
Noname manuscript No.
(will be inserted by the editor)

HTN-Like Solutions for Classical Planning Problems: An
Application to BDI Agent Systems

Lavindra de Silva · Lin Padgham ·
Sebastian Sardina

Abstract In this paper we explore the question of what characterises a desirable plan of
action and how such a plan could be computed, in the context of systems that already possess
a certain amount of hierarchical domain knowledge. In contrast to past work in this setting,
which focuses on generating low-level plans, losing much of the domain knowledge inherent
in such systems, we argue that plans ought to be HTN-like or abstract, i.e., re-use and respect
the user-supplied know-how in the underlying domain. In doing so, we recognise an intrinsic
tension between striving for abstract plans but ensuring that unnecessary actions, not linked
to the specific goal to be achieved, are avoided. We explore this tension by characterising the
set of “ideal” abstract plans that are non-redundant but maximally abstract, and then develop
a more limited yet feasible account in which a given (arbitrary) abstract plan is “specialised”
into one such non-redundant plan that is as abstract as possible. We present an algorithm that
can compute such specialisations, and analyse the theoretical properties of our proposal.

Keywords Abstract Solutions · Classical Planning · HTN Planning

1 Introduction

Hierarchical Task Network (HTN) planning [16, 19] is a well-understood and successful
approach to planning, via the hierarchical and context-based decomposition of subgoals us-
ing supplied ‘standard operating procedures’. This kind of reasoning is also adopted by
Belief-Desire-Intention (BDI) agent systems [37], which are a popular approach to (soft)
real-time reasoning and control in complex and dynamic environments [6, 25], such as Un-
manned Autonomous Vehicles (UAVs) [46], Air Traffic Control [28], and robot supervi-
sion [1]. While HTN planners perform complete “lookahead” over subgoal decompositions

This work is based on and extends that in [42]. Most of this work was carried out while the first author was
at RMIT and the University of Nottingham.

Lavindra de Silva
University of Cambridge, Cambridge, UK
E-mail: lavindra.desilva@eng.cam.ac.uk

Lin Padgham, Sebastian Sardina
RMIT University, Melbourne, Australia
E-mail: {lin.padgham,sebastian.sardina}@rmit.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/189163039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Lavindra de Silva et al.

in order to guarantee that they are achievable, BDI agents typically interleave this process
with execution in the real world, lowering the likelihood of the reasoning becoming out-
dated due to environmental changes by the time execution happens. These agents can also
quickly recover from failure that is caused by environmental changes, by choosing and pur-
suing a suitable alternative from a library of supplied recipes. While BDI systems have
been extended to enable built-in HTN-style lookahead planning [39], it is sometimes also
important to be able to plan from first principles [26]. Such reasoning is useful, or even
mandatory when agents need to avoid undesirable outcomes, or devise novel recipes, not
already supplied, to achieve their goals. In this paper, we use the HTN formalism, which has
an established translation from typical BDI formalisms [39, 38], to characterise desirable
classes of such recipes, and we explore how they could be computed.

Past work on classical (first principles) planning in BDI systems has focused on produc-
ing plans comprising only basic capabilities (actions) of the agent [13, 47, 33, 10, 31]. While
conceptually simple, aiming for low-level, primitive plans (those with actions only) does not
take into account the on-the-fly, hierarchical decompositional nature of the BDI approach.
Indeed, primitive plans also do not reflect typical BDI recipes. When engaging in classi-
cal planning, BDI agents should instead strive for hybrid plans, i.e., plans built from both
basic steps as well as abstract ones, where the latter is obtained from the agent’s domain
comprising hierarchical know-how information. Hybrid-plans are particularly appealing in
the context of BDI systems. First, they tend to preserve so-called “user-intent” [27, 22],
i.e., the principle that such domain knowledge describes the behaviour that the programmer
deems acceptable for the agent to carry out.1 BDI agents store such knowledge in the plan-
library, comprising hierarchical, procedural structures to address the various goals relevant
to the system, and which generally encodes non-functional requirements. Thus, hybrid-plans
preserve user-intent by re-using and respecting the agent’s existing domain knowledge. Sec-
ondly, hybrid-plans offer flexibility and robustness: if a refinement of an abstract step in
a hybrid-plan happens to fail at run-time, another refinement could be tried. Finally, such
plans promote compactness, which can be convenient when presenting and explaining the
novel behaviour synthesised (to a human, for example).

The question that arises, then, is: what characterises a preferred or an adequate hybrid-
plan for a goal in the context of a BDI agent system, which already possesses a certain
amount of know-how information? In this paper, we address this question by developing an
account of hybrid-plans based on the two fundamental principles of abstraction and non-
redundancy. As described above, abstraction refers to the possibility of having plans con-
taining abstract steps that ought to be refined, using knowledge encoded in the plan-library,
into executable actions. Non-redundancy, in turn, states that no redundant steps, i.e., actions
not needed to achieve the goal at hand, are used. The fact is that abstraction typically comes
at the expense of increased redundancy, as more abstract steps are generally associated with
a larger collection of actions. More importantly, even if the individual, manually built ab-
stract steps do not yield redundant actions, this may not still be the case when the former
are combined at runtime to form a novel hybrid-plan. By balancing abstraction and non-
redundancy, our preferred hybrid-plans avoid redundant steps while promoting user-intent
and knowledge re-use, as well as flexibility and robustness.

Example 1. Consider a Mars Rover exploring the surface of Mars. A part of our agent’s
domain is shown in Figure 1. The top-level task in the hierarchy is to explore a given soil
location L2 from the current location L1. This is achieved by recipe (method) m0, which
prescribes navigating from L1 to L2 and then doing a soil experiment. Navigation uses m1,

1 Technically, any sequence of actions performed must be ‘parseable’ by a hierarchy in the domain [27].

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 3

exploreSoilLocation(L1, L2)

m1

−→navigate(L1, L2)

m2

−→
calibrate move(L1, L2)

doSoilExp(L2)

m3

−→
obtainSoilRes(L2)

m4

−→
pickSoilSmp(L2) analyseSoilSmp(L2)

m5

−→
getMoistureContent(L2) getSoilParticleSize(L2)

dropSoilSmp(L2)

sendSoilRes(L2)

m6

−→
establishCon sendRes(L2) breakCon

Task

Method

Action

Fig. 1: A simple Mars Rover agent. An arrow below a recipe/method indicates that its steps
are ordered from left to right.

which calibrates some instruments and moves fromL1 toL2, and doing the experiment uses
m3, which obtains soil results from L2 and sends them to the lander. The former amounts
to picking a soil sample from L2, analysing it, and discarding it, and the remaining tasks are
refined into the actions shown (e.g. establishing a connection with the lander).

Suppose that a recipe m̂ (not shown) in the larger domain fails on execution, and the
agent performs planning to achieve the goal state where soil results have been sent for rock
locations r2 and r3. Planning might yield the new recipe h in Figure 2a, by considering
the tasks available in the entire domain, and reusing suitable ones. Now consider h’s exe-
cution/decomposition trace (Figure 2c). Observe that breaking the connection after sending
results for r2, and then re-establishing it before sending results for r3 are unnecessary, or
redundant steps,2 brought about by the inclusion of task doSoilExp. What we would prefer
to have instead is the non-redundant yet maximally abstract hybrid-plan h′ (Figure 2b). This
avoids the redundancy produced by h, but respects much of its inherent user-intent—the
structure of the abstract hierarchies supplied by the user. In particular, it retains navigate
and obtainSoilRes and their order, allowing us to use BDI-style failure recovery and achieve
these in an alternative manner to that shown here, if such existed and was warranted by the
situation during execution. (As usual, if such ‘local’ recovery efforts fail, recovery efforts
for m̂ will continue.) The replacement of each of doSoilExp and sendSoilRes with a subset
of their components is clearly motivated in order to remove redundancy. �

The roadmap and contributions of this paper are as follows. In Section 2, we provide
the background material with a focus on HTNs, which provide a fitting planning formal-
ism that is closely related to BDI systems in both syntax and semantics [39, 38]. While
the HTN planning semantics is not necessary for computing an arbitrary hybrid-solution,
which we define in Section 3, the semantics is needed in Section 4, where we characterise
the set of “ideal” hybrid-plans, which are non-redundant as well as maximally compact and
abstract. The weaker but more feasible notion of a “preferred specialisation”, where a given
(arbitrary) hybrid-solution is “specialised” into one that is non-redundant but preserves ab-
straction as much as possible, is developed in Section 5. In Sections 4 and 5, we also show

2 As with TCP/IP, we assume that keeping a connection open consumes negligible battery power.

4 Lavindra de Silva et al.

1. navigate(r1, r2)
2. doSoilExp(r2)
3. navigate(r2, r3)
4. doSoilExp(r3)

(a) Hybrid-solution h

1. navigate(r1, r2)
2. obtainSoilRes(r2)
3. establishCon
4. sendRes(r2)
5. navigate(r2, r3)
6. obtainSoilRes(r3)
7. sendRes(r3)
8. breakCon

(b) Hybrid-solution h′

1. navigate(r1, r2)
(A) calibrate
(B) move(r1, r2)

2. doSoilExp(r2)
(A) obtainSoilRes(r2)

(i) pickSoilSmp(r2)
(ii) analyseSoilSmp(r2)

(a) getMContent(r2)
(b) getSPSize(r2)

(iii) dropSoilSmp(r2)
(B) sendSoilRes(r2)

(i) establishCon
(ii) sendRes(r2)
(iii) breakCon

3. navigate(r2, r3)
(A) calibrate
(B) move(r2, r3)

4. doSoilExp(r3)
(A) obtainSoilRes(r3)

(i) pickSoilSmp(r3)
(ii) analyseSoilSmp(r3)

(a) getMContent(r3)
(b) getSPSize(r3)

(iii) dropSoilSmp(r3)
(B) sendSoilRes(r3)

(i) establishCon
(ii) sendRes(r3)
(iii) breakCon

(c) Execution trace of hybrid-solution h (shown as two halves)

Fig. 2: (a) A redundant hybrid-solution h; (b) a hybrid-solution h′ with redundancy (actions
in bold) removed; and (c) the execution trace of h (with some actions acronymed).

that ideal hybrid-plans and preferred specialisations always exist, provided the planning
problem itself admits a solution. More importantly, we prove that any ideal hybrid-plan oc-
curring in a decomposition trace is indeed also a preferred specialisation of the trace, thus
providing support for the latter concept. In Section 6 we give an algorithm for obtaining
such specialisations, and in Sections 7 and 8 we discuss related work and draw conclusions.

2 Background

In this section, we briefly review classical planning, HTN planning as described in [16,
19], and BDI agent systems. Our definitions use Prolog conventions: predicate symbols and
constants begin with lower case, and variables with upper case.

2.1 Classical Planning

Classical Planning deals with the synthesis, from first principles, of a sequence of actions
(operators) that achieves a given goal when executed from the initial state. We follow the
STRIPS-based account of planning [20] as presented in [26].

A classical planning problem is a tuple C = 〈I,G,Op〉, where I is the initial state,
G the goal condition, and Op the set of available operators. Roughly speaking, a solu-
tion to a planning problem is a sequence of operators that, when executed, transform the
initial state into a goal state. Let us make this more precise. A state is a set of ground
atoms representing the propositions that hold true in the world. A goal condition is a con-
junction of literals, which must be true in any goal state. An operator is a tuple op =
〈name(op), pre(op), add(op), del(op)〉, where (i) name(op) = act(x), the operator’s
name, is a symbol followed by a vector x of distinct variables such that all free variables
in pre(op), add(op), and del(op) also occur in x; (ii) pre(op) is a set of literals repre-
senting the operator’s precondition; and (iii) add(op) and del(op) are the add- and delete-
list, respectively, which are sets of atoms representing the operator’s effects. An action is a
ground instance of the operator’s name, and a primitive plan σ is a sequence of actions.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 5

Let us formally define what it means for a primitive plan to be a solution for a planning
problem. The result of applying (i.e., executing) an action act in a state S relative to operator
set Op, denoted Res(act,S,Op), is defined as follows (recall act is ground):

Res(act,S,Op) =

(
S \ del(op)θ

)
∪ add(op)θ if op ∈ Op, act = name(op)θ

and S |= pre(op)θ;
undefined otherwise.

Symbol θ denotes a substitution [29], i.e., a finite set of elements {x1/t1, . . . , xn/tn}
in which x1, . . . , xn are distinct variables and each ti is a term such that ti 6= xi. As usual
we use Eθ to denote the expression obtained from any expression E by simultaneously
replacing each occurrence of xi in E with ti, for all i ∈ {1, . . . , n}.

Next, we state what it means to apply a sequence of actions. The result of applying
(executing) a sequence of actions σ = a1 · . . . · an from a state S relative to operator set
Op, denoted Res∗(a1 · . . . · an,S,Op), is defined inductively as follows:

Res∗(a1 · . . . · an,S,Op) =

Res(a1,S,Op) if n = 1;
Res∗(a2 · . . . · an,Res(a1,S,Op),Op) if n > 1;
S otherwise.

Intuitively, Res∗ yields the resulting state after executing the whole sequence of actions
from state S. Finally, a primitive plan σ is a primitive solution for a classical planning prob-
lem C = 〈I,G,Op〉 iff Res∗(σ, I,Op) |= G, i.e., the resulting state on executing σ from
state I satisfies the goal condition G.

2.2 BDI Agents and HTN Planning

While classical planners focus on bringing about states of affairs (i.e., “goals-to-be”) from
first principles, BDI agent systems and HTN planners aim at executing or solving abstrac-
t/compound tasks (i.e., “goals-to-do”). In a nutshell, both the BDI execution engine and
the HTN planning process involve decomposing abstract tasks repeatedly into less abstract
ones, up to executable primitive tasks, by relying on user-supplied know-how information.
Whereas HTN systems are concerned with hypothetical off-line reasoning about actions and
their potential interactions within a pursued plan for solving a task, BDI agent systems focus
on the effective online execution of hierarchical agent programs in complex and dynamic en-
vironments. There are many BDI-style agent programming languages and systems available
(e.g., [7, 11, 38]) as well as HTN planning systems (e.g., [35, 36, 40, 43, 15]).

Despite their different purposes, however, BDI systems and HTN planners share many
similarities [14, 12, 39, 38]. In particular, and crucially for our work, both approaches make
use of procedural domain control knowledge, encoded in the form of reduction method-
s/recipes. These aim at capturing the standard operational procedures of the domain of con-
cern, which allow more focused reasoning as well as the specification of non-functional
requirements. Roughly speaking, reduction methods/recipes are of the form e : ψ ← P ,
encoding that program P is a “reasonable strategy” to resolve abstract task/goal e when pre-
condition ψ holds true. (Importantly, program P may contain primitive, directly executable
steps as well as further abstract tasks/goals.) A precondition is similar to that in the SHOP
[35] and SHOP2 [36] HTN planning systems, which can be expressed as constraints in the
HTN formalism that we use in this paper. The objective of both the HTN and BDI approach
is to reduce higher-level HTN tasks or BDI goals into lower-level ones, by referring to a

6 Lavindra de Silva et al.

repository of recipes (called a method library in HTN systems and a plan library in BDI
systems), until primitive, executable actions are reached.

Since it was proved already that the underlying semantics of BDI execution and the HTN
planning process coincide [39, 38], we shall follow, from now on, the syntax and semantics
of HTN planning as described in [16, 19]. An HTN planning problem P is a tuple 〈d, I,D〉,
where d is a task network and I is an initial state. Element D is an HTN planning domain,
which is a tuple 〈Op,Me〉, where Op is a set of HTN operators and Me is a set of methods.
The objective of the HTN planner is to solve task network d, by starting from state I, and
using the sets Me and Op. A task network is a partially ordered set of tasks, where a task
is either compound or primitive, both of which are of the form t(o), where o is a vector of
function-free terms (i.e., a term is either a variable or constant). Thus, an action is a ground
primitive task. Formally, a task network is a syntactic construct of the form:

q
{(n1 : t1), . . . , (nm : tm)}, φ

y
,

where the first component is a set of labelled tasks, and the second is a task network formula
having constraints that must be respected; each ni is a label used to uniquely identify a task
occurring in the network, where ni ∈ N0.

A task network formula is a Boolean formula constructed from negation, conjunction,
disjunction, and the following: (i) variable binding constraints of the form (o = o′), where o
and o′ are variables or constants; (ii) ordering constraints of the form (n ≺ n′), sometimes
with parenthesis omitted, where n and n′ are task labels; and state constraints of the form
(l, n), (n, l) and (n, l, n′), where l is a literal and n and n′ are task labels. A variable
binding constraint (o = o′) indicates that o must be equal to o′. An ordering constraint
(n ≺ n′) indicates that the task with label n should precede the one with label n′; thus,
a task network is said to be totally ordered if its task network formula entails an ordering
constraint for every pair of unique labels occurring in the task network. State constraints
(l, n) (resp. (n, l)) indicate that literal l should hold immediately before (resp. after) the
task with label n. Finally, a state constraint (n, l, n′) indicates that literal l should hold
between the tasks with labels n and n′. Task labels can also be of the form first[n1, . . . , nm]
and last[n1, . . . , nm], which allow referring, respectively, to the task that starts first, and to
the task that ends last among the set {n1, . . . , nm}.

Next, we define the structures used to realise the tasks occurring in a task network. If
the task is primitive, it is realised via an operator as defined above, and there is exactly
one operator in Op with a name that unifies with act. If instead the task is compound, it is
achieved via a method. A method is of the form (t, d), where t is a compound task and d is
a task network. A compound task may have more than one associated method in Me.

Example 2. We illustrate some of the above constructs with the Blocks World HTN domain
D = 〈Op,Me = {m1,m2}〉 depicted in Figure 3. The top-level compound task in this
domain is unstack(B1, B2), which is used to move a block B1 that is on top of a block B2
onto the table. Observe that method m1 = (unstack(B1, B2), d′), where task network d′ is

q
{(n1 : pickup(B1, B2)), (n2 : putdown(B1))}, (n1 ≺ n2) ∧ φ

y
,

with φ = (clear(B1), n1) ∧ (on(B1, B2), n1) ∧ (armEmpty, n1). The primitive task
pickup(B1, B2) and putdown(B1) respectively picks up a block B1 that is on top of a
block B2, and places a block B1—that is being held—on the table. The task network for-
mula of d′ requires pickup(B1, B2) to precede putdown(B1), and that initially (i.e., before
picking up), B1 is clear, B1 is on top of B2, and the robot’s arm is empty.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 7

unstack(B1, B2)

or

m1ψ1

−→
pickup(B1, B2) putdown(B1)

m2ψ2

−→
unstack(B3, B1) pickup(B1, B2) putdown(B1)

ψ1 = clear(B1) ∧ on(B1, B2) ∧ armEmpty ψ2 = on(B1, B2) ∧ on(B3, B1) ∧ armEmpty

Primitive Task Precondition Effects
putdown(B1) holding(B1) ¬holding(B1) ∧ armEmpty ∧ on(B1, T)

pickup(B1, B2) on(B1, B2) ∧ clear(B1) ∧ armEmpty holding(B1) ∧ ¬armEmpty ∧
¬on(B1, B2) ∧ clear(B2)

Compound Task

Method

Primitive Task

Fig. 3: A simplified depiction of an HTN domain. An arrow below a method indicates that its
tasks are ordered from left to right, and ψ1, ψ2 are “preconditions” of respectively m1,m2.

Observe from the figure that methodm2 = (unstack(B1, B2), d′′), where task network
d′′ =

q
s, φ1 ∧ φ2

y
with

s = {(n1 : unstack(B3, B1)), (n2 : pickup(B1, B2)), (n3 : putdown(B1))},
φ1 = (n1 ≺ n2) ∧ (n2 ≺ n3), and

φ2 = (on(B1, B2), n1) ∧ (on(B3, B1), n1) ∧ (armEmpty, n1).

Thus, whilem1 moves a blockB1 only if it has no other blocks on top of it,m2 handles
the case where there are such blocks, by first clearing B1—i.e., recursively moving each
block on top of it onto the table—and then moving B1 onto the table. �

Given an HTN planning problem P = 〈d, I,D〉, with D = 〈Op,Me〉, the HTN plan-
ning process works as follows. First, an applicable reduction method (i.e., one whose pre-
condition is met in the current state) is selected from Me and applied to some compound
task in d. This will result in a new, and typically “more primitive” task network d′. Then,
another reduction method is applied to some task in d′, and this process continues until a
task network is obtained that contains only primitive tasks. At any stage during the planning
process, if no applicable method can be found for a compound task, the planner “backtracks”
and tries an alternative reduction for a compound task previously reduced.

To be more precise about the above process, we first define a reduction (decomposition).
Let d =

q
s, φ

y
be a task network, (n : t) ∈ s a (labelled) compound task occurring in d, and

m = (t′, d′) ∈ Me a method that is relevant for t (i.e., t and t′ unify). Then, reduce(d, n,m)
denotes the task network resulting from decomposing task (n : t) in task network d via
method m. Informally, decomposition involves updating both the set s in d, by replacing
(n : t) with the tasks in d′ (by arbitrarily renaming task labels), and the constraints φ in
d to take into account those in d′. The set of all reductions of a task network d is denoted
red(d,D). The formal definitions of reductions can be found in Appendix A (Definition 15).

If all compound tasks occurring in a given initial task network have been replaced by
primitive tasks via reductions, the last step is to find a completion of the resulting task net-
work, i.e., an ordering and grounding of its primitive tasks that conforms with the constraints
imposed on those tasks by the network. More precisely, a plan σ is a completion of a prim-
itive task network d at state I, denoted σ ∈ comp(d, I,D), if σ is a total ordering of the
primitive tasks in a ground instance of d such that σ is executable in I (i.e., all preconditions

8 Lavindra de Silva et al.

associated with primitive tasks in σ are satisfied), and σ satisfies the constraint formula in
d. The formal definition of a completion can be found in Appendix A (Definition 14).

By taking the sets red(d,D) and comp(d, I,D) we can now define the set of plans
sol(d, I,D) that solves an HTN planning problemP = 〈d, I,D〉 as follows: sol(d, I,D) =⋃
n∈N0

soln(d, I,D), where soln(d, I,D) is defined inductively as

sol0(d, I,D) = comp(d, I,D),

soln+1(d, I,D) = soln(d, I,D) ∪
⋃

d′∈red(d,D)

soln(d′, I,D).

Intuitively, the set of primitive plans that solves an HTN planning problem 〈d, I,D〉
is the set of all completions of all primitive task networks that can be obtained from zero
or more reductions of d. We call such plans primitive plan solutions to distinguish them
from primitive solutions which achieve some goal state, and from primitive plans which are
arbitrary sequences of actions. We also use the notion of a labelled primitive plan, which is
a possibly empty sequence τ = (n1 : t1) · . . . · (nm : tm) of labelled tasks. We sometimes
treat a labelled primitive plan τ as a (unlabelled) primitive plan σ with the obvious meaning.

Example 3. We describe reductions and completions with the HTN domain D in Figure 3,
and the task network d1 =

q
s1, φ1

y
, where s1 = {(n : unstack(b1, b2))} and φ1 = true.

Suppose we have the HTN planning problem P = 〈d1, I,D〉, where I contains the fol-
lowing facts: on(b2, table), on(b1, b2), on(b3, b1), clear(b3), and armEmpty. Then, observe
that the reduction of the labelled compound task (n : unstack(b1, b2)) ∈ s1 via methodm1,
or reduce(d1, n,m1), results in the primitive task network

d2 =
q
{(n1 : pickup(b1, b2)), (n2 : putdown(b1))}, (n1 ≺ n2) ∧ φ2

y
,

where φ2 = (clear(b1), n1)∧(on(b1, b2), n1)∧(armEmpty, n1). However, the completion
of d2 is comp(d2, I,D) = ∅, as (clear(b1), n1) does not hold in state I (literal clear(b1)
is not true in I). Consider, instead, the reduction of labelled task (n : unstack(b1, b2)) ∈ s1
via method m2. The result of this decomposition is the following task network

d3 =
q
{(n1 : unstack(b3, b1)), (n2 : pickup(b1, b2)), (n3 : putdown(b1))}, φ3

y
,

where formula φ3 = (n1 ≺ n2) ∧ (n2 ≺ n3) ∧ (on(b1, b2), n1) ∧ (on(b3, b1), n1) ∧
(armEmpty, n1). Since there is a compound task unstack occurring in d3, it needs to be
reduced further before a primitive task network can be obtained. Suppose that methodm1 is
used for this reduction. Then, the resulting primitive task network is d4 =

q
s4, φ4

y
where

s4 = {(n4 : pickup(b3, b1)), (n5 : putdown(b3)),

(n2 : pickup(b1, b2)), (n3 : putdown(b1))},
φ4 = (n4 ≺ n2) ∧ (n5 ≺ n2) ∧ (n2 ≺ n3) ∧ (n4 ≺ n5) ∧ φ5, and

φ5 = (clear(b3), n4) ∧ (on(b3, b1), n4) ∧ (armEmpty, n4) ∧ (on(b1, b2), n4).

Observe that the contents of m1’s task network have been included in d4. That is, (i) m1’s
constraint formula has been added as a conjunction to φ4; (ii) labelled tasks in m1 have
been added, after renaming task labels, to s4; and (iii) the constraints in d4—e.g. (n1 ≺
n2)—have been updated to accommodate the new task labels. The final step is to obtain
the completion comp(d4, I,D) of task network d4, which yields the primitive plan solution
pickup(b3, b1)·putdown(b3)·pickup(b1, b2)·putdown(b1). This is a primitive plan solution
because it is executable from initial state I and φ5 is satisfied with respect to I. �

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 9

2.3 Epsilon Tasks and Assumptions

In this paper we make use of “dummy” primitive tasks, which we call ε tasks. While ε tasks
are still primitive tasks, they do not have a precondition and effect, and thereby amount to
“doing nothing.” Such tasks allow the inclusion of conditions within a method even when
the method has no tasks occurring in it, and likewise, the specification of conditions that
involve compound tasks even if the tasks eventually reduce into the empty set.

Example 4. To see why ε tasks are useful in HTN planning, consider an elevator domain
having the following two methods for handling the compound task go-to-bottom (gtb),
which keeps moving down one floor until the ground floor (floor 0) is reached:

(gtb,
q
{(1 : move-down), (2 : gtb)}, (1 ≺ 2) ∧ (¬floor(0), 1)

y
)

(gtb,
q
{(1 : ε)}, (floor(0), 1)

y
).

Observe that without the ε task in the second method, there is no obvious way to encode
that the elevator must stop moving down once the ground floor is reached.3 �

This paper makes the following assumptions. First, since ε tasks are used solely for
specifying conditions on tasks as described above, we assume without loss of generality
that any ε tasks occurring in primitive plans in the set sol(d, I,D) of HTN solutions have
been removed. Our second, related, assumption is that an HTN method’s associated set of
labelled tasks is never empty: if the set does not mention any standard (non-ε) tasks, then it
must mention the ε task. Finally, we assume that a task network’s constraint formula does
not mention any labels that do not also occur in the task network’s set of labelled tasks.

3 Hybrid-Plans

The notion of a hybrid-plan forms the basis for many of the more involved notions that we
introduce later. Intuitively, a hybrid-plan is a partially ordered set of steps, i.e., steps in the
plan can be interleaved. Technically, a hybrid-plan is a partially-ordered plan [34], which,
unlike a traditional one, can also contain (or can consist of) compound tasks.

Definition 1 (Hybrid-Plan). A hybrid-plan is an HTN task network h =
q
s, φ

y
, such that

φ does not mention any state or variable binding constraints (i.e., φ is simply a conjunction
of HTN ordering constraints).4 �

In this paper we investigate what we refer to as hybrid planning, which deals with syn-
thesising hybrid-plans that can bring about a certain state of affairs (as in classical planning)
by making use of the available domain knowledge (as in HTN planning). Hybrid planning
finds solutions for hybrid planning problems. Formally, a hybrid planning problem is a tuple
H = 〈I,G,D〉, where I is an initial state, G is a goal condition, and D is an HTN domain.

3 One may wonder whether the following encoding also works:
(gtb,

q
{(1 : move-down), (2 : gtb)}, (1 ≺ 2) ∧ (¬floor(1), 1) ∧ (¬floor(0), 1)

y
)

(gtb,
q
{(1 : move-down)}, (floor(1), 1)

y
).

These methods will not work when the elevator is at floor 0 in the initial state—because then neither of
the methods will be applicable.

4 Since state and variable binding constraints represent conditions that need to be achieved via planning,
they can occur in a task network (e.g. one that is part of a planning problem) but not in a plan/solution.

10 Lavindra de Silva et al.

Hybrid-plans that solve hybrid planning problems are called hybrid-solutions. More specif-
ically, a hybrid-solution is a hybrid-plan that can be decomposed using the given domain
knowledge into a primitive plan that brings about the goal condition. In what follows, any
hybrid planning problem H is of the form 〈I,G,D〉, and any planning domain D is of the
form 〈Op,Me〉.

Definition 2 (Hybrid-Solution). Let h be a hybrid-plan,H a hybrid planning problem, and
Σh ⊆ sol(h, I,D) a finite subset of primitive plan solutions. Then, h is a hybrid-solution
for H relative to Σh iff Σh ∩ sol(I,G, Op) 6= ∅, that is, if there is an HTN solution—a
primitive plan—for h that achieves the goal.5 �

We are not concerned in this paper about how a hybrid-solution is obtained for the plan-
ning problem at hand: any approach (e.g. [44, 30]) may be used provided it yields a (valid)
hybrid-solution as defined above. Note that our notion of hybrid planning is closer to classi-
cal planning than general HTN planning, which is undecidable [24, 19]. We outline the class
of a hybrid planning problem with respect to the following two decision problems. First,
given a ground hybrid planning problem H, a hybrid-plan h, and a finite set of primitive
plan solutions Σh ⊆ sol(h, I,D), the decision problem of whether h is a hybrid-solution
for H relative to Σh is in P. This is because we simply need to check whether there exists
a primitive solution σ ∈ Σh for the classical planning problem 〈I,G, Op〉, which requires
testing at most |Σh| primitive plans (which we know are HTN solutions for h). Second,
the decision problem of whether there exists a hybrid-plan h that is a hybrid-solution for
H relative to some finite set Σh ⊆ sol(h, I,D) is in PSPACE. This is because deciding
whether there exists a primitive solution σ ∈ sol(I,G, Op) is in PSPACE [18], and any
such solution can be straightforwardly represented as a (totally-ordered) hybrid-plan, which
is also a hybrid-solution forH relative to {σ}.

Our first step, in the next section, is to develop the notion of an “ideal” hybrid-plan
(Definition 7), as one that is non-redundant but at the same time maximally abstract and
“minimal.” Minimality ensures that it is not possible to make the plan any more compact by
removing steps. Since it is unclear how such ideal plans can be computed within a reasonable
amount of time, we define, in Section 5, a weaker, but computationally feasible notion of
a “preferred specialisation” (Definition 12), which is an extraction of a desirable hybrid-
plan from a particular decomposition trace produced by another hybrid-plan. We shall show
properties of these notions that are in accordance with their intended meaning.

4 Ideal Hybrid-Plans

In order to develop an unambiguous definition of what makes a hybrid-plan “ideal”, this sec-
tion introduces the three inter-related notions maximal-abstractness, minimality, and non-
redundancy. A non-redundant hybrid-solution for a hybrid planning problem is a hybrid-
plan that yields (via HTN decompositions) a non-redundant primitive solution for the prob-
lem. A minimal hybrid-solution for a problem is one that is non-redundant, but no longer has
this property as soon as one or more (primitive or compound) tasks are removed from the
solution. Finally, a maximally-abstract hybrid-plan is one that does not contain any “subset”
of compound tasks that could potentially be combined into a single (more) compound task.

5 One could also imagine a stronger notion of a hybrid-solution where all HTN solutions for hybrid-plan
h achieve the goal; in this paper, however, we only use the notion defined.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 11

t0

m0

→
t1

m1

a1

t2

m2

→
t3
or

m3

a2

m4

→
a1 a2

t4

m5

a3

t5

m6

→
a4 a5

t6

m7

→
a3 a6

Primitive Task Precondition Effects
a1 p q
a2 q r
a3 r s
a4 p q
a5 q r
a6 s t

Compound Task

Method

Primitive Task

Fig. 4: A simple totally-ordered HTN domain. The table shows the preconditions and effects
of the primitive tasks.

One concept that is intrinsic in these notions is that of a “refinement” of a hybrid-plan. In
particular, a maximally-abstract hybrid-plan can be defined as one that is not the refinement
of any other hybrid-plan. Intuitively, the refinements of a hybrid-plan (or task network) are
all the “intermediate” or “partially reduced” task networks that may be encountered while
searching for a primitive plan solution for the given hybrid-plan. The following example
illustrates this notion of a refinement, as well as the notions of maximal-abstractness, non-
redundancy, and minimality.

Example 5. Consider the HTN domain in Figure 4. If we take hybrid-solution t0 (having
just the one task), then its set of refinements with respect to the domain in the figure is
basically the following set of hybrid-plans:6

{t0, t1 · t2, t1 · t3 · t4, t1 · t3 · a3, t1 · a2 · t4,
t1 · a1 · a2 · t4, t1 · a2 · a3, t1 · a1 · a2 · a3, a1 · t2, a1 · t3 · t4,
a1 · t3 · a3, a1 · a2 · t4, a1 · a1 · a2 · t4, a1 · a2 · a3, a1 · a1 · a2 · a3}.

Refinement t1 · a1 · a2 · t4 in the set is obtained by performing three reductions: first, t0 is
reduced via method m0 to obtain task network t1 · t2; second, t1 · t2 is reduced via method
m2 to obtain task network t1 · t3 · t4; and finally, t1 · t3 · t4 is reduced via method m4 to
obtain task network t1 · a1 · a2 · t4. The rest of the refinements are derived similarly.

Next, consider the table below, which shows some of the hybrid-solutions for the hybrid
planning problem with initial state {p}, goal condition s, and the HTN domain in Figure 4.

HYBRID-SOL. NON-REDUNDANT MINIMAL MAXIMALLY-ABSTRACT IDEAL

t0
√ √ √ √

t2
√ √ √ √

t5 · t4
√ √ √ √

t3 · t4
√ √

× ×
t5 · t2 × ×

√
×

t1 · t2
√

× × ×
t1 · t3 · t4

√
× × ×

t5 · t3 · t4 × × × ×

Maximal-abstractness. From the above set of refinements we can see that hybrid-
solution t2 is maximally-abstract because it is not the refinement of any other hybrid-

6 We use sequences here to represent totally ordered task networks having neither state nor variable binding
constraints.

12 Lavindra de Silva et al.

solution (t0 does not have a refinement that matches t2 alone). On the other hand, hybrid-
solution t1 · t2 is not maximally-abstract because it is a refinement of hybrid-solution t0.

Redundancy. Hybrid-solution t0 is non-redundant because it can produce the non-
redundant primitive solution a1 · a2 · a3 by selecting methods in the following order: m0,
m1, m2, m3, and m5. On the other hand, hybrid-solution t5 · t2 is redundant because all of
its primitive solutions (i.e., a4 · a5 · a2 · a3 and a4 · a5 · a1 · a2 · a3) are redundant. Finally,
solution a4 ·a5 ·a2 ·a3 is redundant because it will remain a solution even if primitive tasks
a5 or a2 are removed from it.

Minimality. Hybrid-solution t5 · t4 is minimal because it is non-redundant and none
of its proper subsequences (i.e., t5 and t4) are also non-redundant hybrid-solutions.7 On the
other hand, although t1 ·t2 is non-redundant, it is not minimal, because a proper subsequence
of it—t2—is also a non-redundant hybrid-solution. �

4.1 Non-Redundant and Minimal Hybrid-Plans

We shall now be more precise about the notions described, starting with the notions of non-
redundancy and minimality. To define non-redundancy, we extend the notion of a perfect
justification, defined for primitive solutions in [21].

Definition 3 (Perfect Justification [21]). A primitive solution σ for a classical planning
problem C = 〈I,G,Op〉 is a perfect justification for C if there does not exist a proper
subsequence σ′ of σ such that σ′ is a primitive solution for C. �

Thus, any given primitive solution that is not already a perfect justification can defi-
nitely yield one or more of them; given σ and C as above, the computational complexity
of yielding a perfect justification for C from σ is NP-hard, and so is checking whether σ is
a perfect justification for C [21]. Using the above definition we define a hybrid-solution as
non-redundant if it can produce at least one perfect justification.

Definition 4 (Non-Redundant Hybrid-Solution). Let H = 〈I,G,D〉 be a hybrid plan-
ning problem, and h a hybrid-solution for H relative to a (finite) set of primitive plan solu-
tions Σh. Then, h is a non-redundant hybrid-solution for H relative to Σh if there exists a
σ ∈ Σh such that σ is a perfect justification for problem 〈I,G,Op〉. �

Now we can define minimality. Intuitively, a non-redundant hybrid-solution h is minimal
if there is no substructure of h which gives the same result. Formally, a non-redundant
hybrid-solution h =

q
s, φ

y
forH relative to Σh is a minimal hybrid-solution forH relative

to Σh if there does not exist a non-redundant hybrid-solution h′ =
q
s′, φ′

y
for H relative

to any subset of sol(h′, I,D), where s′ ⊂ s and φ′ is obtained from φ by replacing with
true every (ordering) constraint that mentions some task label occurring in the set s \ s′.

Thus, minimality is a stronger notion than non-redundancy. This was illustrated by the
table in the previous example with hybrid-solutions t1 · t2 and t1 · t3 · t4, which were
non-redundant but not minimal. We do not define minimality and non-redundancy as inde-
pendent notions because that will then allow a hybrid-solution that is non-redundant and
non-minimal, but where all minimal hybrid-solutions that can be obtained from it are redun-
dant, as shown below.

7 A subsequence is obtained from a given sequence by deleting zero or more elements from it and not
changing the order of the remaining elements.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 13

Example 6. Let us assume that minimality is defined relative to hybrid-solutions as op-
posed to non-redundant hybrid-solutions: i.e., a minimal hybrid-solution is a hybrid-solution
from which no tasks can be removed to obtain a hybrid-plan that is still a hybrid-solution.
Then, consider hybrid-solution t0 · t1 for the hybrid planning problem having initial state
{p, u}, goal condition s, and the HTN domain shown below. Observe that this hybrid-
solution is non-redundant and non-minimal: it is non-redundant because it can produce the
non-redundant primitive solution a1 · a2 · a3 by selecting methods m0 and m2, and it is
non-minimal because its proper subsequence t0 is also a hybrid-solution—t0 can produce
the primitive solution a1 · a2 · a3 · a4, by selecting method m1. However, while hybrid-
solution t0 is minimal, it is also redundant, as its (only) primitive solution a1 · a2 · a3 · a4
contains the redundant primitive task a4.

t0
or

m0

→
a1 a2

m1

→
a1 a2 a3 a4

t1

m2

a3

Primitive Task Prec. Eff.
a1 p q
a2 q r
a3 r s
a4 u v

�

4.2 Maximally-Abstract Hybrid-Plans

As discussed earlier, a hybrid-plan is maximally-abstract if it does not match a refinement of
any other hybrid-plan, where a refinement is an “intermediate” task network encountered via
one or more decompositions of the given plan. To define a refinement, we extend the HTN
semantics of [19], specifically their construct sol(d, I,D) (see Section 2.2) which represents
the set of primitive plan solutions for d, so that intermediate task networks encountered via
decompositions of d are also included in the set, in addition to the primitive ones.

Informally, the refinements of a task network d are the set of all task networks obtained
by reducing d zero or more times; a single refinement is a member of this set. Formally,
the set of refinements of a task network d is the reflexive transitive closure of the set of
HTN reductions red(d,D). In our definition below, refn(d,D)n is the set of task networks
obtained from n reductions of d, and refn(d,D) is the set of task networks obtained from all
finite reductions of d.

Definition 5 (Refinements). The set of refinements of a task network d relative to an HTN
domain D, denoted by refn(d,D), is defined as

refn(d,D) =
⋃
n∈N0

refnn(d,D);

refn0(d,D) = {d};

refnn+1(d,D) =
⋃

d′∈refnn(d,D)

red(d′,D). �

Since a refinement of a task network is any “intermediate” task network d encountered
during the decomposition of the former, there is no guarantee dwill actually yield a primitive
plan solution, i.e., it may be that sol(d, I,D) = ∅ for any state I.

Given a refinement, we determine whether it matches a given hybrid-plan by basically
checking whether the following conditions hold: (i) they have the same tasks in common;
(ii) the ordering constraints in the hybrid-plan are compatible with those in the refinement;

14 Lavindra de Silva et al.

1 : t0

2 : t1

4 : a3 5 : a4

3 : t2

6 : a5 7 : a6

2 : t1

4 : a3 5 : a4

3 : t2

6 : a5 7 : a6(p, 2)

(4 ≺ 5)

(4 ≺ 5)

(6 ≺ 7)

(6 ≺ 7)

(2 ≺ 3)

Fig. 5: Refinements depicted for hybrid-solution
q
{(1 : t0)}, true

y
(left) and hybrid-

solution
q
{(2 : t1), (3 : t2)}, (2 ≺ 3)

y
(right). Dashed rectangles represent constraints

on adjacent labelled tasks.

and (iii) the refinement and hybrid-plan have at least one primitive plan solution in com-
mon. This final check is necessary because the constraint formula of a hybrid-plan can only
mention ordering constraints, whereas the constraint formula of a task network can be more
“complex”: it can additionally mention state and variable binding constraints, which may
well make it more constrained than the hybrid-plan, and thereby incapable of producing any
of the primitive solutions that the former can produce. This issue is illustrated below.

Example 7. Figure 5 illustrates the reductions of two hybrid-plans: h =
q
{(2 : t1), (3 :

t2)}, (2 ≺ 3)
y

on the right, and h′ =
q
{(1 : t0)}, true

y
on the left. Observe that the task

network d =
q
{(2 : t1), (3 : t2)}, (p, 2)

y
shown in the figure is a refinement of h′—the

former is obtained after performing a single reduction on the latter—and that the ordering
constraint (2 ≺ 3) of hybrid-plan h is compatible with those in d.

Suppose ¬p holds in the initial state, and that we wish to determine whether the refine-
ment d of h′ matches h relative to the set {(4 : a3) · (5 : a4) · (6 : a5) · (7 : a6)} containing
the only primitive plan solution for h. Although the ordering constraints of h are compatible
with those in refinement d, and h and d do mention the same tasks, the refinement nonethe-
less cannot produce the primitive plan solution above, as the state constraint (p, 2) of d is
violated with respect to the initial state. Thus, h′ does not have a refinement that matches
h, and h is indeed maximally-abstract. However, if p holds in the initial state, then h is not
maximally-abstract, as refinement d of hybrid-plan h′ does match h. �

Using the above notions, we formally define the notion of a maximally-abstract hybrid-
plan as one which does not match a refinement of any other hybrid-plan.

Definition 6 (Maximally-Abstract). LetD be an HTN domain, I a state,∆ a set of hybrid-
plans, and h =

q
sh, φh

y
∈ ∆ a hybrid-plan in the set. Finally, let Σh ⊆ sol(h, I,D) be a

finite set of primitive plan solutions. Then, hybrid-plan h is maximally-abstract among set
∆ for Σh if there exists no hybrid-plan h′ =

q
sh′ , φh′

y
∈ ∆ with |sh′ | < |sh| such that:

1. d1 ∈ refn(h′,D),
2. d2 =

q
sd2 , φd2

y
is a task label renaming of some d1θ such that sd2 ⊇ sh,

3. d3 =
q
sd2 , φd2 ∧ φh

y
, and

4. Σh ∩ sol(d3, I,D) 6= ∅.8 �

In words, a hybrid-plan h is maximally-abstract among hybrid-plans in ∆ for a set of
primitive plan solutions Σh if there is no shorter hybrid-plan h′ in ∆ that can produce h via
decompositions, without losing all of the primitive plan solutions in Σh.

8 If Σh ⊆ sol(d3, I,D) also holds, h could be deemed weakly maximally-abstract among ∆ for Σh;
however, we only use the stronger notion in this paper.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 15

4.3 Ideal Hybrid-Plans

An ideal hybrid-plan, then, is one that is minimal—and thereby non-redundant—as well as
maximally-abstract relative to its set of perfect justifications.

Definition 7 (Ideal Hybrid-Plans). A given hybrid-plan h is an ideal one for a hybrid plan-
ning problemH = 〈I,G,D〉 if the following conditions hold:

1. h is a minimal hybrid-solution forH relative to Σ ∩ sol(h, I,D), where Σ is the set of
all perfect justifications for 〈I,G,Op〉; and

2. h is a maximally-abstract hybrid-plan among all hybrid-plans for Σ ∩ sol(h, I,D).

The set of all ideal hybrid-plans forH is denoted ideal(H). �

The following theorem states that whenever a hybrid planning problem can be solved,
there is at least one ideal hybrid-plan.

Theorem 1. Let H = 〈I,G,D〉 be a hybrid planning problem. If sol(I,G,Op) 6= ∅, then
there exists an ideal hybrid-plan forH.

Proof. Let Σnr be the set of all perfect justifications for 〈I,G,Op〉, let σ ∈ sol(I,G,Op)
be a primitive solution, and let σ′ be a subsequence of σ such that σ′ ∈ Σnr . Finally, let
h1 =

q
{(i : acti) | acti ∈ σ′}, true ∧

∧
{(i ≺ j) | i, j ∈ {1, . . . , |σ′|}, i < j}

y
be

the hybrid-plan representing σ′ (recall that hybrid-plans cannot mention state constraints).
There are two cases to consider. The first is that I |= G. In this case the theorem holds
trivially because |σ′| = 0 and h1 =

q
∅, true

y
is an ideal hybrid-plan forH. The second case

is where I 6|= G. Then, hybrid-plan h1 is a minimal hybrid-solution for H relative to {σ′}:
it is minimal because there is no “subset” of h1 that is still a hybrid-solution forH, and it is
non-redundant because σ′ is non-redundant for 〈I,G,Op〉. Now, if h1 is not a maximally-
abstract hybrid-plan among all possible hybrid-plans for the set {σ′}, then by Definition
6 (Maximally-Abstract), a more abstract hybrid-plan exists, i.e., MA(h2, h1, {σ′}) holds
for some hybrid-plan h2, where MA(h′, h,Σ)—for any hybrid-plans h =

q
sh, φh

y
and

h′ =
q
sh′ , φh′

y
, and set of primitive plansΣ ⊆ sol(h, I,D)—denotes the conditions given

in Definition 6 (that is, |sh′ | < |sh|, d1 ∈ refn(h′,D), etc.).
Let min(h) denote the set of minimal hybrid-solutions hmin =

q
smin, φmin

y
for H

relative to Σnr ∩ sol(hmin, I,D) that can be obtained from a hybrid-plan h =
q
sh, φh

y

(i.e., for any
q
smin, φmin

y
∈ min(h), the set smin ⊆ sh, and constraint φmin is ob-

tained from φh by replacing with true every constraint that mentions some task label oc-
curring in the set sh \ smin). Then, if there exists a hybrid-plan h3 ∈ min(h2) such
that h3 is a maximally-abstract hybrid-plan among all possible hybrid-plans for the set
Σnr ∩ sol(h3, I,D), we know that h3 is an ideal hybrid-plan forH, and the theorem holds.
Otherwise, for each hybrid-plan h3 =

q
s3, φ3

y
∈ min(h2), there must exist a hybrid-plan

h4 such that MA(h4, h3, Σ3) holds, where Σ3 = Σnr ∩ sol(h3, I,D). Observe that this
reasoning can be continued for h4 =

q
s4, φ4

y
as we did before for h2. However, since

|s4| < |s3| holds according to our definition of MA(h4, h3, Σ3), this reasoning can only
be applied a finite number of times, until some hybrid-plan hn, with hn =

q
{(n : t)}, true

y

is reached for some compound task t. Hybrid-plan hn, then, is a minimal hybrid-solution
forH relative to the subsetΣnr ∩ sol(hn, I,D), and also a maximally-abstract hybrid-plan
among all possible hybrid-plans for the subset. �

16 Lavindra de Silva et al.

Unfortunately, it is not clear how one could practically compute an ideal hybrid-plan for
a hybrid planning problem.9 In the next sections, we shall develop, and show how to imple-
ment, a weaker notion than an ideal plan, which looks for the most “preferred” specialisation
of a fixed hybrid-plan.

5 Preferred Specialisations of Hybrid-Plans

Instead of searching for an ideal hybrid-solution, we now focus on “improving” one that is
supplied, by exploring only the limited set of specialisations inherent in one of the hybrid-
solution’s decomposition traces in order to extract a most abstract and non-redundant spe-
cialisation. As before, the particular hybrid-solution that we start from may have been pro-
duced by a classical planner operating in the HTN domain, or by another technique.

The problem we wish to solve is as follows: given a possibly redundant hybrid-solution
h for a hybrid planning problem, along with a decomposition trace yielding one of h’s prim-
itive plan solutions that solves the problem, find a specialisation of h that is non-redundant
and maximally abstract, but within the trace provided. We call such specialisations preferred
ones. While a preferred specialisation is not necessarily an ideal hybrid-plan as defined in
Section 4, whenever an ideal hybrid-plan does occur within a decomposition trace of a given
hybrid-plan h, the former plan will be a preferred specialisation of h.

Intuitively, a decomposition trace is a trace of the reductions performed on a hybrid-
plan. Therefore, any hybrid-plan h that yields a primitive plan solution σ ∈ sol(h, I,D)
will have at least one associated decomposition trace, starting from h and ending with a
primitive task network that yields σ, as illustrated below. We call such decomposition traces
successful decomposition traces.

Example 8. Consider a method-library allowing the following reductions: (i) task t1 into
labelled tasks (2 : t2) and (3 : t3) together with constraint true; (ii) task t2 into labelled
primitive tasks (4 : a4) and (5 : a5) together with constraint 4 ≺ 5; and (iii) task t3 into
(6 : a6) and (7 : a7) together with constraint 6 ≺ 7. Then, one possible decomposition
trace of task network (hybrid-plan)

q
{(1 : t1)}, true

y
is the following:10

q
{(1 : t1)}, true

y
→

q
{(2 : t2), (3 : t3)}, true

y
→

q
{(4 : a4), (5 : a5), (3 : t3)}, (4 ≺

5)
y
→

q
{(4 : a4), (5 : a5), (6 : a6), (7 : a7)}, (4 ≺ 5) ∧ (6 ≺ 7)

y
. �

While decomposition traces are intrinsic to the notion of a hybrid-solution, and thus
necessary for the main results in this section, it is more intuitive to represent a trace as a
decomposition tree, depicting how compound tasks were decomposed into more specific
tasks and constraints. For example, Figure 6 shows the decomposition tree induced by the
trace above. Observe that each node in the tree is a labelled task; each node is labelled with
the HTN constraints enforced on its child nodes; and the children of the root node are the
labelled tasks in the given hybrid-plan. While decomposition traces encode a specific order
of task decompositions, decomposition trees are agnostic on when tasks are reduced. Thus,
different traces may induce the same tree up to renaming of task labels. This is illustrated
by the trace in Example 8 and Example 9 below, both of which induce the tree in Figure 6.

9 From Theorem 1 it follows that checking whether there exists an ideal hybrid-plan for a hybrid planning
problem is in PSPACE, as it amounts to checking for the existence of a (primitive) solution for the corre-
sponding classical planning problem. However, as we currently do not have a better technique to find an ideal
hybrid-plan than one involving a (naive) brute-force enumeration and check (which may require exponential
space), we focus on a more restricted notion than an ideal hybrid-plan for which we can envision a technique.

10 For readability we sometimes use notation A→ B instead of A ·B when referring to a sequence.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 17

(root : ε)

(1 : t1)

(2 : t2) 4 ≺ 5

(4 : a4) (5 : a5)

(3 : t3) 6 ≺ 7

(6 : a6) (7 : a7)

Fig. 6: The decomposition tree corresponding to decomposition trace
q
{(1 : t1)}, true

y
→q

{(2 : t2), (3 : t3)}, true
y
→

q
{(4 : a4), (5 : a5), (3 : t3)}, (4 ≺ 5)

y
→

q
{(4 : a4), (5 :

a5), (6 : a6), (7 : a7)}, (4 ≺ 5) ∧ (6 ≺ 7)
y

. Missing constraint formulas stand for true.

Example 9. In the trace in Example 8, task t1 is reduced first, t2 second, and t3 third. If
instead t3 is reduced before t2, we would then have the following trace:
q
{(1 : t1)}, true

y
→

q
{(2 : t2), (3 : t3)}, true

y
→

q
{(2 : t2), (6 : a6), (7 : a7)}, (6 ≺

7)
y
→

q
{(4 : a4), (5 : a5), (6 : a6), (7 : a7)}, (4 ≺ 5) ∧ (6 ≺ 7)

y
. �

Using the notions of a decomposition trace and tree, we can now reformulate the prob-
lem that we intend to solve in more precise terms as follows. Given a hybrid-plan h for a
hybrid planning problem H, and a decomposition tree T induced by a successful decom-
position trace of h, we want to find a forest T ′ within T such that T ′ yields a perfect
justification but T ′ is not subsumed by some other forest within T that also yields the leaf-
level nodes of T ′. We can then take the hybrid-plan corresponding to the root nodes of T ′
as a preferred specialisation of h for T andH. This process is illustrated below.

Example 10. Suppose the decomposition trace shown in the above example is a successful
trace of hybrid-plan h =

q
{(1 : t1)}, true

y
, and that plan (4 : a4) · (5 : a5) · (7 : a7)

(a subsequence of one of the trace’s associated primitive plans) is a perfect justification for
some problem H—i.e., labelled task (6 : a6) is redundant. Then, a preferred specialisation
of h for H, relative to the tree in Figure 6, is the hybrid-plan

q
{(2 : t2), (7 : a7)}, true

y

represented by the root nodes of the forest depicted below. Observe that (i) the forest occurs
within the tree in Figure 6; (ii) the forest yields the aforementioned perfect justification; and
that (iii) there is no other forest occurring within the tree in Figure 6 that is more abstract
than the forest below.11

(2 : t2) 4 ≺ 5

(4 : a4) (5 : a5) (7 : a7) �

In order to develop a formal account of a preferred specialisation, we shall formalise the
notions of decomposition traces and trees, define what it means for a tree to be executable
in a state, and finally, what it means for one such tree to dominate another. Informally,
a decomposition tree is executable in a state if all constraints (labels) associated with the
tree’s nodes are satisfied, and the tree’s leaf-level nodes (primitive tasks) are executable.
Given two forests within an executable decomposition tree, one forest dominates the other
if the former “contains” the latter and yields the same leaf-level nodes.

11 Note that the forest with root nodes (2 : t2) and (3 : t3) is not more abstract than the forest in this
example because the former forest does not yield the same leaf-level nodes.

18 Lavindra de Silva et al.

5.1 Decomposition Traces and Trees

Formally, a decomposition trace of a task network (or hybrid-plan) is a sequence of ground
task networks, where each task network di in the sequence is a reduction of a task in the
preceding task network di−1. Such a sequence may be infinite if recursive compound tasks
occur in methods (a recursive compound task is shown in Example 2).

Definition 8 (Decomposition Trace). Let D = 〈Op,Me〉 be an HTN domain, I an initial
state, and d a task network. A decomposition trace of d relative to Me is a possibly infinite
sequence of ground task networks λ = d1 · . . . · dn · . . ., such that d1 = dθ (for some
substitution θ), and for each di, i > 0, it holds that: (i) di+1 = reduce(di, n,m), where n
is a task label occurring in di and m is a ground instance of a method in Me; and (ii) there is
no common task label occurring in si+1 \ si and d1 · . . . · di (where each dj is of the formq
sj , φj

y
). A finite decomposition trace d1 · . . . · dn of d relative to Me is complete if dn is

a primitive task network. Finally, a complete decomposition trace d1 · . . . · dn of d relative
to Me is successful relative to I and D if sol(dn, I,D) 6= ∅. �

We highlight three important subtleties in this definition. First, a decomposition trace
encodes a specific order on the reduction of tasks. Second, all tasks added into a trace via
reduction—i.e., the set si+1 \ si—have different labels to those that already occur in the
trace, ensuring that task labels are unique across the trace. Third, the last task network in a
complete decomposition trace may have tasks for which no ordering is specified, and thereby
yield more than one primitive plan solution. The trace in Example 9 ends with such a task
network, where tasks a5 and a6 are not ordered.

Next, we define an induced decomposition tree. Recall that this simply represents a
decomposition trace in the form of a tree, depicting how compound tasks are reduced via
methods into child tasks and their associated constraints. Specifically, a node of an induced
decomposition tree is a labelled (compound or primitive) task, and each node is labelled with
the constraints (if any) that are enforced on its child tasks; root nodes and those representing
ε (dummy) tasks are distinguished by the ε symbol.12 The definitions that follow rely on
notions that center upon a vertex-labelled tree, which are listed in Appendix C.

Definition 9 (Induced Decomposition Tree). Let λ =
q
s1, φ1

y
· . . . ·

q
sk, φk

y
be a de-

composition trace of some task network relative to a method-library Me. Suppose Vλ is the
set of labelled tasks mentioned in λ, and rt = (root : ε). The induced decomposition tree
of λ, then, is the vertex-labelled tree 〈Vλ ∪ {rt}, E, `V 〉, where

E =
⋃
u∈s1

(
{(rt, u)} ∪ edges∗(u)

)
,

edges∗(u) = edges(u) ∪
⋃

(u,u′)∈edges(u)

edges∗(u′),

edges(u) = {(u, u′) | 0 < i < k, u′ ∈ (si+1 \ si), u ∈ si, u 6∈ si+1}; and

`V = {(rt, φ1)} ∪⋃
u∈Vλ

{(u, φ) | 0 < i < k, u ∈ si, u 6∈ si+1, φi+1 = φi ∧ φ} ∪⋃
u∈Vλ

{(u, true) | (u, u′) 6∈ E}.13 �

12 Recall from Section 2.3 that it is sometimes useful to have a method consisting of a single ε task. Such
a method would amount to “doing nothing.”

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 19

A (general) decomposition tree T of a task network d relative to a method-library Me
is the induced decomposition tree of some decomposition trace of d relative to Me. As in
the definition of a decomposition trace (Definition 8), the set si+1 \ si above is the set of
labelled tasks added by the reduction of labelled task u. Observe that the label of the root
node is the constraint formula φ1 in the first task network of λ, and that leaf nodes have
label true. Definition 9 is a generalisation of the definition of a decomposition tree in [24],
which concerns trees that are not associated with state and variable binding constraints.

5.2 Executable Decomposition Trees

So far, decomposition trees have been merely syntactic objects independent from states—
the former describe legal syntactic ways of transforming tasks into other tasks with respect
to the method-library. We shall now combine decomposition trees with states to define what
it means for a decomposition tree to be executable in a state, with respect to a particular
primitive plan yielded by the tree. To this end, we first define the following auxiliary notions:
complete decomposition tree, linearisation, and full decomposition tree.

A decomposition tree (of a task network relative to a method-library) is complete if no
leaf node mentions a compound task, i.e., a leaf node can only represent a primitive task or a
node of the form (n : ε) (i.e., a dummy task). A linearisation τ of a complete decomposition
tree T is a permutation of the elements in leaves(T) \ {(root : ε)}, i.e., a labelled primitive
plan built from exactly the non-root elements in leaves(T). For example, a linearisation of
the tree in Figure 7 is the sequence (2 : a1) · (3 : a2) · (6 : a3) · (7 : a4) · (9 : a5) · (12 :
a7) · (10 : a6) · (13 : a8) · (15 : a9) · (17 : ε). Notice that the ordering of elements
in a linearisation is independent of any ordering constraints enforced on them in T , and
that a linearisation is independent of any state. Hence, while a linearisation of a hybrid-
plan’s complete decomposition tree is a (labelled) primitive plan, the linearisation is not
necessarily a (labelled) primitive plan solution for the hybrid-plan (for some initial state).
Finally, a full decomposition tree, denoted T τ , is a tuple 〈T , τ〉, where T is a complete
decomposition tree and τ is a linearisation of T . Thus, a full decomposition tree encodes
not just how tasks are completely reduced into primitive tasks, but also how these may be
ordered to form a labelled primitive plan.

Then, we say that a full decomposition tree T τ is executable in an initial state I if the
tree is “legal” in I, i.e., all constraints occurring in the tree are satisfied in I, and the labelled
primitive plan τ is executable in I. We demonstrate what it means for a constraint formula
to be satisfied in a state (relative to the tree) with the following example; a formal definition
can be found in Appendix A (Definition 13).

Example 11. Consider the full decomposition tree T τ , where T is the complete decompo-
sition tree in Figure 7 and linearisation τ = (2 : a1) · (3 : a2) · (6 : a3) · (10 : a6) · (7 :
a4) · (9 : a5) · (12 : a7) · (13 : a8) · (15 : a9) · (17 : ε). Suppose that we want to
determine whether the constraint formula of node (4 : t2)—i.e., (5 ≺ 8) ∧ (5 ≺ 11)—is
satisfied relative to the full decomposition tree (the initial state is not needed in this example
as we only deal here with ordering constraints). Observe that (5 ≺ 8) is indeed satisfied in
τ because all primitives corresponding to task label 5—i.e., (6 : a3) and (7 : a4)—precede

13 Actually, φi will have to be modified so that all occurrences of the task label in u are replaced appro-
priately with expressions of the form first[] or last[], as done in the definition of a reduction (Definition 15).
Note that since `V is a mapping from task labels to constraint formulas, we sometimes treat `V as a set of
ordered pairs for convenience.

20 Lavindra de Silva et al.

(root : ε) 1 ≺ 4 ∧ 4 ≺ 14

(1 : t1) 2 ≺ 3

(2 : a1) (3 : a2)

(4 : t2) 5 ≺ 8 ∧ 5 ≺ 11

(5 : t3) 6 ≺ 7

(6 : a3) (7 : a4)

(8 : t4) 9 ≺ 12

(9 : a5) (12 : a7)

(11 : t5) 10 ≺ 13

(10 : a6) (13 : a8)

(14 : t6) 15 ≺ 16

(15 : a9) (16 : t0)

(17 : ε)

Fig. 7: A complete decomposition tree of task network d =
q
{(1 : t1), (4 : t2), (14 :

t6)}, (1 ≺ 4) ∧ (4 ≺ 14)
y

. Node (17 : ε) represents an empty reduction.

all the primitives corresponding to task label 8—i.e., (9 : a5) and (12 : a7). However,
constraint (5 ≺ 11) is not satisfied in τ because one of the primitives corresponding to task
label 11—i.e., (10 : a6)—does not precede all the primitives corresponding to task label 5.
Consequently, formula (5 ≺ 8)∧(5 ≺ 11) is also not satisfied. On the other hand, if instead
we have τ = (2 : a1) · (3 : a2) · (6 : a3) · (7 : a4) · (9 : a5) · (12 : a7) · (10 : a6) · (13 :
a8) · (15 : a9) · (17 : ε), then the formula (5 ≺ 8) ∧ (5 ≺ 11) is indeed satisfied. �

Our formal definition of an executable (full) decomposition tree refers to the construct
Res∗(act1 · . . . · actn, I,Op) from Section 2.1, which denotes the state resulting from ap-
plying actions act1 · . . . · actn from the initial state I.

Definition 10 (Executable Decomposition Tree). Let T τ be a full decomposition tree, I
be an initial state, and let Op be an operator-library. Then, T τ is executable in I relative to
Op if (i) for all u ∈ V (T), constraint formula `V (u) is satisfied in T τ relative to I and Op,
and (ii) Res∗(τ, I,Op) is defined. �

In what follows, we use 〈T τ , I,Op〉 |= φ to denote that constraint formula φ is satisfied
in T τ relative to I and Op, or we simply write T τ |= φwhen the operator-library is obvious
from context, and the constraint formula does not mention any HTN state constraints (and
consequently, the initial state is not needed to check whether φ is satisfied, as illustrated in
the example above).14

The following lemma states that whenever there is a primitive plan solution associated
with a complete decomposition trace, then that plan, combined with the trace’s induced
tree, amounts to an executable decomposition tree, and vice versa. The lemma relies on
construct comp(d, I,D) (Definition 14), an element of which is a grounding and ordering
of the primitive tasks in d that does not conflict with the constraints imposed on them in d.
(Proofs for lemmas can be found in Appendix B.)

Lemma 1. Let D be an HTN domain, λ = d1 · . . . · dk a complete decomposition trace of
a task network relative to Me, and T the induced (complete) decomposition tree of λ. Then,
there exists a plan act1 · . . . · actm ∈ comp(dk, I,D) if and only if the full decomposition
tree T τ is executable in I relative to Op, with τ = (n1 : act1) · . . . · (nm : actm).

14 We note that while the truth value of any constraint occurring in a full decomposition tree can be de-
termined given the initial state, this is not necessarily the case for standard (non-full) decomposition trees,
because the satisfaction of a constraint generally depends on the total-ordering chosen for the primitive tasks.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 21

This lemma is a variant of the first proposition in [24], which concerns the existence
of a trace that yields a task network whenever the latter can also be yielded by a tree. The
above lemma is restricted to a tree whose yield consists of primitive tasks, and these have a
linearisation that is executable in the initial state.

5.3 Preferred Specialisations

We have now provided most of the formal machinery needed for our final definition of
a preferred specialisation. Recall that a preferred specialisation is one that is both non-
redundant and as abstract as possible within the confines of a given decomposition trace
of the hybrid-plan. In order to define a preferred specialisation we rely on some auxiliary
notions centering upon cuts in a decomposition tree and dominance between cuts.

A cut in a decomposition tree, combined with the cut’s projection, concretises our notion
of a forest within a tree. Informally, a cut in a decomposition tree is a subset of its nodes
which, together with their constraints, can form a hybrid-plan. It is important to ensure that
nodes in a cut are not descendants of other nodes that are also in the cut; e.g., while the
set of nodes {(1 : t1), (4 : t2)} is a (legal) cut in the tree shown in Figure 7, the set
{(4 : t2), (5 : t3)} is not, because (5 : t3) is a descendant of (4 : t2).

Guided by the notion of maximal-abstraction (Definition 6), the notion of dominance
intuitively states that some cuts are more abstract than others. For example, if we take cuts
π1 = {(4 : t2)} and π2 = {(5 : t3), (8 : t4), (11 : t5)} in the tree shown in Figure 7, π1
dominates π2 because the latter occurs in the descendants of the former, and both π1 and
π2 yield the same non-ε primitive tasks. More precisely, a cut π1 dominates a cut π2 if π1,
together with its descendants, contains π2, and π1 produces exactly the same non-ε primitive
tasks as those produced by π2. Observe that in general, whenever a cut π1 dominates another
cut π2, any compound task that is a descendant of π1 but not in π2 nor its descendants can
only yield ε tasks. Formally, the notion of a cut and of dominance is defined as follows.

Definition 11 (Cut & Dominance). A cut in a decomposition tree T is a set of nodes π ⊆
V (T), with π 6= {(root : ε)}, such that for all u, u′ ∈ π, with u 6= u′, it is the case that
(descendants(u, T) ∪ {u}) ∩ (descendants(u′, T) ∪ {u′}) = ∅. Given cuts π′ and π in a
decomposition tree T , cut π′ dominates π in T if π ⊆

⋃
u∈π′ descendants(u, T) ∪ π′, and

actions(T |π′) = actions(T |π).15 �

We use T |π to denote the decomposition tree obtained by projecting on a cut π ⊆ V (T)
in the decomposition tree T = 〈V,E, `V 〉, that is, the new tree T ′ obtained by projecting
only on the nodes in π, trivially adding node (root : ε) as root with π as its children, and
setting label `V ((root : ε)) to true. For example, Figure 8 shows the projected tree for
cut {(1 : t1), (4 : t2)}. The notion of projecting on a cut π trivially generalises to a full
decomposition tree T τ , which we denote as T τ |π . Formal definitions for projections are
given in Appendix A (from Definition 19).

We can now define the notion of a preferred specialisation of a hybrid-plan. For conve-
nience, we use the construct decsol(h,H), where H = 〈I,G,D〉, to denote the set of full
decomposition trees T τ of a hybrid-plan h relative to a domain D, where (i) T τ is exe-
cutable in I relative to Op, and (ii) τ ∈ sol(I,G,Op), i.e., the linearisation τ achieves the

15 Function actions(T) denotes the set of non-ε nodes that are primitive in T , i.e., actions(T) = {(n :
t) | (n : t) ∈ leaves(T), t 6= ε}.

22 Lavindra de Silva et al.

(root : ε) true

(1 : t1) 2 ≺ 3

(2 : a1) (3 : a2)

(4 : t2) 5 ≺ 8 ∧ 5 ≺ 11

(5 : t3) 6 ≺ 7

(6 : a3) (7 : a4)

(8 : t4) 9 ≺ 12

(9 : a5) (12 : a7)

(11 : t5) 10 ≺ 13

(10 : a6) (13 : a8)

Fig. 8: The decomposition tree obtained from the tree in Figure 7 by projecting on cut
{(1 : t1), (4 : t2)}.

goal condition G. Moreover, given a cut π in a full decomposition tree T τ , we define the
ordering constraints implied by T τ on π as true if π = ∅, and otherwise as follows:16

Φ[T τ , π] =
∧
{n1≺n2 | (n1:t1),(n2:t2)∈π,T τ |=n1≺n2} .

Then, given an executable (full) decomposition tree, a preferred specialisation is essentially
a cut in it whose corresponding forest yields a perfect justification, and is not dominated by
any other cut in the tree—i.e., the cut is as abstract as possible in the tree.

Definition 12 (Preferred Specialisation). LetH be a hybrid planning problem, h a hybrid-
plan, and T τ ∈ decsol(h,H). Then, a hybrid-plan hπ is a preferred specialisation of h
within T τ forH if hπ =

q
π, Φ[T τ , π]

y
for some cut π in T τ such that

1. the projected linearisation τ |actions(T |π) is a perfect justification for 〈I,G,Op〉;
2. the projected full decomposition tree T τ |π is executable in I relative to Op; and
3. there is no cut π′ in T , with |π′| < |π|, that dominates π in T and such that T τ |π′ is

executable in I relative to Op. �

Note that a preferred specialisation hπ of a hybrid-plan h does not necessarily represent
a refinement (i.e., an HTN decomposition) of h, as π may need to be a proper subset of
a refinement’s tasks in order to yield a perfect justification. Thus, hπ is a refinement-like
“extraction”, from tree T , of an alternative for h that meets the above conditions. Recall
that the motivation behind searching for a preferred specialisation is that finding an ideal
hybrid-plan is likely to be more computationally expensive.

The third condition above ensures that a cut π′ that contains π but also contains other
compound tasks that lead to ε tasks is not preferred over π. Nonetheless, such a cut π′

may well be a preferred specialisation—even if it does contain tasks that lead to ε tasks.
Preferred specialisations that do not contain any compound tasks leading to ε tasks are called
minimal preferred specialisations. Formally, a preferred specialisation

q
s, φ

y
of a hybrid-

plan h within a full decomposition tree T τ for a hybrid planning problem H is a minimal
preferred specialisation of hwithin T τ forH if there does not exist a preferred specialisationq
s′ ⊂ s, φ′

y
of h within T τ forH, where φ′ is obtained from φ by replacing all (ordering)

constraints that mention some task label in (s \ s′) with true.
The following result guarantees that there is always a preferred specialisation for a

hybrid-solution. More specifically, whenever an executable decomposition tree that achieves
a given goal condition exists for a hybrid-plan, a preferred specialisation also exists for it.

Theorem 2. Let H be a hybrid planning problem, and let h be a hybrid-plan. If T τ ∈
decsol(h,H), then there exists at least one preferred specialisation of h within T τ forH.

16 Note that T τ |= n1 ≺ n2 holds if all leaves of n1 occur before all leaves of n2 in τ .

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 23

Proof. Let T τ ∈ decsol(h,H) be any full decomposition tree (recall τ ∈ sol(I,G,Op) is
a labelled primitive solution forH). Then, it follows from the definition of a decomposition
tree and Lemma 1 that τ ∈ sol(h, I,D) is a primitive plan solution for h. Let τ ′ be a
subsequence of τ that is a perfect justification for C = 〈I,G,Op〉, and π be the “low-level”
cut of τ ′, i.e., π = {(n : t) | (n : t) ∈ τ ′}. There are two cases to consider; the first is that
I |= G. Then, π = ∅ and hybrid-plan hπ =

q
∅, true

y
is indeed a preferred specialisation

of h within T τ forH.
The second case to consider is where I 6|= G. Then, let hybrid-plan hπ =

q
π, Φ[T τ , π]

y
.

Observe that the projections τ |actions(T |π) = τ ′ yield a perfect justification for C, and
thereby that the first condition in Definition 12 (Preferred Specialisation) holds for hybrid-
plan hπ to be deemed a preferred specialisation (of hybrid-plan h within T τ for H). The
second condition in the definition also holds for hπ because the label (constraint formula)
of the root node in T τ |π is true, and Res∗(τ ′, I,Op)—the state resulting from applying τ ′

in I—is defined, and therefore T τ |π is executable in I relative to Op (Definition 10).
Now, suppose that hπ does not meet the third condition in Definition 12, i.e., there does

exist a cut π′ in T , with |π′| < |π|, that dominates π in T and such that T τ |π′ is executable
in I relative to Op. Then, since π′ dominates π in T , it must hold, according to Definition 11
(Dominance), that actions(T |π′) = actions(T |π), and therefore, that τ |actions(T |π′) = τ ′

is also a perfect justification for C. Given that T τ |π′ is executable in I relative to Op, if
hybrid-plan

q
π′, Φ[T τ , π′]

y
is still not a preferred specialisation of h within T τ for H,

then there must exist yet another cut π′′ in T , with |π′′| < |π′|, that dominates π′ in T
and such that T τ |π′′ is executable in I relative to Op. Observe that this reasoning can be
continued for π′′ like we did before for cut π′. However, since |π′′| < |π′|, this reasoning
can only be applied a finite number of times, until some cut πtop ⊆ children((root : ε), T)
is reached. Such a cut will have no strict subset that can dominate it in T , and hybrid-planq
πtop, Φ[T τ , πtop]

y
will therefore be a preferred specialisation of h within T τ forH. �

Since the dominance relation among cuts is not total, and there may well be more than
one perfect justification that can be obtained from a linearisation, there may also be more
than one preferred specialisation for a hybrid-plan within its executable decomposition tree.

Recall that our ideal hybrid-plan (Definition 7) defined a non-redundant plan that is
maximally-abstract among all conceivable hybrid-plans. On the other hand, a preferred spe-
cialisation is non-redundant and maximally abstract among only the hybrid-plans that oc-
cur within a particular decomposition tree of a given hybrid-plan. Thus, whenever an ideal
hybrid-plan does occur within such a tree, the former must also be a preferred specialisa-
tion of the given hybrid-plan. This relationship is concretised by the next theorem. In what
follows, we use decsolnr(h,H) ⊆ decsol(h,H) to denote the set of executable trees T τ
where τ |actions(T) is a perfect justification for problem 〈I,G,Op〉.17

Theorem 3. Let h be a hybrid-plan,H a hybrid planning problem, and T τ ∈ decsol(h,H).
Suppose there exists a cut π in T τ such that hπ =

q
π, Φ[T τ , π]

y
∈ ideal(H) and such that

there exists a full tree T πτπ ∈ decsolnr(hπ,H) that is equivalent to T τ |π , modulo their root
nodes. Then, hybrid-plan hπ is a preferred specialisation of h within T τ forH.

Proof. Let σ = τ |actions(T π) be the projected linearisation of actions representing cut π.
Then, observe that the following three conditions hold:

(a) σ is a perfect justification for 〈I,G,Op〉 (because T πτπ ∈ decsolnr(hπ,H));

17 Recall thatH = 〈I,G,D〉 and D = 〈Op,Me〉.

24 Lavindra de Silva et al.

(b) σ ∈ sol(hπ, I,D) follows from our first assumption in Section 2.3, the definition of a
decomposition tree, and Lemma 1; and

(c) the projected full tree T τ |π is executable in I relative to Op (because this holds for
T πτπ , which is equivalent to T τ |π modulo their root nodes).

Due to (a) and (c) above, the first two conditions in the definition of a preferred special-
isation of h within T τ forH (Definition 12) are met by hybrid-plan hπ . Next, we prove by
contradiction that the third condition in the definition is also met by hybrid-plan hπ .

Let us assume the contrary, i.e., that there does exist a cut π′ in T , with |π′| < |π|,
that dominates π in T and such that T τ |π′ is executable in I relative to Op. We shall
show that assuming this implies hπ 6∈ ideal(H), which contradicts an assumption of the
theorem. Observe from Definition 6 (Maximally-Abstract) and condition (b) above that to
show hπ 6∈ ideal(H), it is sufficient to show that the following four conditions hold for
hπ′ =

q
π′, true

y
(we take h′ = hπ′ and h = hπ for Definition 6):

d1 ∈ refn(hπ′ ,D); (1)

d2 =
q
sd2 , φd2

y
is a ground instance of d1 such that sd2 ⊇ π; (2)

d3 =
q
sd2 , φd2 ∧ Φ[T τ , π]

y
; and (3)

σ ∈ sol(d3, I,D). (4)

Equations (1) and (2) rely on the following two facts. First, given that T τ |π′ is executable
in I relative to Op, it follows that there is a (complete and ground) decomposition trace
d′1 · . . . · d′k of hπ′ relative to Me, with d′1 = hπ′ , such that T ′ = T |π′ is the induced
(complete and ground) decomposition tree of the trace. Second, as illustrated in Example 9,
changing the order in which reductions are performed on task networks in a decomposition
trace will still yield the same primitive task network.18 Then, since π′ dominates π and both
of these are (valid) cuts in T , it is not difficult to see that there is a decomposition trace of
hπ′ (relative to Me) that “goes through” π, namely the trace

d′1 =
q
s1, φ1

y
· . . . ·

q
sj , φj

y
· . . . · d′k =

q
sk, φk

y
,

where (i) s1 = π′ and φ1 = true; (ii) π ⊆ sj ; and (iii) j ∈ {2, . . . , k} (j 6= 1 because
|π| > |s1|). Finally, since it follows from Definitions 5 and 8 that task network

q
sj , φj

y

is simply a ground instance of some refinement in refn(hπ′ ,D), and since π ⊆ sj holds,
Equations (1) and (2) also hold.

We shall now show that Equations (3) and (4) also hold. Let σ′ = τ |actions(T ′). Since
π′ dominates π in T , we know that σ = σ′ (recall that σ = τ |actions(T π)). Moreover, since
T τ |π′ is executable in I relative to Op, it follows as before that σ ∈ sol(

q
s1, φ1

y
, I,D)

holds, and from [16] that σ ∈ sol(
q
sj , φj

y
, I,D) also holds.19 Finally, due to condition

(b) at the start of the proof, and since Φ[T τ , π] does not “conflict” with φj , i.e., the former
is simply the conjunction of ordering constraints entailed by σ on elements in π, it follows
that σ ∈ sol(

q
sj , φj ∧ Φ[T τ , π]

y
) also holds. Therefore, Equations (3) and (4) hold, and

hπ is not a maximally-abstract hybrid-plan (i.e., hπ 6∈ ideal(H)), which contradicts an
assumption of the theorem. �

18 Specifically, for a task network d that mentions two non-primitive tasks with labels n1 and n2, the task
networks reduce(reduce(d, n1,m1), n2,m2) and reduce(reduce(d, n2,m2), n1,m1) for any methods
m1 and m2 are equal up to variable and node label renaming [17].

19 Specifically, inference rule R2 in [16] states that if d′ ∈ red(d, I,D) and σ ∈ sol(d′, I,D), then
conclude σ ∈ sol(d, I,D).

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 25

Algorithm 1 Find-Preferred-Specialisation(h,H, T τ)
Require: Hybrid-plan h, hybrid planning problemH, T τ ∈ decsol(h,H), where T = 〈V,E, `V 〉.
Ensure: A preferred specialisation of h within T τ forH.

1: τ ′ ⇐ Get-Perfect-Justification(τ,H) // As in [21]; ignore ε tasks
2: π ⇐ {(n : t) | (n : t) ∈ τ ′}
3: for `⇐ 1 to height(T)− 1 do // Leaves are at level 0 (Definition 17)
4: for each node u at level ` in tree T do
5: if children(u, T) ⊆ π and 〈T τ |π , I,Op〉 |= `V (u) then // `V (u) is satisfied in T τ |π
6: π ⇐ (π \ children(u, T)) ∪ {u} // Replace u’s children with u
7: end if
8: end for
9: end for

10: π ⇐ π \∆⇐ {u | u ∈ π, all leaves of T |{u} are ε nodes}
11: φ⇐ Φ[T τ , π] // As defined just before Definition 12
12: return [π, φ]

6 Computing Preferred Specialisations

Algorithm 1 shows how a preferred specialisation can be computed from an executable
decomposition tree of a hybrid-plan h, given a hybrid planning problem H. To obtain an
executable decomposition tree, we do the following. First, we obtain a (standard) decompo-
sition tree by finding any successful decomposition trace for h, and then inducing a tree from
the trace as in Definition 9. We then create an executable decomposition tree by combining
the induced tree with a (labelled) primitive plan solution associated with the trace. Finding
a successful decomposition trace can be done with a trivial modification to the UMCP HTN
algorithm [19] so that it keeps track of all reductions performed on tasks, leaves the labels
of primitive tasks intact, and checks that primitive plans achieve a given goal condition.20

Basically, Algorithm 1 works bottom-up, by starting at the leaf-level with a labelled
primitive plan that is a perfect justification (line 1), and then repetitively abstracting one or
more steps into a higher-level more abstract step (lines 3-9). Once abstracting is no longer
possible, the ordering constraints entailed by the decomposition tree on the final set of tasks
are calculated (line 11) and the final hybrid-plan is returned. Next, we describe certain lines
in the algorithm in more detail.

In line 1, we ignore ε tasks when looking for a perfect justification because otherwise
they will be considered redundant, and will thereby be removed from τ . While ε tasks are
indeed redundant by definition (as they have no effects), they are still distinct from “real”
redundant primitive tasks, which typically do have preconditions and/or effects; more im-
portantly, ε tasks serve a special purpose in maintaining “links” to recursive compound tasks
as illustrated in the example below.

Example 12. Consider once again the elevator domain from Section 2.3, which has the
following two methods for handling compound task go-to-bottom for moving down one
floor until the ground floor (floor 0) is reached:

(go-to-bottom,
q
{(1 : move-down), (2 : go-to-bottom)}, (1 ≺ 2) ∧ (¬floor(0), 1)

y
)

(go-to-bottom,
q
{(1 : ε)}, (floor(0), 1)

y
).

20 Alternatively, the latter can be done by modifying the given task network
q
s, φ

y
by adding a con-

junct to the constraint formula to take the goal condition G into account, to obtain the network
q
s, φ ∧∧

l∈G′ (last[n1, . . . , nk], l)
y

, where {n1, . . . , nk} is the set of task labels occurring in s, and G′ is the set
of literals occurring in G.

26 Lavindra de Silva et al.

If the elevator is initially at the second floor, then the decomposition tree for hybrid-planq
{(0 : go-to-bottom)}, true

y
is shown in the figure below. Observe that, given the labelled

primitive plan solution τ = (1 : move-down) · (3 : move-down) · (5 : ε), the preferred
specialisation for the decomposition tree shown is

q
{(0 : go-to-bottom)}, true

y
. This can-

not be obtained if the initial cut π does not contain node (5 : ε), because state constraint
(floor(0), 5) will not hold without this node, resulting in it being impossible to “abstract
out” into higher nodes.

(root : ε)

(0 : go-to-bottom) 1 ≺ 2 ∧ (¬floor(0),1)

(1 : move-down) (2 : go-to-bottom) 3 ≺ 4 ∧ (¬floor(0),3)

(3 : move-down) (4 : go-to-bottom) (floor(0),5)

(5 : ε) �

At any point in time, the algorithm maintains a “current” cut π, which is initially a
perfect justification. In line 4, a node u in the tree is selected for abstraction: if all children
of u are part of the current cut, and the constraints imposed on the children of u are indeed
satisfied (line 5), then all the children of u are abstracted into node u (line 6). Therefore, the
abstraction process relies not only on the children of a node being present in the current cut,
but also on it being possible to satisfy the parent node’s constraint formula, with respect to
the current cut and state.

It is not difficult to see that the abstraction process is carried out bottom-up, by perform-
ing the abstraction of all nodes at a level k before abstracting nodes at level k + 1. Thus,
given linearisation τ ′ = (2 : a1) · (9 : a5) · (10 : a6) · (12 : a7) · (13 : a8) · (15 : a9) for
example, and the tree in Figure 7, the hybrid-plan that is eventually computed as a preferred
specialisation is h =

q
s, φ

y
, with

s = {(2 : a1), (8 : t4), (11 : t5), (14 : t6)}, and
φ = (2 ≺ 8) ∧ (2 ≺ 11) ∧ (8 ≺ 14) ∧ (11 ≺ 14) ∧ (2 ≺ 14).

Observe that this is a partially-ordered plan, since the execution of compound tasks with
labels 8 and 11 may be interleaved.

Finally, since nodes that decompose into ε tasks (e.g. (16 : t0) in Figure 7) may be
abstracted, i.e., added to the current cut π, line 10 removes any such “trivially” abstracted
nodes from the final cut. This is because we are interested in finding minimal specialisations:
those that only include compound tasks that “contribute” to the perfect justification.

The algorithm can be proved correct with respect to Definition 12 (Preferred Specialisa-
tion). In fact, it computes not just any preferred specialisation, but a minimal one.

Theorem 4. Algorithm 1 always terminates and returns a minimal preferred specialisation
of hybrid-plan h within T τ forH.

Proof. Termination (of loops in lines 3 and 4) follows trivially by the fact that the tree (and
its height) is finite. To prove that the algorithm returns a preferred specialisation of hybrid-
solution h within T τ for H, we claim that any value of cut π, after line 2 and before line
10, conforms to the first two conditions of Definition 12 (Preferred Specialisation). Since
the only line where π is modified is line 6, we prove the claim by induction on the number
of times k that line 6 is executed.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 27

For the base case, we take k = 0. Then, π = {(n : t) | (n : t) ∈ τ ′} is the “low-level”
cut of labelled primitive tasks. Since the projected linearisation τ |actions(T |π) is a perfect
justification for 〈I,G,Op〉, and since the projected full decomposition tree T τ |π—in which
all constraint formulas are true—is executable in I relative to Op, the first two conditions
of Definition 12 hold for π.

Suppose the claim holds for any k ≤ x, for some x ∈ N0. Now we show that the claim
also holds for k = x+1. Let πk−1 be the value of cut π after line 6 is executed k−1 times,
and let πk be the value of cut π after line 6 is executed k times. Then, from the algorithm
we know that πk = (πk−1 \ children(u, T)) ∪ {u} for some node u in the decomposition
tree, and from the induction hypothesis we know that cut πk−1 conforms to the first two
conditions of Definition 12. Since the only new task in πk (relative to πk−1) is u, and
〈T τ |πk−1 , I〉 |= `V (u) holds according to line 5, the first two conditions of Definition 12
are also met for πk, and our claim holds.

Next, we show that the third and final condition of Definition 12 also holds for any
computed cut. Let π be any cut immediately before line 10 in the algorithm, and let S
denote the following statement: there does not exist a node u ∈ V (T), with u 6= (root : ε),
that can be “abstracted out”, i.e., such that children(u, T) ⊆ π and 〈T τ |π, I〉 |= `V (u).
Observe from the algorithm that S holds. To show that the third condition of the definition
holds for π, it is sufficient to prove that S entails that there does not exist a cut π′ in T , with
|π′| < |π|, that dominates π in T and such that T τ |π′ is executable in I relative to Op.

Let us assume the contrary (i.e., that S holds but that the third condition of the definition
does not). Let T ′ = T |π′ and τ ′ = τ |leaves(T ′). Since π′ dominates π, they are both (valid)
cuts, and π contains all tasks (including ε tasks) in linearisation τ or their corresponding
abstract nodes, it is not difficult to see that there must exist a sequence of cuts

(π′1 = π′) · π′2 · . . . · (π′k = π)

such that for each i ∈ {2, . . . , k}, with k > 1, we have that π′i = (π′i−1 \ {u}) ∪
children(u, T ′) for some u ∈ π′i−1.21 Therefore, there is a node u ∈ V (T ′), with u 6=
(root : ε), such that children(u, T ′) ⊆ π. Moreover, since T ′τ ′ is executable in I rel-
ative to Op, we know that 〈T ′τ ′ , I〉 |= `V (u), and therefore, that 〈T τ |π, I〉 |= `V (u).
Consequently, S cannot hold, which contradicts our assumption. Thus, hybrid-plan hπ =q
π, Φ[T τ , π]

y
is indeed a preferred specialisation of hybrid-solution h within T τ forH.

Finally, the hybrid-plan returned by the algorithm is a minimal preferred specialisation
of h within T τ due to line 10, which removes from π labelled tasks that are either labelled
ε tasks, or those for which only labelled ε tasks occur in leaves. �

Note that while we do extract a perfect justification from τ in line 1, which is NP-hard
[21], we could instead use any other function that extracts a “desirable” primitive solution
from τ . For example, we could extract a so-called well justification [21] instead, which is a
weaker notion than perfect justification, but computable in polynomial time on the length of
the given primitive solution. An action is well justified if and only if it cannot be removed
from the plan without violating its correctness. While this means that no individual action
in a well justified plan can be unnecessary, the plan may still have groups of actions that are
unnecessary, making the plan “redundant” as per the definition of a perfect justification.

The following result states that once a “desirable” primitive plan has been obtained in
line 1, Algorithm 1 runs in polynomial time on the size of the decomposition tree T .

Lemma 2. Algorithm 1, after completion of line 1, runs in polynomial time on the size of
the decomposition tree T .

21 k > 1 because |π′| < |π|

28 Lavindra de Silva et al.

7 Related Work

Perhaps the most closely related work to ours is that of [30], where algorithms are developed
for generating an “optimal” hybrid-solution, i.e., one that yields an optimal primitive plan
solution, given a cost function for actions, an initial state, a goal condition, and a simpli-
fied hierarchical domain as input. Their approach associates compound tasks with models
comprising optimistic and pessimistic costs to reach given states, and their algorithms re-
semble classical planning algorithms but also take into account the compound task models.
Their preference for optimal hybrid-solutions is similar to how we prefer hybrid-solutions
that yield non-redundant primitive plan solutions, though we additionally require hybrid-
solutions to be maximally-abstract. Moreover, unlike [30], we do not focus on an algorithm
for generating hybrid-solutions: we assume a hybrid-solution is already provided (using any
algorithm) and focus on ‘improving’ it.

The work of [27] is similar to that of [30]: in both approaches, the planning problem
contains a goal condition. The former work describes a “hybrid planning” algorithm, where
classical planning is done alongside the HTN decomposition of compound tasks. However,
unlike our approach and that of [30], the algorithms in [27] do not produce hybrid-solutions.
Nonetheless, we have borrowed some crucial insights and notions from their approach, par-
ticularly the importance of respecting user-intent [22, 27] when planning in the context of
HTN-like know-how. To this end, they illustrate certain auxiliary notions, including maxi-
mal abstractness and dominance, which we concretise and analyse in our work. Unlike their
work, ours provides an account of abstraction that also takes into account the notion of re-
dundancy, which we consider relevant when classical planning is in the context of HTN-like
available knowledge. The strand of work on HTN planning with “task insertion” (TIHTN)
[24, 48, 3, 2] is related to [27] with the main difference being that the planning problem
in the latter (and in our work) contains a goal condition, whereas the planning problem in
TIHTN planning contains an initial task network.

Another relevant planner that fuses classical and HTN-like planning is GoDel [41].
GoDel is a hierarchical goal-based planner that uses so called “methods”—sequences of
subgoals—to achieve classical goal conditions. Importantly, their methods are simply sug-
gestions on how to achieve a goal, as opposed to strict requirements on how to achieve a
goal (task) as in standard HTN planning. This allows GoDel to be complete: if there exists
a primitive plan for a problem then GoDel will find it, even if the plan cannot be derived via
the methods supplied. This is similar to how we compromise on user-intent to avoid redun-
dancy, though they do it to avoid losing completeness. Besides not being an HTN planner
per se, GoDel differs from our work in that the issues of abstraction and redundancy are not
explored, which is the central focus of our work. Thus, our work could be used to inform
which plans GoDel should strive to find.

In [3], the HTN, GoDel, and TIHTN approaches are combined into a unified framework,
together with a semantics for “task sharing”, i.e., merging a pair of unconstrained, identical
tasks in a task network by removing one of them and updating constraints accordingly. Task
sharing seems to be a special case of removing redundant tasks, which does not require tasks
to be unconstrained, and may involve removing unique tasks in the network.

Efforts on adding classical planning to BDI-like systems have focused on synthesising
plans that are composed of low-level steps (e.g., [13]) or primitive actions (e.g., [47, 33, 10]).
In contrast, we have argued that hybrid-plans are more appropriate in a BDI execution con-
text, as these promote user-intent while retaining the flexibility and robustness properties of
such systems. Indeed, hybrid-plans also represent the kinds of plans that are manually writ-
ten and stored in the agent’s plan library. Our previous work [39, 38] also aimed at adding

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 29

planning into BDI systems, but only HTN-style planning as a local lookahead construct
over BDI procedural knowledge. As such, that approach did not deal with the problem of
generating novel plans not already available in the agent’s plan library.

Finally, there are approaches that focus on using hierarchical domain knowledge to
speed up classical planning. In [23, 5] the authors present algorithms that use domain con-
trol knowledge inherent in ConGolog/Golog programs as heuristics in classical planning.
They do this by modifying planning operators in order to restrict the applicability of their
preconditions, and include additional “bookkeeping” operators to guide the search toward
actions that are “desirable” as per the control knowledge. Their approach is similar to [4],
which embeds HTN domain control knowledge into classical planning problems in order
to speed up classical planning. In [8], sequences of primitive actions, called “macro” ac-
tions, are learnt automatically from sample primitive solutions to planning problems, and
the former are then used to speed up classical planning. Unlike the works described, we do
not deal here with guiding a classical planner toward finding a suitable primitive plan: we
focus instead on defining desirable notions of hybrid-plans and on improving a given one,
by achieving a balance between abstraction and redundancy.

8 Conclusion and Future Work

In this work, we have set the foundations for classical planning in BDI-like (i.e., hierar-
chical) agent systems. Specifically, we have argued that plans ought to respect and re-use
the user-supplied hierarchical BDI/HTN plan structures while at the same time avoiding the
redundancy inherent in resulting solutions. In doing so we have addressed an intrinsic ten-
sion between striving for abstraction and avoiding redundancy, by first characterising the
set of “ideal” hybrid-plans, which are non-redundant, minimal, and maximally abstract, and
then developing a more limited but feasible account of a “preferred” hybrid-plan in which
the given hybrid-plan is “specialised” into a new one that is non-redundant but preserves
abstraction as much as possible. Our analysis of the properties of the presented notions
showed, in particular, that ideal hybrid-plans and preferred specialisations always exist pro-
vided the planning problem can be solved, and that any ideal hybrid-plan occurring within
a decomposition tree is indeed also a preferred specialisation of the tree. Our final contribu-
tion was an algorithm that computes, in polynomial time, a preferred specialisation, given a
hybrid-plan and one of its decomposition trees.

There are at least two interesting directions for future work.22 First, as stated by [32], re-
moving redundant steps is only reasonable in some domains (e.g. in the Mars Rover domain
in Figure 1)—doing so is not acceptable in some others, e.g. if the HTN structures embody
strong preferences from the user, or necessary restrictions on solutions in order to express
certain problems, such as the language intersection problem [19]. To cater for strong prefer-
ences we could borrow ideas from [45] and generalise our framework with a more flexible
account in which all HTN preferences are assumed to be strong, and a redundant task is only
removed if the user has stated separately that the task is not strongly preferred.

It would also be interesting to generalise Algorithm 1 so that the only input is a hybrid
planning problem H = 〈I,G,D〉. The algorithm would find a primitive solution for the
corresponding classical planning problem 〈I,G,Op〉, extract a perfect justification from the
solution, and use HTN domain D in order to abstract the perfect justification. However, the
abstraction process is likely to be computationally harder than in Algorithm 1, as multiple

22 We thank the AI group at the University of Toronto and an anonymous reviewer for these ideas.

30 Lavindra de Silva et al.

abstraction alternatives may need to be tried if the steps to be abstracted occur in multiple
methods or method instances.

9 Acknowledgements

The authors are grateful to the two reviewers for their thorough study of the work, and for
their insightful and detailed comments which have helped improve this paper significantly.
This work was partially supported by Agent Oriented Software and the Australian Research
Council (grant LP0882234).

10 Appendices

A Auxiliary Definitions

In this appendix we define notions related to HTN reductions and the evaluation of HTN constraint formulas.
To determine whether an HTN constraint formula attached to a node occurring in a full decomposition tree is
satisfied, each constraint occurring in the formula needs to be evaluated against the given initial state I and
the full tree’s linearisation τ . A constraint is evaluated by determining whether the primitive actions yielded
by tasks associated with the labels mentioned in the constraint are in the correct order in τ (in the case of
ordering constraints), or whether certain conditions hold for those actions (in the case of state constraints).

Definition 13 (Satisfying a Constraint Formula). Let T τ , with τ = u1 · . . . ·um and T = 〈V,E, `V 〉, be
a full decomposition tree, let I be a state, and let Op be an operator library. Moreover, for any label n ∈ N0,
let idx(n) denote the set of indices of n’s leaf-nodes, i.e., idx(n) = {i | u = (n : t) ∈ V (T), u′ ∈
leaves(u, T), i ∈ {1, . . . ,m}, u′ = ui}.

Then, a ground constraint formula φ is satisfied in T τ relative to I and Op if φ is satisfied relative to I
and Op, where φ is evaluated as follows:

1. (c = c′) is true if c and c′ are the same constant symbols;
2. first[n, n′, . . .] evaluates to min(idx(n) ∪ idx(n′) ∪ . . .);
3. last[n, n′, . . .] evaluates to max(idx(n) ∪ idx(n′) ∪ . . .);
4. (n ≺ n′) is true if max(idx(n)) < min(idx(n′));
5. (l, n) is true if Res∗(u1 · . . . · umin(idx(n))−1, I,Op) |= l, i.e., (ground) literal l is true in the state

that results from applying to I the actions in τ up to the action immediately before n;
6. (n, l) is true if Res∗(u1 · . . . · umax(idx(n)), I,Op) |= l;
7. (n, l, n′) is true if Res∗(u1 · . . . · uk, I,Op) |= l, for all max(idx(n)) ≤ k < min(idx(n′));
8. logical connectives ¬,∧,∨ are evaluated as in propositional logic. �

Below we list two important definitions from [19] for convenience.23 The first defines a completion of
a primitive task network, which is basically an ordering and grounding of the primitive tasks in the network
such that the ordering conforms with the constraints imposed on those tasks by the network. The second
definition concretises the notion of an HTN reduction.

Definition 14 (Completion of a Task Network (adapted from [19])). Let σ = act1 · . . . · actm be a plan,
Op be an operator-library, S0 be the initial state, and Si = Res(acti, Si−1,Op) for i ∈ {1, . . . ,m} be the
intermediate states, which are all defined (i.e., the preconditions of each acti are satisfied in Si−1 and thus
actions in the plan are executable). Let d =

q
{(n1 : act′1), . . . , (nm : act′m)}, φ

y
be a ground primitive

task network, and ρ be a permutation such that whenever ρ(i) = j, act′i = actj . Then, σ ∈ comp(d, S0,D)
if the constraint formula φ of d is satisfied. The constraint formula is evaluated as follows:

1. (ci = cj) is true if ci, cj are the same constant symbols;
2. first[ni, nj , . . .] evaluates to min({ρ(i), ρ(j), . . .});
3. last[ni, nj , . . .] evaluates to max({ρ(i), ρ(j), . . .});
4. (ni ≺ nj) is true if ρ(i) < ρ(j);
5. (l, ni) is true if l holds in Sρ(i)−1;

23 We have adapted their notation slightly to be more in line with the notation used in this paper.

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 31

6. (ni, l) is true if l holds in Sρ(i);
7. (ni, l, nj) is true if l holds for all Sk, ρ(i) ≤ k < ρ(j); and
8. logical connectives ¬,∧,∨ are evaluated as in propositional logic.

If d contains compound tasks, then comp(d, S0,D) = ∅, and if d is a primitive task network containing
variables, then comp(d, S0,D) = {σ | σ ∈ comp(d′, S0,D), d′ is a ground instance of d}. �

Definition 15 (HTN Reduction [19]). Let d =
q
{(n : t), (n1 : t1), . . . , (nm : tm)}, φ

y
be a task

network containing a non-primitive task t. Let me = (t′,
q
{(n′1 : t′1), . . . , (n

′
k : t′k)}, φ

′y) be a method,24

and θ be the most general unifier of t and t′. Then,

reduce(d, n,me) =
q
{(n′1 : t′1)θ, . . . , (n

′
k : t′k)θ, (n1 : t1)θ, . . . , (nm : tm)θ}, φ′θ ∧ ψ

y
,

where ψ is obtained from φθ with the following modifications:

– replace (n ≺ nj) with (last[n′1, . . . , n
′
k] ≺ nj), as nj must come after every task in the decomposition

of n;
– replace (nj ≺ n) with (nj ≺ first[n′1, . . . , n

′
k]);

– replace (l, n) with (l, first[n′1, . . . , n
′
k]), as l must be true immediately before the first task in the de-

composition of n;
– replace (n, l) with (last[n′1, . . . , n

′
k], l), as l must be true immediately after the last task in the decom-

position of n;
– replace (n, l, nj) with (last[n′1, . . . , n

′
k], l, nj);

– replace (nj , l, n) with (nj , l, first[n′1, . . . , n
′
k]);

– everywhere that n appears in φ in a first[] or a last[] expression, replace it with n′1, . . . , n
′
k . �

The set of all reductions of task network d relative to HTN domain D is defined as follows:25

red(d,D) = {d′ | d′ = reduce(d, n,m), (n : t) ∈ s,m ∈ Me, d =
q
s, φ

y
}.

B Proofs for Lemmas

Proof of Lemma 1 (p. 20). We prove this by induction on the length k > 0 of the complete decomposition
trace λ = d1 · . . . · dk . Recall that a complete decomposition trace is ground, and that its last task network
mentions only primitive tasks. In what follows, let the induced decomposition tree T = 〈V,E, `V 〉, and root
rt = (root : ε).

[Base Case: k = 1.] In this case, trace λ is simply a primitive task network. If dk =
q
∅, true

y
, then the theo-

rem holds trivially because comp(dk, I,D) consists of the empty plan, and the full induced tree T τ , where
T = 〈{rt}, ∅, {(rt, true)}〉 and τ is the empty plan, is executable in I relative to Op. If dk =

q
sk, φk

y

such that sk is non-empty, then there are two cases to consider.
[⇒] From the assumption of the theorem we have that σ = act1 · . . . · actm ∈ comp(dk, I,D) and
τ = (n1 : act1) · . . . · (nm : actm). To show that the full decomposition tree T τ is executable in I
relative to Op (Definition 10) we rely on definitions 13 (Satisfying a Constraint Formula) and 14 (Completion
of a Task Network). For Definition 13, let us take the following vertices V =

{
rt, (n1 : act1), . . . , (nm :

actm)
}

, the following edges E =
{
(rt, (n1 : act1)), . . . , (rt, (nm : actm))

}
, and the following labels

`V =
{
(rt, φk), ((n1 : act1), true), . . . , ((nm : actm), true)

}
as the induced tree T . For Definition 14,

let us take plan σ together with task network dk =
q
{(n′1 : act′1), . . . , (n

′
m : act′m)}, φk

y
. Then, observe

from the two definitions that indices idx(n′i) = {ρ(i)} for any i ∈ {1, . . . ,m}, i.e., the LHS and RHS both
refer to the same index in σ for the given “reference” to an action. Moreover, since dk is a primitive task net-
work, observe from Definition 14 that min(idx(n)) = idx(n), and likewise, that max(idx(n)) = idx(n),
for any primitive task label n. Then, it follows straightforwardly that whenever a condition (numbered from
1 to 8) for evaluating constraint formula φk holds in Definition 14, the corresponding condition also holds in
Definition 13 for formula `V (rt) = φk . Therefore, combined with the fact that Res∗(act1 ·. . .·actm, I,Op)
is defined due to Definition 14 (Completion of a Task Network), we can conclude that T τ is indeed executable

24 All variables and task labels in the method must be renamed with variables and task labels that do not
appear anywhere else.

25 We have slightly adapted the definition from [19] to remove the mention of a state, which is not necessary.

32 Lavindra de Silva et al.

in I relative to Op. The proof for case⇐ is analogous.

[Induction Hypothesis] Let us assume that the theorem holds if k ≤ x, for some x ∈ N1.

[Inductive Step] Let k = x+ 1. There are two cases to consider.
[⇒] From the assumption of the theorem we have that act1 · . . . ·actm ∈ comp(dk, I,D). Moreover, from
the induction hypothesis, there exists a full decomposition tree T ′τ , with τ = (n1 : act1)·. . .·(nm : actm),
that is executable in I relative to Op, such that T ′ = 〈V ′, E′, `′V 〉 is the induced decomposition tree of
d2 · . . . · dk (recall that trace λ = d1 · d2 · . . . · dk), where each di =

q
si, φi

y
. Finally, we know

from Definition 8 (Decomposition Trace) that d2 = reduce(d1, n,me) for some task (n : t) ∈ s1 and

ground method me = (t,
q
sme, φme

y
), where s2 =

(
s1 \ {(n : t)}

)
∪ sme, and moreover, we know

from Definition 15 (HTN Reduction) that φ2 = φ′1 ∧ φme (where φ′1 is obtained from φ1 by doing the
modifications to φ1 as defined in Definition 15). We shall now prove that T τ is executable in I relative to
Op by showing that all constraint formulas (labels) of tasks in the induced tree T are satisfied.

Observe from Definition 9 (Induced Decomposition Tree) that the only differences between induced
trees T and T ′ are the following:

(1) the set of vertices V = V ′ ∪ {(n : t)}, where (n : t) is the task that was reduced;
(2) children((n : t), T) = sme;

(3) children(rt, T) =
(

children(rt, T ′) \ sme
)
∪ {(n : t)}; and

(4) the “new” labels `V =
(
`′V \ {(rt, φ2)}

)
∪ {(rt, φ1),

(
(n : t), φme

)
}.

Thus, we need to show that all the “new” constraints occurring in `V are satisfied in T τ (condition (4)
above). However, since we already know from the induction hypothesis that constraint formula `′V (rt) =
φ2 = φ′1 ∧ φme (for some formula φ′1) is satisfied in T ′τ (relative to I and Op), and therefore that formula
`V ((n : t)) = φme is also satisfied in T τ , we only need to show that `V (rt) = φ1 is satisfied in
T τ . To this end we consider the possible “structural” differences between φ1 and φ′1. In what follows, let
sme = {(nme1 : tme1), . . . , (nmek : tmek)}.

First, we consider the case where a constraint (last[nme1 , . . . , nmek] ≺ n′) occurring in φ′1 has the form
(n ≺ n′) in φ1 (recall n refers to the task that was reduced). By Definition 13 (Satisfying a Constraint
Formula), the constraint (last[nme1 , . . . , nmek] ≺ n′) evaluates to

max
(⋃

j∈{1,...,k}
idx(nmej)

)
< min(idx(n′)), (5)

which holds in T ′τ due to the induction hypothesis. By the same definition, (n ≺ n′) evaluates to

max(idx(n)) < min(idx(n′)). (6)

Then, since {(nme1 : tme1), . . . , (nmek : tmek)} = children((n : t), T) (from condition (2) above), it
follows from Definition 13 that equations (5) and (6) are equivalent. Therefore, (n ≺ n′) is indeed satisfied
in T τ relative to I and Op.

Second, we consider the case where a constraint (last[nme1 , . . . , nmek , n′1, . . . , n
′
j] ≺ n′) occurring

in φ′1 has the form (last[n, n′1, . . . , n
′
j] ≺ n′) in φ1. As before, (last[nme1 , . . . , nmek , n′1, . . . , n

′
j] ≺ n′)

evaluates to
max

(⋃
i∈{1,...,k}

idx(nmei) ∪
⋃

i∈{1,...,j}
idx(n′i)

)
< min(idx(n′)),

which holds in T ′τ due to the induction hypothesis, and which, as in the previous case, is equivalent to how
(last[n, n′1, . . . , n

′
j] ≺ n′) is evaluated. The remaining cases can be proved similarly: e.g. where a con-

straint (n′ ≺ last[nme1 , . . . , nmek]) occurring in φ′ has the form (n′ ≺ n) in φ. This concludes the proof
for the claim that the constraint formula (label) of each node in T is satisfied in T τ relative to I and Op.
Combined with the fact that Res∗(act1 · . . . · actm, I,Op) is defined due to Definition 14 (Completion of a
Task Network), we can conclude that T τ is indeed executable in I relative to Op.

[⇐] For this second case of the induction hypothesis, we have from the assumption of the theorem that T τ
is executable in I relative to Op, where τ = (n1 : act1) · . . . · (nm : actm), and we need to prove that
act1 · . . . · actm ∈ comp(dk, I,D). The proof for this case is analogous to the proof for case⇒. �

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 33

Proof of Lemma 2 (p. 27). The only non-trivial lines in the algorithm are 5 and 11. Line 11 runs in polynomial
time because Φ[T τ , π] can be computed by first finding all 2-permutations of set π using a nested for loop,
and then determining for each pair (n1 : t1), (n2 : t2) whether all leaves of n1 in T occur before all
leaves of n2 in T , with respect to τ . Line 5 runs in polynomial time for the following reason. Observe from
Definition 13 (Satisfying a Constraint Formula) that a constraint formula is evaluated by first assigning one
truth value (true or false) to each ground conjunct (constraint), and then evaluating the resulting interpretation,
of which the latter has a polynomial time algorithm [9]. When assigning truth values to constraints, the only
non-trivial part is computing the state that results from applying a labelled primitive plan τ ′ to a state I,
i.e., Res∗(τ ′, I,Op). Recall from Section 2.1 that for each action in τ ′, this simply involves first checking
whether the atom associated with each literal in the precondition of the action is a member of a given state,
and then adding/removing two sets of ground atoms (i.e., the action’s add and delete lists) to/from the state.�

C Graphs and Trees

This appendix defines some notions involving graphs. First, we define a directed graph and related terms.

Definition 16 (Graph Terminology). A directed graph G is the tuple 〈V (G), E(G)〉, where V (G) is a set
of vertices and E(G) ⊆ V (G) × V (G) is a set of edges. For any edge (v1, v2) ∈ E(G), we call v1 the
parent vertex and v2 the child vertex. Given a directed graph G, we define the following additional terms.

– G is cyclic if there exists a sequence of vertices v1·v2·. . .·vn ∈ V n, such that
– ∀i ∈ {1, . . . , n− 1}, (vi, vi+1) ∈ E, i.e., for each pair of adjacent vertices in the sequence, there

is an edge directed from the left vertex of the pair to its right vertex; and
– (vn, v1) ∈ E, i.e., there is an edge directed from the last vertex in the sequence to the first.

– G is rooted if |{v | v ∈ V, ∀v′∈V ((v′, v) 6∈ E)}| = 1, i.e., there is exactly one vertex without a parent
vertex. Given a rooted, directed graph G′ = 〈V ′, E′〉, the root of G′, denoted root(G′), is the vertex v
∈ V ′ such that for each v′∈V ′, (v′, v) 6∈ E′. �

A tree is a rooted directed graph that is not cyclic. Below we define some relevant terms involving trees.

Definition 17 (Tree Terminology). Let G = 〈V,E〉 be a tree.

– The children of a vertex v ∈ V in G, denoted children(v,G), is the set {v′ | (v, v′) ∈ E}.
– The descendants of a vertex v ∈ V in G, denoted descendants(v,G), is defined inductively as

descendants(v,G) = children(v,G) ∪
⋃

v′∈children(v,G)

descendants(v′, G).

– The leaves of G, denoted leaves(G), is the set {v | v ∈ V, (v, v′) 6∈ E}. Moreover, the leaves of a
vertex v ∈ V in G, denoted leaves(v,G), is the set (descendants(v,G) ∪ {v}) ∩ leaves(G).

– The height of a vertex v ∈ V in tree G, denoted height(v,G), is defined as follows. If v ∈ leaves(G),
then height(v,G) = 0. Otherwise, let v1 · . . . · vn, with n > 1, be the longest sequence such that
v = v1 and (vi, vi+1) ∈ E for all i ∈ {1, . . . , n − 1}. Then, height(v,G) = n − 1. Finally, the
height of the tree, denoted height(G), is height(root(G), G). �

The above definitions trivially generalise to a vertex-labelled tree, defined as follows.

Definition 18 (Vertex-Labelled Tree). Let LV be a finite set of labels. A vertex-labelled tree is the tuple
〈V,E, `V 〉, where 〈V,E〉 is a tree, and `V : V 7→ LV is a function that assigns each vertex with a label.
Given a vertex v ∈ V , we say that `V (v) is the label of v. �

Finally, we define the notion of projecting on a cut in a decomposition tree.

Definition 19 (Projection). The decomposition tree obtained by projecting on a cut π ⊆ V (T) in a decom-
position tree T = 〈V,E, `V 〉, denoted by T |π , is defined as follows:

T |π = 〈V ′, E′, `′V 〉,where
V ′ = {rt} ∪ π ∪ {u′ | u′ ∈ descendants(u, T), u ∈ π}, with rt = (root : ε);
E′ = {(rt, u) | u ∈ π} ∪ {(u, u′) | (u, u′) ∈ E and u, u′ ∈ V ′}; and
`′V = {(rt, true)} ∪ {(u, φ) | (u, φ) ∈ `V and u ∈ V ′, u 6= rt}. �

The notion of projecting on a cut π generalises to a full decomposition tree T τ , denoted by T τ |π , as
follows: T τ |π = T ′τ ′ with T ′ = T |π and τ ′ = τ |leaves(T ′), where for any set of labelled tasks π and
sequence of labelled primitive tasks τ , projection τ |π is the largest subsequence τ ′ of τ such that for each
task u ∈ τ ′, u ∈ π.

34 Lavindra de Silva et al.

References

1. Alami R, Chatila R, Fleury S, Ghallab M, Ingrand F (1998) An architecture for auton-
omy. The International Journal of Robotics Research (IJRR) 17(4):315–337

2. Alford R, Bercher P, Aha DW (2015) Tight bounds for HTN planning with task inser-
tion. In: Proc. of the International Joint Conference on Artificial Intelligence (IJCAI),
pp 1502–1508

3. Alford R, Shivashankar V, Roberts M, Frank J, Aha DW (2016) Hierarchical planning:
Relating task and goal decomposition with task sharing. In: Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI), pp 3022–3029

4. Alford RW, Kuter U, Nau D (2009) Translating HTNs to PDDL: A small amount of
domain knowledge can go a long way. In: Proc. of the International Joint Conference
on Artificial Intelligence (IJCAI), pp 1629–1634

5. Baier JA, Fritz C, McIlraith SA (2007) Exploiting procedural domain control knowl-
edge in state-of-the-art planners. In: Proc. of the International Conference on Automated
Planning and Scheduling (ICAPS), pp 26–33

6. Benfield SS, Hendrickson J, Galanti D (2006) Making a strong business case for multi-
agent technology. In: Proc. of the International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pp 10–15

7. Bordini RH, Braubach L, Dastani M, Seghrouchni AEF, Gómez Sanz JJ, Leite Ja,
O’Hare GMP, Pokahr A, Ricci A (2006) A survey of programming languages and plat-
forms for Multi-Agent systems. Informatica (Slovenia) 30(1):33–44

8. Botea A, Enzenberger M, Müller M, Schaeffer J (2005) Macro-FF: Improving AI plan-
ning with automatically learned macro-operators. Journal of Artificial Intelligence Re-
search (JAIR) 24:581–621

9. Buss SR (1987) The boolean formula value problem is in ALOGTIME. In: Proc. of the
ACM Symposium on Theory of Computing (STOC), pp 123–131

10. Claßen J, Eyerich P, Lakemeyer G, Nebel B (2007) Towards an integration of Golog
and planning. In: Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI), pp 1846–1851

11. de Boer FS, Hindriks KV, van der Hoek W, Meyer JJ (2007) A verification framework
for agent programming with declarative goals. Journal of Applied Logic 5(2):277–302

12. de Silva L, Padgham L (2004) A comparison of BDI based real-time reasoning and HTN
based planning. In: Proc. of the Australian Joint Conference on AI (AI), pp 1167–1173

13. Despouys O, Ingrand FF (1999) Propice-Plan: Toward a unified framework for planning
and execution. In: Proc. of the European Conference on Planning (ECP), pp 278–293

14. Dix J, Muñoz-Avila H, Nau DS, Zhang L (2003) IMPACTing SHOP: Putting an AI
planner into a multi-agent environment. Annals of Mathematics and Artificial Intelli-
gence 37(4):381–407

15. Dvorak F, Barták R, Bit-Monnot A, Ingrand F, Ghallab M (2014) Planning and acting
with temporal and hierarchical decomposition models. In: Proc. of the International
Conference on Tools with Artificial Intelligence (ICTAI), pp 115–121

16. Erol K, Hendler J, Nau DS (1994) HTN planning: Complexity and expressivity. In:
Proc. of the National Conference on Artificial Intelligence (AAAI), pp 1123–1128

17. Erol K, Hendler J, Nau DS (1994) Semantics for hierarchical task-network planning.
Tech. Rep. UMIACS-TR-94-31, Institute for Advanced Computer Studies, University
of Maryland, College Park, MD, U.S.A.

18. Erol K, Nau DS, Subrahmanian VS (1995) Complexity, decidability and undecidabil-
ity results for domain-independent planning: A detailed analysis. Artificial Intelligence

HTN-Like Solutions for Classical Planning Problems: An Application to BDI Agent Systems 35

(AIJ) 76(1-2):75–88
19. Erol K, Hendler JA, Nau DS (1996) Complexity results for HTN planning. Annals of

Mathematics and Artificial Intelligence 18(1):69–93
20. Fikes RE, Nilsson NJ (1971) STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence (AIJ) 2(3-4):189–208
21. Fink E, Yang Q (1992) Formalizing plan justifications. In: Proc. of the Conference of

the Canadian Society for Computational Studies of Intelligence, pp 9–14
22. Fox M (1997) Natural hierarchical planning using operator decomposition. In: Proc. of

the European Conference on Planning (ECP), pp 195–207
23. Fritz C, Baier JA, McIlraith SA (2008) ConGolog, Sin Trans: Compiling ConGolog into

Basic Action Theories for planning and beyond. In: Proc. of the International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR), pp 600–610

24. Geier T, Bercher P (2011) On the decidability of HTN planning with task insertion.
In: Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), pp
1955–1961

25. Georgeff MP, Ingrand FF (1989) Decision making in an embedded reasoning system.
In: Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), pp
972–978

26. Ghallab M, Nau DS, Traverso P (2004) Automated Planning: Theory and Practice. Mor-
gan Kaufmann Publishers Inc.

27. Kambhampati S, Mali AD, Srivastava B (1998) Hybrid planning for partially hierarchi-
cal domains. In: Proc. of the National Conference on Artificial Intelligence (AAAI), pp
882–888

28. Ljungberg M, Lucas A (1992) The OASIS air-traffic management system. In: Proc. of
the Pacific Rim International Conference on Artificial Intelligence (PRICAI), pp 15–18

29. Lloyd JW (1987) Foundations of Logic Programming; (2nd extended ed.). Springer-
Verlag

30. Marthi B, Russell SJ, Wolfe JA (2008) Angelic hierarchical planning: Optimal and on-
line algorithms. In: Proc. of the International Conference on Automated Planning and
Scheduling (ICAPS), pp 222–231

31. Meneguzzi F, Luck M (2013) Declarative planning in procedural agent architectures.
Expert Systems with Applications 40(16):6508–6520

32. Meneguzzi F, de Silva L (2015) Planning in BDI agents: A survey of the integration of
planning algorithms and agent reasoning. Knowledge Engineering Review 30(1):1–44

33. Meneguzzi F, Zorzo AF, da Costa Móra M (2004) Propositional planning in BDI agents.
In: Proc. of the ACM Symposium on Applied Computing, pp 58–63

34. Minton S, Bresina J, Drummond M (1994) Total-order and partial-order planning: A
comparative analysis. Journal of Artificial Intelligence Research (JAIR) 2:227–262

35. Nau DS, Cao Y, Lotem A, Muñoz-Avila H (1999) SHOP: Simple hierarchical ordered
planner. In: Proc. of the International Joint Conference on Artificial Intelligence (IJ-
CAI), pp 968–973

36. Nau DS, Au TC, Ilghami O, Kuter U, Murdock JW, Wu D, Yaman F (2003) SHOP2: An
HTN planning system. Journal of Artificial Intelligence Research (JAIR) 20:379–404

37. Rao AS (1996) AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Proc. of the European workshop on Modelling Autonomous Agents in a Multi-Agent
World : agents breaking away (MAAMAW), Springer, pp 42–55

38. Sardina S, Padgham L (2011) A BDI agent programming language with failure re-
covery, declarative goals, and planning. Autonomous Agents and Multi-Agent Systems
(JAAMAS) 23(1):18–70

36 Lavindra de Silva et al.

39. Sardina S, de Silva L, Padgham L (2006) Hierarchical planning in BDI agent pro-
gramming languages: A formal approach. In: Proc. of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp 1001–1008

40. Schattenberg B (2009) Hybrid planning and scheduling. PhD thesis, University of Ulm,
Germany

41. Shivashankar V, Alford R, Kuter U, Nau D (2013) The GoDeL planning system: A
more perfect union of domain-independent and hierarchical planning. In: Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI), pp 2380–2386

42. de Silva L, Sardina S, Padgham L (2009) First Principles Planning in BDI systems. In:
Proc. of the International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pp 1105–1112

43. de Silva L, Lallement R, Alami R (2015) The HATP hierarchical planner: Formalisa-
tion and an initial study of its usability and practicality. In: Proc. of the International
Conference on Intelligent Robots and Systems (IROS), pp 6465–6472

44. de Silva L, Sardina S, Padgham L (2016) Summary information for reasoning about hi-
erarchical plans. In: Proc. of the European Conference on Artificial Intelligence (ECAI),
pp 1300–1308

45. Sohrabi S, Baier JA, McIlraith SA (2009) HTN planning with preferences. In: Proc. of
the International Joint Conference on Artificial Intelligence (IJCAI), pp 1790–1797

46. Wallis P, Rönnquist R, Jarvis D, Lucas A (2002) The automated wingman - using JACK
Intelligent Agents for unmanned autonomous vehicles. In: Proc. of the IEEE Aerospace
Conference, pp 2615–2622

47. Wilkins DE, Myers KL, Lowrance JD, Wesley LP (1995) Planning and reacting in un-
certain and dynamic environments. Journal of Experimental and Theoretical Artificial
Intelligence (JETAI) 7(1):197–227

48. Xiao Z, Herzig A, Perrussel L, Wan H, Su X (2017) Hierarchical task network planning
with task insertion and state constraints. In: Proc. of the International Joint Conference
on Artificial Intelligence (IJCAI), pp 4463–4469

	Introduction
	Background
	Hybrid-Plans
	Ideal Hybrid-Plans
	Preferred Specialisations of Hybrid-Plans
	Computing Preferred Specialisations
	Related Work
	Conclusion and Future Work
	Acknowledgements
	Appendices
	Auxiliary Definitions
	Proofs for Lemmas
	Graphs and Trees

