance matrices (30). We determined the best-fitting model
(i.e. a mixture of one, two or three clusters) using the
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Bayesian information criterion (BIC) (31). This estimation
was performed using the R package mclust (32). At likely
rare variant positions (MAC< 4), instead of estimating
the model parameters with the observed �’s for the
non-reference clusters (a computation highly susceptible
to technical errors), we pre-specified the values of these
parameters based on the best available knowledge. In par-
ticular, we assumed the m for the heterozygous cluster is
(0,0) and the m for the homozygous variant cluster is
� �̂mRR, which is the minus of the average values of m̂RR

for observed homozygous reference cluster across all
bases. We further assumed the covariance matrices for
the non-reference clusters to be identical to the corres-
ponding reference cluster at the same base positions.
This is a simple solution to a most important problem in
our analysis: finding the true and unknown rare variants
without making many false discoveries. As much more
sequence data are collected in future, we will be able to
formally implement empirical Bayes methods in order
to borrow strength from observations in heterozygous
and homozygous variant clusters (23). For each selected
position i and alternative allele a (notations dropped
below), we computed the multi-chip posterior
probabilities:

PrðZ
0

j ¼ z0j�j,+,�j,�,�Þ

¼
Prð�j,+,�j,�jZ

0

j ¼ z0,�Þ PrðZ
0

j ¼ z0Þ
P

h Prð�j,+,�j,�jZ
0

j ¼ h,�Þ PrðZ
0

j ¼ hÞ
,

ð5Þ

where Z0 denotes the genotype class: RR, RS and SS geno-
types corresponding to the reference allele and the selected
a allele, and ? denotes the parameters (means and covari-
ances) for the mixture components. We assumed bivariate
Gaussian distribution for (�j,+, �j,–) given Z0j. The prior
probabilities for Z0 are (0.998, 0.002, 0.000001) for
unknown variant positions and (0.98, 0.02, 0.0001) for
dbSNP positions. We then assigned to each sample the
class z0 with the highest posterior probability among all
classes.

Genotype post-processing

Interpreting clusters as genotypes. We often observe tech-
nical artifacts that prevent assigning genotypes to the
identified clusters. These include singleton outliers
caused by technical errors; multiple clusters for reference
samples due to batch effects (23); and two clusters (i.e. het-
erozygous variant and reference) close to each other due
to insufficient discrimination of probes for complete and
incomplete hybridizations (Supplementary Figure S7).
To accurately identify genotypes from the clusters,
we applied constraints on the estimated component distri-
butions. We established four steps with the goal of
confining genotype clusters in the upper right corner,
around the origin, and the lower left corner, respectively,
on a � plot (Figure 3). These steps are necessary for both
common and rare variants and were established using
training data from 42 Sanger-sequence exons not used in
the validation study. We use (m1, m2, m3) to denote the
centers of the three clusters and require: (i) m2 for hetero-
zygous variant cluster and m3 for homozygous variant

cluster are smaller than m1 for reference cluster on both
strands; (ii) m3 are negative in both strands, and m1 are
positive; (iii) the Euclidian distances among the centers
and the origin follow ||m1||>||m2||, ||m3||>||m2||,
||m1||>||m1 – m2|| and ||m3||>||m3 – m2||; and (iv) Under
Hardy–Weinberg equilibrium, having at least four
homozygous variant calls suggest the existence of hetero-
zygous variants, while having n–1 heterozygous calls (n is
the total number of samples) and only one reference
suggests poor probe performance and that all are reference
calls. We will explicitly correct for batch effects and probe
performance in our model as more new data become
available.

Identifying other technical artifacts. We applied filters
for heterozygous calls due to the footprint effect
(Figure 1C) and to detect low-homology regions (e.g.
pseudogenes), PCR errors or local array defects. In
brief, rare heterozygous calls (MAF< 4) in the flanking
24 bp of a homozygous base-call for the same sample are
removed if no other homozygous calls are made at those
positions. More than two heterozygous calls (MAF< 4) in
the same amplicon of one sample were removed. Similar
procedures were used for resequencing arrays for haploid
genomes (33).

Quality measure for clustering and probe performance. For
base i, sample j in a cluster z0, we modified the silhouette
width measure (34) to

qi;j;s ¼
bi;z0;s jð Þ � ai;z0;s jð Þ
� �

max ai;z0;s jð Þ; bi;z0;s jð Þ
� � ; ð6Þ

as quality score, where a( j ) is the average distance from j
to all points within the cluster z0, and equals 1 when j is the
only data point in the cluster; b( j ) is the average distance
from j to all data points outside the cluster z0, and equals
the average distance to 0 when all data points are in this
cluster. We define:

Qi ¼ medianj mins qi;j;s
� �� �

; ð7Þ

in order to evaluate the underlying probe performance at
each nucleotide position. Without taking the minimum
across strands, we also derived Qs for sense and antisense
strand, respectively.

Among all variant positions identified from the clus-
tering analysis, we changed the calls to ‘N’, when they
were (i) identified as technical artifacts, or (ii) had low
clustering quality as measured by the score q and the cor-
responding position was not previously reported (dbSNP
v140), or (iii) at positions with low performance of all
eight probes as measured by the score Q. In order to
maintain a reasonable balance between FDR and FNR,
we set as default the quality threshold (0.67) for the
turning point on the error curve (Figure 4), which was
based on the validation data. We then used this threshold
to identify variants in all sequencing data. Our threshold is
close to a previously suggested number (0.65) on silhouette
score for SNP arrays (25).
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RESULTS

Array-based sequencing

We sequenced 106 kb (452 exons in 438 PCR-amplicons)
in each of 40 samples using both array-based and bidirec-
tional Sanger capillary sequencing. Each array contains
�850 k 25mer-probes, with eight probes targeting each
nucleotide position including four probes for sense and
antisense strand. The four probes for each strand differ
only at the center positions in A, T, G and C, respectively,
and match the reference sequence in the flanking 24 bases.
We describe the probes completely complementary to the
reference sequence as reference match probes (RMs) and
the probes for the other three alternative alleles as alter-
native match probes (AMs). We expect highest intensities
in the probes that are completely complementary to the
target sequence. As shown in Figure 1, homozygous ref-
erence positions (1–7,9–15) show higher RM than AM
intensities in the sense strand, and similarly in the anti-
sense strand (not shown), while a heterozygous variant
(Figure 1A and B, position 8) shows higher values for
both RM and one of the AM intensities, as compared to
those from the rest of the AMs. A homozygous variant
position (Figure 1C, position 8) shows an AM intensity
higher than those from all other probes. Because differ-
ences in the (log2) signal intensities (RM versus AMs) vary
across positions and samples, it is difficult to identify true
heterozygous positions when there are high AM intensities
(Figure 1B). In this study, we demonstrate that by
combining statistical modeling with biological knowledge
we can accurately identify both homozygous and hetero-
zygous variants at rare variant positions, where supervised
learning was not feasible.

Quality assessment

We implemented two steps to assess the quality of array
sequence data. First, we verified the signal quality on each
array as measured by the average differences of RM
and AM intensities (35) (Supplementary Figure S1).
Second, because the target sequences are captured as
PCR-amplicons, we evaluated the quality and quantity
of each amplicon using three measures (Figure 2, see
‘Materials and Methods’ section). These include the
reference call rate (R) to measure the general similarity
between the amplified sequence and the reference
sequence; the median log ratio (D) to measure the
average signal-to-noise ratio for an amplicon; and the
median average intensity (T) to measure the quantity
of each amplicon in array hybridization. In failed or
poorly amplified sequences, these measures have low
values (R< 0.9, D< 0.9 and T< 9) and are correlated
(Figure 2). In well-amplified targets, R is always close to
1 (Supplementary Figure S2), while D and T show a
non-linear correlation (Figure 2) representing effects of
DNA hybridization kinetics such as DNA quantity and
sequence composition. The three measures in comparison
provide quantitative and qualitative data on each
amplicon, which is useful when monitoring many
sample-preparations in parallel.

To identify failed PCR-amplifications across all 17 520
amplicons (438 amplicons in 40 samples), we defined the
conservative criteria for the success of target amplifica-
tions as R< 0.9. This measure is based on estimated
variant frequencies in protein-coding regions of diploid
genomes, with >99% of all positions being reference
bases. We evaluated this cutoff by manual inspections of
gel-electrophoresis data of 5694 amplicons (438 amplicons
in 13 samples, Supplementary Figures S2 and S3). Based
on R< 0.9, we identified a total of 726 failed amplicons
(4.1%) in all 40 samples, which approximates 18
amplicons per array. The 726 amplicons included 697
(3.9%) amplicons with low values in D (<0.9) and T
(<9), but also 29 (0.2%) amplicons with higher values in
D or T which may indiciate amplification of homologous
sequences. Following our quality screening, 96% of all
sample amplicons (16 794/17 520) proceeded to sequence
data analysis and base-calling.

DNA sequence base-calling

The SRMA base-caller was developed using 42 exons
(training set) and validated on additional 67 randomly
selected exons (test set). We independently (in a blinded
manner) inspected the bidirectional Sanger traces in both
sets in order to provide reference data for our algorithm.
SRMA was then applied to the entire quality-controlled
data for variant finding. For each nucleotide position and
each array, we calculated six log ratios for RM and AM
probes; one for each of the three alternative alleles per
strand. The genetic variation in a body of sequence data
can be summarized by the nucleotide variation within each
sample and measured by the variant frequency (typically
<1 per 1000 bp), while the variation across samples at
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each variant nucleotide position is measured by the MAF
with the two categories of common (MAF� 5%) and rare
(MAF< 5%) variants. Accordingly, we first utilized a
single-array multi-position Gaussian mixture model to
highlight likely variant positions, and adjusting for ex-
planatory variables such as average intensity, GC-
content and probe base-pair composition (Figure 3A).
We then used a single-position multi-array Gaussian
mixture model based on a selected alternative nucleotide
(Figure 3B–F, Supplementary Figures S5 and S6) to
identify the exact variant samples at the variant positions.
Within a rare variant position, the low population fre-
quency precludes using training data with samples of
known variant genotypes to derive the genotype specific
distributions of log ratios as utilized in SNP arrays (23).
On the other hand, when only a few variant samples
present log ratios that are different from those of the ref-
erence samples (Figure 3E and F), these outliers are often
confounded with technical variations. To overcome this,
we determined how many variant samples are expected at
a position using single-array initial calls. We then used
different estimation procedures for the likely common
and the likely rare variant positions (see examples in
Figure 3). The multi-array classification results are suscep-
tible to batch effects presenting multiple clusters for the
reference samples (23), and to weak probe performance
making the heterozygous samples more similar to the ref-
erence samples (Supplementary Figure S7). We inferred
genotypes from the classification results using constraints
on the location of the genotype groups to merge reference
clusters, and by leveraging information from high confi-
dence homozygous variant calls to identify additional het-
erozygous variants based on Hardy–Weinberg equilibrium
.
In some instances we identified strings of heterozygous

calls within neighboring positions in one sample. This may
occur due to a ‘footprint’ effect incorrectly depressing
reference base signals neighboring a homozygous variant
position (Figure 1C), PCR errors that passed our quality
controls or other array-specific defects (Supplementary
Figure S8). We applied filters to recognize the known
patterns of these artifacts and to remove the correspond-
ing variant calls (see ‘Materials and Methods’ section).
Visual inspection of Sanger traces for these positions
(total 472) identified only a single true heterozygous
variant, which was confounded by artifactual variant
signals in this sample. Finally, we used two quality
measures to rank the confidence of each base-call. The
score q was used to evaluate the quality of base-calls for
each position and sample, while score Q is used to measure
the probe-performance at each position (four probes/
strand). Measuring the ability of probe quartets to dis-
criminate between reference and alternative base signals
is important (Supplementary Table S7), because the
inherent design of resequencing arrays require the tiling
of all probe sequences to complement a reference. Our
position-specific Q score identified 5.7% of all nucleotide
positions with at least one probe quartet with suboptimal
performance. At these positions, SRMA base-calling is
still possible when all samples are reference. Only 0.4%
of all positions had both probe quartets affected. The

main steps and the number of bases processed in SRMA
are shown in Supplementary Figure S9.

Accuracy of base-calling in the validation data

We assessed the accuracy of SRMA and the current most
commonly used algorithm GSEQ (12,36) by comparing all
quality-controlled base-calls to visually inspected Sanger
sequence (674 kb; Supplementary Table S5), which
included 371 variant calls across samples (5.5� 10�4 per
base) corresponding to 52 unique positions (3� 10�3 per
position). We measured the performance at various
thresholds by: (i) the proportion of variant calls in the
Sanger sequence that were called as either reference or
‘N’ due to low confidence by the array base-caller
(FNR); and (ii) the proportion of array variant calls
that were called as reference bases in Sanger sequencing
(FDR). Similar to previous studies (4,14), we based our
validations on base-calls in each sample (sample-
positions), as compared to unique base positions across
a number of samples. Overall, SRMA made more
reliable base-calls than GSEQ, while substantially
reducing the FNR and FDR (Figure 4). At the default
thresholds of 0.67 for SRMA and 3 for GSEQ (see
‘Materials and Methods’ section), the estimated call
rates (proportion of reliable calls among all sequences)
were 99.86 versus 96.8%; the estimated FDR was 2
versus 58%; and the FNR was 5 versus 28%. SRMA
found all Sanger-identified variant positions, with eight
additional positions as false discoveries (Table 1). At a
higher score threshold of 0.78, 13% of Sanger variants
were called as reference or ‘N’ without false discoveries.
The missed calls were from four unique positions (8%
of variant positions) with one being a common SNP
(MAC� 4) and three being rare variants (MAC< 4). As
expected, SRMA achieved a lower FDR (0.01) for homo-
zygous than for heterozygous calls at the default threshold
0.67 with zero false negatives (Figure 4, Table 1).

At the SRMA default threshold, 99.99% (674 249) of
the base-calls were identical to Sanger calls, with only 37
discordant calls between the two methods. These included
10 homozygous calls at three positions (10% of all homo-
zygous calls) that SRMA misclassified as heterozygous
variants, and eight false positive calls (seven heterozygous
and one homozygous) at eight unique positions with
one false positive per position (Supplementary Figures
S10–S17). In contrast, the 19 false negative calls, all of
which were true heterozygous for the same common
SNP position, presented very similar signals as the refer-
ence samples (Supplementary Figure S18) and were there-
fore missed. In summary, the accuracy of array-based
sequencing is limited by the number of technical variations
giving signals highly similar to those of rare variants, and
by heterozygous positions presenting with signals similar
to reference signals.

Accuracy of base-calling and SNP detection in all data

We assessed the accuracy of SNP detection by comparing
all SRMA variant calls to manually inspected positions
in the corresponding Sanger traces. At default threshold
(see ‘Materials and Methods’ section), SRMA predicted
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Figure 3. Examples on SRMA base-calling using the single-chip (A) and then multi-chip (B–F) procedure. (A) Shown is a smoothed density plot of
the log ratio �’s: �RM– �AM, versus the average intensity A’s: (�RM+�AM)/2 for selected AM’s on a single array, where the darker color indicates higher
density of data points. For one position, the X’s in red are where we expect � to be for the three variant classes RR, RS and SS, respectively. We
compared these values to the observed � (green circle) and called this position as RR. We finalized base-calling at positions (86%) where all samples
present high confidence RR calls from the single-chip procedure. We next present five positions highlighted in yellow and of varying shapes (circle,
square, diamond, point-up triangle, point-down triangle and star) for this array in (A) and also in individual � plots (B–F for positions 1–5). These
plots represent our multi-chip procedure, which is based on the distribution of �’s with selected AM’s at one position in all 40 samples. MAC denotes
minor allele count. The y-axis is for sense strand (+) and the x-axis is for antisense strand (–). Black is reference, blue is heterozygous variant and red
is homozygous variant. The ellipses represent 90% confidence regions of the component distributions in our multi-chip model. (B) Model-based
classification across samples identified additional reference-only positions where one cluster of positive �’s contained all samples. (C) In common SNP
positions, each variant cluster contains enough samples to allow our clustering algorithm to estimate the right number of clusters, the varying shapes
and locations of the clusters and assign each sample to a cluster. (D) The multi-chip clustering is more accurate than the single-chip calling when the
location of �’s is abnormal. (E, F) In rare SNP positions, we perform classification based on observed reference cluster and pre-specified locations and
shapes of the variant clusters. This method identified one or two variant samples (out of 40) as heterozygous and homozygous.
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2326 variant sample-positions (366 unique positions,
Table 2) and we confirmed 2186 true variant calls (FDR
6%). These included 118 (5.5%) sample-positions that
SRMA misclassified between homozygous and heterozy-
gous variants. Notably, most of the correctly detected
non-dbSNPs (35% of all variant sites) had a moderately
rare minor allele (MAC< 4), which included 72 (81%)
singleton heterozygous variants (MAC=1). In contrast,
most false positives occurred at positions with only one

variant sample, which is consistent with findings in our
validation data. Cross hybridization between similar
probes is a possible explanation for false positive
base-calls. We found 10 of 69 false positive positions
(Supplementary Table S7) with probe sets of �23 bases
matching another probe set, while only 2 of 259 true
positive positions had similar probes (P< 0.001).

We also analyzed the performance of SRMA for
common variants using Sanger verification. Of 805
dbSNPs reported in our sequences, we selected 76 pos-
itions with a MAF� 0.05 in our study population
(CEU) and confirmed 74 positions using both methods.
Only one position (rs11085147, MAF=0.11) did not
present any variant samples in our data, while one other
position (rs495935, MAF=0.075) was missed by SRMA
at the default threshold. This position contained three
variant heterozygous samples that were initially called as
variants, but subsequently marked as N’s because the
position-specific quality score was below the default
threshold, suggesting suboptimal probe performance.

Finding insertion and deletions

SRMA identified several small-scale insertion and dele-
tions (indels) including a rare 1bp heterozygous deletion
(Supplementary Figure S19), a common 1bp insertion
(rs33964928, Supplementary Figure S20), and a common
4-bp deletion (rs10568542, Supplementary Figure S21) by
calling these as heterozygous variants. Because small-scale
deletions present strings of heterozygous calls, those with
low population frequencies may be confounded with our
filters for technical artifacts. To evaluate the impact of
such confounding, we visually inspected the Sanger
traces for the 52 strings (472 positions) filtered out by
SRMA and found no additional insertions or deletions
at these positions. In summary, small-scale indels in
diploid genomes can be detected by resequencing arrays,
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Figure 4. FDR versus FNR for SRMA and GSEQ at varying cutoffs
of the quality scores. The cutoffs are 0–1 for the modified silhouette
score in SRMA and 0–46 for the quality score (log likelihood ratio) in
GSEQ. Each base-caller has three curves: for all SNPs (black), hetero-
zygous SNPs only (blue) and homozygous SNPs only (red). The results
for the default cutoffs of 0.67 (diamond) and 3 (circle) are shown for
the two base-callers, respectively. As expected, heterozygous SNPs are
more difficult to call and have higher error rates than homozygous
SNPs. For all three categories, SRMA out-performed GSEQ by at
least one order of magnitude.

Table 2. Variant count spectrum in 39 candidate genes and

40 samples

MAC

1 2 3 �4 Total

Total SRMA SNPs 166 33 17 112 328
Total SNPs found 103 30 16 110 259

dbSNPs found 31 17 12 110 170
Non-dbSNPs found 72 13 4 0 89

False discoveries 63 3 1 2 69

SRMA identified 366 variant positions, among which 338 had Sanger
traces available for inspection, and including 10 positions identified
as insertion/deletions. The MAC represents the number of times the
variant allele is detected in all samples. The ‘found SNPs’ (259 in total)
are positions with at least one variant call confirmed by Sanger
sequencing. A comparison with dbSNP identified 89 (34%) novel
SNPs, all of which had MAC <4 (i.e. MAF<0.05). The false
discoveries (69 in total) are positions marked by our algorithm but
unconfirmed in Sanger sequence analysis. A majority of these positions
(97%) had less than four alternative alleles, which demonstrates the
challenge in discriminating between technical errors and true rare
variant positions.

Table 1. Validation of the SRMA base-caller

Call rate FPR FDR FNR

SNP sites 1.00 4.6� 10�4 0.13 0
SNP calls 0.9986 1.2� 10�5 0.02 0.05
Heterozygous calls 0.03 0.07
Homozygous calls 0.01 0

The validation data include 67 randomly selected exons with manually
inspected Sanger traces (674 kb; 17 551 positions). Sanger sequencing
identified 371 sample-positions from 52 unique positions and called
the remaining sequences (�674 kb) as reference. Based on this data,
SRMA made reference calls at 19 heterozygous sample-positions, all
of which are for only one common SNP position, which was found
heterozygous in Sanger analysis. However, SRMA identified the same
position through homozygous variant calling in the other 10 variant
samples. In total, SRMA had eight false positive calls out of 674-kb
references, with one false variant sample call per position. These eight
positions represent the difficulty in accurate resequencing, which is to
differentiate between rare variants and technical errors, both occurring
at low frequencies.
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while follow-up sequencing is required to identify their
architecture.

Analysis of DNA variants in the study population

Our ad-hoc criterion (MAC< 4) for deciding how to
proceed in multi-chip analysis depends on the crude
base-calls from a single-chip analysis, which carries some
level of uncertainty. As a sensitivity analysis, we used a
criterion that is less stringent on the confidence of
single-chip base-calls and results in performing EM at
more positions. This procedure had improved perform-
ance in detecting true common variants at MAC>=4
(FNR=0), but resulted in a slightly higher number of
false positives as more technical errors were called as
rare variants in our validation data. We selected this less
stringent criterion to record all potential variants in
our study population for new biomedical discoveries.
SRMA predicted 375 unique DNA variants (2740
sample-positions) with a FDR of 9% based on careful
inspections of each variant in the corresponding Sanger
traces (Supplementary Table S6). In our analysis we
focused on non-synonymous variants, splice site muta-
tions, and small insertions and deletions (indels) in
protein coding regions and removed all variants identified
in the 13 control samples. In the medical cases only, we
detected in total 58 non-synonymous variants (69
sample-positions) that included nine dbSNP positions
(17 sample-positions) indicating that most variants are
rare singletons. We confirmed more than half of these
variants (33 out of 58) in Sanger analysis, while 17 pos-
itions could not be confirmed and for eight positions
Sanger traces were not available. A heterozygous SRMA
variant was identified as a one-base deletion (A–) in
Sanger trace inspections.

Our study included eight cases (P01–08) with known
mutations in the polymerase gamma (POLG) gene
serving as positive controls (Figure 5). Array-based
sequencing confirmed all mutations in four cases (P01
homozygous, P04 and 07 compound heterozygous, and
P06 heterozygous), while in two cases one of two
compound heterozygous variants was missed by the
array but confirmed in Sanger analysis (P02 p.A467T;
P03 p.R627Q). Lowering the threshold of the array
quality measures would have detected the heterozygous
p.R627Q in P03. In both of the remaining two positive
control cases (P05 and P08), we could not confirm one
of the two previously reported heterozygous variants at
position p.R627Q using either array or Sanger sequencing
from newly amplified PCR products. This result may be
explained by allele-specific amplification. Another differ-
ence to previous findings was a heterozygous p.R1096H in
P05 that we found as a homozygous variant. In addition
to the above cases, we studied 19 cases (P09–27) present-
ing with mtDNA maintenance disorders but unknown
gene defects. In 15 of these cases, we found 19 different
DNA variant positions (23 sample-positions).

(i) DNA variants in genes previously associated with
mtDNA maintenance disorders:
(a) POLG: We found a heterozygous p.A467T in

P14, which is a common POLG mutation that

was also confirmed in P01 and P02. This
mutation is mostly recessive and unlikely to
cause disease by itself (http://tools.niehs.nih.
gov/polg). We did not detect a second variant
in this or other genes in P14. In P18 we found
a homozygous p.R1146C, which is a neutral
polymorphism (rs2307440), while one study
reported it as a heterozygous variant suggesting
a moderate biochemical effect (37). PolyPhen, a
computational tool to predict the impact of
amino acid substitutions on protein structure
and function (38), predicted p.R1146C as
‘probably damaging’ (score 2.2), which is on
average higher than all known POLG disease
mutations (Supplementary Figure S22). A
novel heterozygous variant p.Y282D in P21
located at a conserved position in the exonucle-
ase domain is probably damaging (3.4).

(b) TYMP: A heterozygous p.A465T was found in
P23, which is located in the C-terminal end of
the thymidine phosphorylase protein (length
482aa) and predicted benign (0.6). This
position was reported homozygous in a case
with neurogastrointestinal encephalomyopathy
syndrome (17,37).

(c) C10orf2: A heterozygous p.V368I was detected
in P25 and P27, which is a neutral polymorph-
ism (rs2307440) and predicted benign (0.1) and
showed no segregation with the disease pheno-
type in autosomal dominant progressive
external ophthalmoplegia (39).

(d) SUCLA2: We identified a novel heterozygous
p.R17G in P09, which is located at a highly
conserved position 17 in the mitochondrial
transit peptide sequence (position 1–60) of the
Succinyl-CoA ligase beta subunit and predicted
as probably damaging (2.3). An analysis for
subcellular targeting using Predotar (40)
showed a significant difference for the variant
protein (0.46 mitochondrial, 0.49 elsewhere;
Prediction: possibly mitochondrial) in compari-
son to the reference sequence (0.68 mitochon-
drial, 0.28 elsewhere; Prediction:
mitochondrial). Subcellular mislocalization
due to missense mutations in protein target
signals was shown in other disorders (41).

(e) POLG2: A heterozygous p.G416A was
detected in P16 and P20, which is a neutral
polymorphism (rs17850455) and predicted as
possibly damaging (1.9). A biochemical
analysis of the mutant protein showed no alter-
ation in its chromatographic properties (42).

(ii) DNA variants in disease genes with suspected func-
tions in mtDNA maintenance:
(a) GFM1: This gene encodes a mitochondrial

translation elongation factor. We found a het-
erozygous p.N43D in P23, which is reported as
polymorphisms (rs35942089) and predicted
benign (0.5).

(b) MUTYH: In P20, a novel heterozygous single
base deletion (A–) was identified at cDNA
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position 1307 causing an amino acid substitution
p.E364D (codon: GAA-GAC), frameshift and
premature termination (TGA) at peptide
position 393 (p.E364Dfs393X). This mutation

truncates the wild-type peptide involving the
DNA-Glycosylase-C domain, and may lead to
nonsense-mediated mRNA decay. Another
novel heterozygous MUTYH variant (p.S501F)
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Figure 5. Candidate gene analysis of mtDNA maintenance disorders. (A) The 39 genes include 10 genes causing mtDNA maintenance disorders
(green nodes), 15 disease genes with suspected functions in mtDNA metabolism and/or similarities in their disease phenotypes (purple nodes), and 14
non-disease candidate genes with functions in mtDNA maintenance (grey nodes) (Supplementary Table S2). Gene relationships are predicted through
functional interactions (likelihood ratios; LR) (20) and disease-phenotypic similarities (quantitative phenotypic associations; QPA) (21) with the edge
colors: red—gene pairs with highest correlation of LR and QPA; blue—gene pairs with LR only; and orange—gene pairs with QPA only (�0.4). The
six genes at bottom left have multiple functional interactions to this network through intermediate genes (data not shown). Five disease genes
(asterisk) are associated with dominant inheritance patterns and four of these genes (C10Orf2, OPA1, POLG, SLC25A4) are also causing recessive
disorders (17,18). In this study we identified novel DNA variants in several cases in POLG, APEX2, MUTYH, TOP1MT (underlined). (B) The table
shows amino acid changes (acronym p. not shown) identified in only the 23 cases and not controls. Five of these 14 genes (in bold) are known to
cause mtDNA maintenance disorders (green nodes in A). The color codes indicate PolyPhen’s functional predictions (38) with ‘possibly damaging’
(yellow) and ‘probably damaging’ (orange), while all other amino acid changes are predicted benign (Supplementary Table S6). Positions that
escaped array detection are shown in parenthesis, (asterisk) indicate dbSNP positions, and (caret symbol) are cases with rare variants in multiple
genes hypothesizing a synergistic effect on the disease phenotype.
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that is predicted benign (1.3) was found in P17.
P17 also carried a heterozygous and possibly
damaging (1.8) SNP p.Q324H (rs3219489).).

We further detected novel heterozygous variants that
are predicted benign in SPAST in P22 (p.I163T, score
0.3), and in SURF1 in P15 (p.N249D, score 0.8).

(iii) DNA variants in non-disease candidate genes with
functions in mtDNA maintenance:
(a) APEX2: This gene is involved in

post-replicative nuclear and mitochondrial
base excision repair. We identified a novel
homozygous p.H269Y in P22, which is
located in the conserved endo-exonuclease-
phosphatase domain and possibly damaging
(1.9). In addition we found a novel homozy-
gous variant p.N392H (PolyPhen 1.8) in P05;
a case which also carried compound heterozy-
gous POLG mutations.

(b) LIG3: DNA ligase 3 is thought to function in
mitochondrial base excision repair (43) and
interacts with POLG. A novel heterozygous
p.Y768H was found in P12, which is located
in the highly conserved ATP-dependent DNA
ligase C terminal region and possibly damaging
(2.0).

(c) LONP1: LONP1 functions in mitochondrial
proteolysis and catalyzes the initial steps of
protein degradation. We identified novel homo-
zygous p.V675L in P09 and P17 located at amod-
erately conserved position in the
ATPase-AAA-core domain and predicted
benign (0.2). In addition, we found the known
p.V911I polymorphism (rs1062373) as a hetero-
zygous variant in P05, P19, P21, and homozy-
gous in P01, which is predicted benign (0.8).

(d) PPID: In P21, we found a heterozygous p.V177I
(rs61756415) that is predicted benign (0.4).

(e) TOP1MT: Mitochondrial topoisomerase 1
consists of 14 exons encoding a 601 amino
acid peptide, which controls the mtDNA
topology during transcription. In P22 we
identified a novel heterozygous nonsense
mutation p.Q172X in exon 5 (c.533C>T)
causing a termination (CAA-TAA) at peptide
position 172 likely leading to a truncated
product and nonsense-mediated mRNA decay.
We further identified a novel heterozygous
p.R571W in P13, which is predicted probably
damaging (2.4), and a novel heterozygous
p.Q171R in P05 that is predicted benign (1.4).
P05 and P13 also had a heterozygous
non-synonymous SNP p.R525W (rs2293925),
and P13 and P22 a heterozygous variant
p.V256I (rs11544484), both of which are pre-
dicted benign (0.1 and 0.5, respectively).
These two SNPs were also detected in several
controls (Supplementary Table S6). In P22 we
also detected three synonymous SNPs in a het-
erozygous state (rs61631623, rs2450772,

rs11544482) making an intragenic deletion in
trans adjacent to p.Q172X less likely.
Haplotype insufficiency was proposed as a
disease cause in mtDNA maintenance disorders
[POLG2 (44)] but we did not find support for
such mechanism for TOP1MT homologues in
other organisms such as yeast (45).

DISCUSSION

The identification of rare functional DNA variants
(MAF< 1%) requires the application of high quality
DNA sequencing to well-phenotyped disease populations.
These will often include sporadic cases due to purifying
selection against high-risk alleles. Here we analyzed 39
candidate genes for mtDNA maintenance disorders
(Supplementary Table S2) with a custom resequencing
array and confirmatory Sanger sequencing. We studied
27 medical cases with these rare disorders in comparison
to 13 controls and data from dbSNP. To identify DNA
variants in each sample with a minimal number of false
discoveries, we developed a novel statistical method that
builds on the success in microarray data analysis and SNP
genotyping (23,25,27,28). In this context, SRMA accounts
for technical limitations such as differences in average
probe intensities, base pair composition, GC content and
amplicon length. In addition, while SNP arrays typically
contain only two probes per base with optimal probe per-
formance, resequencing arrays require querying all four
alleles at each base position (Figure 1) in order to detect
rare and unknown sample variants (expected <1 variant/
1 kb). Our novel base-caller utilizes mixture models at two
different data levels: (i) across all bases within a single
array to predict variant positions, and (ii) for a single
base across all arrays to accurately identify all variant
samples at this position (Figure 3). More than 97% of
the initially predicted variant positions were removed
through multi-array analysis. In addition, we ranked the
confidence of each base-call using a position-specific
quality score measuring a probe’s ability to discriminate
between a variant and reference signal. Only 0.4% of all
nucleotide positions had probe sets with suboptimal per-
formance on both sequenced strands. Our QC and
genotype post-processing contains numbers that represent
an optimal balance between false negative and false
positive discoveries in our training data (5694 amplicons;
500 kb). We generated this extensive data set through
gel-electrophoresis experiments and manual Sanger
sequence analysis (Figure 2, Supplementary Figures S2
and S3). Overall, SRMA detected variant positions with
only one, two or three heterozygous variant samples
(MAF: 1.25–3.75%), with on average 96% target
sequence coverage per sample. With increased sample
size and only one array per sample (2� sequence
coverage), SRMA will have the power to identify very
rare variants with MAF of 1% or less.
Array-based sequencing predicted 375 variant positions

(2740 sample-variants, Supplementary Table S6) including
31 non-synonymous variants detected in only the medical
cases (Figure 5). Each sample-variant was verified through
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Sanger sequencing. In the eight positive control cases with
known POLG mutations (P01–08), SRMA missed only
one of two heterozygous variants in each of two samples
(P02 p.A467T; P03 p.R627Q). In case P05 we identified
additional novel variants in two candidate genes: APEX2
(p.N392H) and TOP1MT (p.Q171R). PolyPhen, a compu-
tational tool that we evaluated for functional effects of
DNA variants (Supplementary Figure S22), predicted
the APEX2 variant as possibly damaging. Another case
(P22) with a predicted functional homozygous APEX2
variant (p.H269Y) also carried a heterozygous nonsense
mutation in TOP1MT (p.Q172X) removing two thirds
of this gene product including the catalytic topoisomer-
ase domain. Another conserved missense variant in
TOP1MT (p.R571W) was found in P13. In addition,
we detected a heterozygous single base deletion (A–)
in MUTYH (P20) causing a frameshift and stop
at the conserved DNA-Glycosylase-C domain
(p.E364Dfs393X). Decreased expression levels and DNA
repair capability of MUTYH has been proposed as a
cause of mtDNA damage in aged rodent retinal pigment
epithelium (46). Notably, MUTYH is associated with in-
herited colorectal tumors (47), which immediately
provides new candidate genes from this mtDNA mainten-
ance network for the study of human cancers. Another
mitochondria-related gene associated with cancer and
mtDNA depletion is TP53 (48), while fumarate hydratase
(FH) and the RNA component of mitochondrial RNA
processing endoribonuclease (RMRP) are examples of
genes causing both cancer and other diseases. Although
no unequivocal biallelic mutations were detected, rare
variants in the gene’s promoter and control regions
cannot be ruled out, and considering that five of the
known disease genes are linked to dominant traits (18)
(Figure 5), our results prioritize APEX2, MUTYH and
TOP1MT as new disease candidate genes for mtDNA
maintenance disorders. Studies of other cases and func-
tional validations are now indicated, which is particularly
challenging in cases carrying rare heterozygous variants in
multiple genes (2,49,50). At present, no experimental
approach exists to quantitatively measure the combined
phenotypic effects of multiple alleles in an individual.
A number of functional variants in different genes may
be compatible with normal existence (51) but it is conven-
tional to believe that these defects are more likely patho-
logic in functionally interacting genes.
Approximately 20–30% of the individuals with

mtDNA maintenance disorders remain without diagnosis
(17,18). Our results highlight the need for high quality
resequencing of multiple candidate genes in these
diseases. In order to make a prediction as to which
methods may be best applied for such studies, we
compared the performance of current high-throughput
technologies. The accuracy of array-based sequencing
with SRMA (FDR 2–6%, FNR �5%; Figure 4) is
higher than for automated Sanger sequence analysis
[FDR 13%, FNR 3%; (4)], and comparable to second-
generation sequencing platforms with either optimal
coverage [FDR 2–8%, FNR 0–3%; (14)], or minimal
coverage and improved base-calling [FDR <10%, FNR
�5%; (52)]. The newer platforms are promising tools

for large-scale exome and whole-genome analysis (53),
while resequencing arrays could provide a robust and
cost-effective alternative in some applications (54). These
include the clinical resequencing of candidate genes in in-
dividuals with a specific disorder with the flexibility to
introduce additional arrays over time. We sequenced
samples in parallel (20 arrays/fluidics station/day) and
quickly identified sample processing failures (Figure 2).
SRMA was computationally efficient by calling each
base in all samples in �0.1 s. Further increase in through-
put, at reduced costs, could be achieved with targeted
multiplex amplification (55) of hundreds of candidate
genes coupled with second-generation resequencing
arrays (>500 genes/array) (13). In these array applica-
tions, our new methods can be used for monitoring
sample preparations and for resequencing (unpublished
results). As more medical cases are analyzed, the
accuracy of DNA variant discovery will continuously
improve through an iterative model-training process.
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