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ABSTRACT
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The dynamics of a stratified oceanic bottom boundary layer (BBL) over

an insulating, sloping surface depend critically on the intersection of den-

sity surfaces with the bottom. For an imposed along-slope flow, the cross-

slope Ekman transport advects density surfaces and generates a near-bottom

geostrophic thermal wind shear that opposes the background flow. A limiting

case occurs when a momentum balance is achieved between the Coriolis force

and a restoring buoyancy force in response to the displacement of stratified

fluid over the slope: this is known as Ekman arrest. However, the turbulent

characteristics that accompany this adjustment have received less attention.

We present two estimates to characterize the state of the BBL based on the

mixed layer thickness, Ha and HL. The former characterizes the steady Ekman

arrested state, and the latter characterizes a re-laminarized state. The deriva-

tion of HL makes use of a newly-defined slope Obukhov length, Ls that charac-

terizes the relative importance of shear production and cross-slope buoyancy

advection. The value of Ha can be combined with the temporally-evolving

depth of the mixed layer H to form a non-dimensional variable H/Ha, that

provides a similarity prediction of the BBL evolution across different turbu-

lent regimes. The length scale Ls can also be used to obtain an expression for

the wall stress when the BBL re-laminarizes. We validate these relationships

using output from a suite of three-dimensional large-eddy simulations. We

conclude that the BBL reaches the re-laminarized state before the steady Ek-

man arrested state. Calculating H/Ha and H/HL from measurements will pro-

vide information on the stage of oceanic BBL development being observed.

These diagnostics may also help to improve numerical parameterizations of

stratified BBL dynamics over sloping topography.
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1. Introduction36

In the abyssal ocean, enhanced shear and turbulence occurs in a thin region near the seafloor37

known as the oceanic bottom boundary layer (BBL). The BBL is an important source of drag on38

mean ocean currents and eddies, and plays a key role in global oceanic energy budgets (Wunsch39

and Ferrari 2004). However, significant disagreement exists in estimates of the global energy40

dissipation in the BBL. Previous studies have estimated that energy dissipated in the BBL can41

range from 0.2 TW to as large as 0.83 TW (Wunsch and Ferrari 2004; Sen et al. 2008; Arbic et al.42

2009; Wright et al. 2013), which can be compared with the 0.8-0.9 TW of energy input from the43

wind into the geostrophic circulation (Wunsch and Ferrari 2004; Scott and Xu 2009). In addition44

to sparse observations, additional uncertainty in dissipation rates arises from a poor understanding45

of how stratification and bottom slopes combine to modify ocean flows over the seafloor.46

Flow-topography interactions in the ocean may lead to the generation of meso/submesoscale47

energetic turbulence (Gula et al. 2016) and internal gravity waves (Nikurashin and Ferrari 2011).48

The BBL can thus be a site of enhanced dissipation and water mass transformation (Armi 1978;49

Ruan et al. 2017). Contrary to classical arguments, e.g. Munk (1966), recent studies have sug-50

gested that BBLs over sloping topography are the primary locations for the upwelling of deep51

water needed to close the global overturning circulation (De Lavergne et al. 2016; Ferrari et al.52

2016; De Lavergne et al. 2017). These arguments point to the BBL being the primary site of a53

convergent turbulent buoyancy flux needed to support diabatic upwelling. However, due to the54

relatively small spatial scale of the BBL and practical difficulties associated with deep-sea ob-55

servations, accurate representation of the oceanic BBL in large-scale general circulation models56

(GCM) remains challenging.57
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Stratified BBLs over a flat bottom have been extensively studied in both non-rotating and rotating58

systems, the latter known as the bottom Ekman layer (BEL). Direct numerical simulations (DNS)59

and large-eddy simulations (LES) have been carried out at different Reynolds numbers to study the60

structures of the BEL, Ekman transport, Ekman veering angle and their dependence on the external61

stratification. As external stratification increases, turbulence is suppressed and the BEL becomes62

thinner with a relatively unchanged depth-integrated transport (Coleman et al. 1990; Shingai and63

Kawamura 2002; Taylor and Sarkar 2008). The Ekman veering angle is reduced as compared with64

laminar theory, but the veering angle tends to increase with increasing external stratification in the65

lower part of the BEL (Taylor and Sarkar 2008; Deusebio et al. 2014).66

A sloping bottom boundary introduces additional dynamics. In a stratified BBL, the insulating67

bottom boundary condition causes density surfaces, or isopycnals, to tilt downslope in the absence68

of an along-slope mean flow. In steady state, an upslope convective flux is induced to balance69

the vertical buoyancy diffusion, as shown by Phillips (1970) and Wunsch (1970). In a rotating70

system, the tilting isopycnals also induce an along-slope geostrophic flow due to the thermal wind71

relation. When rotation is combined with an imposed along-slope mean flow, the near-bottom72

cross-slope Ekman transport is always smaller than in the flat bottom case. This is due to the73

opposing buoyancy force in the cross-slope direction. Isopycnals tilt either up- or down-slope74

depending on the orientation of the along-slope mean flow; in this study we only consider along-75

slope flows that induce down-slope Ekman transport. If the buoyancy force is sufficiently large76

to balance the Coriolis force in the cross-slope direction, the system arrives at a steady state with77

negligible Ekman transport. This is the so-called Ekman arrest (MacCready and Rhines 1991),78

where the near-bottom velocity shear and thus the wall stress τw are also reduced compared to flat79
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bottom cases. Here the wall stress is defined as:80

τw = ρ0ν
∂u
∂ z

∣∣∣∣
z=0

= ρ0u2
∗, (1)

where ρ0 is a reference density, ν is the molecular viscosity, u(z) is velocity parallel to the bottom,81

and u∗ is the friction velocity. Critically, the steady Ekman-arrested state has not been observed in82

the ocean, despite efforts aimed at closing the integrated momentum and buoyancy budget in the83

BBL (Trowbridge and Lentz 1998). Our results provide some insight into why observations of a84

steady Ekman arrest have been elusive.85

Besides the steady state solutions introduced above, process studies have examined the time-86

dependent adjustment towards Ekman arrest. For studies that have not explicitly resolved turbu-87

lence in the BBL, typically one of two parameterizations is used. The first invokes a constant88

turbulent viscosity and diffusivity, which encapsulates the enhanced turbulent diffusion of mo-89

mentum and buoyancy. Following early numerical studies by Weatherly and Martin (1978), Mac-90

Cready and Rhines (1991) solved for an approximate Ekman arrest time scale τlaminar for a laminar91

system and found τlaminar depends on the slope Burger number Bu:92

τlaminar =
1

S2 f cosα

(
1/σ +S

1+S

)
. (2)

Here S = Bu2 = (N sinα/ f cosα)2, where N and f are the buoyancy and Coriolis frequencies re-93

spectively, α is the slope angle and σ is the turbulent Prandtl number. The scale τlaminar represents94

the time required for the cross-slope Ekman transport to arrive at the negligible steady state value95

MThorpe = κ∞ cotα derived by Thorpe (1987). Here, κ∞ is the far-field diapycnal diffusivity, which96

is generally smaller than the BBL diffusivity where vigorous mixing takes place. During Ekman97

arrest, the stratified BBL over a slope becomes thicker than the BEL thickness, due to the diffu-98

sion of buoyancy into the interior. The analytical solutions in the case of constant viscosity and99

diffusivity pose a curious conclusion: the interior mean flow depends on background parameters,100
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such as N and α . In other words, the interior velocity field is a part of the solution of the BBL101

system and cannot be viewed as a background forcing independent of BBL processes. By shaping102

the background mean flow, at least close to the ocean bottom, BBL dynamics may influence the103

interior circulation beyond classic Ekman spin-up and spin-down processes (Thomas and Rhines104

2002; Benthuysen and Thomas 2013; Ruan and Thompson 2016).105

As an alternative to a constant turbulent viscosity and diffusivity, various parameterizations have106

been applied as closures of turbulent momentum and buoyancy fluxes, for example the simple107

bulk Richardson number Rb-dependent and higher order closure schemes. The latter includes the108

Mellor-Yamada schemes and the second-order closure implemented in a recent study examining109

the energy pathways in the Ekman arrest process (Umlauf et al. 2015). Trowbridge and Lentz110

(1991) have shown that a simple Rb-dependent parameterization is able to capture the general111

thickness evolution of the BBL as compared to the Mellor-Yamada level-two turbulence closure112

used in Weatherly and Martin (1978). Brink and Lentz (2010) (hereafter BL10) have tested dif-113

ferent turbulent closure schemes and provided more accurate empirical expressions for the time114

scales associated with the Ekman arrest process. However, the turbulent characteristics associated115

with the BBL evolution have not been examined closely in the two approaches introduced above.116

This has motivated us to carry out LES simulations, which directly resolve the largest turbulent117

motions that were parameterized in BL10. We will show that the BBL reaches a re-laminarized118

state in which turbulence is suppressed, before evolving to the final arrested state.119

Describing the Ekman arrest process as a function of time is useful; however, ocean observations120

often do not fit neatly into this “initial value” approach. Determining the BBL’s time history, or121

the stage of the BBL’s turbulent evolution as it approaches the arrested state, remains difficult.122

Here, we provide a framework that both classifies and identifies various BBL stages, spanning123

fully-turbulent flat-bottom cases to Ekman arrested states, based on instantaneous bulk structures.124
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A key motivation is that this framework will allow for more accurate parameterizations of BBL125

processes in GCMs. Our theoretical derivation, described in section 2, suggests that different BBL126

stages are associated with transitions in turbulent characteristics. Therefore, we use a suite of127

LES (section 3) to simulate a stratified oceanic BBL over a slope with a downwelling-favorable128

mean flow (Figure 1) in order to explore these regime transitions and to validate the theoretical129

predictions (section 4). The mean momentum and buoyancy budgets are diagnosed in section 5;130

discussions and conclusions are provided in section 6. The goals of this study are threefold: (i) to131

quantify the effects of topographic slope and stratification on the BBL turbulent characteristics, as132

well as the wall stress, BBL thickness and Ekman transport; (ii) to describe the detailed structure133

of stratified BBL over a slope; and (iii) to propose a unified description of the evolution of stratified134

BBL over a slope throughout all stages towards full arrest.135

2. Theoretical predictions136

We begin by introducing two expressions for the height of the bottom mixed layer (BML),137

Ha and HL, or the “arrest height” and “re-laminarization height,” which can be determined from138

external parameters. In this study, the BML refers to the region of weak vertical stratification,139

whereas the BBL describes the region with enhanced dissipation, e.g. a mixing layer. We first re-140

visit a scaling for Ha proposed by Trowbridge and Lentz (1991) (section 2a). The second definition141

HL (section 2b) is, to our knowledge, new and based on Monin-Obukhov similarity theory. These142

values of the arrest height will prove to be critical for describing not only the arrested state, but for143

classifying the approach to arrest, as shown in sections 4 and 5.144
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a. Momentum balance and arrest height145

As shown in figure 1, the coordinate system is rotated such that x, y and z denote the down-146

slope, along-slope and slope-normal directions, respectively, and u, v and w are the corresponding147

velocity components. To leading order, the boundary layer momentum equation in the cross-slope148

direction is given by149

∂u
∂ t
− f (vtotal− v) =−αb− 1

ρ0

∂τx

∂ z
, (3)

where vtotal and v (with magnitude V∞) are the total and far-field along-slope velocities and τx is150

the total stress (molecular and Reynolds). Scalings for the near-seafloor Coriolis force (per unit151

mass) FC and buoyancy force (per unit mass) FB that balance during Ekman arrest are152

FC ∼ fV, FB ∼ αb∼ α
2N2

∞∆x∼ αN2
∞H, (4)

where V is the magnitude of the boundary layer along-slope velocity. The buoyancy force is153

proportional to the displacement of the stratification. For a uniform slope, this is approximated154

using the cross-slope isopycnal displacement length scale ∆x (figure 2), where ∆x≈H/α and H is155

the height of the BML where stratification is smaller than 30% of the background stratification N2
∞.156

The extra slope angle α in the expression for FB in (4) denotes the projection of an upward pointing157

buoyancy force onto the cross-slope direction. In the arrested state where the total near-bottom158

flow is weak, FC and FB balance and can be expressed as:159

Farrest
C = fV∞, Farrest

B ≈ αN2
∞Ha. (5)

This yields an expression for the arrest height Ha:160

Ha ≈ fV∞/(αN2
∞). (6)

The same expression was proposed by Trowbridge and Lentz (1991) by assuming that the thermal161

wind shear vz =−αN2
∞/ f brings the total flow magnitude from the far-field value V∞ to zero near162
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the bottom. This indicates that increasing the slope angle and stratification and/or reducing the163

mean flow magnitude leads to a reduction in the cross-slope displacement of the stratified fluid164

required to achieve Ekman arrest, or equivalently a reduction in Ha. Using f = 10−4 s−1 and165

typical abyssal oceanic parameters: V∞ = 0.05 m s−1, N2
∞ = 10−6 s−2 and α = 0.005, Ha must166

be roughly 1000 m to generate a sufficiently large buoyancy force to balance the Coriolis force.167

This large value may partially explain why Ekman arrest is rarely observed in the abyssal ocean.168

However, for typical values over the continental slope where the pycnocline intersects topography:169

V∞ = 0.05 m s−1, N2
∞ = 10−5 s−2 and α = 0.01, an Ha ≈ 50 m may be sufficient to achieve Ekman170

arrest.171

Predictions for Ha vary by four orders of magnitude across typical oceanic parameters (figure172

3 a-c). The nonlinear dependence of Ha on different parameters warrants careful examination of173

BBL structures in different regimes, which is the focus of section 4.174

b. Turbulent characteristics and re-laminarization height175

An alternative definition of an arrest height begins by assuming that a complete balance between176

buoyancy and Coriolis forces requires the suppression of turbulence and turbulent stress. The177

competition between shear production and buoyancy flux can be characterized by the Obukhov178

length scale, which is defined by:179

L≡ −u3
∗

kB
, (7)

where k = 0.41 is the von Karman constant and B is the surface buoyancy flux. For an unsta-180

ble BBL where the buoyancy flux is upward (B > 0), the Obukhov length scale L is negative,181

and it characterizes the relative importance of surface stress and convection in the production of182

turbulence. For a stable BBL, where the buoyancy flux is downward (B < 0), L is positive, and183
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it corresponds to the transition depth (height above bottom) at which the stabilizing influence of184

stratification begins to suppress turbulence.185

In the absence of a buoyancy flux at the wall in the oceanic BBL, (7) can be revised by replacing186

B with the depth-integrated cross-slope buoyancy advection, which results in a new length scale,187

here called the “slope Obukhov length”:188

Ls ≡
u3
∗

kUN2
∞α

, (8)

where U =
∫

∞

0 udz is the depth-integrated cross-slope transport. We show, using LES simulations,189

that the ratio of H to LS captures the transition of the BBL from unstable to stable states and finally190

to an Ekman arrested state (section 4e). The dependence of Ls on U can be removed by relating191

the steady state Ekman transport over a slope to the friction velocity (Brink and Lentz 2010):192

U = u2
∗/ f (1+Bu2), (9)

such that193

Ls = (1+Bu2)
f u∗

kαN2
∞

. (10)

It has been shown that the non-dimensional viscous Obukhov length L+ = Lu∗/ν controls the194

turbulent state in stratified atmospheric boundary layers, such that for L+ < 100 turbulence col-195

lapses and the boundary layer re-laminarizes (Flores and Riley 2011). The Obukohv length, L char-196

acterizes the depth over which turbulence generation is unaffected by stratification and 100ν/u∗197

roughly denotes the upper limit of the viscous wall region (including both the viscous sublayer, the198

buffer layer and part of the lower log-law layer). Thus, L < 100ν/u∗ implies that turbulence sup-199

pression by stratification has penetrated into the viscous wall region, which results in turbulence200

collapse.201

The physical interpretation of the slope Obukhov length Ls is the same as the Obukhov length202

L. Assuming that turbulence in the oceanic BBL also collapses when the viscous slope Obukhov203
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length,204

L+
s = Lsu∗/ν = (1+Bu2) f u∗2/(νkαN2

∞), (11)

falls below a critical value C, the squared friction velocity associated with the transition from a205

turbulent to a re-laminarized state is:206

(u∗)2 =C
νkαN2

∞

f (1+Bu2)
. (12)

When the friction velocity becomes smaller than the value predicted in (12), the BBL will tran-207

sition to a laminar state. In section 4c we show that the critical value for the constant C in these208

simulations is also around 100. Accounting for the reduction in the near-bottom, along-slope ve-209

locity due to the thermal wind shear, the revised expression for the wall stress using the quadratic210

law is211

τ
y
w/ρ0 =CdV 2

b =Cd(V∞−αN2
∞H/ f )2, (13)

where Cd is the drag coefficient and Vb is the near-bottom flow magnitude. An expression for the212

re-laminarization height is then given by213

HL =
fV∞

αN2
∞

− (
Ckν f

αN2
∞Cd(1+Bu2)

)1/2, (14)

a threshold for the BML thickness above which the BBL re-laminarizes.214

The scaling for Ha in (6) is recovered when the second term in (14) is small, e.g. when the215

wall stress is negligible. When the BBL reaches the re-laminarized state, the BML thickness HL216

is always smaller than the predicted Ha for steady Ekman arrest. The scales Ha and HL become217

more similar for small α , weak N2 and strong V∞ (figure 3 d-f). Once the BBL is re-laminarized,218

the only mechanism for further evolution to the final arrested state is via molecular diffusion.219

However, ubiquitous background perturbations are likely to make the re-laminarized state difficult220

to sustain, providing another explanation for why a steady Ekman arrested state has not been221

observed.222
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In our LES simulations, we focus on BBL re-laminarization, which, we believe, is of more223

oceanic relevance than the Ekman arrested state. We also note that both Ha and HL are likely224

underestimated compared with the true BML thickness because of two assumptions. First, we225

assume that the tilted isopycnals can be represented by straight lines (figure 2). In reality, the226

isopycnals tilt smoothly towards the bottom, which yields a larger Ha at steady state. Second, Vb227

is defined at the bottom of the thermal layer rather than at z = 0. Thus, we do not account for the228

thickness of the viscous layer in Ha, including the viscous sublayer, the buffer layer and the lower229

part of the log layer.230

3. Numerical methods231

In the remainder of the paper, we show that the ratio of the mixed layer depth H to HL is an232

important parameter for predicting re-laminarization of the BBL over a slope, whereas the ratio of233

H to Ha describes the evolution of the BBL across a range of turbulent regimes towards complete234

arrest. The dependence of HL on small-scale turbulent properties of the BBL motivates the use of235

LES simulations, described below.236
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a. Governing equations237

The LES-filtered Navier-Stokes equations under the Boussinesq approximation in a rotating238

frame can be written in dimensional form as:239

∂u
∂ t +u ·∇u− f vcosα =− 1

ρ0

∂ p′d
∂x −b · sinα +ν∇2u−∂ jτ

d
1 j, (15)

∂v
∂ t +u ·∇v+ f (ucosα−wsinα) =− 1

ρ0

∂ p′d
∂y +ν∇2v−∂ jτ

d
2 j, (16)

∂w
∂ t +u ·∇w+ f vsinα =− 1

ρ0

∂ p′d
∂ z +b · cosα +ν∇2w−∂ jτ

d
3 j, (17)

∂b
∂ t +u ·∇b−N2

∞(usinα +wcosα) = κ∇2b−∇ ·λ d, (18)

∇ ·u = 0. (19)

Here ν and κ are the molecular viscosity and diffusivity, respectively; N2
∞ = − g

ρ0

dρ

dz is the back-240

ground (non-evolving) stratification; b = −gρ ′/ρ0 is buoyancy where ρ ′ is the density deviation241

from the background stratification; p′d denotes the pressure deviation from the background hydro-242

static balance, which has been removed from (17); τd and λ d are the subgrid-scale (SGS) stress243

(with 1, 2 and 3 representing the x, y and z directions) and buoyancy flux, respectively, which244

require SGS models for closure. The equations of motion are in a reference frame moving with245

the along-slope mean flow v, with magnitude V∞. Therefore (16) gives the evolution of the pertur-246

bation velocity v where v = vtotal− v, and v =−V∞ for downslope Ekman transport conditions.247

The dimensional variables are non-dimensionalized using:248

(u,v,w) = u∗(u′,v′,w′), (x,y,z) = δ (x′,y′,z′) = u∗/ f (x′,y′,z′), (20)

249

p′d = ρ0u2
∗p
′, b = N2

∞δ b′, t = δ/u∗t ′. (21)
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The resulting non-dimensional equations (with primes dropped except for the pressure deviation)250

are:251

∂u
∂ t +u ·∇u− vcosα =−∂ p′

∂x +Ri∗bsinα +Re−1
∗ ∇2u−∂ jτ1 j, (22)

∂v
∂ t +u ·∇v+(ucosα−wsinα) =−∂ p′

∂y +Re−1
∗ ∇2v−∂ jτ2 j, (23)

∂w
∂ t +u ·∇w+ vsinα =−∂ p′

∂ z +Ri∗bcosα +Re−1
∗ ∇2w−∂ jτ3 j, (24)

∂b
∂ t +u ·∇b− (usinα +wcosα) = Re−1

∗ Pr−1∇2b−∇ ·λ , (25)

∇ ·u = 0. (26)

Three non-dimensional parameters govern the system: the friction Reynolds number Re∗, friction252

Richardson number Ri∗ and Prandtl number Pr, where,253

Re∗ =
u∗δ
ν

=
u2
∗

f ν
, Ri∗ =

N2
∞δ 2

u2∗
=

N2
∞

f 2 , Pr =
ν

κ
. (27)

Relevant non-dimensional parameters used in the experiments are listed in Table 1. The parameters254

are chosen to explore their controls on the Ekman arrest process, ranging from a near flat-bottom255

and unstratified limit to an experiment with the fastest arrest allowed in the model. The friction256

velocity u∗ that appears in the non-dimensional parameters does not include the effects of stratifi-257

cation, i.e. u∗ is the friction velocity before stratification is introduced (see discussion in section258

3b). The equations are solved subject to no-slip and insulating boundary conditions:259

v =V∞, z = 0, (28)

u = w = 0, z = 0, (29)

∂b
∂ z

+N2
∞ = 0, z = 0. (30)

The far-field boundary conditions are free-slip and insulating for the momentum and buoyancy260

equations. Again, the bottom boundary condition is set to ensure vtotal = 0. Throughout, the small261

angle approximation (sinα ≈ α and cosα ≈ 1) is applied.262
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b. Numerical details263

The simulations are performed using the computational fluid dynamics solver, DIABLO. Details264

of the numerical method can be found in Taylor (2008) and Bewley (2008). The background cross-265

slope density gradient remains constant (M2
∞ = −αN2

∞) throughout the adjustment, determined266

by the sloping topography cutting through the vertically-stratified fluid; there is no along-slope267

density gradient. The model solves for density perturbations to the background stratification.268

Thus, periodic boundary conditions are used in the x and y directions with uniform grid spacing269

and the derivatives in these two directions are computed with a pseudospectral method (de-aliased270

using the 2/3 rule). Staggered and stretched grids are used in the slope-normal direction with finer271

grid spacing close to the upper and lower boundaries. Derivatives in the slope-normal direction are272

treated with second-order finite differences. The time-stepping algorithm uses a mixed third-order273

Runge-Kutta/Crank-Nicolson method.274

In order to examine the impact of finite stratification on the dynamics close to the wall, the LES275

experiments performed here are run with near-wall resolution (LES-NWR), also called a resolved276

LES, which resolves at least 80% of the energy in the flow (Pope 2001; Sagaut 2006). Near the277

wall, turbulent motions scale with the viscous length δν = ν/u∗, which places strong constraints278

on the model resolution. We placed the first two grid points in the viscous layer z+ < 5 and the279

minimum resolution in the slope-normal direction is ∆+
z = 2; in dimensional units ∆z = 2ν/u∗.280

The uniform grid spacing in the slope-parallel directions are ∆+
x = ∆+

y ∼ 20. The domain size is281

30 m (Lx) × 30 m (Ly) × 60 m (Lz), respectively. A sponge layer of thickness 10 m is placed at282

the top of the domain to avoid reflection of internal gravity waves generated from the interaction283

of BBL turbulence with the pycnocline.284
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The background stratification can suppress the initialization of a turbulent BEL. To focus on285

the turbulent state, as opposed to the transition to a turbulent state, the simulations are spun up in286

multiple stages. First, an unstratified simulation is conducted with linear damping added to the287

momentum equations in the x and y directions until the system reaches quasi-equilibrium; the uni-288

form damping rate is half of the inertial frequency f . This stabilizes the flow and reduces inertial289

oscillations. The linear damping is then removed, allowing the flow to adjust to the background290

environment. Finally, a stable background stratification is incorporated into the simulation with a291

thin BML (2-3 m) near the bottom to ensure the viscous sublayer is unaffected by the stratification292

at the start (see an example initial stratification profile for N2
∞ = 10−5s−2 in figure 4). The strongest293

stratification used in these experiments is N2
∞ = 10−5s−2.294

The LES-filtered governing equations are essentially a low-pass filtered version of the Navier-295

Stokes equations with the resolved velocity field used to determine the SGS stress tensor τSGS
i, j .296

Similar to the SGS model used by Taylor and Ferrari (2010), a constant Smagorinsky model was297

used in the simulations,298

τ
SGS
i, j =−2C2

∆
2|S|Si, j. (31)

Here C = 0.13 is the Smagorinsky coefficient, ∆ = (∆x∆y∆z)
1/3 is the implicit LES filter width299

and Si, j is the rate of strain tensor. The overbar denotes the filtered (or resolved) field. The SGS300

eddy viscosity from the Smargorinsky model is calculated as νSGS = C2∆
2|S| with the constant301

molecular viscosity explicitly used in the resolved field. A constant SGS Prandtl number PrSGS =302

νSGS/κSGS = 1 is used to calculate the SGS eddy diffusivity.303

4. Identification of turbulent regimes from large-eddy simulations304

A series of experiments were conducted to examine how topographic slope (α), stratification305

(N∞) and background flow (V∞) impact the evolution and bulk structures of the BBL. Table 1306
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provides the slope Burger number Bu, initial friction Reynolds number Re∗ and friction Richardson307

number Ri∗, and the Prandtl number Pr. The ratios, H/Ha and H/HL, at the end of each simulation,308

are also given. These experiments span a range of turbulent states, including some that are far from309

re-laminarization.310

Given sufficient time and water column depth, the adjustment of a stratified fluid over sloping311

topography is always towards the steady Ekman arrested state; the time to reach this state depends312

on external parameters. For experiments across a wide range of conditions, the non-dimensional313

parameters Ea = H/Ha and EL = H/HL, which represent the extent to which the BBL has ap-314

proached the arrested and re-laminarized states, can be used to classify different BBL dynamical315

regimes. Indeed, Ea is equivalent to the ratio between the buoyancy and Coriolis force,316

Ea = H/Ha = αN∞/ f ·N∞H/V∞ = Bu/Fr ≈ FB/FC, (32)

where Fr = V∞/(N∞H) is the Froude number. Thus, the magnitude of Ea serves as a measure of317

the extent towards Ekman arrest, e.g. when Ea� 1, the BBL is far from the arrested state. Since318

the slope Burger number Bu in the ocean rarely exceeds unity, (32) implies that supercritical flows319

(Fr > 1) are almost alway far from arrest. Similarly, we can define320

EL = H/HL, (33)

where HL is defined based on the critical viscous slope Obukhov length. Thus EL = 1 and L+
s =321

100 will be used interchangeably later to indicate a re-laminarized state. Below we discuss four322

sequential stages as the BBL evolves towards the steady arrested state: (i) weakly buoyant regime323

(Ea ≈ 0 and EL ≈ 0); (ii) buoyant regime (0 < Ea < 1 and 0 < EL < 1); (iii) re-laminarized regime324

(0 < Ea < 1 and EL = 1) and (iv) Ekman arrested regime (Ea = 1 and EL > 1). A summary of the325

different regimes can be found in figure 5.326
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To highlight differences between these stages, we focus on the following properties: vertical327

stratification, the vertical velocity profiles within the BBL, cross-slope transport and the friction328

velocity used to determine the wall stress. We discuss the connection between the newly-proposed329

non-dimensional parameters and turbulent characteristics in the BBL through the classic Monin-330

Obukhov similarity theory in section 4e.331

During all of these experiments, H is continuously changing with time. The growth rates of332

the BML are well described by power law relationships H ∼ tb, although the exponent b varies333

between different simulations (figure 6). The exponents fall between two limits. For the small-334

est initial Bu, the convection is weak and BML growth follows a 2/9 power law, consistent with335

stress-driven mixed layer growth (Manucharyan and Caulfield 2015). For larger values of Bu,336

BML growth follows a 1/2 power law, consistent with a classic upright convection-driven mixed337

layer development (Deardorff et al. 1969). For the large Bu experiments, the sloping topogra-338

phy allows for larger downslope advection of buoyant fluid under heavier fluid that leads to the339

transition to stronger convective mixing. The simulated BML thickness is, overall, comparable340

to those in models that have used one-dimensional turbulence closure techniques. However, one-341

dimensional turbulence closure models largely account for turbulence production due to gravita-342

tional or Kelvin–Helmholtz instabilities in the bulk BBL and do not represent shear production343

at the wall (in the viscous sublayer). Additional analysis is needed to evaluate one-dimensional344

turbulence closures in simulating the Ekman arrest process.345

Finally, to diagnose the vertical structure of velocity and other variables in the LES, a time346

average is applied over one near-inertial period to remove the effect of near-inertial oscillations.347

The centers of the averaging windows are labeled in figure 8 and indicated in figure 9 by the348

vertical dashed lines; the same average is applied in the figures shown below unless otherwise349

noted.350
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a. Weakly buoyant regime, Ea ≈ 0 and EL ≈ 0351

When the thickness of the BBL is small, i.e., Ea ≈ 0 and EL ≈ 0, the dynamics of the BBL are352

similar to those described in studies of stratified BBL over a flat bottom (Taylor and Sarkar 2008;353

Deusebio et al. 2014). In this regime, the buoyancy force FB is weak in the cross-slope momentum354

balance (3). Experiments with a gentle slope, a weak stratification or a large mean flow all have355

large values of Ha and HL, and our LES experiments remain in the Ea ≈ 0 and EL ≈ 0 regime356

throughout their duration (table 1). Note, though, that all simulations pass through this stage at357

early times since H ≈ 0 when the simulations are initialized.358

In this stage, a strongly-stratified pycnocline caps the BML. For instance, in Experiment A,359

the stratification in the pycnocline is three times larger than the background value (figure 7a).360

Furthermore, the vertical structure of the horizontal velocity and veering angle through the BBL361

agree with flat bottom Ekman layer dynamics (figures 8 and 9a). After an initial adjustment, the362

cross-slope transport and friction velocity are relatively steady over the course of the simulations363

(figures 9b and 10a); both U and u∗ decrease as Ea increases (figures 10b and 11).364

b. Buoyant regime, 0 < Ea < 1 and 0 < EL < 1365

As H grows, the importance of the buoyancy force FB in the cross-slope momentum equation366

begins to modify the characteristics of the BBL. In experiments with larger (initial) values of Bu,367

the stratification in the pycnocline at the top of the BML is weaker (figure 7b) during this stage.368

This occurs because a more steeply-sloping bottom or a stronger stratification causes buoyancy369

transfer to transition from being in the vertical direction to being primarily in the cross-slope370

direction. This weakens the tendency to form a pycnocline (see also the buoyancy budget in371

section 5b). This behavior may partially explain why the top of the BML in the ocean is not372

typically associated with a strong pycnocline (Armi 1978; Ruan et al. 2017).373
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As Ea and EL become larger than 0.1, the cross-slope velocity profile penetrates deeper into the374

water column (figures 8a and 9c), the cross-slope transport decays (figure 9d), and the friction375

velocity decreases (figure 10a), all as compared to the weakly buoyant regime (section 4a). In376

this regime, the deflection of isopycnals in the Ekman layer generates a thermal wind shear that377

opposes the along-slope velocity (figure 8b). This in turn reduces the velocity shear at the bottom,378

which leads to a smaller wall stress and friction velocity. Finally, the veering angle near the379

bottom decreases in response to the reduced wall stress, resulting in a smaller degree of turning380

of the along-slope flow, consistent with a weaker Ekman transport (figure 8c). While the veering381

angle is reduced, the thickness of the “veering layer” increases. This occurs because the thermal382

wind shear penetrates deeper than the Ekman layer. The Coriolis force FC then deflects the along-383

slope momentum into the cross-slope direction. This penetration of along-slope momentum is not384

entirely due to turbulent diffusion, but involves the build-up of the thermal wind shear—this is the385

“slow diffusion” process discussed by MacCready and Rhines (1991).386

For all simulations, both u∗ and U collapse onto a single curve when plotted against Ea (figures387

10b and 11). As FB strengthens as compared to FC, u∗ decreases linearly with Ea. While U also388

decreases with increasing Ea, this modification is not linear in Ea due to the quadratic relationship389

given in (9).390

c. Re-laminarized regime, 0 < Ea < 1 and EL = 1391

For experiments where Ea approaches 1 but EL≈ 1, the BBL dynamics enter a state that we refer392

to as a re-laminarized stage; the distinction between this state and the arrested state has not previ-393

ously been documented. The re-laminarized stage can be identified when properties are averaged394

over a time comparable to the inertial period. However, at sub-inertial time scales, the simulations395

exhibit strong oscillations in all turbulent properties. Earlier studies have shown similar results,396
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e.g. Umlauf et al. (2015), although these features were not discussed. We begin by summarizing397

the time-averaged characteristics of this stage, and then provide further details on the near-inertial398

resonant behavior.399

For cases where the buoyancy force is of leading order, the pycnocline does not sharpen no-400

ticeably during the evolution of the BML – the ratio of pycnocline stratification to background401

stratification is roughly 1 (figure 7c). Not only does the pycnocline remain weak, but the back-402

ground stratification penetrates from the top of the BML downward when EL approaches 1 (figure403

7c). This re-stratification is related to the viscous slope Obukhov length L+
s , and is discussed404

further below. The total cross-slope transport arrives at a negligible, but non-zero value; for ex-405

ample in Experiment F, this occurs after t f = 20 (figure 9f). The friction velocity continues to406

decrease linearly with Ea, but remains finite even when L+
s approaches 100 (figure 10a and 12b),407

as predicted in section 2b. In Experiment F, when L+
s approaches 100, the near-bottom velocity Vb408

is smaller than 0.05 ms−1 which is half of the along-slope mean flow magnitude V∞ = 0.1 ms−1
409

(figure 8b). A reduction in the near-bottom velocity by a factor of 2 results in a reduction of the410

wall stress by a factor of 4 (13), and a reduction in the bottom dissipation rate by a factor of 8, as411

compared with the predictions using the far-field mean flow V∞.412

From the mean momentum budget (6), the predicted arrest height for Experiment F is Ha≈50 m.413

This value is larger than the simulated BML thickness in the re-laminarized stage, ∼30 m, con-414

sistent with Ea < 1. The use of (14), however, requires an estimate of the drag coefficient Cd .415

We evaluate Cd = 2.2×10−3 at the beginning of Experiment F before stratification is introduced,416

using417

Cd = u∗2/Vb
2. (34)
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Plugging in the value of Cd and the re-laminarization constant C diagnosed earlier, the predicted418

HL is 31.7 m which matches the simulated height well. This demonstrates that the BBL re-419

laminarization condition is met before the traditional complete Ekman arrested state.420

As Experiments F and H reach EL ≈ 1, the boundary layer re-laminarizes with negligible tur-421

bulent kinetic energy (TKE), e.g. at t f = 50 in Experiment F (figure 12a). The value of L+
s that422

corresponds to this re-laminarization is roughly 100 in both cases, which is the same value re-423

ported by Flores and Riley (2011) using the viscous Obukhov length scale Lu∗/ν (figure 12b).424

With C = 100, the predicted friction velocities in the arrested boundary layer from (12), using425

parameters from Experiments F and H, are u∗ = 1.71×10−3 m s−1 and u∗ = 1.37×10−3 m s−1,426

respectively, which agree with the simulated values of u∗ in figure 10a. The arrested wall stress427

and friction velocity remain finite as predicted from section 2b.428

Another prominent feature of the large EL regime is the appearance and growth of strong os-429

cillations and resonant behavior. These appear in almost all of the properties discussed above.430

For instance, both cross-slope transport and TKE oscillate, and the amplitude of these oscillations431

grows with time (figures 9f and 12a). The friction velocity oscillates at a near-inertial frequency,432

but the amplitude does not grow with time. These growing oscillations in cross-slope transport433

give rise to bursts in TKE (figures 9f and 12a). Even though the cross-slope transport averaged434

over each near-inertial cycle is decaying towards the arrested value, the maximum amplitude of U435

continues to grow. This indicates an underlying resonant interaction between the stratification and436

turbulent motions. Analysis of the phase relation between the stratification, TKE and turbulent437

momentum flux, shows that each time the isopycnals tilt downslope, the stabilizing effect from the438

stratification vanishes, resulting in a burst of TKE and turbulent momentum flux convergence in439

the BML. This then advects the isopycnals further downslope. When the near-inertial oscillation440

advects the isopycnals upslope, turbulence becomes suppressed at the same time that the strat-441
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ification strengthens, which results in negligible TKE. The intrinsic frequency can be identified442

as443

ω = ( f 2 +α
2N2

∞)
1/2; (35)

the inertial frequency is modified by the slope angle and background stratification (Brink and Lentz444

2010). In the re-laminarized stage, background turbulence becomes weak, such that all of the key445

properties that influence the BBL, e.g. thermal wind shear, cross-slope transport and wall stress,446

all oscillate at the same frequency ω (figures 7c, 9f and 10a), and resonance is likely to occur. In447

the ocean, resonant behavior may be disrupted or suppressed by temporal variability in the mean448

flow arising from surface forcing, tides or internal waves, or by background dissipation associated449

with wave breaking.450

Although u∗ decreases as Ea increases, leading to a larger viscous length scale ν/u∗, the near-451

bottom log-law layer, in fact, becomes shallower (figure 13). The log-law layer disappears when452

z+ = zu∗/ν reaches 150 in the arrested BBL, whereas it remains intact to at least z+ = 2000453

in other stages. These values of z+ correspond to 4.4 m and 21.6 m in dimensional units with454

the updated viscous length scale. This places constraints on the first grid point in the near-wall455

modeling when wall-models are applied.456

d. Ekman arrested regime, Ea = 1 and EL > 1457

Simulations presented in this study did not achieve steady Ekman arrest because of the long458

adjustment by molecular diffusion needed to reach this state. This regime transition was not iden-459

tified in studies that parameterized BBL turbulence. Also, although the averaged quantities over a460

near-inertial period (e.g. U , u∗ and TKE) continue to decay slowly, the oscillations appear to grow461

stronger, especially for U and TKE (figures 9 and 12). It is unknown if these large oscillations will462

interrupt the Ekman arrested state. Finally, the fully arrested state has been shown to be suscepti-463
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ble to instabilities, e.g. symmetric instability (Allen and Newberger 1998), that may also generate464

turbulent motions and drive the BBL away from the arrested state.465

e. BBL turbulence466

As discussed in section 2b, the Monin-Obukhov length scale L (7) describes the evolution of467

turbulent characteristics in the BBL under both stable and unstable conditions. Previous work has468

shown that for H/L < 0, the boundary layer is unstable; for 0 < H/L < 1, the boundary layer469

remains neutral; for 1 < H/L < 10, the boundary layer is stable; and for H/L > 10, the boundary470

layer turbulence becomes intermittent (Holtslag and Nieuwstadt 1986).471

In these LES, we find that EL (= H/HL) is directly related to H/Ls, where the latter non-472

dimensional parameter is defined using the new slope Obukhov length Ls (figure 14). The BBL473

is unstable from the start of the simulation where an upward buoyancy flux is generated by the474

downslope advection of light fluid (figure 15a). The buoyancy flux becomes intermittent later475

in the experiment with positive pulses only evident in the downslope phase of the growing near-476

inertial oscillations (figure 15b). The oscillations feature periods with a stablized BBL; the transi-477

tion occurs near EL∼ 0.2 and H/Ls∼ 1. This is different from the classic Monin-Obukhov scaling478

since H/Ls does not change sign between unstable and stable BBLs. The impact of H/Ls on the479

BBL evolution will be the focus of future studies. We conclude this section by summarizing the480

various stages in the Ekman arrest process based on non-dimensional parameters (Ea and EL), the481

momentum balance, and the near-bottom velocity magnitude Vb (figure 5).482

5. Momentum and buoyancy budgets483

We now present plane-averaged budgets of momentum and buoyancy to further illustrate the484

transition in BBL evolution across the weakly buoyant, buoyant and the re-laminarized regimes.485
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The same time average window over a near-inertial period is applied as in section 4 unless other-486

wise noted.487

a. Momentum budget488

The plane-averaged horizontal momentum equations in the boundary layer can be written as489

∂ 〈u〉
∂ t
− f 〈v〉 = −bα +ν∇

2 〈u〉− ∂ 〈u′w′〉
∂ z

, (36)

∂ 〈v〉
∂ t

+ f 〈u〉 = ν∇
2 〈v〉− ∂ 〈v′w′〉

∂ z
, (37)

where angle brackets denote an average along x and y directions, and 〈u′w′〉 and 〈v′w′〉 are the490

vertical turbulent fluxes of horizontal momentum, or the Reynolds stresses. The tendency terms in491

the momentum equations are small, indicating that the simulations are in quasi-equilibrium even as492

the BML grows diffusively, and the viscous terms only become important in the viscous sublayer.493

For the cross-slope momentum equation (36), three terms may contribute based on the mag-494

nitude of EL: the Coriolis force, the buoyancy force and the Reynolds stress convergence. For495

small EL, the buoyancy force is negligible, and the classic flat-bottom Ekman balance dominates496

with the Coriolis force balancing the Reynolds stress convergence (figure 16a). As EL transitions497

to O(0.1), the Coriolis, buoyancy and Reynolds stress convergence terms are all of leading order498

(figure 16b). Since the BML is, by definition, relatively well mixed, the buoyancy force decays499

roughly linearly with height above bottom (figure 16b). Compared to the small EL case, the mag-500

nitude and vertical structure of the Reynolds stress convergence term remains largely unchanged,501

but the Coriolis force has a non-negligible contribution further away from the bottom. This is502

consistent with the penetration of the thermal wind shear away from the boundary and further into503

the interior. Throughout the BML, FC and FB have the same sign. In this case, the BML remains504

turbulent, and the cross-slope transport and friction velocity are reduced. The momentum balance505
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changes dramatically as EL approaches one and the boundary layer reaches a re-laminarized state506

(figure 16c). Now, FC and FB approximately balance in the BML, outside of the thin viscous layer507

near z = 0. Turbulence and turbulent fluxes are suppressed in the re-laminarized state.508

A buoyancy force equivalent to FB does not appear in the along-slope momentum equation (37).509

Thus, the leading order balance between Coriolis and Reynolds stress convergence is independent510

of EL (figure not shown). However, the magnitude of these terms varies significantly both across511

experiments and during individual experiments. As EL increases, the suppression of turbulence512

and the reduction in cross-slope Ekman velocity reduces the magnitude of both terms.513

b. Buoyancy budget514

The evolution of the plane-averaged buoyancy is described by515

∂ 〈b〉
∂ t

= 〈u〉αN2
∞ +κ∇

2 〈b〉− ∂ 〈w′b′〉
∂ z

, (38)

where 〈w′b′〉 is the plane-averaged vertical turbulent buoyancy flux. Outside of the viscous sub-516

layer, all terms contribute to the buoyancy budget other than the molecular diffusion term. The517

cross-slope buoyancy advection occurs mainly in the Ekman layer, which is thinner than the BML518

(figure 17a and b). For these downslope favorable conditions, cross-slope advection generates a519

local tendency to increase buoyancy. The vertical turbulent buoyancy flux diverges in the lower520

part of the BBL, opposing the cross-slope advection. However, the turbulent buoyancy flux con-521

verges in the upper part of the BBL, and without a contribution from the cross-slope advection,522

produces a positive buoyancy tendency. Finally there is a narrow region of divergence of the523

turbulent buoyancy flux in the pycnocline.524

Within a single experiment, the magnitude of buoyancy advection decreases as EL increases,525

although the advection also penetrates deeper into the interior. However, the buoyancy advection526
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term also depends on the background cross-slope buoyancy gradient M2
∞ =−αN2

∞, which is related527

to the initial Bu. Thus from experiments A to D, the magnitude of the buoyancy advection terms528

become larger (figure 17a and b). When re-laminarization occurs in the boundary layer, the cross-529

slope velocity and total cross-slope buoyancy advection are significantly reduced, although they530

remain finite (figures 8a and 17c). As EL approaches 1, the turbulent buoyancy flux convergence531

becomes negligible in the buoyancy budget due to the suppression of turbulence.532

6. Discussion and conclusions533

The bulk structure of a stratified oceanic BBL over a smooth slope is explored using both scaling534

analyses and LES simulations. The key conclusions include:535

1. We provide expressions that predict the height of the bottom mixed layer (BML), H, in a state536

of Ekman arrest based on the momentum budget, Ha ≈ fV∞/(αN2
∞) (see also Trowbridge and537

Lentz (1991)), and on the re-laminarization condition, HL = fV∞

αN2
∞

− ( Ckν f
αN2

∞Cd(1+Bu2)
)1/2. We538

find that HL is always less than Ha. Two non-dimensional parameters Ea = H/Ha (32) and539

EL = H/HL (33) can be used to determine the sequential stages of the BBL as it approaches540

full Ekman arrest.541

2. We present a new length scale, the slope Obukhov length Ls, which characterizes the rel-542

ative importance of turbulence production and cross-slope buoyancy advection (10). Its543

non-dimensional form, the viscous slope Obukhov length L+
s , can be used to predict the544

re-laminarization condition for the turbulent BBL (L+
s ≈ 100).545

3. We predict the wall stress and friction velocity (12) when the BBL becomes laminar and the546

turbulence is suppressed. This can be used to estimate the integrated BBL energy dissipation547

rate at the re-laminarized state.548
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4. We argue that the complete Ekman arrested state is unlikely to be observed in the real ocean549

because: i) Ha and HL are expected to be large based on typical deep ocean parameters,550

which inevitably leads to a long adjustment timescale; ii) the BBL re-laminarization is always551

achieved before the steady arrested state, and the subsequent molecular adjustment is prone552

to external perturbations; iii) in the rare event of full Ekman arrest, the steady arrested BBL553

is unstable to symmetric instability (see Allen and Newberger (1998)).554

5. We show that the non-dimensional parameter Ea describes the evolution of the cross-slope555

transport and wall stress across different regimes in a suite of simulations that vary several556

parameters, including the slope angle α , the background vertical stratification N2
∞, and the557

mean flow magnitude V∞. The re-laminarization stage is determined from EL. The parameters558

Ea and EL are closely related to the BBL turbulence through the classic Monin-Obukhov559

similarity theory (H/Ls), and this framework is used to analyze changes in the momentum and560

buoyancy budgets across different stages towards the arrested state. The potential vorticity561

evolution will be discussed in a future study.562

As EL increases, the BML differs from the flat-bottom case in the following ways: (i) the pyc-563

nocline at the top of the BML weakens; (ii) the cross-slope velocity penetrates deeper due to the564

thermal wind shear near the bottom; and (iii) the velocity shear near the wall, and thus the wall565

stress, weakens, resulting in a decay of the friction velocity, cross-slope transport and the Ekman566

veering angle near the bottom. When the BBL re-laminarizes, the mean velocity departs from the567

log-law closer to the bottom.568

These results suggest that the interaction between stratification and sloping topography could569

reduce the contribution of bottom friction to the dissipation of kinetic energy in the ocean. Global570

quantification of the bottom dissipation rate, using either observations from deep ocean current571
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meters or from numerical models (that typically apply uniform drag coefficients), have not ac-572

counted for the modification of near-bottom flows due to the presence of stratification and topo-573

graphic slopes (Wunsch and Ferrari 2004; Sen et al. 2008; Arbic et al. 2009; Wright et al. 2013).574

Additionally, recent work has suggested that the ocean’s abyssal circulation may be influenced by575

the thermal wind shear associated with tilting isopycnals at the seafloor (Callies and Ferrari 2018).576

However, this work typically assumes that the global BBL is largely in the Ekman arrested state.577

Determining the spatial distribution of Ea and EL, which can be calculated from observable ocean578

properties, could shed additional light on the BBL’s influence over global dissipation rates and the579

abyssal circulation.580

The BBL over topographic slopes has recently been highlighted as the key region where581

dense waters can be transformed to lighter density classes to close the overturning circulation582

(De Lavergne et al. 2016; Ferrari et al. 2016; De Lavergne et al. 2017). Water must also be ex-583

changed between the ocean interior and the boundary layer in order to maintain stratification and584

sustain this water mass modification. Earlier studies have not accounted for dynamics that will585

affect mixing rates and BBL-interior exchange. The Ekman arrest process, for instance, could586

act as a barrier for such exchange via mass flux out of and in to the BBL due to mass con-587

vergence/divergence, when strong near-bottom mean flows or (sub)mesoscale eddies are present.588

Finally, Ekman arrest characteristics may be sensitive to along-isobath variations that are not con-589

sidered in this study (Brink 2012). Other factors, such as the level of background turbulence or590

temporal variability associated with tidal fluctuations in the abyssal ocean, need to be addressed591

in future studies to estimate the extent to which Ekman arrest is achieved in the ocean.592
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TABLE 1. Summary of the simulation parameters. The slope Burger number Bu = N sinα/ f cosα , and other

non-dimensional parameters Re∗, Ri∗ and Pr are defined in (27). The values for Ea and EL are given for the end

of each experiment, tend f .

689

690

691

Expt. α log10 N2
∞(s−2) V∞(ms−1) Bu Re∗ Ri∗ Pr Ea EL tend f

A 0.005 -7 0.1 0.016 4232 10 5 0.002 0.002 53.84

B 0.01 -6.5 0.1 0.056 4232 31.6 5 0.014 0.015 48.16

C 0.01 -6 0.1 0.1 4232 100 5 0.041 0.046 40.73

D 0.01 -5.5 0.1 0.178 4232 316 5 0.130 0.157 43.95

E 0.01 -5 0.1 0.316 4232 1000 5 0.349 0.492 40.08

F 0.02 -5 0.1 0.632 4232 1000 5 0.772 1.215 55.14

G 0.01 -6 0.05 0.1 1352 100 5 0.058 0.070 65.95

H 0.01 -5 0.05 0.316 1352 1000 5 0.503 1.060 116.59
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FIG. 1. Schematic of the bottom boundary layer over a slope; gray curves indicated density surfaces. The

coordinate is rotated by a slope angle α . The barotropic mean flow is associated with a downslope Ekman

transport. The thermal wind shear generated due to the tilting isopycnals is in the positive y direction, opposite
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FIG. 2. Schematic of the arrest height Ha in sloping BBLs with different stratifications. The dashed lines

represent the isopycnals in the BML after they are advected downslope. The dotted lines denote the top of the

BML. For the same slope angle α and mean flow magnitude V∞, fluid with stronger stratification N2
∞ requires a

smaller Ha to generate a buoyancy force to balance the Coriolis force ( fV∞) in the cross-slope direction. Here,

∆x1N2
1 = ∆x2N2

2 , so H1/H2 = N2
2/N2

1 . N2 and H are the background stratification and arrest height associated

with a weakly and a strongly stratified BBL (subscripts 1 and 2, respectively).
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FIG. 3. The predicted arrest height Ha (m) (panel a-c, logarithmic scale, e.g. 1 = 10 m for Ha) and the ratio

HL/Ha (panel d-f) as a function of slope angle α , background stratification N2
∞ and mean flow magnitude V∞.

Estimates of Ha and HL are based on the mean momentum balance (6) and turbulent characteristics (14 with

Cd = 2×10−3), respectively. The parameters that are held fixed for different cases are: (a,d) V∞ = 0.01 m s−1;

(b,e) N2
∞ = 10−6 s−2; (c,f) α = 0.01.
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FIG. 4. An example initial stratification profile for N2
∞ = 10−5s−2; Lz = 60 m is the height of the domain.

A thin mixed layer (∼ 2 m) is constructed to avoid the direct impact of stable stratification on the transition to

turbulence in the BBL.
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FIG. 5. Schematic representing the stages (boxes) in the approach to Ekman arrest; see discussion in section

4. The axes are the non-dimensional numbers Ea = H/Ha and EL = H/HL defined in section 4. Each box

summarizes the leading order terms in the momentum balance and the ratio of far-field to near-bottom velocities,

following the legend to the right.

785

786

787

788

44



FIG. 6. The growth of the BML with time: H/Lz ∼ (t f )b. Different colors represent different simulations

given in Table 1. The dashed and dash-dot lines represent the reference power laws of the stress (b = 2/9) and

upright convection-driven (b = 1/2) BBL growth rates, respectively.
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FIG. 7. Temporal evolution of the plane-averaged stratification N2/N2
∞ in experiments A (a), D (b) and F

(c), corresponding to initial values of Bu of 0.016, 0.178 and 0.632, respectively. The evolution of the non-

dimensional parameters Ea and EL are given by the blue and red curves, with the corresponding axis on the right

in blue.
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FIG. 8. The plane-averaged (a) cross-slope velocity, (b) along-slope velocity, and (c) Ekman veering angle at

the beginning (dashed) and late stage (solid) of experiments A, D and F. The centers of the averaging windows

are provided in panel (b), and correspond to the vertical dotted lines in figure 9 (a, c, e). The along-slope velocity

satisfies the no-slip boundary condition with the addition of v =−V∞ =−0.1 m s−1.
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FIG. 9. The evolution of cross-slope velocity (m s−1) (a,c,e) and depth-integrated transport U (m2 s−1) (b,d,f)

for simulations A (a,b), D (c,d) and F (e,f). The corresponding Ea and EL for each simulation are shown in

blue and red curves in the transport panels, respectively, with the corresponding axis on the right in blue. The

vertical dotted lines in the cross-slope velocity panels represent the centers of the time-averaging windows (of

a near-inertial period) used to generate the vertical structures of the velocity variables and other components in

the momentum and buoyancy budgets.
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FIG. 10. (a) The evolution of friction velocity u∗ (m s−1) as a function of time. (b) The evolution of friction

velocity u∗, non-dimensionalized by the initial friction velocity u∗0, as a function of Ea≡H/Ha. Different colors

represent different simulations in Table 1.
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FIG. 11. Plane-averaged cross-slope transport U , non-dimensionalized by the initial transport U0, as a function

of Ea ≡ H/Ha. A running mean filter is applied with an averaging window of 5/ f to remove the large near-

inertial oscillations in U . Different colors correspond to the experiments listed in Table 1.
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FIG. 12. The evolution of (a) turbulent kinetic energy (TKE, m2 s−2) for simulation F and (b) viscous slope

Obukhov length, L+
s , (11) for simulations F (blue) and H (red). The dashed line represents L+

s = 100.
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FIG. 13. The magnitude of the non-dimensional total along-slope velocity |v+total|= (V∞−v)/u∗, as a function

of the non-dimensional height above the bottom z+ = zu∗/ν , in simulations A (a), D (b) and F (c). The dashed

black and blue curves denote the linear and logarithmic velocity profiles. The red curve is the simulated |v+total|
with each dot representing a grid point.
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FIG. 14. The relationship between Ea ≡ H/Ha and H/Ls. Different colors represent different simulations in

Table 1.
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FIG. 15. The evolution of the vertical buoyancy flux as a function of time in simulations A (a) and E (b). The

evolution of the non-dimensional parameter Ea and EL are given by the blue and red curves, respectively, with

the corresponding axis on the right in blue. The BBL is unstable with small EL in simulation A and transitions

from unstable to stable in simulation E around t f = 5 when EL exceeds 0.2.
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FIG. 16. The momentum balance in the cross-slope direction given in (36) for experiments A (a), D (b) and

F (c). The same averaging window is used here as in Fig. 9. The blue curve is the momentum tendency, red

curve the Coriolis force, orange curve the buoyancy force, purple curve the molecular friction, and green curve

the Reynolds stress convergence.
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FIG. 17. The buoyancy budget given in (38) for experiments A (a), D (b) and F (c). The same averaging

window is used here as in Fig. 9. The blue curve is the buoyancy tendency, red curve the cross-slope buoyancy

advection, orange curve the turbulent diffusion, and purple curve the molecular diffusion.
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