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SUMMARY 
By observing their social partners, primates learn about reward values of objects. Here we 

show that monkeys’ amygdala neurons derive object values from observation and use these 

values to simulate a partner monkey’s decision process. While monkeys alternated making 

reward-based choices, amygdala neurons encoded object-specific values learned from 

observation. Dynamic activities converted these values to representations of the recorded 

monkey’s own choices. Surprisingly, the same activity patterns unfolded spontaneously 

before partner’s choices in separate neurons, as if these neurons simulated the partner’s 

decision-making. These ‘simulation neurons’ encoded signatures of mutual-inhibitory 

decision computation, including value comparisons and value-to-choice conversions, 

resulting in accurate predictions of partner’s choices. Population decoding identified 

differential contributions of amygdala subnuclei. Biophysical modelling of amygdala circuits 

showed that simulation neurons emerge naturally from convergence between object-value 

neurons and self-other neurons. By simulating decision computations during observation, 

these neurons could allow primates to reconstruct their social partners’ mental states. 
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INTRODUCTION 

Primates observe the choices of social partners to learn about the reward value of objects. 

Such values learned from observation not only inform own decision-making but may also 

provide a basis for understanding the decisions of others. For example, by observing partners’ 

foraging choices, primates learn which foods are valuable and worth choosing (van de Waal 

et al., 2013). In turn, knowing how a partner values specific objects may help the observer to 

model the partner’s future decisions (Barlow, 1990; Lee and Seo, 2016). These cognitive 

processes—learning from others and predicting their choices—are critical foundations for 

primates’ sophisticated social behavior. Yet, despite recent progress in primate social 

neuroscience (Adolphs, 2006; Chang et al., 2013a; Isoda et al., 2018; Lee and Seo, 2016; 

Wittmann et al., 2018), their neuronal basis is poorly understood. 

Neurophysiological recordings in primates have shown that neurons in select brain 

structures encode the observed actions (Baez-Mendoza et al., 2013; Fabbri-Destro and 

Rizzolatti, 2008; Yoshida et al., 2011), performance errors (Baez-Mendoza and Schultz, 

2016; Yoshida et al., 2012) and expected rewards (Chang et al., 2015; Chang et al., 2013b) of 

social others. One recent study identified neurons that explicitly predicted others’ choices in a 

strategic game (Haroush and Williams, 2015). While these signals constitute important 

building blocks for social behavior, several key questions remain open. 

First, the neuronal value inputs leading to social choice predictions are unclear. 

Reinforcement learning provides a mechanism whereby neurons can derive values for 

decision-making from past choices and experienced outcomes (Schultz et al., 1997; Sutton 

and Barto, 1998). Such values may also be learned from observing social partners, likely 

through the same associative processes (Behrens et al., 2008; Heyes, 2012). However, it is 

unknown whether neurons indeed derive object values from social, observational learning, 

and whether a shared code underlies both observation-derived and experience-derived values.  

Second, the neuronal mechanisms that translate values to social choice predictions are 

unknown. Cognitive theories suggest that understanding others’ decisions requires simulation 

by the same mechanisms underlying one’s own mental states (Adolphs, 2006; Gordon, 1996; 

Shanton and Goldman, 2010). In neural networks, decision-making involves mutual-

inhibitory competition between choice-coding neurons, which signal this competition as 

dynamic value comparisons and value-to-choice conversions (Deco et al., 2013; Hunt and 

Hayden, 2017; Tsutsui et al., 2016; Wang, 2008). But whether these neuronal computations 

also underlie modelling of social partners’ decisions, as implied by the simulation view, has 

never been tested. 

We reasoned that the amygdala—a collection of nuclei in the temporal lobe—may be 

important in these processes. Amygdala neurons process associatively learned values (Chang 

et al., 2015; Johansen et al., 2011; Paton et al., 2006), economic decisions (Grabenhorst et al., 

2012, 2016) and social information, including faces (Gothard et al., 2007; Leonard et al., 

1985; Munuera et al., 2018; Rutishauser et al., 2013). Amygdala damage profoundly impairs 

primates’ social behavior (Adolphs et al., 2005; Adolphs et al., 1998; Kluver and Bucy, 

1939). The amygdala is also implicated in autism (Amaral et al., 2008; Baron-Cohen et al., 

2000; Rutishauser et al., 2013), which is marked by impoverished social cognition (Lai et al., 

2014). Although the amygdala’s role in social behavior is typically explained in terms of 

associative learning and social perception, whether amygdala neurons also contribute to more 

complex social cognition is unclear. 

To address these questions, we recorded the activity of single amygdala neurons in a 

social context in which two monkeys observed and learned from each other’s reward-based 

choices. We found that amygdala neurons encoded object-specific values learned from social 

observation and own experience in a common code, as suitable decision inputs. Distinct 

‘simulation neurons’ dynamically translated these values into representations of the partner 

monkey’s forthcoming choices. Beyond choice predictions, these neurons encoded the 

critical, well-conceptualized signatures of a neuronal decision computation, specifically 

before partner’s (but not recorded monkey’s) decisions. Based on these single-neuron data, 

we propose a biophysically realistic theory of mental simulation as neural decision 
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computation. We show that simulation neurons emerge naturally via self-organization from 

object-value neurons and additionally found self-other discriminating neurons. 

Our data and model suggest that distinct neurons in primate amygdala use common 

value inputs to compute own decisions and simulate decisions of social partners. By encoding 

decision computations during social observation, amygdala simulation neurons could 

constitute basic precursors for human mentalizing capacities. 

 

RESULTS 

Observational learning task and behavior 
We studied the neuronal basis of observational learning in single amygdala neurons while two 

monkeys observed and learned from each other’s choices for different visual cues (‘objects’) 

(Fig 1A). The task allowed the animals to track the changing reward probabilities of choice 

objects (‘object values’) for themselves and their partner. Importantly, the two animals 

worked on distinct object sets. To encourage observational learning, we switched object sets 

between animals (Fig 1B) and tested whether prior observation of partner’s choices benefitted 

own performance. We also reversed object-reward probabilities to test value tracking. (We 

use the term ‘switch’ to refer to object switches between animals.) 

In single sessions, the monkeys’ choices tracked object values over probability 

reversals and object switches between animals (Fig. 2A). On average, the animals required 

fewer trials to choose the best object post-switch (i.e. after objects had switched between 

animals) compared to individual learning (Fig. 2B), depending on the partner’s preceding 

performance (Fig. S1A). The animals’ choices were well described by reinforcement learning 

models that estimated subjective values from each animal’s own choice-reward history (Figs. 

2C, S1B, Table S1, Eq. 1-2). The animals’ performance approximated optimality by 

matching model performance (Fig. S1C). Value learning was also expressed in gaze patterns: 

on own trials, the animals looked longer at objects they were going to choose (Fig. S1D, E); 

on partner’s trials, they looked longer at objects the partner was going to choose, thereby 

anticipating the partner’s choices (P < 1.0 × 10
-16

; Fig. 2D, Fig. S1F). Thus, monkeys learned 

object values from observation and used these values for own decision-making and for 

predicting their partner’s choices. 

 

Amygdala neurons signal object values learned from observation and own experience in 

a common code 

Individual amygdala neurons signaled reward values for specific objects, irrespective 

of whether these values derived from own experience or from observed partner’s choices. On 

partner’s trials, the neuron in Fig. 3A responded strongly when the object’s value was high 

and the partner chose it frequently. Responses declined after unannounced probability 

reversal when the partner eventually preferred the alternative. After objects switched between 

animals, the neuron continued to track value during the recorded monkey’s own choices. 

These neuronal responses reflected the object’s subjective value derived from reinforcement 

models fitted separately to partner’s and recorded monkey’s reward-choice histories (Fig. 3B; 

P = 0.0001, multiple regression, Eq. 3).  

Among 205 recorded amygdala neurons, 127 neurons (62%) encoded such values 

(Fig. 3C), often specifically for one object (70/127 neurons, 55%, Table S2). We identified 

these neurons by first selecting object-evoked responses (P < 0.005, Wilcoxon test) and then 

regressing these responses on model-derived subjective values, controlling for self-other trial 

type, object choice and object sequence (P < 0.05, multiple regression, Eq. 3). Population 

activity on partner’s trials closely followed the changing subjective values in step with the 

partner’s choices (Fig. 3D, Fig. S2A). Change-point analysis (Paton et al., 2006) further 

confirmed this neuronal-behavioral correspondence (Fig. 3E). Importantly, value signals for 

partner’s objects appeared even before the recorded monkey experienced reward from these 

objects (46/205 neurons, 22%, Eq. 4); such signals thus derived purely from observation, as 

supported by further analyses (Fig. S2B-D). Although value-coding neurons were present 

across different amygdala nuclei (Fig. 3F)(Paxinos et al., 2000), support-vector-machine 

classification showed strongest value signals in the lateral nucleus (Fig. 3G), a key region for 
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associative learning (Johansen et al., 2011). Thus, amygdala neurons derived object values 

from own experience and observational learning. 

We tested whether neurons encoded observation-derived values and experience-

derived values in a shared code, which would facilitate their flexible use as decision inputs. 

Consistent with shared encoding, single-neuron value slopes calculated separately for 

recorded monkey’s and partner’s trials were highly correlated (Fig. 3H). Support-vector-

machine classification demonstrated that value-coding precision depended on both animals’ 

data and that precision increased with the number of neurons in the decoding sample (Fig. 3I, 

J). Training the classifier to decode partner’s values before object switch (i.e. during 

observational learning) allowed significant cross-decoding of the recorded monkey’s values 

post-switch (Fig. 3J, inset). In other words, value signals on partner’s trials during 

observation could be read out using the recorded monkey’s own value code. These findings 

indicated a shared, transferable value code in amygdala. 

Crucially, value-coding precision on partner’s trials predicted the recorded monkey’s 

own performance: on average, when the recorded monkey’s neurons showed more precise 

value coding during the initial observation phase (before object switch), the recorded monkey 

learned faster once objects had switched (Fig. 3K). Thus, observation-derived neuronal 

values were behaviorally relevant and constituted suitable inputs for decision-making. 

 

Amygdala neurons simulate decision processes during social observation 

Decision-making involves two stages: value inputs are compared between options 

and then converted to a choice output. Individual amygdala neurons dynamically coded these 

decision components during the recorded monkey’s trials to signal the monkey’s own choices 

(Fig. S3), complying with computational decision theories (Deco et al., 2013; Wang, 2008). 

Surprisingly, the same decision-related activities occurred spontaneously before partner’s 

choices but in separate neurons, as if these neurons simulated the partner’s decision-making 

(Fig. 4, described next). We refer to these neurons as ‘simulation neurons’ because they 

dynamically coded key signatures of decision computation during social observation, in the 

absence of decision requirements for the recorded monkey. 

The neuron in Fig. 4A signaled the partner’s forthcoming object choice well before 

the partner’s observable action (P = 0.0009, multiple regression, Eq. 7, Table S3); it failed to 

signal the recorded monkey’s own object choice. This neuron thus specifically encoded the 

predicted output of the partner’s decision process. Multiple regression identified neurons with 

activity related to partner’s choices, controlling for value and other covariates (31/205 

neurons, 15%; P < 0.05, Eq. 7). Importantly, separate neurons signaled the recorded 

monkey’s own choices for the same objects (37/205, 18%), whereas few individual neurons 

signaled object-choices for both animals (9/205, 4%). Such separate choice coding for self 

and other in single neurons was significantly more prevalent than joint choice coding (z-test 

for dependent samples, P < 0.0005, Fig. S3G). The distinct coding in separate neurons 

indicated that choice signals on partner’s trials did not simply reflect generalized, cue-evoked 

decision activity or erroneous decision preparation by the recorded monkey. Importantly, the 

animals did not mistake partner’s trials for their own (0.3% erroneous action attempts on 

partner’s trials). Thus, distinct amygdala neurons encoded the partner monkey’s predicted 

decisions. 

In addition to predicting partner’s object choices, amygdala neurons encoded abstract 

choices in an order-based frame of reference, by signalling whether the partner would choose 

the first or second object on a given trial (Eq. 7, Table S3). Again, separate neurons encoded 

order-referenced choices for partner and recorded monkey (Fig. S3G). Notably, order-

referenced choices were purely internal variables without explicit correspondence to sensory 

task events, which confirmed coding of internally simulated decisions.  

Amygdala neurons seemed to construct predictions of partner’s choices by the same 

mechanisms used for the recorded monkey’s own choices, as indicated by the encoding of 

three key decision-making signatures. First, amygdala neurons dynamically encoded value 

comparisons of partner’s choice options, as shown by responses to sequential objects that 

depended on both objects’ values (Fig. 4B, 86/205 neurons, Eq. 7; cf. Fig. S3). Specifically, 
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neurons signalled values for partner’s competing choice objects with anti-correlated slopes 

(Fig. 4C). Competing objects thus had opposing influences on neuronal activity—a 

characteristic signature of value comparison by mutual inhibition (Deco et al., 2013; Wang, 

2008). Neurons encoding such value comparisons on partner’s trials often failed to code value 

in a non-social control task, performed separately from the main task (29/47 control-tested 

neurons, 62%, Fig. S4); these neurons thus did not reflect generalized, cue-evoked valuation. 

Second, decision signals on partner’s trials were stronger for easier decisions (i.e. larger value 

differences, Fig. 4D), resembling decision neurons in non-social tasks (Kim and Shadlen, 

1999). Stronger choice signals for easier decisions are consistent with the resolution of an 

underlying mutual-inhibitory winner-take-all competition, whereby neurons representing the 

‘winning’ choice option show higher activity for easier, clearly resolved value comparisons 

(Deco et al., 2013; Wang, 2008). Third, in individual neurons, sequential value signals on 

partner’s trials evolved into explicit predictions of partner’s choices (‘value-to-choice 

conversions’, Fig. 4E, 22/205 neurons; 11%). These neurons thus encoded the complete 

information-processing sequence involving value comparison and choice prediction, 

indicative of a neuronal decision process. Different from object-value neurons, which 

particularly involved lateral nucleus, neurons with simulation-related activities were 

especially (but not exclusively) linked to basomedial nucleus, which encoded partner’s value-

to-choice conversions more accurately and more frequently than lateral neurons (P = 8.2 × 10
-

4
, χ

2
-test, Fig. 4F, G). Notably, neurons selective for partner’s choices (Fig. 4F) were closely 

intermingled with those selective for recorded monkey’s choices (Fig. S3F).  

Taken together, our notion of neuronal decision simulation derived from partner-

specific choice predictions and computationally well-characterized signatures of an 

underlying decision process, including dynamic value comparisons, sensitivity to choice 

difficulty and explicit value-to-choice conversions. Beyond choice prediction, individual 

simulation neurons encoded some or all of these formal decision-making signatures on 

partner’s trials, well before the partner’s observable action. 

 

Neuronal decision simulations are related to monkey’s own learning success and 

observation of partner’s actions 

Using population decoding, we tested relationships between neuronal decision signals 

and behavior. Support-vector-machine decoding from unselected neurons showed that 

neuronal coding of partner’s and recorded monkey’s decisions was nearly optimal: its 

accuracy matched reinforcement models that derived choice predictions from reward-choice 

history (Fig. 4H). Across sessions, the accuracy with which neurons encoded partner’s 

decisions predicted the recorded monkey’s observation-learning success, with better 

performance after more accurate decision coding (Fig. 4I, P = 1.3 × 10
-6

, partial correlation 

controlling for value coding, cf. Fig. 3K). This behavioral relationship was found for 

activities measured during object presentation before partner’s action; it therefore 

demonstrated the importance of internal decision simulations for observation-learning. In 

addition, choice-decoding accuracy during action observation (when the partner reached for 

the chosen object) also reflected learning performance (P = 1.1 × 10
-5

). Performance-

relationships were not found when decoding control variables, such as whether self or partner 

was choosing (P = 0.296).  

We examined whether simulation activities depended on the recorded monkey’s 

observations of partner’s choices. Across sessions, single-neuron sensitivities to partner’s 

forthcoming choices reflected the amount of time that the recorded monkey spent looking at 

the partner’s choices when the partner reached for choice targets on the touch screen (Fig. 

S5A, B). Neuronal population decoding of partner’s choices was also more accurate in 

sessions in which the recorded monkey spent more time observing the partner’s choices (Fig. 

S5C, D). 

Thus, neuronal coding of partner’s simulated decisions was linked to the recorded 

monkey’s own performance and to observation of partner’s choices. Naturally, any simulation 

activity would need to be informed by observations of partner’s previous choices; however, 
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simulation activity within trials preceded the partner’s observable choice and thus did not 

reflect simple observation. 

 

Population codes for value and choice in amygdala subnuclei 

We adapted a biologically plausible nearest-neighbor classifier to examine coding 

differences between amygdala subnuclei (Fig. 5A, B). Value decoding and choice decoding 

from mean activity vectors was accurate across nuclei, with higher accuracies for value 

decoding (Fig. 5C, D). We examined the capacity for transferring value and choice signals 

between self and other, by classifying single-trial activity vectors measured on recorded 

monkey’s trials using mean activity vectors from partner’s trials. Cross-decoding for value 

was accurate in lateral nucleus but declined sharply in other nuclei (Fig. 5C). By contrast, 

cross-decoding for choice was above chance but overall less accurate than value cross-

decoding, involving lateral, basomedial and basolateral nucleus (Fig. 5D). Thus, lateral 

nucleus was particularly important for value cross-decoding, as also suggested by separate 

support-vector-machine classification (cf. Fig. 3G). 

To examine these codes more directly, we computed correlations between mean-

activity vectors. In lateral nucleus, correlations between population vectors for different value 

levels were low within-self and within-other (Fig. 5E), indicating appropriate separation of 

different values; by contrast, activity vectors for identical value levels were highly correlated 

between self and other (Fig. 5E), significantly more so than in other nuclei (P < 0.001). Thus, 

lateral-nucleus neurons responded similarly to self and other’s high-value objects, suggesting 

a shared value code suitable for cross-decoding. Self-other cross-correlations for choices were 

significantly lower than or not significantly different from within-animal correlations (Fig. 

5F).  

Thus, biologically plausible decoding from small groups of selected neurons 

suggested a shared value code between self and other, specifically in lateral nucleus. 

 

Amygdala neurons discriminate self-trials from other-trials 

In social situations, self-other discrimination is crucial for agent-specific neural 

reference frames (Chang, 2017; Wittmann et al., 2016). We found that many amygdala 

neurons showed differential activity on self-trials and other-trials (164/205 neurons, 80%; P < 

0.05, Eq. 8, Table S4). The neuron in Fig. 6A (left) showed increased activity during object 

presentation when it was the recorded monkey’s turn to choose, while the neuron in Fig. 6A 

(right) showed increased activity when it was the partner’s turn. Self-other signals occurred 

throughout trial epochs (Fig. 6B). They were not explained by object value, choice or other 

factors, which were regression covariates (Fig. 6C). Amygdala population activity enabled 

highly accurate self-other discrimination (Fig. 6D). Self-other discriminating neurons were 

prevalent across amygdala subnuclei (Fig. 6E).  

 

Computational model of separate amygdala decision circuits for self and other 

From these data, we hypothesized that separate decision systems in primate amygdala 

might compute own choices and simulate choices of social partners. We designed an attractor 

neural-network model (Fig 7A) in which distinct pools of decision neurons generate choices 

for self and other (‘choice layer’, cf. Fig. 4A), based on conjunctive inputs from shared 

object-value neurons (‘value layer’, cf. Fig. 3B) and self-other discriminating ‘social neurons’ 

(‘social layer’; cf. Fig. 6A). By biasing the choice layer, social neurons selectively enable 

value-based decision-making in one of two separate systems. Further examples of these 

recorded functional neuron types are shown in Fig. 7B. These neuron types were frequently 

observed: 127 object-value neurons (62%), 37 self-choice neurons (18%), 31 other-choice 

neurons (15%), 164 self-other neurons (80%), with individual neurons often integrating these 

signals. 

We constructed a biologically plausible implementation of this circuit architecture 

(see Methods) in which different choice-selective neuronal populations compete with each 

other to implement decision-making through mutual inhibition in an attractor neural network 

(Wong and Wang, 2006). Our approach followed previous studies that linked decision 
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computations to anti-correlated neuronal value slopes (Strait et al., 2014) and value-to-choice 

conversions in single-neurons (Grabenhorst et al., 2012; Tsutsui et al., 2016). These 

approaches are based on previous demonstrations that such analyses can be linked to mutual 

inhibition processes in attractor models (Chau et al., 2014; Hunt et al., 2012). 

The model reproduced our main data features as follows. Given constant value inputs, 

biasing from the social layer’s ‘other’ neurons generated choice signals only in the ‘other’ 

(simulation) decision system but not in the ‘self’ decision system (Fig. 7C), with stronger 

signals for easier decisions (Fig. 7D). Conversely, biasing from ‘self’ neurons generated 

choice only in the ‘self’ system. Selective decision computation critically depended on the 

social layer’s input strength (Fig. 7E): Value inputs alone were insufficient to drive a decision 

computation; rather, the simulation module required additional activation by appropriate input 

from self-other neurons to show differential, choice-predictive activity. Data from recorded 

amygdala neurons further supported the model’s plausibility: Population coding latencies 

conformed to the model’s implied information flow (Fig. 7F), whereby value signals and self-

other signals evolve into choice signals. Moreover, individual amygdala neurons combined 

the model’s key signals (Fig. 7G, 20/205 neurons, 10%). 

We propose that distinct simulation neurons emerge naturally through a self-

organization process, by learning to respond to coactive object-value neurons and social 

‘other’ neurons. Supporting this idea, neuronal separation of partner’s from recorded 

monkey’s choices increased over time (Fig. 7H). Notably, while some neurons linked choice 

signals to action signals for the recorded monkey (21/205 neurons; Fig. S6, Eq. 10, Table 

S5), such choice-to-action transitions were entirely absent for the partner (0/205 neurons). 

This result could suggest that while one decision circuit computes the recorded monkey’s 

own choices to guide actions, a distinct decision circuit implements ‘offline’ simulations of 

partner’s decisions, without translation into action. 

These results support our hypothesis that separate decision systems in amygdala 

compute choices for self and social others. Amygdala inhibitory circuits and plasticity 

mechanisms (Janak and Tye, 2015; Pape and Pare, 2010) seem potentially suited for 

implementing this design. 

 

DISCUSSION 

These data show that when monkeys observe and learn from each other’s choices, amygdala 

neurons derive object-specific reward values from social observation, and dynamically 

convert these values to representations of the partner’s forthcoming choices. Neuronal object 

values were subjective, as they reflected partner’s and recorded monkey’s distinct 

reinforcement histories (Fig. 3B, Fig. S2). Neurons signaled values from observation and 

experience in a common code that was highly accurate and transferable between self and 

other, particularly in lateral nucleus (Fig. 3G-J, Fig. 5). Such common, object-centric value 

coding facilitates reward learning irrespective of who is choosing and provides versatile 

inputs for own decisions and social simulations. Accordingly, the recorded monkey learned 

better from more accurately coded values (Fig. 3K). By processing partner’s and recorded 

monkey’s values in a shared code, these amygdala neurons provide a physiological basis for 

integrating own and others’ experiences. 

In contrast to object-referenced values, amygdala neurons encoded decisions with a 

social reference frame: specific simulation neurons signalled partner’s predicted choices 

distinct from recorded monkey’s own choices (Fig. 4A). These neurons encoded three key 

signatures of the simulation of partner’s decision-making, including sequential value 

comparisons, sensitivity to decision difficulty and explicit value-to-choice conversions (Fig. 

4B-E). The simulation activities unfolded dynamically and spontaneously, well before 

partner’s observable choices and without decision requirement for the recorded monkey, 

resulting in accurate predictions of partner’s choices. Amygdala neurons thus seemed to 

construct partner’s choice predictions by the same mechanisms as those underlying the 

recorded monkey’s own choices (cf. Fig. S3), typical of mental simulation (Adolphs, 2006; 

Gordon, 1996; Shanton and Goldman, 2010). Simulating others’ decisions with dedicated 

neurons is unanticipated by cognitive theories but functionally crucial: it enables offline 



9 
 

simulations that prevent erroneous acting-out of other’s choices—shown by absent choice-to-

action conversions for partner (Fig. S6)—and disambiguates other’s from own choice signals 

for downstream processing. 

Although population decoding showed some capacity for self-other cross-transfer of 

choice codes (Fig. 5D), this likely resulted from pooling individual neurons with selective 

choice coding for self or other. This result and the anatomical intermingling of neurons 

coding own or other’s choices suggest that simulation neurons may be difficult to detect in 

human imaging, which averages over neural populations. 

 We constructed a biophysically plausible attractor neural-network model based on the 

functional neuron types we recorded (Fig. 7A, B). The model captured key data features, 

including selective decision computation for self or other, and suggested that simulation 

neurons can emerge from conjunctive object-value and self-other signals (Fig. 7C-H). These 

results are consistent with the existence of separate decision circuits in primate amygdala that 

use common object values to compute own decisions and simulate decisions of social 

partners. We suggest that the mapping from object-centric value neurons to separate decision 

neurons for self and other could involve a competitive, feature-detection network (Rolls and 

Treves, 1998) coupled to an attractor decision-making network. When confronted with novel 

choice objects, this competitive network would learn, via lateral or mutual inhibition, to 

respond to repeatedly co-active object-selective and self-other neurons, and subsequently 

activate different choice neurons for self and other. This suggestion for how simulation 

neurons ‘emerge’ (i.e. are functionally set up) via self-organization is supported by the 

observed gradual separation of self-choice and other-choice signals (Fig. 7H). 

Previous research identified important building blocks for primate social behavior in 

amygdala, including face neurons (Gothard et al., 2007; Leonard et al., 1985; Rutishauser et 

al., 2013). In a classical study, face neurons were prevalent in basomedial (accessory basal) 

nucleus (Leonard et al., 1985), which we found particularly implicated in decision 

simulations (Fig. 4G). Recent studies described amygdala neurons coding facial expression 

(Gothard et al., 2007), reward expectations for others (Chang et al., 2015) and conspecifics’ 

hierarchical rank (Munuera et al., 2018). Simulation neurons could provide an output channel 

for these signals by locally integrating them to choice predictions for specific social partners. 

Notably, the distinct choice coding for self or other and the dynamic value-to-choice 

conversions suggest that simulation activities did not reflect reward expectation or state 

valuation (Belova et al., 2008). 

In a previous study, amygdala neurons’ value sensitivities were correlated between 

self and other, but only when values were behaviorally relevant for the recorded monkey 

(Chang et al., 2015). In the present study, amygdala value codes were transferable between 

self and other, but mainly when objects were relevant for observational learning (Fig. 3J, 

inset; Fig. 5C). Thus, amygdala neurons encode object values especially when they are 

behaviorally or socially relevant. Previous studies also showed neuronal discrimination 

between biological partners and computer opponents (Baez-Mendoza et al., 2013; Haroush 

and Williams, 2015; Hosokawa and Watanabe, 2012). It will be interesting to test how 

simulation neurons respond to computer opponents. 

A recent study first reported neurons in cingulate cortex that predicted other’s 

forthcoming decisions in a strategic game (Haroush and Williams, 2015). Our study builds on 

this critical work by identifying the neuronal value inputs and decision computations 

underlying such choice predictions, and their potential origin in attractor neural networks. 

Determining whether social predictions first arise in cingulate or amygdala would require 

simultaneous recordings. Nevertheless, amygdala neurons seem suited to construct decision 

simulations, as suggested by their value-to-choice transitions. Importantly, amygdala lesions 

affect encoding of stimulus-reward associations in cingulate cortex (Rudebeck et al., 2017), 

and both amygdala and cingulate participate in learning (Klavir et al., 2013) and prosocial 

choices (Chang et al., 2015; Chang et al., 2013b). Thus, it is likely that anterior cingulate 

cortex (Haroush and Williams, 2015) and amygdala (shown here) interact in modelling 

partners’ choices. 
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Our findings are distinct from social error monitoring and action observation. 

Neuronal responses to others’ performance errors are found in medial frontal cortex (Yoshida 

et al., 2012) and striatum (Baez-Mendoza and Schultz, 2016). Prefrontal neurons also track 

choices and outcomes during competition with opponents (Hosokawa and Watanabe, 2012; 

Lee and Seo, 2016; Seo et al., 2014). Such signals likely contribute to macaque observational 

learning shown here and previously (Subiaul et al., 2004). However, error signals are 

reactions to external events that follow partner’s choices, different from the predictive, purely 

internal decision simulations reported here. 

The separate coding of other’s from own choices by distinct neurons and the 

prospective encoding of purely internal, unobservable value comparisons, value-to-choice 

conversions and choice predictions distinguishes simulation neurons from mirror neurons, 

which respond to both executed and observed actions (Fabbri-Destro and Rizzolatti, 2008). 

Importantly, the present choice-predictive signals were not sensory responses to the other’s 

choice, as they were measured during sequential cue presentation well before partner’s overt 

choice. At the time of partner’s action, we found no evidence for action-coding mirror 

neurons in amygdala (Fig. S6). 

Our findings link recent concepts on the functions of amygdala neurons in decision-

making (Grabenhorst et al., 2012, 2016) to the amygdala’s well-known role in social 

behavior. Classical studies demonstrated deficient emotion recognition and social judgment in 

humans with amygdala lesions (Adolphs et al., 2005; Adolphs et al., 1998). Current accounts 

of these deficits emphasize the amygdala’s importance in social perception and in directing 

attention to specific face parts (Adolphs et al., 2005; Rutishauser et al., 2015; Rutishauser et 

al., 2013). Our data point toward an additional mechanism, whereby amygdala simulation 

neurons may actively reconstruct social partners’ mental states. A ‘constructive’ neural 

mechanism for social cognition in amygdala had previously been proposed (Adolphs, 2006) 

but its single-neuron basis remained unclear. The simulation neurons described here seem 

well-suited to support understanding of others’ mental states, as they translate observation-

derived values into representations of other’s decisions. 

The amygdala is implicated in autism and other conditions with atypical social 

cognition, including social anxiety (Amaral, 2002; Baron-Cohen et al., 2000; Lai et al., 2014; 

Rutishauser et al., 2013). Our data and model (cf. Fig. 7A, B) may offer new insights into 

these conditions by specifying single-neuron building blocks and computational architectures 

for social cognition. We speculate that dysfunction or absence of amygdala simulation 

neurons, or their inputs, could impoverish social cognition by reducing an individual’s ability 

to simulate others’ mental states. Deficient neuronal simulation by the amygdala could play a 

role in the poor perspective-taking and social communication seen in autism. Conversely, 

hyperactivity of amygdala neurons might exaggerate spontaneous simulation of others’ 

mental processes. Given the amygdala’s outputs to emotional and physiological effector 

systems (Johansen et al., 2011), such exaggerated social simulations could provoke somatic 

symptoms typical of social anxiety (Amaral, 2002). Further, our model implies that altered 

connection-weights between neuron types (cf. Fig. 7A) or instability in the simulation 

module’s attractor-dynamics could disrupt social cognition. 

Our data and model suggest a neurobiological account of mental simulation as neural 

decision computation. The findings have implications for emerging directions in artificial 

intelligence in which machines are trained to model social partners’ minds (Rabinowitz et al., 

2018). Based on single-neuron data, we propose a solution to this computational problem: 

convergence of value signals and self-other signals onto decision neurons enables the primate 

amygdala to alternately compute choices for self and other. Such flexibility in processing own 

and others’ mental states is crucial in primate life, which is governed by complex social 

hierarchies that affect amygdala structure and function (Noonan et al., 2014). The amygdala 

simulation neurons reported here could allow primates to reconstruct their social partner’s 

mental states and may constitute simple precursors for human mentalizing capacities, such as 

theory of mind.   
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Fig. 1. Observational learning task. A, Task. Two monkeys faced each other over a touch 

screen and took turns making choices between sequentially shown visual objects to learn 

object-reward probabilities (‘object values’). The recorded monkey was required to fixate the 

screen centre on own (‘self’) and partner’s (‘other’) trials until blue touch targets appeared. 

ISI: inter-stimulus interval. B, Design for a testing session. Initial learning of object-reward 

probabilities was followed by reward-probability reversal (testing value-tracking) and object 

switch between animals (testing observation-learning).   
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Fig. 2. Monkeys observe and learn from each other’s choices. A, Example session. Trial-

by-trial record of choices and rewards for recorded monkey (upper panels) and partner (lower 

panels). Blue curves: seven-trial running averages of choices (dark) and modelled choice 

probabilities (light); vertical bars: single-trial choices, referenced to objects on left of each 

panel; short/long bars: unrewarded/rewarded choices. Numbers in colored boxes indicate 

object-reward probabilities. B, Observational learning in choices. Number of trials required 

for first choice of high-probability object, comparing initial trials (learning from experience) 

and post-switch trials (after observing partner’s choices, t(186) = 2.62, paired t-test). C, 

Reinforcement learning model. Psychometric function relating model-derived value 

difference to choice probability (across animals and sessions, error bars smaller than 

symbols). Inset: histogram of correctly modelled choices. D, Observational learning in gaze 

patterns. Contrast map of recorded monkey’s fixations before partner’s right vs. left choices 

(measured after appearance of both objects before partner released touch key). The monkey 

was more likely to fixate on the object the partner was going to choose, before the partner’s 

movement (P < 1.0 × 10
-16

, ranksum test). All averages are mean ± s.e.m. 

See also Figure S1.  
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Fig. 3. Amygdala neurons encode object values from observational learning and own 

experience in a common code. A, A single amygdala neuron, recorded in lateral nucleus, 

tracked object-reward probability on partner’s trials and recorded monkey’s trials. B, 

Subjective value coding. The neuron in (A) encoded trial-by-trial subjective values derived 

from reinforcement models. Peri-event time histogram sorted by value terciles. Raster 

display: ticks indicate impulses, rows indicate trials. C, Histogram of value slopes (β) for all 

responses (black) and value-coding responses (orange). D, Activity of value-coding neurons 

on partner’s trials (black) tracked partner’s choice probability (magenta) when reward 

probabilities reversed. E, Neuronal-behavioral correspondence. Value-coding neurons’ 

change points tracked behavioral change points. F, Reconstructed locations of value-coding 

neurons, superimposed on cresyl violet-stained section through one animal’s amygdala. 

Colors indicate different nuclei (La: lateral; BL: basolateral; BM: basomedial; Ce: 

centromedial). Diamond: neuron from (A, B). Collapsing in anterior-posterior dimension 

resulted in symbol overlap. G, Value decoding across nuclei. Leave-one-out cross-validated 

accuracy of support-vector-machine classifier decoding high vs. low value from 20 highest-

slope neurons per nucleus, using data from both animals (all differences: P < 0.005, Wilcoxon 

test). H, Single-neuron value slopes for recorded monkey and partner (linear regression). I, 

Classifier value decoding depended on single-neuron value slopes for self and other. 

Decoding based on randomly sampled subsets of 20 neurons (5,000 iterations). J, Value 

decoding on recorded monkey’s and partner’s trials. (Decoding from 205 neurons × 4 

objects.) Inset: successful decoding when training classifier on partner’s data before object 

switch to decode (‘test’) recorded monkey’s post-switch values (green, values supporting own 

observation-learning) but not vice versa (blue, values irrelevant for own observation-

learning). K, Relationship between observation-derived neuronal values and observation-

learning performance. Across sessions, decoding accuracy for partner’s values before object-

switch predicted recorded monkey’s post-switch learning. Subset-decoding as in (I). All 

averages are mean ± s.e.m.  

See also Figure S3.  
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Fig. 4. Amygdala neurons simulate partner’s decision-making through value 

comparisons and value-to-choice conversions. A, Single neuron predicting choice for 

partner but not recorded monkey. Responses to second object on partner’s (left) and recorded 

monkey’s trials (right), sorted by forthcoming object choice. Recorded monkey was required 

to fixate objects without looking at partner. Monkeys could plan object choice but not left-

right action before target appearance. B, Neuronal value comparison on partner’s trials. 

Population activity of value-coding neurons during sequential presentation of partner’s choice 

objects. C, Neuronal value slopes on partner’s trials indicated mutual-inhibitory value 

comparison. Left: anti-correlated value slopes for first object at first cue and second cue; 

object-value signals changed sign from first to second cue. Right: correlated values slopes for 

first and second object. (One data point outside plotted range.) D, Stronger choice signals for 

easier decisions. Population activity of choice-predictive neurons on partner’s trials for easy 

and difficult decisions (median-split by unsigned value difference). E, Value-to-choice 

conversion before partner’s choice in a single neuron. Explained variance of value and choice 

regressors from sliding-window regression. Activity transitioned from coding value (decision 

input, magenta) to predicting partner’s choice (decision output, black). F, Location of neurons 

predicting partner’s choices. Diamond: neuron from (A). G, Accuracy of neuronal decision 

simulation depended on basomedial neurons. H, Neuronal choice prediction from classifier 

approximated reinforcement learning (RL) model. I, Neuronal choice prediction during 

observational learning (before object switch) predicted recorded monkey’s post-switch 

performance. All averages are mean ± s.e.m. 

See also Figures S3-S5.  
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Fig. 5. Population codes for value and choice in amygdala subnuclei. A, Decoding 

approach. A nearest-neighbor classifier computed Euclidean distances between single-trial 

activity vectors (red point) and mean activity vectors for different value levels or choices 

(groups A, B) measured on recorded monkey’s trials (‘decoding within Self’, upper panel). 

Cross-decoding used mean activity vectors from partner’s trials (‘cross-decoding Self-Other’, 

lower panel). B, Location of value-coding neurons and choice-coding neurons for decoding 

(20 neurons per nucleus, selected based on regression coefficients; collapsing anterior-

posterior levels resulted in display-overlap of nuclei). C, Value-decoding accuracies for 

subnuclei within self (left) and cross-decoding (right) before objects switched between 

animals. Gray line: chance. D, Choice-decoding accuracies for subnuclei. E, Correlations 

between mean activity vectors related to different value levels. rSelf,Self: activity vectors for 

different values within-self; rOther,Other: correlation for different values within-other; rSelf,Other: 

correlation for same value levels across animals. F, Correlations between mean activity 

vectors related to different choices. *: significantly different correlations (P < 0.005, 

Bonferroni-corrected).  
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Fig. 6. Social self-other neurons. A, Two amygdala neurons differentiating self and other 

trials. Left: neuron with stronger activity during presentation of second choice cue on 

recorded monkey’s trials, compared to partner’s trials. Right: neuron with stronger activity on 

partner’s trials. B, Population activity of self-other discriminating neurons. Activity was 

sorted by each neuron’s preferred trial type (self vs. other). C, Histogram of regression 

coefficients of neurons with self-other coding. D, Support-vector-machine decoding accuracy 

of self vs. other trials from neuronal activity. E, Locations of self-other-coding neurons. 

Diamonds: neurons from (A). All averages are mean ± s.e.m.   
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Fig. 7. Biophysically plausible model of amygdala circuits for social decision simulation. 

A, Model architecture inspired by recorded neuron types. Object-specific value neurons 

(Value layer) and self-other discriminating ‘social neurons’ (Social layer) provide convergent 

excitatory inputs to two separate decision systems (Choice layer) for computing recorded 

monkey’s choices (‘Decision module’) and for simulating partner’s choices (‘Simulation 

module’). Within each choice-layer module, pools of object-specific neurons with recurrent 

excitatory connections implement decision-making by mutual-inhibitory winner-take-all 

competition (mediated by interneurons, not shown). Depending on self-other bias, value 

inputs initiate competition selectively in one of the two choice-layer modules; once 

competition is resolved, the winning pool enters a high-activity attractor state that represents 

the choice. B, Neuron types on which model is based. Three representative recorded example 

neurons. C, Modelled choice-layer neurons. Neurons in simulation module signal partner’s 

choice on partner’s trials when social layer provides ‘other’ bias (upper left) but not on 

recorded monkey’s trials when social layer provides ‘self’ bias (upper right). Conversely, 

neurons in decision module signal choice for recorded monkey with ‘self’ bias (lower right) 

but not ‘other’ bias (lower left). D, Model reproduces decision-difficulty effect of simulation 

neurons. E, Bifurcation diagram of model activity. Differential, choice-predictive activity of 

neurons in simulation module depends on strength of self-other input from social layer. F, 

Latencies of signals for value, self-other, choice across recorded neurons. Cumulative fraction 

of significant neurons following cue onset. Value and self-other signals preceded choice 

signals (P < 0.05, Wilcoxon test). G, A single recorded amygdala neuron integrating value, 

social and choice information. Explained variances from sliding-window regression. H, 

Neuronal discrimination of self from other’s choices increased within session. Decoding 

accuracy for high-low value, self-other trials and self-choice vs. other-choice, calculated from 

recorded neuronal responses within ten-trial windows over two-trial steps. All averages are 

mean ± s.e.m. 

See also Figure S6.  
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METHODS 

 

CONTACT FOR REAGENT AND RESOURCES SHARING 

Further information and requests for reagents and resources should be directed to and will be 

fulfilled by the Lead Contact, Dr. Fabian Grabenhorst (fg292@cam.ac.uk). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All animal procedures conformed to US National Institutes of Health Guidelines. The work 

has been regulated, ethically reviewed and supervised by the following UK and University of 

Cambridge (UCam) institutions and individuals: UK Home Office, implementing the Animals 

(Scientific Procedures) Act 1986, Amendment Regulations 2012, and represented by the local 

UK Home Office Inspector; UK Animals in Science Committee; UCam Animal Welfare and 

Ethical Review Body (AWERB); UK National Centre for Replacement, Refinement and 

Reduction of Animal Experiments (NC3Rs); UCam Biomedical Service (UBS) Certificate 

Holder; UCam Welfare Officer; UCam Governance and Strategy Committee; UCam Named 

Veterinary Surgeon (NVS); UCam Named Animal Care and Welfare Officer (NACWO).  

Three healthy adult male rhesus monkeys (Macaca mulatta) participated in the 

present experiments: two monkeys (weighing 10.5 and 12.3 kg) participated as recorded 

monkeys, and a third monkey (weighing 12.0 kg) participated as partner monkey. The 

animals had not been used for previous experiments. The number of animals used is typical 

for primate neurophysiology experiments. The animals were housed in groups of two or three 

animals; the three animals participating in the present study lived in different groups. At the 

time of neurophysiological recordings, the animals were highly trained in the experimental 

task. 

 

METHOD DETAILS 

 

Neurophysiological recordings. The experimental procedures for neurophysiological 

recordings from amygdala in awake, behaving macaque monkeys followed our previous 

studies (Grabenhorst et al., 2012). A head holder and recording chamber (Gray Matter 

Research) were fixed to the skull under general anaesthesia and aseptic conditions. We used 

bone marks on coronal and sagittal radiographs to localize the anatomical position of the 

amygdala in reference to the stereotaxically implanted chamber, as described previously 

(Grabenhorst et al., 2012). Specifically, we located the amygdala posterior to the sphenoid 

bone, rostral to the posterior clinoid processes at and above the dorsoventral position of the 

posterior clinoid process. We recorded activity from single amygdala neurons from 

extracellular positions during task performance, using standard electrophysiological 

techniques including on-line visualization and threshold discrimination of neuronal impulses 

on oscilloscopes. We aimed to record representative neuronal samples from the dorsal, lateral, 

and basal amygdala. A stainless steel tube (0.56 mm outer diameter) guided a single tungsten 

microelectrode of 0.125 mm diameter and 1- to 5-MΩ impedance (FHC Inc.) through the 

dura and assured good targeting of subcortical structures. A hydraulic micromanipulator 

(MO-90; Narishige, Tokyo, Japan) served to advance the microelectrode vertically in the 

stereotaxic plane. Neuronal signals were amplified, bandpass filtered (300 Hz to 3 kHz), and 

monitored online with oscilloscopes. Somatodendritic discharges from single amygdala 

neurons were distinguished from background noise and other neurons using a time threshold 

window discriminator (WD-95; Bak Instruments), which produced a 1.0-ms-long standard 

transistor-transistor logic (TTL) pulse for each neuronal impulse that helped in the online 

inspection of neuronal recordings. Behavioral data, digital signals from the impulse window 

discriminator, and analogue eye position data were sampled at 2 kHz on a laboratory 

computer with custom Matlab (Mathworks Inc.) code. We recorded analogue impulse 

waveforms at 22 kHz and sorted them offline for data analysis, using cluster-cutting and 

principal component analysis (Offline sorter; Plexon). 
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During recordings, we sampled activity from about 400 amygdala neurons and 

recorded and saved the activity of neurons that appeared to respond to any task event during 

online inspection of several trials. Thus, we aimed to identify task-responsive neurons but we 

did not preselect based on more specific response characteristics. This procedure resulted in a 

database of 205 neurons which we analyzed statistically. Statements about the number of 

neurons showing specific effects are made with reference to these task-related neurons. The 

number of neurons is similar to those reported in previous studies on primate amygdala; we 

performed no formal sample size estimation. Thus, experiments were replicated across both 

animals and across recorded neurons. Animals were not assigned to different groups; 

accordingly, randomization and blinding were not performed. No animals or recorded 

neurons were excluded. 

Following completion of data collection, the animals received an overdose of 

pentobarbital sodium (90 mg/kg iv) and were perfused with 4% paraformaldehyde in 0.1 M 

phosphate buffer through the left ventricle of the heart. We reconstructed recording positions 

from 50-µm-thick, stereotaxically oriented coronal brain sections stained with cresyl violet 

based on electrolytic lesions (15–20 µA, 20–60 s, made in one animal) and lesions by 

cannulas placed to demarcate recording areas, recording coordinates for individual neurons 

noted during experiments, and in reference to other brain structures with known 

electrophysiological signatures recorded during experiments (internal and external globus 

pallidus, substantia innominata). We assigned recorded neurons to amygdala subnuclei with 

reference to a stereotaxic atlas (Paxinos et al., 2000) at different anterior-posterior positions 

(figures show neuron locations collapsed over anterior-posterior levels). We recorded 66 

neurons from the lateral amygdala, 86 neurons from the basolateral amygdala, 23 neurons 

from the basomedial (also termed accessory basal) amygdala and 30 neurons from the 

centromedial amygdala (Table S6). The histological reconstructions validated also the 

previously radiographically assessed anatomical position of the amygdala as done in earlier 

reports (Grabenhorst et al., 2012). 

 

Observational learning task. Two monkeys performed an observational learning decision-

making task (probabilistic reversal learning) under computer control (Fig. 1A). The animals 

sat in primate chairs (Crist Instruments) and faced each other over a horizontally mounted 

touch screen (EloTouch 1522L 15’; Tyco). The animals alternated trial-by-trial making 

choices between pairs of sequentially presented visual objects. The animals worked on 

separate object pairs; we switched object pairs between animals halfway through an 

experimental session. To maximize reward, the animals were required to learn and track the 

(uncued) reward probabilities associated with the different objects. One object within a pair 

was associated with a reward probability of 0.85, whereas the other object was associated 

with a reward probability of 0.15. Reward probabilities reversed between objects after blocks 

of typically 25 – 35 trials per animal. The specific reward probabilities were chosen based on 

pre-testing to ensure that the animals maintained high motivation during the task while at the 

same time providing sufficient variation in choices. A computer-controlled solenoid valve 

delivered juice reward from a spout in front of the animal's mouth. On each completed trial, 

the acting animal received one of two outcomes: on ‘rewarded’ trials, a liquid reward of 0.8 

ml was delivered whereas on ‘non-rewarded’ trials, a small reward of 0.05 ml was delivered. 

The observer animal did not receive any reward. We found that a small reward instead of 

non-reward on ‘unrewarded’ trials ensured that the animal maintained high motivation on this 

demanding task, in which each animal was rewarded only every second trial. Reward delivery 

of both large and small reward was accompanied by a sound to mask solenoid clicks.  

The outline of a recording session is shown in Fig. 1B and a full trial-by-trial record 

for one session for both animals is shown in Fig. 2A. Each session consisted of four main 

periods. At session start, the animals took turns trial-by-trial to choose between two novel 

visual cues (‘objects’), with each animal choosing from its own object pair (two object pairs, 

four objects in total per session). Depending on the animals’ learning performance, typically 

after 25-35 trials, we reversed the reward probabilities between the two objects in each 

session, requiring the animals to adapt their choices to maximize reward. Following another 
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period of 25-35 trials, we switched the object sets between animals (‘object switch’), crucially 

without altering the object-reward probabilities. This design allowed the animals to observe 

each other’s choice before object switch to learn the current reward value of each object, and 

subsequently use this knowledge for their own choices once objects switched between 

animals. After object switch, we performed another reward-probability reversal. Thus, an 

average recording of one neuron would consist of about 200 choice trials. (The raster plots in 

the figures show only a subset of these trials while corresponding peri-event time histograms 

were calculated based on all recorded trials for a given neuron.) 

Each trial started when the background color on the touch screen changed from black 

to gray. To initiate the trial, both recorded monkey and partner monkey were required to place 

their hand on an immobile, touch-sensitive key (each animal had its own touch key). 

Presentation of the gray background was followed by presentation of an ocular fixation spot 

(1.3° visual angle). On each trial, the recorded animal was then required to fixate this spot 

within 4° for 500 ms. Following 500 ms of central fixation, a first choice cue (‘object’) 

appeared centrally for 350 ms and was followed, after cue offset, by a 350 ms inter-stimulus 

interval, which was then followed by a second choice cue shown for 350 ms and another 350 

ms inter-stimulus interval. (A few initial recording sessions used durations of 500 ms.) 

Following sequential presentation of these individual choice objects, the two objects 

reappeared simultaneously on the left and right side of the monitor (determined 

pseudorandomly). After 100 ms, the fixation spot disappeared and two blue rectangles 

appeared below the choice objects at the margin of the monitor, close to the position of the 

touch-sensitive key on the side of the acting animal that was required to choose on the current 

trial. The recorded animal was no longer required to fixate once the fixation spot had 

disappeared. The acting animal was required to release the touch key and touch one of the 

object-associated blue rectangles within 1.5 s to make its choice. Once the animal’s choice 

was registered, the unchosen object disappeared and after a delay of 500 ms, the chosen 

object also disappeared and a liquid reward was given to the acting animal. Reward delivery 

was followed by a trial-end period of 1,000 – 2,000 ms which ended with extinction of the 

gray background. The next trial started after an inter-trial interval of 2,000 – 4,000 ms (drawn 

from a uniform random distribution). The roles of acting and non-observing animal reversed 

after every correct trial. Assignment of visual objects to first or second presentation period 

and to left or right choice target position on each trial was randomized. 

Possible errors included failure to make contact with the touch-sensitive key before 

the trial (both animals), key release before the go signal (both animals), failure to touch a 

choice target (acting animal), failure to fixate the central fixation spot at trial start (recorded 

animal) or fixation break in the period between initial fixation and disappearance of fixation 

spot (recorded animal). Errors led to a brief time out (3,000 ms) with a black background and 

then trial repetition. Task performance was typically interrupted after three consecutive 

errors. 

Stimuli and behavior were controlled using custom MATLAB code (The Mathworks) 

and Psychophysics toolbox (version 3.0.8). The laboratory was interfaced with data 

acquisition boards (NI 6225; National Instruments) installed on a PC running Microsoft 

Windows 7. 

 

Non-social control task. We tested some amygdala neurons in a non-social control task to 

determine whether neuronal value coding in the observational-learning task was specific to a 

social situation with decision-making requirements. The control task involved presentation of 

pre-trained conditioned stimuli that predicted liquid reward for the recorded monkey with 

different probabilities. This separate task was performed without the social partner being 

present in the room; it thus constituted an entirely non-social situation. Note that the recorded 

monkey’s own trials during the main task already constituted a non-social control for 

neuronal decision activity with the partner being present. Each trial started with presentation 

of a fixation spot. The animal was required to fixate within 4° for 500 ms and throughout the 

trial until reward delivery. The fixation spot was followed by presentation of a visual 

conditioned stimulus (drawn from a set of four to six stimuli) in the centre of the screen for 
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500 ms; stimuli were distinct from but similar to the ones used in the main observational 

learning task. Each stimulus predicted forthcoming reward with a specific probability 

between 0.15 and 0.85. This stimulus period was used for neuronal data analysis by 

regressing impulse activity in this period on cued reward probability. Stimulus presentation 

was followed by an inter-stimulus interval of 500 ms, which was followed by reward 

delivery. In some cases, we included an additional 500 ms reward magnitude cue with 

subsequent 500 ms inter-stimulus interval before reward delivery. Separate choice trials using 

the stimuli from this control task verified that the animals could use the information provided 

by these stimuli to make meaningful, reward-maximizing choices (preferring higher over 

lower reward probabilities and higher over lower reward magnitudes). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Behavioral data analysis. To assess the animals’ speed of learning, we calculated the 

number of trials that the animal required to choose the object with the current high reward 

probability, separately for session start (individual learning) and after object switch between 

animals (observational learning) (Subiaul et al., 2004). We then compared trial numbers for 

individual learning and observational learning across recording sessions (two-sided paired t-

test, Fig. 2B). 

To test whether the animals’ choice for the high-probability object post-switch 

depended on partner’s preceding choices (Fig. S1A), we proceeded as follows. We regressed 

the recorded monkeys’ choice probability for the high-probability object within the first three 

trials following object switch in each session on two variables: the first was a dummy variable 

indicating whether the partner monkey chose the high-probability object on the last trial 

before switch (this was the critical variable that captured the potential observational learning 

effect: the recorded monkey might be more likely to choose the high-probability object if he 

observed the partner choose this object immediately before object switch); the second 

regressor was a control dummy variable indicating whether the recorded monkey chose the 

high-probability object on the last trial before switch (as this variable referred to a different 

object than the one assessed in the post-choice period, it should be unrelated to the recorded 

monkey’s post-switch choice). 

 

Reinforcement learning model. To describe the animals’ behavior in the observational 

learning task, and to derive trial-by-trial measures of subjective object values for neuronal 

analysis, we fitted reinforcement learning models to the animals’ choices. We fitted separate 

models to each animal’s own choice-reward records. (Note that our study did not aim to test 

how an animal’s own choices and rewards were integrated on a trial-by-trial basis with the 

partner’s observed choices and rewards; such a test would require that the animals take turns 

choosing between the same object pair trial-by-trial, as opposed to working on separate object 

pairs as done here.)  

The best-fitting model (‘Reversal RL’, see Table S1) accounted for the reversal-

learning nature of the task by updating both the value of the chosen and unchosen option on 

each trial, as typical for reward-reversal learning tasks. Object values in this model were 

updated as follows (Eq. 1): 

 

𝑉𝐴
𝑡+1 = 𝑉𝐴

𝑡 +  𝛼(𝑅𝑡 − 𝑉𝐴
𝑡) 

 

𝑉𝐵
𝑡+1 = 𝑉𝐵

𝑡 +  𝛼(−𝑅𝑡 − 𝑉𝐵
𝑡) 

 

with 𝑉𝐴
𝑡 as the expected value of object 𝐴 on trial 𝑡, 𝑅𝑡 as reward (coded as 0 or 1 for small 

and large reward, respectively), 𝑅𝑡 − 𝑉𝐴
𝑡 as prediction error between reward 𝑅𝑡 and expected 

value 𝑉𝐴
𝑡 on trial 𝑡,  𝛼 as free-parameter learning rate and 𝑉𝐴

𝑡+1 as the updated expected object 

value for the next trial, and corresponding variables for the alternative object B. The 

prediction error for object B, −𝑅𝑡 − 𝑉𝐵
𝑡  , involved updating the value for object B in the 
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opposite direction as for object A. This model is a variant of standard reinforcement learning 

as it updates additionally the value of the unchosen option. The object choice on each trial 

was determined by the softmax rule (Sutton and Barto, 1998) (Eq. 2): 

 

𝑃(𝐴) =  
1

(1 + exp(−𝛽(𝑉𝐴
𝑡 − 𝑉𝐵

𝑡)))
  

 

with 𝑃(𝐴) as choice probability for object A and 𝛽 as the free-parameter inverse temperature, 

which reflects the degree of stochasticity in the animal’s choices. 

 We estimated the model’s free parameters by fitting the model to the trial-by-trial 

record of choices and rewards within each session, separately for each session and separately 

for the two animals. Model fitting was performed using a maximum likelihood procedure 

with the Nelder–Mead search algorithm (implemented by the Matlab function ‘fminsearch’).  

 We compared several alternative reinforcement learning models with the results of 

the model comparison shown in Table S1. The additional models tested include: (1) a 

reinforcement learning model formulated as above but without updating the value of the 

unchosen option (‘Basic RL’ in Table S1), (2) a reinforcement learning model with an 

adaptive learning rate, whereby the learning rate on each trial was modified based on the 

unsigned trial-specific reward prediction error (‘Reversal RL, adaptive rate’), (3) variants of 

the reinforcement learning models just described with different learning rates for the chosen 

and unchosen option (‘Reversal RL, 2 learning rates’). Model comparison using Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC) and Pseudo R
2
 identified 

the reversal-learning variant as the best-fitting model. 

 

Eye data analysis. We monitored the recorded animal’s eye position using an infrared eye 

tracking system at 125 Hz (ETL200; ISCAN) placed next to the touchscreen. Before each 

recording session, we calibrated the eye tracker during a fixation task with a moving fixation 

spot that the animals had to follow. During recordings, accuracy of calibration of the eye 

tracker was regularly checked and if necessary recalibrated. The monkey’s head was slightly 

tilted forward (∼10°) for a better view of the touchscreen. We assessed eye position in a plane 

in front of the monkey’s eyes, followed by a transformation to the horizontal touchscreen 

plane (Baez-Mendoza et al., 2013). We then determined whether and when a fixation 

occurred. We defined a fixation when eye velocity was below 25% of its statistical standard 

deviation for more than 60 ms. For analysis of fixations in specific task-related time windows, 

we excluded fixations that occurred within the first 100 ms of stimulus onset to remove 

anticipatory fixations. We selected fixations that met the above criteria and that occurred on 

specific trial types, e.g. other’s trial, left chosen. To create frequency maps of eye fixations, a 

histogram matrix (50 × 50 cm) with the possible eye positions was convolved with a Gaussian 

function (σ = 1.5). Matrices were then converted into percentage units. To obtain the maps 

shown in Fig. 2D and Fig. S1E, we subtracted the fixation matrix of left chosen trials from the 

matrix for right chosen trials to obtain a matrix of differential left-right eye fixations (thus, a 

positive difference means that a higher percentage of fixations occurred for a given location 

on left-chosen trials compared to right-chosen trials). We rescaled the colour map so that zero 

difference was shown in white colour. For statistical comparisons, we defined regions of 

interest (ROIs) around left and right choice objects, which were given by the position of the 

object on the screen; we defined these positions for each monkey based on plots during the 

period where only the chosen object was shown and the animal looked at that object. 

Statistical comparisons were performed for fixation densities across all coordinates within the 

ROIs. We performed a ranksum test to compare fixation frequency differences between the 

left and right object regions of interest. For analysis of gaze patterns during choice target 

presentation and before confirmation of choice, we focused on fixations that lasted a 

minimum of 500 ms, which in many cases selected the final fixation before key release. 

Results remained significant for a shorter analysis period between choice cue onset and 

before release of the touch key, i.e. before the animal initiated a movement to execute choice. 
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For analyses shown in Fig. S5, we were interested in the recorded monkey’s dynamic gaze 

patterns during observation of the partner’s choices, and therefore used a shorter minimum 

fixation criterion of 300 ms. 

 

Neuronal data analysis. We counted neuronal impulses for each neuron on correct trials in 

fixed time windows relative to different task events focusing on the following non-

overlapping task epochs: 500 ms after fixation spot before cues (Fixation), 350 ms after onset 

of first cue (i.e. first choice object), 350 ms after offset of first cue, 350 ms after onset of 

second cue, 350 ms after offset of second cue, 500 ms after onset of choice targets. We did 

not observe systematic differences in activity patterns between animals in preliminary 

analyses; therefore, we pooled data from both animals for subsequent analyses. 

Our analysis strategy was as follows. We used fixed-window and sliding-window 

linear regression analyses to identify neuronal responses related to specific variables. For 

fixed-window analyses, we first identified task-related object-evoked responses by comparing 

activity during object presentation (first and second cue period) to a baseline control period 

(before appearance of fixation spot) using the Wilcoxon test (P < 0.005, Bonferroni-corrected 

for multiple comparisons). A neuronal response was classified as task-related if it was 

significantly different to activity in the control period (the pre-fixation period on each trial of 

the main social task). We used a multiple linear regression model to test for neuronal 

activities related to specific task variables while including other relevant variables as 

covariates. We also used sliding-window multiple regression analyses with a 200-ms window 

that we moved in steps of 25 ms across each trial (without pre-selecting task-related 

responses). Sliding-window analyses tested for dynamic coding of different task-related 

variables over time within trials and also confirmed that our results did not depend on the pre-

selection of task-related responses or definition of fixed analysis windows. To determine 

significance of sliding-window regression coefficients, we used a bootstrap approach as 

follows. For each neuron, we performed the sliding-window regression 1,000 times using 

trial-shuffled data and determined a false positive rate by counting the number of consecutive 

sliding-windows in which a regression was significant with P < 0.05. We found that less than 

five percent of neurons with trial-shuffled data showed more than seven consecutive 

significant analysis windows. Accordingly, we classified a sliding-window analysis as 

significant if a neuron showed a significant (P < 0.05) effect for more than seven consecutive 

windows. Statistical significance of regression coefficients was determined using t-test; all 

tests performed were two-sided. Additional population decoding, described below, examined 

independence of our findings from pre-selection of task-related responses and served to assess 

information about specific task variables contained in the neuronal population.  

We performed our regression analysis in the framework of the general linear model 

(GLM). Neuronal responses were tested with the following regression models: 

 

GLM 1 (Eq. 3): this GLM was the main model for identification of object-value coding 

responses. It served the following purposes: First, the GLM served to identify neurons whose 

object-evoked responses encoded value across animals. Second, the GLM served to derive 

value βs for the histogram shown in Fig. 3C. 

 

𝑦 =  𝛽0 +  𝛽1(𝑂𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒)  +  𝛽2 (𝑆𝑒𝑙𝑓 − 𝑜𝑡ℎ𝑒𝑟)  + 𝛽3 𝐶ℎ𝑜𝑖𝑐𝑒 

+  𝛽4 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)  +  𝜀  

with y as the neuronal activity in response to a specific object during the 350 ms period in 

which the object was shown on each trial (measured over the whole experimental session, 

including pre-switch and post-switch periods), ‘Object value’ as the trial-specific subjective 

value of that object as derived from a reinforcement learning model (Eq. 1) fitted to the 

choices of the animal that was currently working on that object, ‘Self-other’ as a dummy 

variable (coded as 1 or 0) indicating whether the current trial was for the recorded monkey 

(self) or the partner (other), ‘Choice’ as the current-trial object choice (coded as 1 or 0 if the 

object was chosen or not chosen, respectively), ‘Object sequence ‘'as a dummy variable for 
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the current-trial object sequence (coded as 1 or 0 depending on whether the object was shown 

first or second on the current trial, respectively), and ε as error. Note that per neuron, we fitted 

the GLM four times on distinct object-evoked responses as we tested four objects per neuron; 

we thus tested 820 object responses (4 objects × 205 neurons). Note that the data sets for each 

object within each neuron were independent from each other because we showed objects 

sequentially and thus could measure neuronal responses evoked by specific objects. 

 

GLM 2 (Eq. 4): this GLM served as a test for coding of object values that were derived purely 

from observation, by testing for object-value coding before objects switched between 

animals, and thus before the recorded monkey experienced own reward from the partner’s 

objects. 

 

𝑦 =  𝛽0 +  𝛽1 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) + 𝛽2  𝐶ℎ𝑜𝑖𝑐𝑒 +  𝛽3 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)  +  𝜀  

with y as the neuronal activity in response to a specific object before objects switched 

between animals, and all other variables as defined above. This GLM 2 identified 113 value 

neurons on Self trials and 46 value neurons on Other trials. These latter neurons thus 

unambiguously encoded object values derived from observation, before the recorded monkey 

chose any of the partner’s objects.  

 

GLM 3 (Eq. 5): this GLM served the following purposes: First, to test how many neurons had 

activity related to object values separately on Self trials and on Other trials. Second, to 

determine how many neurons had activity related to object values for both Self and Other 

trials when relationships to object value were assessed with separate GLMs for Self and Other 

trials (thus, lowering statistical power, but showing unambiguous value coding on Self and 

Other trials). Third, the GLM served to derive value βs for the analyses shown in Fig. 3H, I. 

 

𝑦 =  𝛽0 + 𝛽1 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒)  +   𝛽2 𝐶ℎ𝑜𝑖𝑐𝑒 +  𝛽3 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)  +  𝜀  

with y as the neuronal activity in response to a specific object on Self trials or Other trials 

across the whole experimental session. This GLM 3 identified 232 value responses (130 

neurons) on Self trials and 101 value responses (72 neurons) on Other trials. Of these 

neurons, 53 neurons showed significant value coding on both Self trials and Other trials 

(when assessed with separate GLMs). This result, together with the significant relationship 

between value coefficients for Self and Other (Fig. 3H), supports the conclusion that many 

amygdala neurons encoded object values irrespective of whether value derived from 

individual learning or observational learning. 

 

GLM 4 (Eq. 6) this GLM served to test whether overall model fit of our main value-coding 

model GLM1 was improved by inclusion of separate interaction terms that modelled value-

coding specifically for self-trials and specifically for other trials. We used partial F-tests to 

test for significant (P < 0.05) improvements in model fit by inclusion of self-other specific 

value regressors, compared to GLM 1: 

 

𝑦 =  𝛽0 +   𝛽1 (𝑆𝑒𝑙𝑓 − 𝑂𝑡ℎ𝑒𝑟)  +  𝛽2 𝐶ℎ𝑜𝑖𝑐𝑒 +  𝛽3 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)  

+  𝛽4 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 × 𝑆𝑒𝑙𝑓)  +  𝛽5 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 × 𝑂𝑡ℎ𝑒𝑟) +  𝜀  

with y as the neuronal activity in response to a specific object across the whole session, 

‘Object value × Self’ as an interaction term between object value and Self - Other and ‘Object 

value × Other’ as an interaction term between object value and Self - Other trials (the two 

interaction terms thus tested for object value coding specifically on self or other trials). This 

GLM 4 showed that of 221 value-coding responses identified with GLM 1, the majority (155 

responses, 70%) were not significantly improved by modelling Self/Other-specific value 

coding. These results support our conclusion that value coding occurred mostly irrespective 

of the self vs. other distinction. 

 



29 
 

GLM 5 (Eq. 7): this GLM was the main model for identifying neurons with significant 

choice-coding and significant coding of first-object value and second-object value. It served 

the following purposes. First, the GLM served to identify neurons with activity related to 

choices and dynamic value comparisons, while controlling for other task-related variables. 

Second, the GLM served to derive coefficients of partial determination (partial R
2
) for Fig. 

4E, Fig. S3E and Fig. S4B. Third, the GLM served to derive regression coefficients (βs) for 

the analyses in Fig. S5. Two GLMs were fitted separately to data on recorded monkey’s trials 

and data on partner’s trials. The GLM was calculated as a sliding-window multiple regression 

(except for analyses shown in Fig. S5, for which we used fixed-window analysis to derive 

neuronal βs). 

 

𝑦 =  𝛽0 +  𝛽1 (𝑂𝑏𝑗𝑒𝑐𝑡1 𝑓𝑖𝑟𝑠𝑡 − 𝑂𝑏𝑗𝑒𝑐𝑡2 𝑓𝑖𝑟𝑠𝑡)  + 𝛽2 (𝑂𝑏𝑗𝑒𝑐𝑡3 𝑓𝑖𝑟𝑠𝑡 − 𝑂𝑏𝑗𝑒𝑐𝑡4 𝑓𝑖𝑟𝑠𝑡)  

+  𝛽3 (𝑂𝑏𝑗𝑒𝑐𝑡1 𝑐ℎ𝑜𝑠𝑒𝑛 − 𝑂𝑏𝑗𝑒𝑐𝑡2 𝑐ℎ𝑜𝑠𝑒𝑛)  + 𝛽4 (𝑂𝑏𝑗𝑒𝑐𝑡3 𝑐ℎ𝑜𝑠𝑒𝑛

− 𝑂𝑏𝑗𝑒𝑐𝑡4 𝑐ℎ𝑜𝑠𝑒𝑛)  +  𝛽5 (𝐹𝑖𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 𝑐ℎ𝑜𝑠𝑒𝑛)  

+  𝛽6 (𝐹𝑖𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) +  𝛽7 (𝑆𝑒𝑐𝑜𝑛𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒)  

+  𝛽8 (𝐶ℎ𝑜𝑠𝑒𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) +  𝜀  

with y as neuronal activity in 200 ms windows that were moved in 25 ms steps across the 

trial, starting 500 ms before onset of first cue and ending 350 ms after onset of choice targets, 

‘Object1 first – Object2 first’ as indicator variable for whether object 1 or object 2 was shown 

as first cue on a given trial, ‘Object3 first – Object4 first’ as indicator variable for whether 

object 3 or object 4 was shown as first cue on a given trial, ‘Object1 chosen – Object2’ 

chosen as indicator variable for whether object 1 or object 2 was chosen on a given trial, 

‘Object3 chosen – Object4’ chosen as indicator variable for whether object 3 or object 4 was 

chosen on a given trial, ‘First object chosen’ as indicator variable for whether the first or 

second object was chosen on a given trial, ‘First object value’ as object value of the first 

shown object, ‘Second object value’ as object value of the second shown object, ‘Chosen 

object value’ as the object value of the chosen object. Objects 1 to 4 were defined according 

to the pairing of objects for recorded monkey and partner as follows. Objects 1 and 2 were the 

objects from which the recorded monkey chose at session start; following object switch, the 

partner chose between these objects. Objects 3 and 4 were the objects from which the partner 

monkey chose at session start; following object switch, the recorded monkey chose between 

these objects. 

 We also used this GLM 5 to examine whether object-value neurons identified in 

GLM 1 (Eq. 3) were distinct from neurons that encoded values for decision-making (in an 

order-based reference frame of first-vs.-second object) identified in GLM5 (Eq. 7). Among 

127 neurons classified as object-value coding with GLM 1, 45 neurons (35%) were also 

classified as coding values for decision-making on partner’s trials (‘Second object value’ 

regressor in Eq. 7). By contrast, 82 neurons encoded object value but were insignificant for 

the second-value regressor on partner’s trials and 30 neurons were significant for the second-

value regressor on partner’s trials without showing object-value coding. For the recorded 

monkey’s trials, 53 object-value neurons (43%) showed a significant second-value regressor, 

74 neurons encoded object value but were insignificant for the second-value regressor and 28 

neurons were significant for the second-value regressor on recorded monkey’s trials without 

showing object value. Thus, some neurons were classified as coding both object value and 

value for decision-making but substantial numbers of neurons also showed distinct coding of 

either object value or order-based value for decision-making. 

 

GLM 6 (Eq. 8): this GLM served the following purposes. First, the GLM served to identify 

neurons with activity that distinguished self vs. other trials, while controlling for other task-

related variables. Second, the GLM served to derive self-other βs for the graph shown in Fig. 

6C. Third, the GLM served to calculate coding latencies for Fig. 7F. Fourth, the GLM served 

to derive coefficients of partial determination (partial R
2
) for Fig. 7G. One GLM was fitted 
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across both recorded monkey’s and partner’s trials. The GLM was calculated as a sliding-

window multiple regression. 

 

𝑦 =  𝛽0 +  𝛽1 (𝑂𝑏𝑗𝑒𝑐𝑡1 𝑓𝑖𝑟𝑠𝑡 − 𝑂𝑏𝑗𝑒𝑐𝑡2 𝑓𝑖𝑟𝑠𝑡)  + 𝛽2 (𝑂𝑏𝑗𝑒𝑐𝑡3 𝑓𝑖𝑟𝑠𝑡 − 𝑂𝑏𝑗𝑒𝑐𝑡4 𝑓𝑖𝑟𝑠𝑡)  

+  𝛽3 (𝑂𝑏𝑗𝑒𝑐𝑡1 𝑐ℎ𝑜𝑠𝑒𝑛 − 𝑂𝑏𝑗𝑒𝑐𝑡2 𝑐ℎ𝑜𝑠𝑒𝑛)  + 𝛽4 (𝑂𝑏𝑗𝑒𝑐𝑡3 𝑐ℎ𝑜𝑠𝑒𝑛

− 𝑂𝑏𝑗𝑒𝑐𝑡4 𝑐ℎ𝑜𝑠𝑒𝑛)  +  𝛽5 (𝐹𝑖𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 𝑐ℎ𝑜𝑠𝑒𝑛)  

+  𝛽6 (𝐹𝑖𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) +  𝛽7 (𝑆𝑒𝑐𝑜𝑛𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒)  

+  𝛽8 (𝐶ℎ𝑜𝑠𝑒𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) + 𝛽9 (𝑆𝑒𝑙𝑓 − 𝑂𝑡ℎ𝑒𝑟) +  𝜀  

with ‘Self – Other’ as an indicator variable for whether the current trial was the recorded 

monkey’s or the partner’s trial, and all other variables as defined above. 

 

GLM 7 (Eq. 9): this GLM served to derive value βs for the analyses and plots shown in Fig. 

4C and Fig. S3C and for selecting responses for the plots shown in Fig. 4B (N = 37 

responses) and Fig. S3B (N = 107 responses). Separate GLMs were fitted for recorded 

monkey’s and partner’s trials. We used this model to estimate the valuation component of 

neuronal decision-related activities, as was done in previous studies (Strait et al., 2014), for 

the purposes of performing the analysis shown in Fig. 4C and S3C, and for visualizing the 

value-comparison effect in population activity shown in Fig. 4B and Fig. S3B. The formal 

identification of neurons with significant dynamic value-coding was performed with GLM 5. 

 

𝑦 =  𝛽0 +  𝛽1 (𝑂𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) +  𝜀  

with y as firing rate during presentation of first cue or second cue (fitted in separate GLMs) 

and ‘Object value’ as object value of the first or second object (fitted in separate GLMs).   

 

GLM 8 (Eq. 10): this GLM served the following purposes. First, the GLM served to identify 

neurons with activity related to recorded monkey’s or partner’s left-right actions and object-

specific spatial left-right cue positions. Second, the GLM served to derive coefficients of 

partial determination (partial R
2
) for Fig. S6B and E. Two GLM were fitted separately for 

recorded monkey’s and partner’s trials. The GLM was calculated as a sliding-window 

multiple regression. 

 

𝑦 =  𝛽0 + 𝛽1 (𝑂𝑏𝑗𝑒𝑐𝑡1 𝑐ℎ𝑜𝑠𝑒𝑛 − 𝑂𝑏𝑗𝑒𝑐𝑡2 𝑐ℎ𝑜𝑠𝑒𝑛)  +  𝛽2 (𝑂𝑏𝑗𝑒𝑐𝑡3 𝑐ℎ𝑜𝑠𝑒𝑛

− 𝑂𝑏𝑗𝑒𝑐𝑡4 𝑐ℎ𝑜𝑠𝑒𝑛)  +  𝛽3 (𝐹𝑖𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 𝑐ℎ𝑜𝑠𝑒𝑛)  

+  𝛽4 (𝐹𝑖𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) +  𝛽5 (𝑆𝑒𝑐𝑜𝑛𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒)  

+  𝛽6 (𝐶ℎ𝑜𝑠𝑒𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) + 𝛽7 (𝑂𝑏𝑗𝑒𝑐𝑡1 𝑙𝑒𝑓𝑡 − 𝑂𝑏𝑗𝑒𝑐𝑡2 𝑙𝑒𝑓𝑡)  

+  𝛽8 (𝑂𝑏𝑗𝑒𝑐𝑡3 𝑙𝑒𝑓𝑡 − 𝑂𝑏𝑗𝑒𝑐𝑡4 𝑙𝑒𝑓𝑡)  +  𝛽9 (𝐿𝑒𝑓𝑡 𝑐ℎ𝑜𝑠𝑒𝑛) +  𝜀  

with y as firing rate in 200 ms windows that were moved in 25 ms steps across the trial, 

starting 350 ms before onset of choice targets and ending 750 ms after onset of choice targets, 

‘Object1 left – Object2 left’ as indicator variable for whether object 1 or object 2 was shown 

as left or right choice target, ‘Object3 left – Object4’ left as indicator variable for whether 

object 3 or object 4 was shown as left or right choice target, ‘Left chosen’ as indicator 

variable for whether the left or right target was chosen. 

 

Change point analysis. We performed a change point analysis to test the correspondence 

between activity of value-coding neurons and the animals’ choices following unannounced 

probability reversals, using methods used in previous studies (Paton et al., 2006). The test 

identifies change points based on slope changes in the cumulative record of choices and 

neuronal responses. We constructed cumulative records of neuronal activity around reversal 

trials based on seven-trial smoothed neuronal impulse rates measured during object 
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presentation. We constructed corresponding cumulative choice records around reversal 

points. We included data from both recorded animal and partner. We excluded sessions in 

which no change point was identified. Following previous studies (Paton et al., 2006), if 

multiple change points were identified, we picked the one closest to the reversal point. A 

change point was identified using t-test with a critical value of P = 1.0 × 10
-6

. We show in 

Fig. 3E the results from 182 value-coding responses that met these criteria (R = 0.264, P = 

0.0003). The result was significant individually within each monkey (monkey A: R = 0.288, P 

= 0.002; monkey B: R = 0.242, P = 0.04) and similar results were obtained across all 

responses, without pre-selection for value coding (across animals: R = 0.166, P = 5.5 × 10
-5

; 

monkey A: R = 0.233, P = 4.2 × 10
-5

; monkey B: R = 0.119, P = 0.048). 

 

Normalization of population activity. To normalize activity from different amygdala 

neurons, we subtracted from the impulse rate in a given task period the mean impulse rate of 

the pre-fixation control period and divided by the standard deviation of the control period (z-

score normalization). We also distinguished neurons that showed positive relationships or 

negative relationships with a given variable, based on the sign of the regression coefficient, 

and sign-corrected responses with a negative relationship. Normalized data were used for Fig. 

3D, Fig. 4B, D, Fig. S2A, C, D, Fig. S3B, D, Fig. 6B, and all decoding analyses. 

 

Normalization of regression coefficients. Standardized regression coefficients were defined 

as xi(si/sy), xi being the raw slope coefficient for regressor i, and si and sy the standard 

deviations of independent variable i and the dependent variable, respectively. Standardized 

regression coefficients were used for Fig. 3C, 3H, 3I, Fig. 4C, Fig. 6C, Fig. S2C, Fig. S3C 

and Fig. S4D. Specifically, to create the scatter plots shown in Fig. 4C and Fig. S3C, we 

performed a linear regression of impulse rates during presentation of the first object or second 

object on that object’s current value (Eq. 9), derived from the animal-specific reinforcement-

learning model. These regressions were performed separately for recorded monkey and 

partner monkey. The scatter plots show data from all 205 recorded amygdala neurons (one 

data point lies outside the plotted data range). 

 

Population decoding. We used a support-vector-machine (SVM) classifier to quantify 

information about task-related variables contained in neuronal population activity in defined 

task periods, following previous neurophysiological studies (Grabenhorst et al., 2016; Tsutsui 

et al., 2016). The SVM classifier was trained to find a linear hyperplane that best separated 

patterns of neuronal population activity defined by a given grouping variable (e.g. high vs. 

low value, choice for object A vs. object B, self-trial vs. other-trial, self-choice vs. other-

choice). Additional nearest-neighbour (NN) classification was also used which assigned each 

trial to the group of its nearest single-trial neighbor in a space defined by the distribution of 

impulse rates for different levels of the grouping variable using the Euclidean distance. Both 

SVM and NN classification are biologically plausible as downstream neurons could perform 

similar classification by comparing inputs on a given trial with stored synaptic-weight 

vectors. Both classifiers performed qualitatively very similar but SVM decoding was typically 

more accurate. 

To prepare data for decoding, we aggregated z-normalized trial-by-trial impulse rates 

of independently recorded amygdala neurons from specific task periods into pseudo-

populations. We used all recorded neurons that met inclusion criteria for a minimum trial 

number, without pre-selecting for coding a specific variable. Depending on the variable used 

for decoding, we only included neurons in the decoding analyses that had a minimum number 

of either 5 or 10 trials per group for which decoding was performed; we confirmed that results 

were robust to changes in this minimum trial number. We created two n by m matrices with n 

columns determined by the number of neurons and m rows determined by the number of 

trials. We defined two matrices, one for each group for which decoding was performed, using 

the following different groupings. For object-value decoding, we defined separate groups for 

low and high object value, determined for each neuron by calculating value terciles. (We 

obtained very similar results by repeating the decoding analyses based on median-split.) For 
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choice decoding, we defined two separate groups depending on the object choice on each trial 

(A or B, given by the set of two objects from which the animal was currently choosing). For 

self-other decoding, we defined two separate groups depending on whether it was the 

recorded monkey’s (self) or partner’s (other) trial. For choice decoding shown in Fig. 7H, we 

wished to test the neuronal discriminability of self-choice vs. other-choice; we therefore 

grouped trials according to whether recorded monkey or partner chose a given object. 

Accordingly, each cell in a matrix contained the impulse rate from a single neuron on a single 

trial measured for a given group. Because neurons were not simultaneously recorded, we 

randomly matched up trials from different neurons for the same group and then repeated the 

decoding analysis with different random trial matching (within-group trial matching) 150 

times. We found this number of repetitions produced very stable classification results and 

confirmed robustness with respect to changes in this number. (We note that this overall 

approach likely provides a lower bound for decoding performance as it ignores potential 

contributions from cross-correlations between neurons; investigation of cross-correlations 

would require data from simultaneously recorded neurons.)  

We quantified decoding accuracy as the percentage of correctly classified trials, 

averaged over all decoding analyses for different random within-group trial matchings. We 

used a leave-one-out cross-validation procedure: a classifier was trained to learn the mapping 

from impulse rates to groups on all trials except one test trial; this remaining trial was then 

used for testing the classifier and the procedure repeated until all trials had been tested. We 

obtained very similar results when splitting data into 80% training trials and 20% test trials. 

We implemented SVM decoding in Matlab (Version R2013b, Mathworks, Natick, MA) using 

the ‘svmtrain’ and ‘svmclassify’ functions with a linear kernel and the default sequential 

minimal optimization method for finding the separating hyperplane. The NN decoding was 

implemented in Matlab with custom code. 

To investigate how decoding accuracy depended on the number of neurons in the 

decoding sample (Fig. 3J, Fig. 6D), we randomly selected a given number of neurons at each 

step (without replacement) and then determined the percentage correct classification. For each 

step (i.e. each possible population size) this procedure was repeated 100 times. We also 

performed decoding for randomly shuffled data (shuffled group assignment without 

replacement) with 5,000 iterations to test whether decoding on real data differed significantly 

from chance. Statistical significance was determined by comparing vectors of percentage 

correct decoding accuracy between real data and randomly shuffled data using the rank-sum 

test. 

For the analyses shown in Figs. 3I, K, Fig 4G, I, and Fig. S5C, D, we performed 

decoding repeatedly over 5,000 iterations based on small subsets (N = 20) of randomly 

sampled neurons drawn without replacement (within each iteration) from all neurons that met 

minimum criteria for classification. For each iteration, we noted the percentage-correct 

accuracy as well as the identity of the neurons included in the sample. This approach allowed 

us to then relate the decoding accuracy resulting from a given subset of 20 neurons to the 

average value slope of these individual neurons (Fig. 3I), the average behavioral performance 

of the recorded monkey during the sessions in which these neurons were recorded (Fig. 3K, 

Fig. 4G), the fraction of basomedial neurons in the sample (Fig. 4I), or mean fixation 

durations (Fig. S5C, D). 

For Fig. 5, we adapted a nearest-neighbor classifier to examine coding across 

amygdala nuclei. We computed Euclidean distances between single-trial activity vectors and 

mean activity vectors for different value levels or choices. Such decoding could be neurally 

implemented by comparing current-trial activity patterns to synaptic-weight vectors based on 

past trials. We focused on the task period before objects switched between animals, as this 

was the most relevant period for observational learning. We preselected the 20 neurons with 

highest value-coding and separately the 20 neurons with highest choice coding in each 

nucleus, based on regression coefficients. We then proceeded as for the decoding analyses 

described above, except that decoding was not based on Euclidean distances between single-

trial vectors but on Euclidean distances between a single-trial test vector and the mean 

activity vectors for the two alternative groups, calculated from all trials except the test trial. 
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For Self-to-Other cross-decoding, we used single-trial test vectors from the recorded 

monkey’s trials and computed the Euclidean distances to mean activity vectors calculated 

from the partner’s trials. Figure 5A illustrates this approach: a single-trial test point (in the 

activity space of two example neurons) was compared to mean activity vectors for recorded 

monkey (upper panel) and partner (lower panel). Fig. 5E and F show the correlations between 

the mean activity vectors corresponding to different decoding groups (i.e different value 

levels, or different choices) on recorded monkey’s trials (rSelf,Self), different decoding groups 

on recorded monkey’s trials (rOther,Other), and same decoding groups on recorded monkey’s and 

partner’s trials (rSelf,Other). A higher coefficient  rSelf,Other compared to rSelf,Self and rSelf,Other would 

show that population vectors for the same values across recorded monkey’s and partner’s 

trials were more similar than vectors for different values within each animal, indicative of 

shared neuronal coding. 

 

Biophysical neuronal network model of decision-making. We adapted an established 

network model of decision-making that we extended to the architecture shown in Fig. 7A. 

The network contains two decision modules: the ‘self’ module computes the recorded 

monkey’s own choices and the ‘other’ module simulates the social partner’s choices. Each 

decision-making module is implemented as an attractor neural network (ANN), which is a 

widely studied model of evidence accumulation that relies on reverberant activity of 

competing neural populations (or pools) and mutual inhibition mediated by slow NMDA 

channel opening dynamics. The decision of each ANN depends on the activity of the 

competing decision populations. More specifically, each module is thus composed of two 

reverberating populations of excitatory object-specific decision-making neurons. The 

competition between the two alternative choices is implemented through mutual GABAergic 

inhibitory connections between both excitatory pools. The operation of each of these 

populations is captured by the Dynamic Mean Field (DMF) equations (Wong and Wang, 

2006). The DMF describes consistently the time evolution of the ensemble activity of 

different neural populations consisting of biophysical realistic spiking neurons coupled 

through excitatory (AMPA and NMDA) and inhibitory (GABA-A) synaptic receptor types. In 

the DMF approach, each population firing rate depends on the input currents into that 

population, whereas the input currents depend on the firing rates. Consequently, the 

population firing rate can be determined self-consistently by a reduced system of coupled 

non-linear differential equations expressing the population firing rates and the respective 

input currents. In brief, the mean field approach considers the diffusion approximation 

according to which sums of synaptic gating variables are replaced by a DC component and a 

Gaussian fluctuation term. Moreover, the first passage equation for calculating the firing rate 

is approximated by a simple sigmoidal input–output function (Wong and Wang, 2006). Since 

the synaptic gating variable of NMDA receptors has a much longer decay time constant (100 

ms) than the AMPA receptors, the dynamics of the NMDA gating variable dominates the 

time evolution of the system, while the AMPA synaptic variable instantaneously reaches its 

steady state. Hence, one can neglect contributions by the AMPA receptors to the local 

recurrent excitation. The decision-making module dynamics can be simply described by the 

following set of coupled non-linear stochastic differential equations: 

𝑥1(𝑡) = 𝐽11𝑆1(𝑡) − 𝐽12𝑆2(𝑡) + 𝐼0 + 𝐼1 + 𝐼𝑛𝑜𝑖𝑠𝑒,1(𝑡) 

𝑥2(𝑡) = 𝐽22𝑆2(𝑡) − 𝐽21𝑆1(𝑡) + 𝐼0 + 𝐼2 + 𝐼𝑛𝑜𝑖𝑠𝑒,2(𝑡) 

𝑑𝑆𝑖(𝑡)

𝑑𝑡
= −

𝑆𝑖(𝑡)

𝜏𝑆
+ (1 − 𝑆𝑖(𝑡))𝛾𝐻𝑖(𝑡) 

𝐻𝑖(𝑡) =
𝑎𝑥𝑖(𝑡) − 𝑏

1 − exp [−𝑑(𝑎𝑥𝑖(𝑡) − 𝑏)]
 

𝐼𝑖 = 𝐽𝑒𝑥𝑡𝜇0(1 ∓ 𝐷) 
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𝜏𝑛

𝑑𝐼𝑛𝑜𝑖𝑠𝑒,𝑖(𝑡)

𝑑𝑡
= −𝐼𝑛𝑜𝑖𝑠𝑒,𝑖(𝑡) + 𝜔(𝑡)√𝜏𝑛𝜎𝑛𝑜𝑖𝑠𝑒

2  

where 𝐻𝑖(𝑡) denotes the population firing rate of the excitatory population i. 𝑆𝑖(𝑡) denotes the 

average excitatory synaptic gating variable at the population i. The input currents to the 

excitatory population i is given by 𝐼𝑖. The different level of value evidence to the respective 

decision-making pools is regulated by the parameter 𝐷 . In our case 𝐷  was 0.01 for the 

difficult decision condition and 0.05 for the easy decision-making condition. The input 

parameters were 𝐽𝑒𝑥𝑡 =0.000183 nAHz
-1

 and 𝜇0 =30 Hz. 𝐼0  encodes external social input 

stimulation for simulating the social effect. As shown in Fig. 7E, 𝐼0 was chosen before the 

bifurcation (𝐼0=0.38) for simulating the case without social input, and after the bifurcation 

(𝐼0=0.44) for simulating the case with social input. Parameter values for the neuronal input– 

output functions H are: a=270 (VnC)
-1

, b=108 Hz, and d=0.154 s. The kinetic parameters are 

𝛾 =0.641, the NMDA latency 𝜏𝑆=100 ms and the noise latency 𝜏𝑛= 10 ms. The reverberatory 

excitatory synaptic coupling was 𝐽11=𝐽22=0.6 nA and the inhibitory synaptic coupling was 

𝐽12=𝐽21=0.3 nA. In the last equation 𝜔(𝑡) is uncorrelated standard Gaussian noise and the 

noise amplitude was 𝜎𝑛𝑜𝑖𝑠𝑒
2 =0.02 nA. We used the Euler-Murayama method for integrating 

the stochastic system of coupled differential equations. 
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SUPPLEMENTAL FIGURES 

 

 
 

Fig. S1. Behavioral data, Related to Figure 2. A, Recorded monkey’s choices after object 

switch depended on partner’s immediately preceding pre-switch performance. Regression of 

recorded monkey’s post-switch choice probability for the high-value object (calculated over 

the first three post-switch trials) on partner’s pre-switch choice probability for the same object 

(‘Other choice’) and, as control, for the recorded monkey’s pre-switch choice probability for 

a different high-value object (‘Self choice’). The recorded monkey was more likely to choose 

the high-value object if the partner chose the same object immediately before switch. B, 

Results of fitting reinforcement learning models. Distributions of pseudo R
2
 and learning rate 

across animals and sessions. C, Monkey’s behavior matched reinforcement learners. Reward 

rate obtained by both recorded monkeys (green, blue) within the first three trials post-switch 

(mean ± s.e.m. across sessions), and best-fitting reinforcement learning model plotted for 

different learning rates (Eq. 1). Black and magenta curves show corresponding reward rate 

(mean ± s.e.m) of simulated reinforcement learner within three simulated post-switch trials 

(10,000 iterations). ‘Random’: reward rate obtained by agent making random choices; 

‘Omniscient’: reward rate obtained by agent always choosing the best option. Choice 

stochasticity parameter for reinforcement learner was set to the mean parameter value of the 

animals. D, Fixations for left and right object on own left-choice trials. Fixation densities for 

regions of interest corresponding to location of left and right object, measured after cue 

appearance before left-object choice, across animals (left) and separately for both recorded 

monkeys (fixations were not measured for non-recorded, partner monkey). Statistical test: 

ranksum test. E, Contrast map of recorded monkey’s fixations before recorded monkey’s 

right vs. left choices (measured after target appearance before recorded monkey released 

touch key). F, Fixations for left and right object on partner’s right-choice trials (left/right 

refers to the recorded monkey’s perspective). Fixation densities for regions of interest 

corresponding to location of left and right object measured after cue appearance before 

partner’s choice. (As both animals faced each other over the touch screen, partner’s left 

choice corresponds to observed right choice for recorded monkey.) All averages are mean ± 

s.e.m.  
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Fig. S2. Object-value coding tests, Related to Figure 3. A, Activity of value-coding 

neurons on recorded monkey’s trials (black) tracked recorded monkey’s choice probability 

(magenta) over reward-probability reversal. B, C, Control analysis for encoding of partner’s 

values vs. recorded monkey’s values. B, Trial-by-trial record of subjective values, choices 

and rewards in an example session for recorded monkey (black) and partner (magenta). 

Curves: subjective object values derived from reinforcement learning model fitted to data on 

recorded monkey’s trials (black) and partner’s trials (magenta). Blue points indicate trials 

with significant (larger than one standard deviation) value difference between animals; these 

values (across recording sessions) and corresponding neuronal activities were used for 

analysis in (C). Vertical bars: single-trial choices, referenced to specific objects (upper vs. 

lower panels); short/long bars: unrewarded/rewarded choices. C, Better relationship between 

neuronal data on partner’s trials and partner’s object values, compared to recorded monkey’s 

object values. Left: linear regression of neuronal responses on partner’s trials on partner’s 

object values, calculated across sessions and neurons, for trials with significant difference 

between partner’s and recorded monkey’s values (blue data points in (B)). Right: Comparison 

between regression coefficients calculated for partner and recorded monkey (P < 0.005). The 

relationship between neuronal activity on partner’s trials and partner’s object values was not 

explained by relationship to recorded monkey’s own values. Thus, when subjective values 

differed markedly between animals (due to different choice-reward histories), responses on 

partner’s trials distinctly reflected partner’s values rather than recorded monkey’s values. D, 

Population activity separately reflected reward-choice histories of partner and recorded 

monkey. Neuronal object responses on recorded monkey’s trials (black) and partner’s trials 

(magenta) for different numbers of rewards recently received from object choices. Object 

responses on both partner’s trials and recorded monkey’s trials were stronger for more 

frequently rewarded objects. Thus, neurons were directly sensitive to partner’s reward history 

separately from recorded monkey’s own reward history. All averages are mean ± s.e.m.  
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Fig. S3. Amygdala neurons signal recorded monkey’s decision processes, Related to 

Figure 4. A, Single neuron predicting choice for recorded monkey but not partner. Responses 

to second object on partner’s trials (left) and recorded monkey’s trials (right), sorted by 

forthcoming object choice. B, Neuronal value comparison on recorded monkey’s trials. 

Population activity of value-coding neurons (N = 107, Eq. 9) during sequential presentation 

of recorded monkey’s choice objects, sorted according to value of first object. C, Neuronal 

value slopes on recorded monkey’s trials indicate mutual-inhibitory value comparison. Left: 

anti-correlated value slopes for first object at first cue and second cue; value signals changed 

sign from first to second cue. Right: correlated values slopes for first and second object. D, 

Stronger choice signals for easier decisions. Population activity of choice-predictive neurons 

on recorded monkey’s trials for easy and difficult decisions (median-split by value 

difference). E, Single-neuron value-to-choice transition on recorded monkey’s trials. 

Explained variance of value and choice regressors from sliding-window regression. Activity 

transitioned from coding value to predicting recorded monkey’s choice, indicative of 

decision-making. F, Location of neurons that predicted recorded monkey’s choices. 

Diamond: neuron from (A). All averages are mean ± s.e.m. G, Assessing joint vs. separate 

choice coding for self and other. Numbers of neurons encoding choices for self only (black 

circles), other only (magenta circles) or both self and other (overlap) tested for different 

object pairs. (i) Numbers of choice-coding neurons reported in the main text (GLM5, Eq. 7) 

for the regressor ‘Object 3 chosen – Object 4 chosen’; these were the critical objects for 

observational learning as the partner chose them at session start while the recorded monkey 

chose them after object switch. (ii) Numbers of choice-coding neurons for the regressor 

‘Object 1 chosen – Object 2 chosen’ (GLM5, Eq. 7); these objects were initially chosen by 

the recorded monkey while the partner monkey chose them after object switch. For both 

regressors, the proportions of separate choice coding for self and other were significantly 

higher than those for joint choice coding (z-test for dependent samples; regressor ‘Object 3 

chosen – Object 4 chosen’, self only vs. joint: z = 3.48, P = 0.0005, other only vs. joint: z = 

4.13, P = 0.00003, self only vs. other only: z = 0.73, P = 0.467; regressor ‘Object 1 chosen – 

Object 2 chosen’, self only vs. joint: z = 4.03, P = 0.00005, other only vs. joint: z = 2.65, P = 

0.0079, self only vs. other only: z = 1.48, P = 0.138). (iii) Numbers of choice-coding neurons 

specifically for the task period before object switch, which was the relevant task period for 

observational learning when the animals were choosing from different picture sets (GLM5, 

Eq. 7): recorded monkey’s choices were modelled by the regressor ‘Object 1 chosen – Object 

2 chosen’ whereas partner’s choices were modelled by the regressor ‘Object 3 chosen – 

Object 4 chosen’. The proportions of separate choice-coding for self and other were 

significantly higher than those for joint choice coding (z-test for dependent samples; self only 
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vs. joint: z = 2.65, P = 0.0079, other only vs. joint: z = 2.65, P = 0.0079, self only vs. other 

only: z = 0, P = 1.0). (iv) Numbers of choice-coding neurons for object-independent, order-

referenced choices (regressor ‘First object chosen’, GLM5, Eq. 7). The proportions of 

separate choice coding for self and other were significantly higher than those for joint choice 

coding (z-test for dependent samples; self only vs. joint: z = 3.77, P = 0.0001, other only vs. 

joint: z = 2.75, P = 0.006, self only vs. other only: z = 1.15, P = 0.248). Taken together, these 

results confirmed that separate choice coding for partner and recorded monkey was 

significantly more prevalent in amygdala neurons than joint choice coding.  
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Fig. S4. Value-comparison signals in social task and relative absence of value signals in 

non-social control task. Related to Figure 4. A, Neuronal value comparison on partner’s 

trials in a single neuron. Activity of one value-coding neuron during sequential presentation 

of partner’s choice objects, sorted according to value of first object. B, C, Comparison 

between social observational learning task and non-social control task. B, Single neuron 

encoding value-to-choice transition on partner’s trials in social task. C, Activity of the same 

neuron recorded in a non-social control task. The neuron failed to signal value (reward 

probability) of conditioned stimuli that predicted reward for the recorded monkey in absence 

of social partner. D, Value coding in non-social control task. Histogram of value slopes (β) 

for 47 responses with significant value coding on other’s trials (Eq. 7) that were tested in the 

non-social control task (black) and subset of 18 neurons (38%) with common significant 

value coding across tasks (orange). 
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Fig. S5. Relationships between simulation neurons and observation of partner’s choices, 

Related to Figure 4. A, Neuronal value slopes (unsigned βs) of simulation neurons plotted 

against the time that the recorded monkey spent looking at partner’s choice objects when the 

partner executed the choice. Neuronal βs were obtained from Eq.7 and correspond to single-

neuron sensitivities to partner’s forthcoming choice, measured before partner’s action (N = 

205 neurons, across-neuron analysis). Looking durations were measured as the mean duration 

of the recorded monkey’s fixations, within a recording session, that fell onto the touch screen 

area corresponding to partner’s choice objects and action targets (cf. Fig. 1A) in the period 

from onset of choice-cues in left-right arrangement until onset of reward receipt. The 

relationship was also significant for fixations specifically of partner’s chosen object (r = 

0.152, P = 0.0299); as a control, the relationship was not found for neuronal encoding of 

recorded monkey’s own choices (P = 0.563), or for fixations of partner’s face during action 

period (P = 0.651) or reward period (P = 0.155). B, Neuronal value slopes for simulation 

neurons encoding partner’s abstract choices in an order-based frame of reference (choice of 

first vs. second object), plotted against fixation durations as in (A). C, Relationship between 

neuronal decoding accuracy of partner’s forthcoming choices and fixation durations. Leave-

one-out cross-validated accuracy of support-vector-machine classifier decoding partner’s 

choices from randomly sampled subsets of 20 neurons (5,000 iterations), plotted against mean 

fixation duration of partner’s chosen objects. Neuronal activity used for classification was 

from the period before objects switched between animals and was measured on each trial 

during sequential object presentation, i.e. before partner’s action (choice prediction). 

Fixations were measured during action period as in (A). D, Relationship between neuronal 

decoding accuracy of partner’s observed choices and fixation durations. Same analysis as in 

(C) but neuronal choice decoding was performed during the period when the partner executed 

the choice (choice observation).   
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Fig. S6. Amygdala neurons encode action information for recorded monkey but not for 

partner, Related to Figure 7. A, Single neuron signalling recorded monkey’s left vs. right 

arm movements during target presentation. The neuron responded more strongly when the 

recorded monkey performed an arm movement toward a touch target on the left side of the 

monitor compared to movement toward the right side. The neuron failed to distinguish 

observed left-right actions on partner’s trials. B, Population data across all recorded neurons. 

Explained variance by left-right action regressor during target presentation (sliding-window 

regression). Significant information about left-right actions was encoded by neurons on 

recorded monkey’s trials (black) but not on partner’s trials (magenta). C, Action coding for 

recorded monkey and partner. A significant number of neurons signaled recorded monkey’s 

executed actions; by contrast, few neurons signaled observed partner’s actions and no neuron 

jointly signaled partner’s and recorded monkey’s actions. D, Choice-to-action transitions. 

Left: Some neurons dynamically encoded the recorded monkey’s object choice before 

encoding the recorded monkey’s action. Such choice-to-action transitions were entirely 

absent on partner’s trials. Right: Corresponding data for neurons transition from choice-

coding to coding of left-right cue position. E, Choice-to-action-transition in a single amygdala 

neuron. On recorded monkey’s trials, the neuron signaled the monkey’s forthcoming object 

choice just before onset of choice targets. Following target presentation, the neuron’s activity 

began to signal the monkey’s left-right action. All averages are mean ± s.e.m. 
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SUPPLEMENTAL TABLES 
 

Table S1. Reinforcement learning models. Results from fitting reinforcement learning models to 

recorded monkeys’ and partner monkey’s choices (Eq. 1-2). Shown are median ± s.e.m. of % correctly 

modelled choices, Akaike information criterion (AIC), Bayesian information criterion (BIC), and 

Pseudo R
2
. 

 % correct modelled 
choices 

AIC BIC Pseudo R2 

Recorded monkeys 

Basic RL 86.00 ± 0.5 64.20 ± 1.7 72.05 ± 1.8 0.54 ± 0.01 

Reversal RL 88.78 ± 0.3 55.25 ± 1.3 65.67 ± 1.3 0.64 ± 0.01 

Reversal RL, 2 
learning rates 

89.09 ± 0.3 56.13 ± 1.3 66.44 ± 1.4 0.62 ± 0.01 

Reversal, RL, 

adaptive rate 

89.00 ± 0.5 61.55 ± 1.3 71.85 ± 1.4 0.59 ± 0.01 

Partner monkey 

Basic RL 84.16 ± 0.4 77.44 ± 1.9 84.98 ± 1.9 0.45 ± 0.01 

Reversal RL 85.45 ± 0.5 67.60 ± 1.9 78.04 ± 2.0 0.53 ± 0.01 

Reversal RL, 2 

learning rates 

85.86 ± 0.4 69.89 ± 1.9 80.31 ± 1.9 0.53 ± 0.01 

Reversal, RL, 

adaptive rate 

86.14 ± 0.6 68.61 ± 1.8 78.94 ± 1.9 0.52 ± 0.01 

 

 

 

 

Table S2. Neuronal responses related to object value. Results of fitting GLM 1 (Eq. 3) to object-

evoked neuronal responses. Numbers in parentheses are percentages. 
 Total Object value 

 Neurons Neurons Responses 1 object 2 objects 3 objects 4 objects 

Monkey A 122 85 (70)1 155 (32)2 45 (29)3 20 (13) 10 (6) 10 (6) 

Monkey B 83 42 (51) 66 (20) 25 (38) 10 (15) 7 (11) 0 (0) 

Both 205 127 (62) 221 (27) 70 (32) 30 (14) 17 (8) 10 (5) 
1: percentages calculated with respect to total number of neurons in column ‘Total’ 
2: percentages calculated with respect to 488 responses for monkey A, 332 responses for monkey B and 820 

responses for both animals. 
3: percentages calculated with respect to object-value responses in column ‘Responses’. 

 

 

 

 

Table S3. Neuronal responses related to object choice1, sequential values and other task-relevant 

variables. Results of fitting GLM 5 (Eq. 7) to neuronal activity during sequential object presentation 

(sliding-window regression). Numbers in parentheses are percentages. 
 Self 

 Total Object 1 
first – 

Object 2 

first 

Object 3 
first – 

Object 4 

first 

Object 1 
chosen – 

Object 2 

chosen 

Object 3 
chosen – 

Object 4 

chosen 

First 
object 

chosen 

First 
object 

value  

Second 
object 

value 

Chosen 
object 

value 

Monkey A 122 58 (48)2 43 (35) 37 (30) 28 (23) 25 (20) 35 (29) 41 (34) 26 (21) 

Monkey B 83 44 (53) 41 (49) 22 (27) 18 (22) 9 (11) 39 (47) 40 (48) 20 (24) 

Both 205 102 (50) 84 (41) 59 (29) 46 (22) 34 (17) 74 (36) 81 (40) 46 (22) 

 Other 

 Total Object 1 

first – 
Object 2 

first 

Object 3 

first – 
Object 4 

first 

Object 1 

chosen – 
Object 2 

chosen 

Object 3 

chosen – 
Object 4 

chosen 

First 

object 
chosen 

First 

object 
value  

Second 

object 
value 

Chosen 

object 
value 

Monkey A 122 33 (27) 51 (42) 22 (18) 25 (21) 13 (11) 34 (28) 34 (28) 20 (16) 

Monkey B 83 34 (40) 47 (56) 24 (29) 15 (18) 13 (16) 40 (48) 41 (49) 12 (14) 

Both 205 67 (33) 98 (48) 46 (22) 40 (20) 26 (13) 74 (36) 75 (37) 32 (16) 
1: The number of choice-coding neurons reported in the main text were obtained from this table from column 

‘Object 3 chosen – Object 4 chosen’; these objects were the critical objects for observational learning as the 

partner chose from them at session start while the recorded monkey chose from them after object switch.  
2: percentages calculated with respect to total number of neurons in column ‘Total’ 
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Table S4. Neuronal responses related to object choice, sequential values and other task-relevant 

variables. Results of fitting GLM 6 (Eq. 8) to neuronal activity during sequential object presentation 

(sliding-window regression). Numbers in parentheses are percentages. 
 Total Object 1 

first – 

Object 2 

first 

Object 3 
first – 

Object 4 

first 

Object 1 
chosen – 

Object 2 

chosen 

Object 3 
chosen – 

Object 4 

chosen 

First 
object 

chosen 

First 
object 

value  

Second 
object 

value 

Chosen 
object 

value 

Self – 
Other 

Monkey A 122 60 (49) 1 65 (53) 30 (25) 33 (27) 25 (20) 44 (36) 44 (36) 16 (13) 99 (81) 

Monkey B 83 49 (59) 53 (64) 24 (29) 19 (23) 7 (8) 40 (48) 49 (59) 17 (20) 65 (78) 

Both 205 109 (53) 118 (58) 54 (26) 52 (25) 32 (16) 84 (41) 83 (41) 33 (16) 164 

(80) 
1: percentages calculated with respect to total number of neurons in column ‘Total’ 

 

 

 

 

Table S5. Neuronal responses related to object choice, sequential values and other task-relevant 

variables. Results of fitting GLM 8 (Eq. 10) to neuronal activity during target presentation (sliding-

window regression). Numbers in parentheses are percentages. 
 Self 

 Total Object 1 
chosen 

– Object 

2 
chosen 

Object 3 
chosen 

– Object 

4 
chosen 

First 
object 

chosen 

First 
object 

value  

Second 
object 

value 

Chosen 
object 

value 

Object 1 
left – 

Object 2 

left 

Object 
3 left – 

Object 

4 left 

Left 
chosen 

Monkey A 122 27 (22) 1 27 (22) 13 (11) 18 (15) 17 (14) 14 (11) 11 (9) 9 (7) 28 (23) 

Monkey B 83 12 (14) 14 (17) 5 (6) 17 (21) 18 (22) 13 (16) 21 (25) 11 (13) 14 (17) 

Both 205 39 (19) 41 (20) 18 (9) 35 (17) 35 (17) 27 (13) 32 (16) 20 (10) 42 (25) 

 Other 

 Total Object 1 

chosen 

– Object 
2 

chosen 

Object 3 

chosen 

– Object 
4 

chosen 

First 

object 

chosen 

First 

object 

value  

Second 

object 

value 

Chosen 

object 

value 

Object 1 

left – 

Object 2 
left 

Object 

3 left – 

Object 
4 left 

Left 

chosen 

Monkey A 122 6 (5) 1 14 (11) 4 (3) 16 (13) 16 (13) 9 (7) 7 (6) 13 (11) 3 (2) 

Monkey B 83 10 (12) 5 (6) 5 (6) 25 (30) 20 (24) 11 (13) 11 (13) 9 (11) 1 (1) 

Both 205 16 (8) 19 (9) 9 (4) 41 (20) 36 (18) 20 (10) 18 (9) 22 (11) 4 (1) 
1: percentages calculated with respect to total number of neurons in column ‘Total’ 

 

 

 

 

Table S6. Neuronal responses related to object value, sequential values and object choice for different 

amygdala subregions. Numbers in parentheses are percentages. 
 Amygdala subregion 

 Total Lateral Basolateral Basomedial Centromedial 

Recorded 205 66 86 23 30 

Object value (Eq. 3) 127 (62)
 1

 42 (64) 53 (62) 15 (65) 17 (57) 

 Self 

First/second object value (Eq. 

10) 

88 (43)
  

 

25 (38) 39 (45) 9 (39) 15 (50) 

Object 3 chosen  – Object 4 
chosen (Eq. 10) 

46 (22) 22 (33) 15 (17) 5 (22) 4 (13) 

First/second object value 

AND/OR Object 3 chosen  – 
Object 4 chosen (Eq. 10) 

106 (52) 33 (50) 48 (56) 9 (39) 16 (53) 

 Other 

First/second object value (Eq. 

10) 

86 (42) 23 (35) 40 (47) 8 (35) 15 (50) 

Object 3 chosen  – Object 4 
chosen (Eq. 10) 

40 ( 20) 18 (28) 14 (16) 3 (13) 5 (17) 

First/second object value 

AND/OR Object 3 chosen  – 
Object 4 chosen (Eq. 10) 

112 (55) 38 (58) 47 (55) 11 (47) 16 (53) 

1: percentages calculated with respect to number of neurons in row ‘Recorded’ 


