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On coalescence time in graphs
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Abstract

Coalescing random walks is a fundamental stochastic process, where a set of particles perform
independent discrete-time random walks on an undirected graph. Whenever two or more par-
ticles meet at a given node, they merge and continue as a single random walk. The coalescence
time is defined as the expected time until only one particle remains, starting from one particle
at every node. Despite recent progress such as by Cooper, Elsésser, Ono, Radzik [CEOR13|
and Cooper, Frieze and Radzik [CFR09a], the coalescence time for graphs such as binary trees,
d-dimensional tori, hypercubes and more generally, vertex-transitive graphs, remains unresolved.

We provide a powerful toolkit that results in tight bounds for various topologies including
the aforementioned ones. The meeting time is defined as the worst-case expected time required
for two random walks to arrive at the same node at the same time. As a general result, we
establish that for graphs whose meeting time is only marginally larger than the mixing time
(a factor of log? n), the coalescence time of n random walks equals the meeting time up to
constant factors. This upper bound is complemented by the construction of a graph family
demonstrating that this result is the best possible up to constant factors. For almost-regular
graphs, we bound the coalescence time by the hitting time, resolving the discrete-time variant
of a conjecture by Aldous for this class of graphs. Finally, we prove that for any graph the
coalescence time is bounded by O(n?) (which is tight for the Barbell graph); surprisingly even
such a basic question about the coalescing time was not answered before this work. By duality,
our results give bounds on the voter model and therefore give bounds on the consensus time in
arbitrary undirected graphs.

We also establish a new bound on the hitting time and cover time of regular graphs, improving
and tightening previous results by Broder and Karlin [BK89], as well as those by Aldous and
Fill [AF02].
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1 Introduction

Coalescing random walks is a fundamental stochastic process on connected and undirected graphs.
The process begins with particles on some subset of the nodes in the graph. At discrete time-steps,
every particle performs one step of an independent random walk.! Whenever two or more particles
arrive at the same node at the same time-step, they merge into a single particle and continue as a
single random walk. The coalescence time is defined as the first time-step when only one particle
remains. The coalescence time depends on the number and starting positions of the particles.

Studying the coalescence time is of substantial importance in distributed computing: At the
heart of many distributed computing applications lie consensus protocols and leader election e.g.,
data consistency, consolidation of replicated states, synchronization of processes and devices [Pel02;
DGM+11] and communication networks [PVV09]). Other applications of the coalescence process
appear in robotics [GORN17]; here, robots perform random walks to gather samples from their
environment and need to communicate these samples to all other robots. Studying the coalescence
time also implies results for other interaction types of random walks including predator and prey
particles as well has annihilating particles [CFR09b].

Relationship to consensus protocols Arguably the simplest consensus protocol achieving
consensus on any undirected graph is the voter model. Initially, every node has a distinct opinion.
At every round, each node chooses synchronously one of its neighbors at random and adopts
that node’s opinion. The consensus time is defined as the time it takes until only one opinion
remains. The voting process viewed backwards is exactly the same as the coalescence process
starting with a random walk on every node; thus, the coalescence time and consensus time have the
same distribution. Despite recent progress by Cooper et al. [CEOR13; CFR09a] and Berenbrink et
al. [BGKM16], the coalescence time and consensus time are far from being well-understood—even
for certain fundamental graphs as we describe below. Recently, there have been several studies
on variants of the voter model, most notably 2-Choices and 3-Majority which received ample
attention [CER14; BCN+15; CER+15; BCN+16; CRRS16; EFK+16; BCE+17; GL17]. However,
the behavior of these processes is fundamentally different and despite their efficiency in reaching
consensus on expanders and cliques, they are unsuitable on more general undirected graphs as the
consensus time is exponential in some graphs.

In this paper, we follow the approach of Cooper et al. [CEOR13] and Hassin and Peleg [HP01]
and study the consensus time through the more tangible analysis of the coalescence time. When
starting with two particles, the coalescence time is referred to as the meeting time. Let tmeet
denote the worst-case expected meeting time over all pairs of starting nodes and let ¢.,, denote the
expected coalescence time starting from one particle on every node. It is clear that tyeet < teoal; as
for an upper bound, it can be shown that tcoa1 = O(tmeet logn), where n is the number of nodes in
the graph. The main idea used to obtain the bound is that the number of surviving random walks
halves roughly every tupeet Steps. A proof of the result appears implicitly in the work of Hassin and
Peleg [HPO1].

Aldous [Ald91] showed in continuous-time that the meeting time is bounded by the maximum
hitting time, tpi; 1= maxy, , thit(u, v), where this(u, v) denotes the expected time required to hit v
starting from vertex u. We observe that the result of Aldous also holds in discrete time. Thus,
this gives a bound of O(ty;;logn) for the coalescing time; however, in general O(ty;;) may be a
loose upper bound on tyeet. In recent work, Cooper et al. [CEOR13] provide results that are better

!Throughout this paper, we use random walk and particle interchangeably, assuming that every random walk has
an identifier.



than O(tmeet logn) for several interesting graph classes, notably expanders and power-law graphs.
They show that tea = O((log n + ||7|52%) - (1 — A2)™1), where A is the second largest eigenvalue
of the transition matrix of the random walk and 7 is the stationary distribution. Berenbrink et
al. [BGKM16] show that teoa = O(m/(dmin - ®)), where m is the number of edges, dpyin is the
minimum degree and ® is the conductance. Their result improves on that of Cooper et al. for
certain graph classes, e.g., cycles.

As mentioned before, despite the recent progress due to Cooper et al. [CEORI13] and Beren-
brink et al. [BGKM16], for many fundamental graphs such as the binary tree, hypercube and the
(d-dimensional) torus, the coalescing time in the discrete setting remains unsettled. We provide
a rich toolkit allowing us to derive tight bounds for many graphs including all of the aforemen-
tioned ones. Omne of our main results establishes a relationship between the ratios teoa)/tmeet and
tmeet /tmix, Where tmix = tmix(1/€) denotes the mixing time.? In particular, the result shows that if
tmeet /tmix = Q(log® n), then teoa) = O(tmeet); however, we also provide a more fine-grained tradeoff.
For almost-regular graphs,” we bound the coalescence time by the hitting time. For vertex-transitive
graphs we show that the coalescence time, the meeting time, and the hitting time are equal up to
constant factors. Finally, we prove that for any graph the coalescence time is bounded by O(n?);
it can be easily verified that this is tight by considering the barbell graph. Surprisingly, the right
bound on this fundamental quantity was not known prior to this work. Unlike in the analogous
case of the cover time [AF02] where such a bound can be easily derived, the argument in the case
of coalescence time appears significantly involved.® Prior to this work, Hassin and Peleg [HP01]
had shown a worst-case upper bound of O(n®logn). We also give worst-case upper and lower
bounds on the meeting time and coalescence time that are tight for general graphs and regular (or
nearly-regular) graphs.

In the process of establishing bounds on the coalescence time, we develop techniques to give
tight bounds on the meeting time. We apply these to various topologies such as the binary tree,
torus and hypercube. We believe that these techniques might be of more general interest.

The process of coalescing random walks was first studied in continuous time; in this case,
particles jump to a random neighboring node when activated according to a Poisson clock with
mean 1. As Cooper and Rivera [CR16] recently pointed out “It is however, not clear whether the
continuous-time results apply to the discrete-time setting”, and to the best of our knowledge, there
is no general way in which results in continuous time can be transferred to discrete time or vice
versa, even when the random walks in discrete-time are lazy. In the continuous time setting, Cox
[Cox89] show that the coalescence time is bounded by O(tp;;) for tori. Oliveira [Oli12] showed
that the coalescence time is O(tni) in general. In a different work, Oliveira [Olil3] derived so-
called mean field conditions, which are sufficient conditions for the coalescing process on a graph
to behave similarly to that on the complete graph up to scaling by the expected meeting time. His
main result (for non vertex-transitive graphs) in [Oli13, Theorem 1.2], implies that tcoa1 = O (tmeet)
whenever tpix - Tmax = O(1/ log* n). One of our main results, Theorem 1.1, implies tcoa1 = O(tmeet)
whenever tmix/tmeet = O(l/log2 n). Notice that since tyeet = 1/(||7]|3) = 1/Tmax, our condition is
considerably more general—however, the results in [Oli13] also establish mean-field behavior (that
is, when suitably scaled, the distribution of the coalescence time is similar to that on a complete
graph), while ours are only concerned with the expected coalescence time, t.,,. On the other
hand, our result also applies to graphs where .o > tmeet Such as the star graph, and together

2The mizing time is the first time-step at which the distribution of a random walk starting from an arbitrary node
is close to the stationary distribution.

3We call a graph almost-regular if deg(u) = ©(deg(v)) for all u,v € V.

4Cooper et al. [CEOR13] mistakenly stated, as a side remark, that this last result was a simple consequence of
their main result.



Graph tmix tmeet teoal thit

Binary tree O(n) O(nlogn) Thm. 1.3 & Thm. C.6 ©O(nlogn) Thm. 1.3 & Thm. C.6 O(nlogn)
Clique o(1) o(n) [CEOR13; BGKMI6] O(n) [CEOR13; BGKM16] & Thm. 1.1 o(n)
& Thm. 1.1
Cycle 0(n?) O(n?) [BGKM16] & Thm. 1.3 ©(n?) [BGKM16] & Thm. 1.3 0(n?)
Rand. r-reg.  ©O(logn) O(n) [CFR09a;  CEORI13; ©(n) [CFR09a; CEOR13; BGKM16] & Thm. 1.1  ©(n)
BGKM16] & Thm. 1.1
Hypercube O(lognloglogn) ©(n) Thm. 1.3 O(n) Thm. 1.1 O(n)
Path O(n?) O(n?) [BGKM16] & Thm. 1.3 ©(n?) [BGKM16] & Thm. 1.3 o(n?)
Star o(1) o(1) folklore O(logn) [HPO1], Prop. 3.4 & Thm. 1.5 O(n)
Torus (d=2) ©(n) O(nlogn) Thm. 1.3 O(nlogn) Thm. 1.3 O(nlogn)
Torus (d>2) O(n*?) O(n) Thm. 1.1 O(n) Thm. 1.1 O(n)

Table 1: A summary of bounds on the mixing, meeting, coalescence and hitting times for funda-
mental topologies for discrete-time random walks. All bounds on the mixing and hitting times
appear directly or implicitly in [AF02].

with Theorem 1.2, demonstrate that the trade-off between meeting and mixing time is the best
possible.

1.1 Contributions

In this work, we provide several results relating the coalescence and meeting times to each other
and to other fundamental quantities of random walks on undirected graphs. In particular, our focus
is on understanding for which graphs the coalescence time is the same as the meeting time, as we
know that t.oa is always in the rather narrow interval of [tmeet, O(tmeet - l0gn)]. As a consequence
of our results, we derive new and re-derive existing bounds on the meeting and coalescence times
for several graph families of interest. These results are summarized in Table 1 and discussed in
greater detail in Appendix C. Formal definitions of all quantities used below appear in Section 2.
Throughout this paper, we assume that random walks are lazy meaning that w.p. 1/2 the walk
stays put.

Our first main result relates tcoa t0 tmeet and tmix. As already mentioned in the introduction,
the crude bound tcoar = O(tmeet logn) is well-known. However, this bound is not in general tight,
as demonstrated by our result below.

Theorem 1.1. For any graph G, we have

tmix
teoal = ) (tmeet <1 + A/ = IOg n)) )
tmeet

Consequently, when tyeet = tmix 1082 1, teoal = O(tmeet)-

The proof of Theorem 1.1 appears in Section 3. One interesting aspect about this bound is
that it can be used to establish teoa = ©(tmeet) €ven without having to know the quantities et
or tmix. This flexibility turns out to be particularly useful when dealing with random graph models
for “real world” networks, where we establish (nearly-)tight and sublinear bounds (w.r.t. to the
number of vertices) in Section C.5.

Another interesting feature of our theorem is that the main result of Cooper et al. [CEORI13,
Theorem 1] can be reproven by combining [CEOR13, Theorem 2| with Theorem 1.1 (see Proposi-
tion B.2).



Our next main result shows that the bound in Theorem 1.1 is tight up to a constant factor,
which we establish by constructing an explicit family of graphs. Interestingly, for this family of
almost-regular graphs we also have t;; > tmeet, thus showing that ty;; may be a rather loose upper
bound for t.., in some cases.’

Theorem 1.2. For any sequence (an)ns0, an € [1,log?n] there exists a family of almost-regular
graphs (Gy,), with G,, having ©(n) nodes and satisfying ttrrn;et = O(ay,) such that

tmix
teoal = 2 (tmeet : (1 + - log n)) .

meet

The above two results show that that tmeet /tmix should be Q(log2 n) to guarantee that teon =
O(tmeet)~

A natural question is therefore whether in the case of structured sub-classes such as regular
graphs, or vertex-transitive graphs, or special graphs such as grids, tori, binary trees, cycles, real-
world (power-law) graphs, etc., better bounds can be obtained through other methods. We provide
results that are tight or nearly tight in several of these cases; some of these results were previously
known using other methods, some are novel to the best of our knowledge.

Theorem 1.3. The following hold for graphs of the stated kind

(i) For any graph G,
teoal = O (thit : log 10g n) :

(i) For any graph G with mazimum degree A and average degree d,
teoal = @ (thit + fmeet * IOg(A/d)) .
Hence for any almost-reqular graph G, teoa = O (tnit) -

(i1i) For any vertex-transitive G,
tcoal =0 (tmeet) =0 (thit) .

(iv) In the case of binary trees, d-dimensional tori/qrids, paths/cycles, expanders, hypercubes,
random power law graphs,’ we have teoal = O (tmeet )

The proof of the first three statements of Theorem 1.3 appear in Section 4 and the last statement
follows from the results in Appendix C. We point out that since tmeet = O(tni;) for any graph,”
Theorem 1.3 implies the bound ¢.ya = O(tp;t) not only for almost-regular graphs, but also for dense
graphs where |E| = ©(n?). This settles the discrete-time analogue of a conjecture by Aldous [AF(02,
Open Problem 14.13] for these graph classes. In very recent work, Oliveira and Peres improve on
these results and establish that teoa = O(tpit) holds for all undirected graphs [OP18].

Another natural question is to express tmeet OF teoal SOlely in terms of ¢y, the spectral gap
1 — Ao or other connectivity properties of G. We derive several such bounds on tyeet, thit and teoal-

As a by-product of our techniques, we also derive new bounds on ty;; and t..y, the cover-time.
The detailed results are given in Appendix B, but we highlight the results for regular graphs here:

"Note that the star also exhibits tnit > tmeet. However, the star is not almost-regular.

5The exact model is specified in Section C.5.

"In Proposition B.9, we prove this formally by following the proof for the continuous setting [AF02, Proposition
14.5).



Theorem 1.4. Let G be any graph with I' = A/§, where A is the maximum degree and & the
minimum degree. It holds that

this = O(Tn/ /1 — Ag) = O(T'n/®),

where ® is the conductance of the graph and Ao is the second largest eigenvalue of the transi-
tion matriz P of a lazy random walk. Consequently, tmeet < teoal = O(I'nlog(T')/v1— Ag) =
O(T'nlog(I")/®) and teoy = O(I'nlogn/®).

We point out that so far the best possible bound on f.., for regular graphs has been t¢o. =
O(n/(1 — A\2)) from [CEOR13].% The best possible bound on ty; (and teey) in terms of 1 — Ao, was
thit = O(n/(1 — A2)) and teoy = O(nlogn/(1 — A2)) due to Broder and Karlin [BK89] from 1989.
In all four cases, tmeet, teoal, thits and teov, Theorem 1.4 improves the dependency on 1/(1— Ag) (or,
equivalently ¢y ), by almost a square-root (we refer the reader to Theorem B.6 and Theorem B.8 for
further details). As a result of this improvement, we get a bound of O(n/®) on the hitting time
which is the best known bound on the hitting time (and cover time) in terms of the conductance
and improves the bound of [AF02, Corollary 6.2.1] by a factor of 1/®.

We also derive a general lower bound on tyeet that combines the trivial bound, 1/||x|3, with
the minimum number of collisions (see Theorem B.1.(¢i7)). Although this bound does not directly
yield the correct lower bound for binary trees, it forms the basis of a later analysis in Theorem C.6.

Finally, we also provide asymptotically tight worst-case bounds on tyeet and teoa. We show that
on any graph the coalescence time must be at least 2(logn) and is no more than O(n?). For regular
(and in particular vertex-transitive) graphs these bounds become Q(n) and O(n?) (See also Table 2
on page 51, which also contains an explanation why these bounds are asymptotically tight.) These
two new upper bounds for general and regular graphs complete the picture of worst-case bounds:

Theorem 1.5. The following hold for graphs of the stated kind.
(i) For any graph G we have tmeet € [Q2(1),0(n3)] and teoa € [2(logn), O(n?)].
(i) For any regular graph G we have tyeet, teoal € [2(n), O(n?)].

The proof of Theorem 1.5 appears in Section 5.

Summary of Technical Contributions

Our work also makes several technical contributions, which might be of interest for future re-
search on coalescing walks and other stochastic processes; these are explained in greater detail in
Section 1.2. Below we give a very brief summary.

¢ Conditional Expectation Approach. Most of our results make use of the conditional
expectation approach given in (1), a very simple yet extremely powerful tool, which to the
best of our knowledge has not been used in the context of meeting and coalescing times before.

¢ Division of Particles into two Groups. One basic ingredient in our proof is a domination
result that allows us to divide random walks into a group of “destroyers” (G;), which are
particles that cannot be eliminated, and a group of remaining particles (G3), which can be
eliminated by any other random walk. This domination result might be helpful to analyze
other stochastic processes involving different types of particles, e.g. [CFR09a].

8 Alternatively, the same bound as the known bound can also be derived from the bound on the conductance in
[BGKM16] together with Cheeger’s inequality.



e New Concentration Inequalities. We derive a new concentration inequality for random
walks on graphs in Section 4.1. Unlike previous approaches which are based on the mixing
time (or the closely related spectral gap), our new inequality depends only on the hitting
time and improves on the existing bounds when the mixing time is close to the hitting time.
These tighter inequalities are required to derive worst-case upper bounds on the colaescence
time.

1.2 Proof Ideas and Technical Contributions

When dealing with processes involving concurrent random walks, a significant challenge is to un-
derstand the behavior of “short” random walks. This challenge appears in several settings, e.g., in
the context of cover time of multiple random walks [AAK+11; ER09], where Efremenko and Rein-
gold [ER09, Section 6] highlight the difficulty in analyzing the hitting time distribution before its
expectation. In the context of concentration inequalities for Markov chains, Lezaud [Lez89, p. 863]
points out the requirement to spend at least mixing time steps before taking any samples. Related
to that, in property testing, dealing with graphs that are far from expanders has been mentioned
as one of the major challenges to test the expansion of the graph by Czumaj and Sohler [CS10].

In our setting, we also face these generic problems and devise different methods to get a handle
on the meeting time distribution before its expectation. Despite our focus being on coalescing and
meeting times, several of our approaches can be leveraged to derive new bounds on other random
walk quantities such as hitting times or cover times (see Appendix B).

Bounds on t.., in terms of ¢, and t,cet

The key ingredient in the proof of Theorem 1.1, where we express t..a as a tradeoff between teet
and tnix is a better understanding of meeting events prior to the meeting time. More precisely, we
derive a tight bound on the probability p, that two random walks meet before ¢ time-steps, for ¢
in the range [tmix, tmeet]. Arguing about meeting probabilities of walks that are much shorter than
tmeet allows us to understand the rate at which the number of alive random walks is decreasing.
Optimistically, one may hope that starting with k random walks, as there are (’;) possible
meeting events, roughly (g) - pp meetings may have occurred after ¢ time-steps. However, the
non-independence of these events turns out to be a serious issue and we require a significantly
more sophisticated approach to account for the dependencies. We divide the k& random walks
into disjoint groups G; and Gy (with |Gi| usually being much smaller than |Gs|) and walks of Gy
can’t be eliminated. The domination of the real process by the group-restricted one is established
by introducing a formal concept called immortal process at the beginning of Section 3.1. In this
stochastic process, we can expose the random walks of Gy first and consider meetings with random
walks in Gy (for an illustration, see Figure 2 on page 12). Conditioning on a specific exposed walk
in Gy, the events of the different walks in Go meeting this exposed walk are indeed independent.
In fact, we will also use the symmetric case where the roles of G; and G, are switched. Thus,
the problem then reduces to calculating the probability of a random walk in Gs having a ‘good
trajectory’, i.e., one which many random walks in G; would meet with large enough probability.
Surprisingly, it suffices to divide trajectories into only two categories (Lemma 3.3). Although,
one may expect that a more fine-grained classification of trajectories would result in better bounds,
this turns out not to be the case. In fact, the bound that we derive on the coalescing time in
Theorem 1.1 is tight, and this is precisely due to the tightness of Lemma 3.3. The tightness is
established by the following construction (cf. Figure 1). The graph is designed such that the vast
majority of meetings (between any two random walks) occur in a relatively small part of the graph
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Figure 1: The graph described in Section 3.4 with tcoa1 = Q(tmeet + / tmeet /Emix - 107 + tmix)-

(G2 in Figure 1). On average, it takes a considerable number of time-steps before random walks
actually get to this part of the graph. What this implies is that for relatively short trajectories
(of length significantly smaller than et ), it is quite likely that other random walks will not meet
them (cf. Lemma 3.3). There is a bit of a dichotomy here, once a walk reaches Gy it is likely that
many random walks will meet it; however, a random walk not reaching G5 is unlikely to be met by
any other random walk.

Equipped with Theorem 1.1, we can bound t¢oa1 = O (tmeet) for all graphs satisfying ¢meet /tmix =
log2 n. Therefore, the problem of bounding t.., reduces to bounding tyeet-

For some of the other results including Theorem 1.2 and Theorem 1.3, we will need a more
fine-grained approach to derive lower (or upper bounds) on the probability that two walks meet
during a certain number of steps, which may or may not be smaller than the mixing time or meeting
time. The starting point is the following simple observation. If we have two random walks (X¢):>0

and (Y;)=0, and count the number of collisions Z := tT:_Ol 1x,—v, before time-step 7 € N, then
E[Z]
PlZ>21l]|=————+——. 1

If we further assume that both walks start from the stationary distribution, then we have

7|73
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To the best of our knowledge, this is the first application of this formula to meeting (and coalescence)
times. However, we should mention that variants of this formula have been used by Cooper and
Frieze in several works (e.g., [CF05]) to derive accurate bounds on the hitting (and cover time) on
various classes of random graphs, and in Barlow et al. [BPS12] to bound the collisions of random
walks on infinite graphs. Using (1), we are able to obtain several improvements to existing bounds
on the meeting time, and as a consequence for coalescing time. We believe that our work further
highlights the power of this basic identity.



The crux of (1) is that in order to lower (or upper) bound the probability that the two walks
meet, we need to derive a corresponding bound on E[Z | Z > 1], i.e., the number of collisions
conditioning on the occurrence of at least one collision. Our results employ various tools to get a
handle on this quantity, but here we mention one that is quite intuitive:

T—1
E[Z]Z>1]<max> Y (0.)°. (2)

eV
S S0 vey

The inner summand Zvev(pzm)Z is the probability that two walks starting from the same vertex
u will meet after a further ¢ steps. Thus, summing over ¢t and conditioning on the first meeting
happening (i.e., the condition Z > 1) at some vertex u before time-step 7 yields the bound in (2).
Despite the seemingly crude nature of this bound, it can be used to derive new results for tyit, tmeet
and t¢oa that significantly improve over the state-of-the-art for regular graphs (see Appendix B, or
the last paragraph in this section for a summary).

Bounds on t.y, in terms of #;

The derivation of our bounds on t¢y, in terms of ¢y (Theorem 1.3) are based on two general
reduction results, that might be useful in other applications:

Theorem 1.6 (Reduction Results). The following results hold for any graph G:

1. The coalescence process reduces the number of walks from n to O(log3 n) in O(tny) steps with
probability at least 1 —n~'. (see Theorem 4.3)

2. The coalescence process reduces the number walks from log*n to (A/d)°M) in O(tyy) steps in
expectation, where A is the mazimum degree and d is the average degree (see Theorem 4./)

A basic ingredient are new concentration inequalities, which are derived in Section 4.1. Our
concentration inequalities yield sufficiently strong bounds for upper tails of returns (or other, pos-
sibly more complex random variables) by a random walk of length ¢p;;, while most of the existing
bounds (e.g., [CLLM12; Lez89]) require that the expectation of the random variable is at least as
large as tyix. While tnix < it in general, the challenging case in our analysis is when tyix = tphit
and in this cases our concentration inequalities provide stronger upper tails than the existing ones.

Equipped with these concentration results, the proof of Theorem 4.3 is surprisingly simple and
rests again on (1). First, by a straightforward bucketing argument on the degree distribution, we
show that with high probability, we can find for each random walk (X;);>¢ with label i a set S
(depending on the trajectory of X;), so that with high probability, (i) each vertex in S is visited
frequently during O(ty;;) steps, and (ii) each vertex in S has the same degree up to constant factors.
Conditioning on this, it follows that a second random walk (Y;);>o will have sufficient collisions
with (X)i>0 in expectation, i.e., E[Z] is large enough. To bound E[Z | Z > 1], we use the
concentration inequalities to establish that with high probability, the trajectory (X;);>o will be
good in the sense that E[Z | (xo,21,...),Z > 1] is not too large. Combining these bounds yields
P[Z > 1] = Q(1/log®n), and a straightforward division into groups G; and Ga of sizes ©(log®n)
and n — |G;| shows that all random walks in Go can be eliminated in O(ty;;) steps.

The proof of the second reduction result (Theorem 4.4) is more involved, although it again
revolves around (1). The issue is that we can no longer repeat the simple bucketing argument from
Theorem 4.3 about the degree distribution, since the number of buckets may vastly exceed the
number of walks. Furthermore, we may no longer obtain “w.h.p.”-bounds on the probability for
certain good events. For all these reasons, a refined approach is needed.



Our analysis allocates small phases of length O(ty;;/%) in order to halve the number of random
walks, where k = k¢ is the number of walks at the beginning of the phase, for some suitably large
constant ¢. The first step is to show that starting from any vertex, there exists a large set of
vertices, so that each vertex is visited the “right” amount of time, but also that it was not too
unexpected to visit that vertex. The latter condition is quite subtle, but it allows us to arrange a
proper scheduling of the walks to show that, regardless of which vertices the random walk ¢ decides
to visit in that set, there are enough walks that are able to reach these vertices by then. In other
words, it rules out the possibility that, despite two random walks visiting the same set of vertices,
they never collide (for an illustration, see Figure 5 on page 45). Using our concentration bounds
with a careful choice of the slackness parameters in terms of x, the above approach can eventually
be shown to reduce the number of random walks k by a constant fraction within O(tni/K) steps.
Repeating this iteratively yields the bound O(ty).

Bounds on t,;; and Worst-Case Bounds

With the two reduction results, Theorem 1.3 follows immediately. Furthermore, the aforementioned
results can be also used to derive worst-case upper and lower bounds on meeting and coalescing
time on general and regular graphs that are tight up to constant factors. Some of these were known,
or follow directly from existing results, the others are novel to the best of our knowledge.

We proceed by establishing that a1 = O(n®) on all graphs. The proof of tea = O(n?)
(Theorem 1.5) follows by first applying both reductions (Theorem 4.3 and Theorem 4.4) to reduce
the number of walks from n to (A/d)°M) < (n?/|E])°M in O(ty;). We have, by Proposition B.9,
tmeet < 4tnis = O(n - |E]), where this last bound follows from [AKL+79].

Finally, combining the bound tpeet = O(n - |E|) together with tcoa1(So) = O(tmeet - 10g(]|So|))
(Proposition 3.4) for any set of start vertices Sy, yields that after additional

O(tmeet - log(|So])) = O(n - |E| - log(n?/| B])) = O(n®)

steps the coalescing terminates. The fact that this is tight can be easily verified by considering the
Barbell graph.’

For regular graphs, the same argument as before shows that t..a = O(n?), and this is matched
by the cycle, for instance. The proofs of the other results are straightforward, and we refer the
reader to Section 5.3.

Bounds on t,.¢ and Other Results

In Appendix B, we derive several bounds on tyeet. These bounds are derived more directly by (1)
and/or (2), and involve other quantities such as ||7||3 or the eigenvalue gap 1 — A2. One important
technical contribution is to combine routine spectral methods involving the spectral representation
and fundamental matrices that have been used in previous works, e.g., Cooper et al. [CEOR13] with
some short-time bounds on the t-th step probabilities. This allows us to improve several bounds,
not only on tyeet and teoa but also thiy and teoy, by significantly reducing the dependency on the
spectral gap or mixing time—Dby almost a square root factor. As a corollary, we also derive a new
bound on the cover time for regular graphs that considerably improves over the best known bound
by Broder and Karlin [BK89] from 1989.

9This n-vertex graph is constructed by taking two cliques of size n/4 each, and connecting them through a path
of length n/2.



Concrete Topologies

Finally, in Appendix C, we apply the derived upper and lower bounds on fyeet and teoa On various
fundamental topologies including grids, expanders and hypercubes. In most cases, these results
follow immediately from the general bounds by plugging in corresponding values for ||7]|3, ¢y or
tmix- One exception is the binary tree, for which it seems surprisingly non-trivial to derive a lower
bound of tmeet = 2(nlogn). Here again we use a refinement of (1) that restricts the vertices to leaf-
nodes u, for which Ziff(zvev pl)? = Q(logn). The matching upper bound timeet = O(nlogn)
follows from t.oa = O(ty;t) for almost-regular graphs (Theorem 1.3).

Of particular interest might be the analysis of “real-world” graph models given in Section C.5.
There we show how to utilize our bounds from earlier sections to establish teoa = ©(tmeet) 0N two
random graph models, leading to bounds on ¢, that are sublinear in the number of vertices.

1.3 Discussion and Future Work

In this work we derived several novel bounds on ... Our first main result implies that a gap of
just Q(log®n) between tyiyx and thpeet is sufficient to have tepal = O(tmeet). We also proved that
this result is essentially tight. Further, we derived several new bounds on t.,, based on tp;;. For
almost-regular-graphs, our new result implies the following hierarchy for the discrete-time setting,

tmeet < Teoal = O(thit)a

which refines the already known result ¢yeet = O(tyit). Finally, we also determined tight worst-case
lower and upper bound for t¢g,.

For future work, an obvious problem is to extend the teoa = O(tpit) result to all graphs (so far,
we only know tcoa = O(tpit - loglogn)). Even more ambitious would be to try to prove that the
continuous-time variant and the discrete-time process are (asymptotically) equivalent, as this would
immediately resolve the tcoa = O(thit) problem. A different direction may be to further explore
lower bounds on #eet; in this work we only derived one lower bound on ¢t in Theorem B.1.

2 Notation and Preliminaries

Throughout the paper, let G = (V, E) denote an undirected, connected graph with |V| = n and
|E| = m. For a node u € V, deg(u) denotes the degree of u and N(u) = {v: (u,v) € E} the
neighborhood of u. By A, § and d = 1Y | deg(u), we denote the maximum, minimum and
average degree, respectively. We say G is I'-approximative regular if A/§ =T

Unless stated otherwise, all random walks are assumed to be discrete-time (indexed by natural
numbers) and lazy, i.e., if P denotes the n x n transition matrix of the random walk, p, , = 1/2,
Puy = 1/(2deg(u)) for any edge (u,v) € E and p,, = 0 otherwise. We define pfw to be the probability
that a random walk starting at u € V' is at node v € V' at time t € N. Furthermore, let p’;’, be the
probability distribution of the random walk after ¢ time steps starting at u. By m we denote the
stationary distribution, which satisfies 7(u) = deg(uw)/(2m) for all u € V.

Let d(t) = max, [|p!,. — 7||lzv and d(t) = maxy, [|pt, . — p,,_|lxv, where || - [|zy denotes the total
variation distance. Following Aldous and Fill [AF02], we define the mizing time to be tmix(c) =
min{t > 0: d(t) < €} and for convenience we will write pix = tmix(1/€). We define separation from
stationarity to be s(t) = min{e: pf, , > (1 —&)m(v) for all u,v € V'}. Then s(-) is submultiplicative,
so in particular, non-increasing [AF02], and we can define the separation threshold time tsp, =
min{t > 0: s(t) < e”!} and, by [AF02, Lemma 4.11], tsep < 4tmix. We write Thit(u,v) to denote
the first time-step ¢ > 0 at which a random walk starting at w hits v. In particular, Ty (u, u) = 0.

10



The hitting time tpi(u,v) = E|[Thit(u,v)] of any pair of nodes u,v € V is the expected time
required for a random walk starting at u to hit v. Thus, ty;(u,v) is the expectation of Ty (u, v).
The hitting time of a graph tpix = maxy,, thit(u, v) is the maximum over all such pairs.

For A C V', we use tpit(u, A), to denote the expected time required for a random walk starting
to u to hit some node in the set A. Furthermore, we define tpi(m,u) = Y oy thic(v,u) - 7(v).
Furthermore, we define taygnit = >_,, yey T(w) - 7(V) - thit (u, v).

Let tmeet (1, v) denote the expected time when two random walks starting at w and v first arrive
at the same node at the same time, and we write ¢7 ... for the expected meeting time of two
random walks starting at two independent samples from the stationary distribution. Finally, let
tmeet = MaXy y tmeet (4, v) denoted the worst-case expected meeting time.

We define the coalescence process as a stochastic process as follows: Let Sy C V' be the set of
nodes for which there is initially one random walk on it, and for all v € S; let

u€ N() W.p. sxmy
Y,(t) = { fIN( )]
v W.p. 5

The set of active nodes in step ¢ + 1 is given by Siy1 = {Yu(t) | v € S;}. The process satisfies the
Markov property, i.e.,
P[Sey1 | Fe] =P[Ses1 | Stl, (3)

where F; is the filtration up to time ¢, which, informally speaking, is the history of all random
decisions up to time ¢. Finally, we define the time of coalescence as Tioa1(So) = min{t > 0| [S| = 1}.
Throughout this paper, the expression w.h.p. (with high probability) means with probability at least
1 —n W and the expression w.c.p. (with constant probability) means with probability ¢ > 0 for
some constant ¢. We use logn for the natural logarithm. Appendix A contains some known results
about Markov Chains that we frequently use in our proofs.

3 Bounding t.,, for large tcet/tmix

In this section we prove Theorem 1.1, one of our main results. We refer the reader to Section 1.2
for a high-level description of the proof ideas.

3.1 Stochastic Process

In order to prove our first main result, it is helpful to consider a more general stochastic pro-
cess, Pmm, called the immortal process, involving multiple independent random walks. In the
immortal process, whenever several random walks arrive at the same node at the same time a sub-
set of them (rather than just one) may survive, while the remaining are merged with one of the
surviving walks. To identify the random walks, we assume that each walk has a natural number (in
N) as an identifier. In order to define this process formally, we introduce some additional notation
and definitions; then we state and prove some auxiliary lemmas. A related concept was introduced
in [Oli12, Section 3.4] under the name of “allowed killings”.

As mentioned before, we assume that every random walk r has a unique identifier id(r) € N. We
divide the ids into two groups G, the group of immortal walks and G, the group of the remaining
(mortal) walks. Whenever two or more walks collide at a node and at least of of these walks is
in Gy, then all walks with ids in G; survive, while all walks with ids in Gy are killed (merged with
some walk with id in G;). Furthermore, if all walks have ids in Gy, i.e., there are no walks with
id in G1, then the walk with the minimum id among these walks survives. The ids along with the

11



G ={1,2}
gQ = {374a5}

Figure 2: Illustration of the process Piym-

assignment of ids to groups determine which of the random walks that arrive at a given node at
the same time survive.
Formally, let P;m denote the following process:

1. At time 0, Sop = {(u,,id(r))}, where u, is the starting node of random walk r and id(r) is its
identifier.

2. At time ¢, several random walks may arrive at the same node. The process Py, allows some
subset of them to survive, while the rest ‘coalesce’ with one of the surviving walks. Formally,
Syt is defined using S; as follows. Define the (random) next-step position of the random
walk with id ¢ € N which is on node v € V' to be

u  where u € N(v)  W.p. s
Yy i(t) := {U w AN
. . §’

Let Ry (t) := {(Yy,i(t),7) | (v,i) € Si},v € V be the set of next-step positions (before merging
happens) for random walks that were at node v at time ¢. Let

Rv(t) = {(U,i) ’ Ju eV, (U7i) € Ru(t)}

be the random walks that have arrived at node v at time-step t + 1, just before merging
happens. Then, merging happens w.r.t. the ids as follows:

(a) If there exists i € G; such that (v,i) € Ry,(t) (at least one walk with id in G arrives at
v), then

Su(t+1) = {(v,) | (v,5) € Ru(t),j € G1}

12



(b) If there is no i € Gy, such that (v,7) € Ry,(t) and R,(t) # 0 (no walk with id in G; arrives
at v, but at least one walk arrives at v), then

Su(t+1) == {(v,5)},

where j = min{i | (v,i) € Ry(t)}.

(c) Otherwise, S, (t + 1) := 0, i.e., no walk arrived at v.

Finally, let
Serr = Sult +1).

veV

We now relate this more general process, Pinm, to the coalescing process defined in Section 2.
Let P be regarded as a special instance of Py, with Gy = {1}. In process P, only one of several
walks arriving at the same node survives and by convention the one having the smallest id is chosen.
Let (S:)22, denote the stochastic process P. If we define S; := {v | (v,i) € S;}, then (5;)2, is a
coalescence process as defined in Section 2. Moreover, P represented by (S¢);2, is the coalescence
process which additionally keeps track of the ids. Throughout this paper, we assume that every
random walk of Sj is on a distinct node.

In the following we show that the time it takes to reduce to k£ random walks in the original
process P is majorized by the time it takes in Py, to reduce to k random walks. While this might
be intuitive, one needs to be very careful about the dependencies between the meetings of different
random walks: For instance a random walk which is immortal in Py, might eliminate many other
random walks whereas the corresponding coupled random walk in P might be eliminated early and
therefore cannot eliminate said random walks.

Proposition 3.1. Consider the following two processes:

1. Process P is the standard process of coalescing random walks, viewed as a special case of Pym
with G = {1} as described above.

2. Process Punm s the process defined above using groups Gy and Ga, where 1 € G.

Let T, Tl’fnm be the stopping times given by the condition that fewer than k random walks remain
for the two processes respectively. Assume both processes start with the same initial configuration,
i.e., the vertices occupied by walks in both processes are identical and there is only one walk per
vertex in either process. Then, there exists a coupling such that

T < T
Proof. We will give a coupling between the moves of walks in Py, and Py, a new process that is
essentially intermediate between P and Py, ; furthermore, we will show that the original process
P is essentially a restricted view of the process Pnt. The process Pyt will label the walks dead,
alive, and phantom. We emphasize that a phantom walk is not considered alive. Note that the
processes P and P, can be viewed as processes which assign labels to each random walk of the
type alive and dead.

Let 5’? denote the set of tuples of alive walks in process @ € {P, Pnt, Pmm} at time ¢t. Let
S’? ={v | (v,i) € 5,9} for @ € {P, Pint, Pam} be the set of nodes which are occupied by at least
one alive walk (there might be several in Py, at ¢ > 1). In order to prove the proposition, we
show that there exists a coupling, such that for any t € N

5F ¢ 5P @
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StF)int g S’ﬁmm (5)
implying that |SP| < |S/™=| which yields the claim since

T% = min{t > 0: |S7| < k} < min{t > 0: |/ <k} = TF

imm-*

We now define P;. As mentioned above, the walks in Py will be given three kinds of labels

alive, dead, or phantom; the dead walks do not continue ahead in time; alive and phantom walks
do.

Formally, Py using the groups G and Gs is defined as follows. We say that walk r is of type
Gi, if id(r) € G; for i € {1,2}. Whenever at least one walk arrives'’ on a node, then the following
happens.

1. At least one of the walks is of type G

(a) At least one walk of type G is alive
i. the walk of G; with the smallest id is labeled as alive (even if it was labeled phantom
before)
ii. all other walks of type Gy (if there are any) are labeled as phantom
iii. alive walks of type Go are labeled dead (if present).

(b) All walks of type G; are phantom walks

i. There is no walk of type Go
A. No label is changed
ii. There is at least one walk of type Go
A. the walk of type G; with the smallest id is labeled as alive
B. all other walks of type G; (if there are any) are labeled as phantom
C. alive walks of type Gy are labeled dead.

2. All walks are of type Ga

(a) the walk of Gy with the smallest id is labeled as alive
(b) all other walks are labeled as dead.

Note, that walks of G; are either alive or phantom and walks of Gy are either alive or dead. Also,
note that in the process Py, there is at most one alive walk at any given node. Throughout the
proof we regard the processes in two stages: First, each random walk selects a destination (possibly
the same node it was on) and moves there. In the second phase the walks are merged according to
the process. See Figure 3 for an illustration.

We prove (4) by induction on ¢ starting from the same initial configuration: if v € SF, then
(S S’tp . Consider the inductive step from ¢ to ¢ + 1 and assume that the claim holds at the
end of round ¢ (after merging happened). For the (unique) random walk at v € S under process
P, we couple its transition to node Y, (¢ + 1) (where we possibly have Y,(t+ 1) = v) with the
corresponding alive walk of Stp nt (there might be several walks of Py, however only one is alive
and we couple with this alive walk). Let S be the set of nodes to which a random walk in P moved,
i.e., S ={Y,(t+1): v € S}. Observe, that before the merging takes place in round ¢ + 1 (but
moves have been made), there is, by induction hypothesis and the coupling, at least one alive walk

0Throughout, by arrive we take into account that walks may arrive at a node from the same node through laziness.
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Figure 3: An illustration of couplings between the processes. The squares depict the random walks.
Walks of Gy are colored black and grey (phantom) and the nodes of Gy are white. The blue arrows
denote the moving decisions. Observe that in P, a phantom becomes alive (and a walk of Gy is

labeled dead).

of Pyt on each node of S. Furthermore, the definition of P, ensures that whenever an alive random
walk moves to a node, then after merging takes place, at least'' one alive walk remains. Thus, our
coupling ensures that if v € S’f 11, then v € Sﬁr‘f. In words, if one looks at the subsets where there
is an alive walk of P, this is essentially the standard coalescence process. This finishes the proof
of (4) and we turn to proving (5).

When starting from the same initial configuration, we will provide a coupling that satisfies the

following invariants.

1. There is a bijective map from the alive and phantom walks of Py to the alive walks of Py,
such that the following holds. All walks of Py of type G; are mapped to walks of Py of
type G;, for i € {1,2}.

2. Whenever a walk of type Go is labeled dead in Py, then it is also labeled dead in Py and
vice versa.

At the beginning there are no dead or phantom walks in P, there are no dead walks in Py,
all walks are alive and as the starting positions in Py, and Py are the same, an arbitrary bijective
mapping may be chosen, so long as it respects node positions and walk types.

Assume the invariant holds at time ¢. We take one random walk step for each alive or phantom
random walk in Py¢. These are coupled with the corresponding walks in P, under the chosen
map. Walks that are already dead are neither simulated in P, nor in Py,,. Hence, we can ensure
the bijection between the walks of G; in both processes holds at time ¢ + 1.

"By definition, there is actually exactly one alive walk.
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We now prove the second invariant. Note that whenever a walk r of type Ga in Py (Pint) 18
labeled dead, this implies there must have been another walk 7’ on the same node at the same time.
Since there is a bijective map, ' must be on the same node in Py (Pmm). We have that either 7/
is of type Gy or 1’ is of type Gy and that id(r’) < id(r). In either case, r is also killed (labeled dead)
in Pt (Pmm)- Hence, we can ensure the bijection between the walks of G in both processes holds
at time ¢ + 1. Thus, the invariant holds at time ¢t + 1. By induction, and since the alive walks of
Pt are a subset of the alive walks of P,y the invariant holds throughout the process and yielding
(5). This finishes the proof. O

3.2 Meeting Time Distribution Prior to ¢,

Let (X¢)i>0 and (Yi)i>0 be independent random walks starting at arbitrary positions. For 7 a
multiple of tnix, the following lemma gives a lower bound on the probability of intersection of the
two random walks in 7 steps.

Lemma 3.2. Let (X;)i=0 and (Y;)i=0 be two independent random walks starting at arbitrary posi-
tions. Let intersect(Xy, Yy, 7) be the event that there exists 0 < s < 7, such that Xs =Y. Then

. 1
P [intersect( Xy, Y7, Stmix) | = 320
where & = tmeet /tmix- Furthermore, there exists a constant ¢ > 0, such that for any 1 < b < % -,

we have

b
P [intersect(Xy, Yz, cbtmix) | = —,
o
Proof. First, let (X;);>0 and (Y;)¢0 be two random walks that start from two independent samples
drawn from the stationary distribution and are run for ¢ := 2[a/] [tmix | steps. Notice that £ > 2tpeet,
and hence, by Markov’s inequality,

P [intersect()?t, }N/t,f)} > (6)

N |

Furthermore, if we divide the interval [1, ¢] into 2[«] consecutive sections of length [tmix]| each, the
probability for a collision in each of these section is identical and therefore the union bound implies

P {intersect(f(t, ENG,E)} <2 - P {intersect()zt, Vi, tmix) | 5 (7)

and hence combining equation (6) and (7) yields

s o 1
P {intersect(Xt,Yt,tmiX)] > T

Consider now two independent random walks (X;)¢>0 and (Y;):>0 starting at arbitrary positions.

By applying Lemma A.5 to both walks, with probability at least (1 —e™1)? both Xy . and Y, ,_
are drawn independently from the stationary distribution since 4¢yix = tsep. Therefore,
S o 1
P [intersect (X, Yz, 5tmix) ] = (1 — e 1)2 - P | intersect(Xy, Yy, tmix) | = (1 —e )2 ol
e

Observing that for any o > 1, the RHS above expression is greater than 1/(32a)) completes the proof
of the first part. For the second part, we consider k blocks of length 5¢.,;x. Due to independence
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of different blocks, the probability of that the two walks meet in at least one of the k blocks is at
least 1 —(1— 32%)]“ We set k := [32b/(1 — e 1),  := 1/(32c). We distinguish between two cases.

Case k- < 1: We use the fact that (1 —2)F < e™@* < 1— (1 —e Yk for 0 < 2 < 1,
k > 0 and zk < 1. We derive that the probability of intersecting after k£ blocks is at least
1-(1- 52> (1 —eHk/(32a) =b/a.

Case k-z>1: Wehave 1 — (1 — 55-)" > 1— (1 —3-)%* >1—1/e > b/a. In both cases the
second part follows. O

At the heart of the proof of Theorem 1.1 lies the following lemma that analyses the marginal
distribution of the meeting time distribution. That is, we only expose the first random walk (X:)7_g,
and look at how this affects the probability of meeting. In essence, we show that at least one of
the two “orthogonal” cases hold. In Case 1 (corresponding to set C), there is at least a modest
probability that after exposing (X;), (Y;) will intersect with significant probability. Otherwise, in
Case 2 (corresponding to set Cy), there is a significant probability that after exposing (X), (Y2)
will intersect with at least a modest probability.

Lemma 3.3. Fiz 7 € N and a graph G. Let (X;)]_, and (Y;)]_, be independent random walks,
where the starting nodes Xog and Yy are drawn independently from the stationary distribution w
(w.r.t. to G), and the walks are run for T steps. Let p = IP[intersect(Xy,Y:, 7)] and let T; denote
the set all possible trajectories of a walk of length T in G (including possible self-loops). We define
the following two categories Cy and Cy with C; C Cy

Cir:={(z0,...,2:) €Tr: P|
Cy := {(2’0,...,2’7—) E'TTZP[

Then, P[(Xy)j_g € C1] = & or P[(Xy)]_ € Ca] > .

While the actual lower bounds on the probabilities appear rather crude, it turns out that the
“significant probability” |/p/3 is best possible, as we demonstrate in our lower bound construction
later. Remarkably, the fact that the “modest probability” is only p/3 and much smaller than /p/3
does not affect the tightness of our bound, since in Claim 3.5, we can make up for this gap in both
cases through a simple amplification argument over the unexposed random walks.

Proof. Let us suppose that P[(X;)7_, € C1] < £. We show that this implies P [(X;)]_, € Co] >
g. Assume for the sake of contradiction P[(X;)]_, € C2] < g. We have

p = P[intersect(Xy, Yz, 7) ]
SP(X)izo € Ci]- 1+ P[(Xe)i € (C2\C) |- VP + P[(Xt)izg & Ca]-
<p/3++p/3-VP+p/3<Dp,

Wi

a contradiction. This completes the proof. ]

It is well-known that starting with k£ random walks, the coalescence time is bounded by
O(tmeet log k), this can be deduced from the proof presented in [HPO1]. For the sake of com-
pleteness, we give a self-contained proof'?.

'20ne might be tempted to pair random walks in groups of two and run them for 2t,cer time steps so that, by
Markov inequality, they meet with probability at least 1/2. Repeating this iteratively would yield the claim. To
formalize such an argument one would need to disallow coalescence between different pairs of random walk which
differs from the stochastic process we reduce to in Section 3.1.
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Proposition 3.4. We have tcpa1(S0) = O(tmeet 10g |So|).

Proof. Let P be the coalescing process (with ids) defined in Section 3.1. Recall that G; = {1}.
Let S; be set of coalescing random walks at an arbitrary time-step ¢. In the following we show the
slightly stronger claim that the expected time to reduce the number of random walks by a constant
factor is O(tmeet)-

Formally, we fix an arbitrary time-step to. With 7' := min{t > to: |S¢| < 99/100 - |S, |, |St,| =
100} denoting the first time-step the number of coalescing random walks reduces by a factor of
99/100, we will prove that E[T'] = O(tmeet). Iterating the argument O(log|Sp|) times implies
that the expected time it takes to reduce to 100 random walks is O(tmeet l0g |So|). Note that the
expected time to reduce from 100 random walks to 1 is bounded by O(tmeet). Hence, the claim
teoal (S0) = O(tmeet log |So|) follows.

It remains to show that the expected number of time steps it takes to reduce the number of
random walks by a factor of 99/100 is indeed O(tmeet)-

We divide time into blocks of length 7 := c%tmeet +4tmix, where c is the constant of Lemma 3.2,
e, P [intersect(Xt, Y:, c%tmeet)] > e;el We are primarily interested in what happens at the end
of the blocks, i.e., at time steps tg,tg + 7,t9 + 27,.... For simplicity, we will start counting time
from 0 at the beginning of each block. Let (X;):>¢ be the random walk with id 1. After 4¢,;x steps,
we can couple the state of the random walk (X¢)>4¢ ., with a node drawn from 7 with probability
at least (1 —e™1), since dtyix > tsep (see Lemma A.5). Further, note that conditioned on this
coupling, the statement of Lemma 3.3 implies that (X¢)i>at,,, € C2 w.p. at least p/3, where we
used Cy C (1, and where p :=P [intersect()?t,fft,c- % -tmeet)} > 6;61 for )?0,170 ~ .

We condition on the successful coupling of X4, . with a node drawn from 7 and that (X;);>4;

€
Cs, which happens with probability at least (1—e~!)p/3 = (63_6 ?2 (called event £). Finally, consider
any random walk (Y;);0b with id other than 1. Again with probability at least 1 — e~! we can
couple Yy, . with a node drawn from 7 and conditioned on successful coupling, (Y%)¢>4s,,, meets

(Xt)t>4t,,,, between time-steps [4tmix, 7] with probability at least p/3, by definition of Cy. Thus,

mix mix

conditioned on event &, each walk of Go vanishes w.p. (1 —e!)p/3 = % and thus the expected

12
fraction of walks killed in the 7 time-steps is at least %

Let Z; = |Sty+e.+| denote the number of random walks alive at the beginning of block /.

(e—1)* Zi—1
7 <z, - .
9ed 17700

E[Z | Frore-1)r ) < Zoe1 — (Zp—1 — 1) -

The above holds as long as Zy_1 > 100. We can therefore apply Lemma A.9 with parameters
g = 99/100 - Sy and 8 = 99/100 to obtain that E[T] = O (1) = O(tmeet), which completes the
proof. O

3.3 Upper Bound - Proof of Theorem 1.1

We commence by considering the process Pynm defined in Section 3.1. This allows us to establish
Claim 3.5 providing us with the following tradeoff. For a given period 7 of length at least tix we
obtain a bound on the required number of periods to reduce the number of random walks by an
arbitrary factor. The proof relies heavily on Lemma 3.3 which divides the walks of G; into two
groups allowing us to expose the walks of G first and then to calculate the probability of the walks
of Go to intersect with them. In fact, we will also use the symmetric case where the roles of G;
and Gy are switched. These probabilities are derived from the time-probability tradeoff presented
in Lemma 3.2. We then use Claim 3.5 to derive a bound on the number of time steps it takes
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to reduce the number of walks to [2a|, where o = tpeet/tmix (Corollary 3.6). From there on we
employ Claim 3.5 to reduce the number of walks to 1 in O(tpeet) time steps. Melding both phases
together yields the bound of Theorem 1.1.

We now define a process Piam(So, k) with k& < |Sp|, which is a parameterized version of the
process P, defined in Section 3.1:

e Let |Sp| = k/; there are k' random walks with ids 1,..., k" and starting nodes v1,...,vp.
Thus, So = {(v;,7) | 1 <i <K'}

e Let Gy ={1,...,k}and Go = {k+1,...,k'}. Recall that, by definition of P,,m, we have that
if some random walks with ids in G; and some with ids in Gy are present on the same node
at the same time, only the ones with ids in Gy survive. If all the random walks have ids in
only in Gy, then all of them survive. If all random walks have ids only in Gs, then only the
one with the smallest id survives.

We define
IDs(Sy) := {id(r) | (u,,id(r)) € Si},t € N.

The following lemma gives the expected time it takes to reduce the number of random walks in Go
from k' — k to some arbitrary integer g > k: given a period of length 7 and integer g, assuming
that k = |G| is large enough, we derive a bound on the number of periods of length 7 until the
walks in Go are reduced to g. The required size of k is a function of the probability for two random
walks drawn from 7 intersecting after 7 time steps.

Claim 3.5. Let 7 € N, let (X;)]_, and (Y;)]_o be independent random walks run for T steps, with
Xo and Yy drawn independently from w. Let p; < P[intersect(X,Y:,7)] be a lower bound on the
probability of the intersection of the two walks during the T steps. Consider an instantiation of
Piam (S0, k). Suppose that k > ﬁ. For some 1 < g < |So| — k, define the stopping condition
Ty =min{t > 0 | |IDs(S¢) N Ga| < g}. Then the expected stopping time satisfies

E[T,]=0 <(4tmix +7)- \/pTT (log|Ga| — logg)) .

We first describe the high-level proof idea, before delving into the formal proof. We divide time
into blocks of size 4tix + 7. For any random walk (Zt)?i"(‘)ixJ“T we can couple its position after
tmix = tsep W.c.p. with a node drawn from m. Thus, conditioning on the success of this coupling

we have, by Lemma 3.3, P {(Zt)fi“ﬁ;t: € Cl] > or P {(Zt)?t:ﬁ}’;t: € Cg] > ‘/éi. In the former

case we have that w.c.p. there is at least one random walk 7 in G; which is, due to independence
of the walks, in class C;. The hypothetical extension of the trajectory of any random walk in
r’" € Gy intersects with r w.p. ¢,/pr/3, where the constant arises due to the fact that we also need
to couple the state of v’ at time 4¢,ix to a node drawn according to m. (We need to consider the
hypothetical extension because the walk 7 may get eliminated sooner—this only helps us.) Thus,
' gets eliminated w.p. at least ¢,/p; for a suitable constant c.

In the latter case we have that w.p. at least ¢,/pr /3 a random walks of G is in class C. Every
random walk in that class intersects w.c.p. with at least one of the walks of G;. Thus, in both
cases, we have that in each block a random walk of G5 is eliminated w.p. a least c\/Pr for some
constant c. Thus, the number of random walks in Go decrease in expectation by a factor of c¢,/p;.

Proof. We will consider the process in blocks each consisting of 4¢,,;x+7 time-steps. For convenience
in the proof, we’ll restart counting time-steps from 0 at the beginning of each block; we keep track
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of the total number of time-steps by counting the number of blocks. Let C; and C5 be as defined in
Lemma 3.3. Then we perform a case analysis by considering the two possible outcomes described in
Lemma 3.3 separately. We define Z; = |IDs(S}.(41,,,.++)) N G2|, i.e., the number of walks remaining
in Gy after j blocks of time have passed. For any j > 1, we will show that there exists a constant
¢ > 0 such that,

E[Zj | Fial < Zj1-(1—cypr).

By using Lemma A.9, we get E [T, ] = O ((4tmix +7)- \/% - (log |Ga| — log g)) (the factor (4tmix+7)
appears as the size of the block). Recall that F; is the filtration up to end of the jth block. In the

remainder we show that we have indeed E[Z; | Fj_1] < Zj_1 - (1 — ¢\/Dr) -
Case 1. P[(X})_o € C1] > &

Consider any random walk 7 in G; at the beginning of a block. Using Lemma A.5, after 4¢,,ix steps
we can couple the state of the random walk with a node drawn from 7 with probability at least
(1—e~!). Furthermore, conditioned on this coupling, the portion of the random walk between time-
steps 4tmix and 4ty + 7 of the walk is in class C7 with probability at least %T. Since k > ﬁ,
w.p. c¢1 > 0, in any block, there exists a walk in G; that has the portion between time-steps 4tix
and 4tyix + 7 in Ch.

Fix a block and condition on the event that there is a walk in G;, denoted by 71, whose portion
between time-steps 4tnix and 4t + 7 is in C;. Consider any walk in Go, denoted by ro, at
the beginning of the block. We want to argue that this walk ro has a reasonable probability of
intersecting some walk in G; in this block of time-steps. First, consider (the possibly hypothetical
continuation of 7o ) walk 7/, for the entire length of the block. The reason for this is that if ro
and some walk from G; are at the same node at the same time sometime in the block, ro will be
eliminated in the process Piynm(So, k); however, we can consider its hypothetical extension to the
entire length of the block. Using Lemma A.5 the state of the walk 75 at time-step 4¢mix can be
coupled with a node drawn from 7 with probability at least ¢y := 1 — e~ '. Then conditioned on
successful coupling, the probability that 75 and r; collide during time-steps 4tmix and 4tmix + 7 is
at least \/p; (by definition of Cy in Lemma 3.3). Thus, the probability that ry hits at least one
walk in Gy is at least c; - ¢ - /p7. Note that it is also possible for 5 to be eliminated by another
walk from Go. In any case, we have that 7o is eliminated w.p. at least ¢,/p; and we get

E[Z; | Fjal < Zj1-(1—ci-caypr).

Case 2. P[(X;)]_o € Ca] > ‘/3{77:

Consider a walk in Go, denoted by ro, at the beginning of a block; as in the previous case, we will
consider a possibly hypothetical continuation 4 of ro. Using Lemma A.5 we can couple the state
of rly at time-step 4tyix with a node drawn from 7 with probability at least 1 — e~ 1. Furthermore,

VPT the trajectory of 1, between

3
the time-steps 4tmix t0 4tmix + 7 is in Cy. Thus, with probability at least p := (1 — 6_1)\/:{:7, T

has a trajectory between time-steps 4tmix and 4tnix + 7 that lies in Cy. Now consider any random
walk 71 € G; at the beginning of the block. Again, using Lemma A.5 with probability at least
1 — e~ !, we can couple the state of the random walk at time 4¢,,ix with a node drawn from .
Conditioned on this between time-steps 4tyix to 4tmix + 7, this random walk hits any trajectory
whose portion between time-steps 4tmix to 4tnix + 7 lies in Cy with probability at least pr/3 (by
definition of Cy in Lemma 3.3). Since k = |G| > ﬁ, with at least constant probability
c1 > 0 there is some walk in G; that intersects any fixed trajectory whose portion between time-
steps 4tmix to 4tmix + 7 lies in Cy. Since the random walks in G; are independent, by the definition

conditioned on the successful coupling, with probability at least
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of the immortal process, we have that any walk in Gy is eliminated by the end of the block with
probability at least ¢ - p = ¢,/p; for some constant ¢ > 0. Similarly as before, it is possible that 7
is eliminated by at least one of the walks of Gs, which only increases the probability for ro of being
eliminated. We get

E[Zj | Fial<Zjr-(1—cypr).
0

In the following we bound the time T required to reduce to 2[«| random walks. The claim
follows by applying Claim 3.5 to derive a bound on T}y, for process Pinm, and using the majorization
of T' by Timm (Proposition 3.1).

Corollary 3.6. Consider the coalescence process starting with set Sy and let o = tieet/tmix- Let
Ty =min{t >0 | |S¢| < 2[a]}. Then E[T1]| = O(tmix - Vo - 1og |So]).

Proof. We consider the process P (defined in Section 3.1), which is identical to the coalescence
process, but in addition also keeps track of ids of random walks and that allows only the walk
with the smallest id to survive. We assume that the ids are from the set {1,2,...,|So|}. Let
So = {(v1,1),..., (vsy),1S0])} and So = {i: (v,i) € So}. We consider the process Pimm(So, k) and
k = [a]. Let T} be the stopping time defined by [IDs(S;) N Ga| < « for the process Pumm(So, k). By
definition of Py, and Proposition 3.1, it follows that Tinm, stochastically dominates T'. Thus, it
suffices to bound E [ Tinm |. W.l.o.g. we assume that a > 6%, otherwise the claim follows directly
from Proposition 3.4. We apply Lemma 3.2 with b = 6 and derive that for some suitable constant
¢,

p = P [intersect(X¢>0, Yi>0, 6¢tmix) | =

)

0
«

Thus, we have
3 < 3 <a<k
I—ebep " 5p
Applying Claim 3.5 with g = a, 7 = 6¢tmix (Where ¢ is a constant as given by Lemma 3.2), p;, = 6/«
and observing that k > ﬁ, we get the required result. O

In the following we bound the time T required to reduce from 2[«| random walks to a single
random walk. The proof uses the same ideas as before (Corollary 3.6) however, this time we
consider several phases and in each we reduce the number of random walks by a constant factor.
The expected time per phase is geometrically increasing as the number of walks decreases and the
overall time is essentially dominated by the time for a constant number of random walks to meet,
which is O(tmeet)-

Lemma 3.7. Consider the coalescence process starting with set Sy, satisfying |So| < 4alog «, where
= tmeet /tmix- Let To :=min{t >0 | |S;| < 1}. Then E[T2] = O(tmeet)-

Proof. We will consider the coalescence process in phases. Let £ be the largest integer such that
|So| = (%)é. For j > 1, the j phase ends when |S;| < (%)E_]H. The (j + 1)** phase begins as
soon as the j* phase ends. Note that it may be the case that some phases are empty. Let Th(j)
denote the time for phase j to last. We will only consider phases up to which £ — j 4+ 1 > 32.

Now we focus on a particular phase j. Let ¢; be the time when the j th phase begins and let St
denote the corresponding set at that time. Thus, we have

NG 4N Fi+2
(5)  <isi<(3) 0
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We consider the process Pmm defined in Section 3.3 as follows. Define n; = |St;|. Fix a phase j
and define Sy = {(v1,1),..., (vn;, 1)} and S’ = {v1,...,vn;}. Then, consider again the set of
occupied vertices (ignoring the labels) Sy, vy = {v | 3i € N, (v,i) € Si} with ¢ € N. Thus, phase j

ends when | S| =[Sy, 44| < (%)K_jﬂ. Let
|50l
L= | 120l
J ’V 92

be the size of G; and consider the process Pimm(Sy, k;) as defined in Section 3.3. Let

Shl = k;
gj::w i J

T3 (j) »= min{t | [IDs(S}) N Ga| < g5}-
We note that as long as £ — j + 1 > 32, g; > 1 and at time T5(j),

and

So| — k;

: 1S5, 2k _ 1861, IS0l 2

3
+kj=—"+ +7<1-ysgy.

Sil < gj+kj < <
’t| g]+3 3 3 3 3 3

By Proposition 3.1, T5(j) stochastically dominates T5(j) and hence it suffices to bound E [T5(j7) ]
In order to bound E[T5(j)], we define

b := 32alog(4/3)(¢ — j + 1)(3/4) I+,

Since we only consider phases with j respecting £ — j + 1 > 32 we have b; < by_3; < ((e —1)/e)o.
Furthermore, we have b; > by > 4a'log a(3/4)¢ > 1, where the last inequality follows from (4/3)* <
|So| < 4arlog v, which in turn follows from definition of ¢ and the assumed bound on |Sy|. Applying
Lemma 3.2 with this value of b;, we get that for

7j = cbjtmix,
for independent random walks (X¢),2, (Y3);2o, P [intersect(Xy, Yz, 7j)] = pj, where
pj = 32log(4/3)(£ — j + 1)(3/4) I+,

We seek to apply Claim 3.5 to bound E [T5(j)]. We first verify that the conditions of Claim 3.5
are fulfilled. In particular, we verify that k; > p%; to see this consider the following:

(—j+1
8 8 , 1 4 1

— = 4/3)7 < (5 <5 IS5l < Ky

D) 32log(4/3)(12—j+1)( /3) 4 \3 3 1%l < ks
where we used (8) and [Sj| = |Sy,| in the second-last inequality. Thus we can apply Claim 3.5 and
derive

1
E[T5(5)] < (15 + 4tmix) - — - (log |IDs(S}) N Ga| — log g,
[15(5)] < (75 ) N (log [IDs(Sp) N Ga| — log g;)

and we continue by dissecting that bound. Since b; > 1, there exists a suitably large constant c1,
so that 7; + 4tmix < c1bjtmix. Furthermore,

b;j 32clog(4/3)(¢ — 7 + 1)(3/4)¢7+! B — (3 (6—j+1)/2
VDPj B \/32 log(4/3)(¢ — j + 1)(3/4)¢—+1 =0 (am (4) :
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Observe that, by definition, [IDs(S;) NGa|/g; < 3, hence log |IDs(Sy) NGa| —log g; < log(3). Putting
everything together, we get that there is a constant cy such that,

3
E[T3(j)] <c2-tmix-a-m<4

Note that since we stop when ¢ — j + 1 < 32, there are at most £ — 30 phases considered.
Let T be the random variable denoting the time-step when the last phase ends; at this point

|S7| = O(1). Therefore, using Proposition 3.4, E |:T2 —Tv|f] = O(tmeet). But, clearly T is
stochastically dominated by 25;%0 T5(j). Thus, we have

(t—j+1)/2
) (9)

E[L])=E|T|+E[E[-T | T]]

0-30 g\ ((=j+1)/2

<atwcad VETFL(3) ot (10)
=0

< €2 tmix - @+ C3tmeet = O(tmeet) (11)

Above, in (10) we used (9) and the fact that E [Tg - T ] T} < c3tmeet fOr some constant cg3 > 0
and in step (11), we used the fact that 3 725, jol <1 for ¢ < +/3/4. O

Thus, the first phase (Corollary 3.6) and the second phase (Lemma 3.7) take together O(y\/a -
logn - tmix + tmeet) time-steps, which yields Theorem 1.1.

3.4 Lower Bound - Proof of Theorem 1.2

In this section we give a construction of a graph family in order to establish lower bounds on
teoal(G) in terms of tyeet(G) and tix(G) demonstrating that Theorem 1.1 is asymptotically tight.
Additionally, our construction generalizes a claim of Aldous and Fill [AF02, Chapter 14]: They
mention that it is possible to construct regular graphs that mimic the n-star in the sense that
the tmeet = 0(tavg-nit), without giving further details of the construction. Our construction shows
that even the coalescence time can be significantly smaller than the average hitting time for almost-
regular graphs. For our family of almost-regular graphs, there is a polynomial gap between teet and
tavg-nit- More importantly, we show that these almost-regular graphs have a gap of \/tmix/tmeet-10g 1
between coalescing and meeting time. This shows that the bound in Theorem 1.1 is best possible,
even if we constrain G to be almost-regular. We refer the reader to Section 1.2 for a high-level
description of the proof ideas.

More precisely, in the proof of Theorem 1.2 we shall give an explicit construction of a graph
family G = G, with teoa = Q(\/0, - logn - tmix), where o, = timeet/tmix- For the remainder of this
section, we will drop the dependence on n and will simply use G instead of G,, and « instead au,.

The construction of G (see Figure 4 for an illustration) is based on two building blocks, G; and
Go. First, let G1 = (V1, E1) be a clique of size /n. Let Gy = (V4, E3) be a y/n-regular bipartite
Ramanujan Graph on n/va/ nodes [MSS15], where o/ = max{a,22° - C?}, where C' > 1 is the
universal constant of Corollary A.3. The graph G is made of one copy of G, k = y/n copies of G,
(denoted by G1,G%,...,G%), and a node Z, which has an edge to \/n/a’ distinct nodes of G5 and
to each of the designated nodes z* € V' in G¢ for i € [1,x]. It is not difficult to see that this graph
is almost-regular, i.e., maximum and minimum degree differ by at most a constant factor.

In Lemma 3.12, Lemma 3.13, Lemma 3.14 and Lemma 3.15 respectively we show that t,;x =
O(n), tmees = O(a'n), teoas = AV - nlogn), and tavg-hit = Q(n3/?). We start with the following
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a! @2 e Gy

Figure 4: The graph described in Section 3.4 with tcoa1 = Q(tmeet + / tmeet /Emix - 107+ tmix)-

auxiliary lemma which shows that the walk restricted to Vo behaves similarly to the walk restricted
to Vo U {Zz}, meaning that the walks have very similar ¢-step probabilities.

Lemma 3.8. Let P denote the transition matriz of the random walk on G, Q the transition matrix
of the random walk on Gy and @ be the transition matriz of the random walk on the subgraph of G
induced by Vo U{Z}. Let ptum,qfw, Ejfw denote the corresponding transition probabilities for a walk
starting at u to end up at node v after t steps. Let S* = {u € Vo N N(2)}. Then the following
statements hold:

(i) For any u,v € Va we have ||p!,. — ¢, |lvv < Y21 P, 6/ (2v/m) < t/(2/n).

(i3) For any u,v € Vs we have |3, — db. v < XL, g0 /(24/7) < /(2v/).
(ii) For any u,v € Vo we have that after t = tuix(G2) time steps ||pl, . — pl [lrv < o(1) + 2/e.
Proof. Let (Xt)¢>0 be the Markov chain with transition matrix P and let (Y;):>o be the Markov
chain with transition matrix ). We will inductively couple these two random walks starting from
Xo = Yp = u. Given that we coupled both chains up to time ¢ — 1, we can couple (X;, Y;) such that
X; =Y, with an error probability

PIXi#Y | Xio1 =Yiq | =P X #Y | Xem1 =Y, X4 € 7] - P[Xq € 57

+P[Xe # Y [ Xp1 =Yi1, X410 € V2 \ ST P[ X1 € V2 )\ S
< pld./(2v/n) +0.
We have, by [LPWO06, Proposition 4.7], [|p},.—p}, [l+v = inf{P[X # Y] | (X,Y) is a coupling of p, . and pi, }.
Hence, by a union bound over t steps,
1P, = P llev = inf{P[X # Y] | (X,Y) is a coupling of pj,. and pj, .} <P[X; # Y]

t

t—1
< ZPL,S*/(Q\/E) < m
=1
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To prove the second part we redefine (X;);>0 to be the Markov chain with transition matrix Q and
the proof is identical.

We proceed with the last part. For u,v € Vo we have that after ¢t = tix(G2) time steps, by the
triangle inequality and using that tnix(G2) = O(1), by Lemma A.2, we get

P, = 72 Ollav < Ml = @ llev + gk, = 792 C)llev

tmix G
2\(”12) + qu - WGZ(‘)HTV
<o(1) +llg.,. — 72 ()llrv < o(1) + 1/e,

N

where the last inequality follows form the definition of mixing time. Again, by the triangle inequal-
ity, [P, — po, llov < o(1) + 2/e. O

Based on Lemma 3.8, we can now bound the hitting time to reach Zz, which will later be used
to establish the bounds on the mixing and meeting time of the whole graph G. But first, we prove
that the mixing time of the graph G induced by Vo U {Z} is constant and that after mixing on G
the random walk has a probability of 2(1/n) to hit Z in a constant number of time steps.

Lemma 3.9. The following three statements hold.

(i) Let G be the induced graph by the vertices Vo U {Z}. Then tmix(G) = O(1).

(ii) Let w € V\{Z}. Then there exists a constant ¢ > 1 such that P [Ty (u,z) = n/c] > 1/2.
(11i) Let uw € V' \ {Z}. Then tpit(u,2) = O(n).
Proof. We prove the statements one by one.

(i) Let @ be the transition matrix of a random walk restricted to Go. Let d?(t) be the total
variation distance w.r.t. the transition matrix (). Further, let () be the transition matrix of
a random walk restricted to G. Recall that tpix(G2) = O(1), by Lemma A.2.

Fix an arbitrary ¢ € [2tmix(G2), 2tmix(G2)+7]. In the following we show ||g}, —m ( Moy < 1/e.
We first consider any start vertex u € V2 \ {z} and afterwards the vertex u = z. Let D be the
set of distributions over V(G) = V5 U {Z} assigning no probability mass to z, i.e.,

D={D": foru ~ D' we have P[u=Z]=0}. (12)

For any such D’ € D, we have, by definition of the total variation distance,

5 1 & 1
G G
@l = 7Ol = 045 D [dhepr, — 7€) + 5

veEVL

For u € V5 observe that 7TA( ) € [792 (u)(1—¢), 7% (u)(1+)] for some ¢ = o(1). By [LPWOG,
Exercise 4.1] we have the following identity for d2(t). Let D* be the set of all distributions
over V(Gag), then

G Ga
d?(t) = max gy p,. = 7 ()llev > max g, = 7 () v,
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(i)

Thus, for 6, := |?jf“, — qfw|, we get by using triangle inequality,

>

%} veEVs

A 1
Z-I\ZND/,U - WG(U)‘ < 5 Z }Q\ZND/,’U - ‘ +5 Z |7TG2

UEVQ

<5 3 e — 7% 0)| + 5 3 2%(0)C

vEV,

UEVQ

) —70()|

<3 2 o 7@+ 5 10+ 5 3 7% )IC

UEVQ UEVQ

vEV,

<dOt) +1/32 + g

<d9(t) +1/32+1/32,

where the second-last inequality is due to Lemma 3.8.(ii),

(13)

3 Lpev |00 < t/(2v/n) < z5. By

definition of the ¢y (G2) and by sub-multiplicativity we have d%(t) < d%(2tmix(G2)) < 1/¢?

The above equation (13) only consider the variation distance w.r.t. Va.

518z = 79 (2)] < 2tmix(Ga) +7)//n < 1/32.
Putting everything together we get we get

A 1
@ = 7Ol = 5 >

vEVa

<
< 1/e.

Consider the random walk starting at z and let (Xo, X1, ..

that at time 7 we have

qu\27+ZZ \F+1)<

<7 ’UEN )

A 1
T = 70| + 3

2

d9(t) +1/324+1/32+1/32 < 1/e* +3/32

For Z we have

Guprz = 7 (2)

.) denote its trajectory. Observe

1 7
— < 1/32.
+\/ﬁ /

The set of distribution for the position of the random walk at time 7 conditioning on X7 # 2
gives the same distribution D as defined in (12). Let Dz € D be distribution of the random

at time 7 starting at z. Hence, by(14), we get
H’\Ztmlx G2

G A2 mix G
- 71'G(')HTV X qg V(GN\{Z} " ] uiDE(’- 2) _

<1-(1/e® +3/32) +1/32 < 1/e.

G llev + @z

1 (16)

Thus, for t' = 2tmix(G2) + 7 we have ||qA -7 ( )||rv < 1/e. Together with (14), we conclude
that for all u € V/, Hqu - ( )y < 1/e and by definition of tyi and we get tyi(G) <

2tmix + 7 =0(1).

To prove P[Thit(u,2) = n/c] > 1/2 for u € V5 we show that the random walk restricted to

G does not hit z after n/c; steps w.c.p. for some large enough constant c;.

bound, for some large constants ci, co that

n/ci
P[Tgt(u,g) gn/cl] :P[Thlt(u 2) n/cl} Z Tz
t=1

o(1) + n/er - (xC(2) + 1/n?) <

26

calogn

< D) 1Vn+
t=1

1/2,

By the Union

n/ci

>, s

t=ca logn



(iii)

Gz )\ (G (Lemnms

where we used Ejzj <77 (2) + %AQ(GV (Lemma A.1).

We proceed by bounding that [ T} (u, 2) = n/e1] > 1/2 for u € V1. Consider first a random
walk (X¢)i>0 restricted to G} = Gy that starts at vertex z! and let P denote the transition

matrix. Furthermore, in order to couple the random walk )th restricted to (G1 with a random

walk in GG, we will consider the random variable Z := Ztseg 1 o . Since G is a clique,

S = O(1), and pt, ., < T + X2(G1)t by Lemma A.1, where A\o(Gj) is some constant

bounded away form 1. Therefore, E[ ] Z?/gl DLy < 2¢/njfer. Let y = 4- ]E[ } Then,
by Markov’s inequality

P[2>ﬂ <1/4.

Consider now the straightforward coupling between a random walk (X;);>1 in G that starts
at vertex z! and the random walk (X;)¢>; restricted to G} that starts at the same vertex.
Whenever the random walk X; is at a vertex different from 2!, then the random walk X; makes
the same transition. If the random walk X, is at vertex z', then there is a coupling so that

the random walk X; makes the same transition as X't with probability 2‘2/\5;1 Conditional

on the event Z < v occurring, the random walk X, follows the random walk X, up until step

n/ci with probability at least
2y/mn —1\"
=—F =23/4,
3 < 2V > /

since the random walk X; has at most ~ visits to z'. Therefore, by the Union bound,
PTG (u,3) > njc] > P [ UM x, = )?t] >1-P [Z > 7} —(1—p)>1/2
and the proof is complete.

We proceed by showing tnit(u,z) = O(n) for u € Va.

Let @ be the transition matrix of the random walk restricted to Go. Let u € V5 and S* = N(2)

be the neighbors of Z in Gy. For every v € S* we have 72 (v) = ‘FH o 2 g Hence,

after t = tsp(G2) we have that

n
=Y dhy > Y aC ()1 — ) > V2

vES* vES*

\

1—e1

1.2/n

\/>
o=

@

By Lemma 3.8, we have for any u € Va that [|pl, . — ¢}, |lvv < tsep(G2)/(2y/n). To bound
TG, (u,z) we show that after tsp + 1 = O(1) steps the random walk hits Z w.p. Q(1/n).

We distinguish between two cases.
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(a) For all i <t we have pfu’s* < 1/tsep(Ga). Thus, by Lemma 3.8.(i)

Phoge= > Py > dhs — Pl — . llov
vES*

1—et L
2 P ——— ¢ * 2
12\/5 ;Pu,s /( \/ﬁ)
Sl tep(Ga)
T 120 teep(Ga)2vn
Hence, the random walk hits z after typ(G2) + 1 w.p. at least ptu’s* -minges<{pyz} =
(b) Otherwise there exists a t* such that pz g+ > 1/tsep(G2). Thus the random walk hits Z
after tsep(G2) + 1 w.p. at least pf:S* -mingeg-{pyz} = Q(1/n).

Q1/v/n).

Thus after O(1) steps the random walk hits Z w.p. Q(1/n).

We now show a similar statement if u € V. Let (X;)i>0 be a random walk on G starting on .
Observe that X; (the walk on G) hits z with probability piyzl 'pil,g = Q(1/n) in 2 time steps.
Hence, for any u € V we P [Tyt (u, z2) = O(1)] = Q(1/n). Thus, repeating this iteratively and
using independence yields tpit(u, 2) = O(n) for u € V.

O]

To establish a bound on the mixing time of G, we will make use of the following result of Peres
and Sousi.

Theorem 3.10 ([PS15]). For any B < 1/2, let t1;1(8) = max, a.x(4)>p thit(u, A). Then there exist
positive constants cg and c% such that

s thit(B) < tmix(1/4) < g - tui(B).

In the following we show for any /3 close enough to 1/2, that any A C V satisfying 7(A4) >
must include at least a constant fraction of nodes from a constant fraction of copies of G;.

Claim 3.11. Let 8 =1/2 —1073. For any A CV with w(A) > 8, define H(A) = {i | |GY N A| >
[Vil/(2¢)}. Then, |[H(A)| = r/(2e).

Proof. This follows from a simple pigeon-hole argument: Suppose |H(A)| < x/(2e) was true. Then,

m(V1)
2e

m(A) < [H(A)|-7(Vi) + (k — [H(A)]) - ( + 7r(z’)> +7(V2) +7(2)

< 2% (V1) + K - <7r(2121) —|—7r(zi)> +1/20 < g < w(A),

which is a contradiction and hence choice of A must fulfill |H(A)| > x/(2e). O

We are now ready to determine the mixing time of G. The lower bound is a simple application
of Cheeger’s inequality, while the upper bound combines the previous lemmas with Theorem 3.10.

Lemma 3.12. Let G be the graph described at the beginning of Section 3.4. We have tnix(G) =
O(n).
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Proof. First we show tmix = Q(n). The conductance of G = (V,E) is defined by ®(G) =
erncl‘r} w In particular, for U = V; we get that ®(G) < %. Hence, by Cheeger’s
0<vol(U)<vol(V)/2

inequality and (ﬁﬂc) - 1) -log(5) < tmix(1/e) (see, e.g., [LPWO06, Chapter 12]),

< 1 < 2 . 2 _2+2< 2tmix
TO(G) T 1-2(G) 1-X(G) “log (£)

+ 2.

=3

Rearranging the terms yields tpyix = Q(n).

We proceed with the upper bound on the mixing time. Let 3 = 1/2 — 1073 and let A C V be
an arbitrary set satisfying m(A) > B. First, we apply Claim 3.11 to conclude that |[H(A)| > k/(2e).
This immediately implies that with Z := {2*: i € H(A)}, |Z| > x/(2¢). The remainder of the proof
is divided into the following three parts:

(i) Starting from any vertex u € V, with probability at least 1/2, the random walk hits z* after
2 maxyey thit(u, z2) = O(n) steps.

(ii) With constant probability p; > 0, the random walk moves from z* to a vertex in Z.

(iii) With constant probability ps > 0 a random walk starting from a vertex in Z will hit A after
one step.

It is clear that combining these three results shows that with constant probability %plpg >0, a
random walk starting from an arbitrary vertex u € V hits a vertex in A after O(n)+1+1 time-steps.
Iterating this and using independence shows that tp;(u, A) = O(n), and hence by Theorem 3.10,
tmix = O(n) as needed.

Part (i). Consider maxycy thit(u, z). For uw € V, Lemma 3.9.(¢4¢) implies tp;t(u, 2) = O(n).

Part (ii). If the random walk is on z*, then since deg(z*) = k + /n/d/, |Z| > k/(2¢), it
follows that the random walk hits a vertex in Z after one step with constant probability p; :=

1Z]
2(k++/n/a’) > 0.

Part (iii). Finally, for any z € Z we have that ps = p, 4 = |V12|\//(ge) > 0 and the proof is
complete. O

In the following we establish the bound on the meeting time. As it turns out, any meeting
is very likely to happen on V3 and it takes about ©(a’'n) time-steps until both walks reach V3
simultaneously. The lower bound then follows from our common analysis method (1). The upper
bound combines the mixing time bound of O(n) (Lemma 3.12), and that once a random walk
reaches a copy of G, it says there for ©(n) steps with constant probability Lemma 3.9.(ii).

Lemma 3.13. Let G be the graph described at the beginning of Section 3.4. We have tmeet(G) =
O(a'n).

Proof. We start by proving tmeet = Q(a/n): Consider two non-interacting, random walks with
starting positions drawn from the stationary distribution 7. Let ¢ = ¢’a’n, for some small enough
constant ¢ > 0. Let Z; be the number of collisions of the two random walks on the nodes in
VEUVZU---UVF. Let Zs be the number of collisions of the two random walks on the nodes in
V5. Let Z, be the number of collisions of the two random walks on the node Z.

Let Z be the number of collisions of the two walks during the first £ time steps, i.e., Z =
Z1 + Zy + Z,. Using the Union bound we derive
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P[Z>1]<P[Z >1]+P[Z > 1]+P[Z > 1]
E(z,) ., E[zZ] . E[z]
E[Z|Z>1] E[Z:|2Z>1] E|Z,|Z: >1]

< (18)

We have E[Z;] < In (%)2, E[Z2] < K\/% (%)2, and E[Z,] < ¢ (%)2, since max, 7(u) < 2/n.
Conditioning on Z; > 1 and since both random walks start from the stationary distribution, we
have, by Observation A.8, that the first meeting happens in the first £/2 time steps w.p. at least
1/2.

Consider E[Z; | Z; > 1]. Suppose the meeting occurred at node u € Vi. Let £ be the event
that for u € V4 we have Tyt (u,2) > n/c for both walks, where ¢ > 0 is a large enough constant.
By Lemma 3.9.(ii), we have that P[£;] > (1/2)? = 1/4 due to independence of the walks. For any

t <nj/clet ;35 be the distribution of the random walk on (G starting on w after ¢ time steps under

2
the conditioning &. Observe that Y .y, P, = 1 implying that > oy (B%.,)% = > enn (ﬁ) =
1/|V1|. Hence, we get

n/c—1 n/c—1

B2 21 >E[Z| 4 >16] P[a]> min > Y 000> > 1/|v1|_£
t=0

%
e t=0 wveVq

Using an exactly analogous analysis for Zy we can upper bound E[Z5 | Zs > 1] as follows:

n/c—1 1n/c—1 \/a
B[22 22 211 2 E[ 22| Z2 2 1,6 - P[& Helglz > (@, 721/%\:1,
dueVe T o t=0

where & is the event that for u € Vo we have Ty (u, z) = n/c for some large enough constant c.
Plugging everything into (18) and using ¢ = ¢’a/n yields
E[Z] E[Z] E[Z.]

P[Z>1]<
N A R A R A
¢

n 2\2
G )

<o(1) + 16c- ¢ +0( )< 1/2,

for any constant ¢ € (0, ==]. This finishes the proof of tmeet = 2(a/n). In the remainder we prove
Y 33¢

tmeet = O(a/n). Consider two independent walks (X¢)i>0 and (Y;)i>0 on G, both starting from
arbitrary nodes. Note tsep = tsep(G) < 4tmix = O(n) by Lemma 3.12, and
2
poi=P [{Xu, €12} N Vi, €12} ] > | Y (= )mw) | =2 ((Wva)’) = ().
ueVy
We assume in the following that {thep € Vg} N {Ytsep € Vg} We have tnix(G2) = O(1), by
Lemma A.2. Consider a random walk (Xt)t>tbep restricted to G that starts at vertex KXieep € V2 and

let P denote the transition matrix. Furthermore, in order to couple the random walk X, restricted
to G with a random walk in GG, we will consider the random variable

tseptn/c—1
Z= ), Z Rems?
t= tsep ZGN
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for ¢ = 32. Thus, for any z € N (%),

tsep+n/c—1

E|Z]<twn(@)+ X IN@IE®() +d"(0)

t:tsep+tmix (G2)+1

< tmix(G2) + IN(3)|(n/c) + O(1) < (1 + 1/e)v/n/c.

Let v := 8(1 4+ 1/e)y/n/c. Then, by Markov’s inequality
i [Z > ﬂ <1/8.

Consider now the straightforward coupling between a random walk (X;)i>¢,., in G that starts
at vertex X € V2 and the random walk (X{)¢>¢,,, restricted to G that starts at the same vertex.

Whenever the random walk X; is at a vertex in Va \ {N Z)}, then the random walk X; makes the

same transition. If the random walk X, is at vertex 2/ € N (Z), then there is a coupling so that
2y/n

2/n+2°

event {Z v} occurring, the random walk X, follows the random walk X, up until step n/c with

probability at least
2 Y Y
= (2 ) — (- L) 2
2y/n+2 vn+1 4

since the random walk X, has at most ~ visits to N(2). Consider now the random walk (%)t%sep

Conditional on the

the random walk X; makes the same transition as )?t with probability

using P (i.e., restricted to V3) starting at Yy, i.e. }N/tscp Yi.,- By an analogous argument as
before we can couple (Y3)¢>t,,, and (Yt)t>tgep for n/c time steps w.p. at least py.

Furthermore after tep(G2) = O(1) steps we can couple X; and Y; with nodes drawn indepen-
dently from 7¢2. Hence,

v

p2 =P [)A(:t"‘tsep(GZ) = }7t+tsep(G2) | ]:t] > (1-1/e)?|n%|3 > S

Recall that o > 220tsep(G2)2 by definition. Therefore, the probability that X, and Y; do not meet
in the time-interval [tsep(G1), tsep(G1) + n/c — 1] is at most

p3 = (1 — pQ)L”/(tsep(GQ)C)J < (1 _p2)L210n/(WC)J < 1/4‘
Therefore, by the Union bound,
P U:S:eg(GlHn/C_lXt = Yt] > po - (1 —P [Z > ’y} —2-(1—p) *pg) = Q(d).

Repeating this O(1/p3) times and using the independence yields that the expected meeting time is
O((tsep(G1) +n/c—1)/p3) = O(a'n) and the proof is complete.
O

Finally, we analyze the coalescing time of G. The proof idea is to consider /n random walks
starting from 7 and show that meetings only occur on V5 and that at least one random walk requires
Q(va' - nlogn) time-steps to reach V5.

Lemma 3.14. Let G be the graph described at the beginning of Section 3.4. We have teoa(G) =

Q(vVa' -nlogn).
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Proof. Let e = 1/5. We show that even the coalescing time of n° random walks requires Q(v/o/ -
nlogn) time-steps w.c.p.. Let R be a collection of n® independent, i.e., non-interacting, random
walks with starting positions drawn from the stationary distribution 7. We define the following
three bad events:

(i) Let & be the event that any of the n° random walks meet on a node V' \ V5 in Vo’ - nlog?n
steps.

(ii) Let & be the event that fewer than n/4 random walks start on copies of G, i.e., on nodes

V\ (VaUZ2).

(iii) Let & be the event that all random walks starting from a copy of G require fewer than
¢-Va'-nlogn time-steps for leaving V' \ (V2 U z*) for some constant ¢ > 0 to be determined
later.

In the following we show that P[&1] = o(1), P[&] = o(1), and P [&5 | & ] < 1/e, which
implies, by union bound,

P[&N&ENE]2P[&] - (1-P[&ENE]) =21 —0(1) — (1—(1—0(1))- <1—1)> >1—i

e 2¢e’

Conditioning on & N & N &3, none of the independent random walks meet on any node V \ V3
and hence they are indistinguishable from coalescing random walks until they reach V5. Therefore,
it is necessary for all random walks to reach Gz in order to coalesce. Hence, we conclude that
teoal(G) = Q(V - nlogn) yielding the lemma.

(i) We now prove P[&1] = o(1). Consider any pair of the random walks R. Since both random
walks start from the stationary distribution, the probability for them to meet on a node on z
in a fixed step ¢ > 0 is at most O(1/n?).

Hence, by the Union bound over (n;) pairs of random walks and va/ - nlog?n < nlogn
steps, the probability of any two random walks meeting on Zz is at most

p1 = (2) nlogdn - O(1/n?) = o(1),

since € = % Furthermore, the probability that no two walks start on the same copy of Gy is
at most pg :=n° - \’/L—% = 0(1) by the Union bound.

Moreover, using a Chernoff bound together with Lemma 3.9.(i7), it follows that a random
walks visits the vertex z* at most 10log®n times during nlog®n steps with probability at
least 1 —n~2. By the Union bound over all random walks, it follows that w.p. at least 1 —n ",
each random walk visits at most 10 log® n different copies of G, and by construction of G each
such copy is chosen uniformly and independently at random among G}, G2, ..., G%. Therefore,
the probability that there exists a copy of (G; which is visited by at least two random walks

in nlog3 n steps is at most

£(10log®n + 1
ps:=n"'+n(10log’n+1) - n°(10 (z/gﬁn+ ) = o(1). (19)

Putting everything together, using union bound, yields P[&1] < p1 + p2 + p3 = o(1).
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(ii) We now prove P[E;] = o(1). The probability p for each random walk to start on a node of
V\N(VhUuz)isn(V\ (VaUZ)) > 1/2. For each of the random walks with label 1 < i < n®
we define the indicator variable X; to be one, if that random walk starts on V' \ (Vo UZ). Let
X = Z?; X;. We have E[X ]| =n®-E[X;] > n®/2. Since the starting positions of the n®
random walks are drawn independently, by a Chernoff bound

P[&] =P [X < inﬂ <P[X <E[X]/2] <e ™/ =0o(1).

(iii) We now prove P [&3 | & | < 1/4. From Lemma 3.9.(ii) we get that w.p. at least 1/2 a
random walk starting at any node u € V; does not leave (1, i.e., does not reach z*, after
cin time-steps for some constant ¢; > 0. It is easy to see that the number of visits to 2z
required before the random walk hits G instead of returning to Gy is w.c.p. at least vo//2;
this is because the fraction of edges from z to G is y/n/a’//(\/n/a’ ++/n). Using a Chernoff
bound, we conclude that any random walk starting at G; doesn’t hit G5 during the first
T=c - \/Jn/ 2 time-steps with constant probability p > 0. Thus the probability that a
random walk does not reach Gy after \ - T time-steps is at least p*, for any integer A > 1.
Setting A = ¢ - log(1/p) - log(n/4), the probability that all of the at least 1n® random walks
starting from Gy reach Go within X\ - T = Q(v/a' - nlogn) steps is

P& | &] < (1-p)i™ < 1/e,

completing the proof.

The following lemma establishes a bound on the average hitting time.

Lemma 3.15. Let G be the graph described at the beginning of Section 3.4. We have taygnix =
Q(n3/2)

Proof. Consider a random walk that starts from an arbitrary vertex u € V. By Lemma 3.9.(7i),
every time a vertex 2° is visited, with probability at least ¢ > 0 it takes Q(n) time-steps to visit
another vertex 2/, j # 4. Using a Chernoff bound, it follows that with probability larger than 1/2 it
takes at least Q(n®/?) time-steps to visit at least half of the nodes in {z', 22,...,2"}. By symmetry,
it follows that for every vertex in a copy of G there are Q(n) vertices to which the hitting time is
Q(n?/?). Thus, by symmetry, tayg nit = > ey T(w) - m(V) - thit(u,v) = Q(n2#n3/2) =Qn3?). O

4 Bounding t.,, = O(ty) for Almost-Regular Graphs

As mentioned in the introduction, the bound on t.y,) in terms of ¢3¢ will be based on the combination
of two reduction results; the first result reduces the number of walks from O(n) to O(log®n), while
the second one reduces the number of walks from O(log® n) to (A/d)'%; both taking O(ty;;) time.
In Section 4.1, we first develop concentration inequalities that will be needed for these reductions.
Then in Section 4.2, we present the first and technically simpler reduction to O(log3 n) walks,
which is stated in Theorem 4.3. The proof basically combines the concentration inequalities with
our well-known formula (1).

The derivation of the second reduction is done in Section 4.3. It is based on identifying nearly-
regular and dense subsets S, which will contain enough vertices visited by a random walk, even if
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the walks only run for o(tpi;) steps (Lemma 4.7). The proof of this Lemma 4.7 also rests on the
concentration inequalities we derive. The second reduction is then completed by Lemma 4.8, which
uses the dense subsets S provided by Lemma 4.7 in order to prove that random walks are likely to
collide. A more detailed proof outline can be found at the beginning of Section 4.3.

4.1 Concentration Inequalities for Random Walks

In this part, we derive several concentration inequalities for random walks that are new to the
best of our knowledge. We point out that existing concentration inequalities tend to fail in our
setting, since the events we are considering (like visits to a certain vertex or expected collisions
with an unexposed walk) may only appear a small number of times during tp;; steps. Therefore,
we have to develop new concentration inequalities that are parameterized by ty;;. Although the
derivation is fairly elementary, the bounds are quite general and may complement existing bounds
that are usually parameterized by the mixing time [CLLM12; Lez89]. In particular, our bounds
are most useful when #,;x and tp;; are close, which is precisely the challenging regime for proving
tecoal = O(tnit). One limitation though is that our bounds only work for large deviations exceeding
the expectation by a multiplicative factor.

Lemma 4.1. Let f : V — [0,1] be any function over the vertices and f =>_,,cy f(u) - 7(u). Then
for any random walk starting from an arbitrary vertex Xo and any number of steps T = 0,

T-1
E [Zf(Xt)] <8-T+.F,
t=0
where T = max{tyy,T}. Furthermore, for any integer A > 1,

<27

T-1
P !Zf(Xt) > A (16T f+1)
t=0

Moreover, suppose we have time-dependent functions, fi : V — [0,1], 0 < t < T, where T may be
any integer. Further assume that there is a universal bound T > 0 so that for any 1 < s < T and
any w €V,

T—1
E[> fiXy) | Xe=w|<T.
t=s
Then, again for any integer A > 1,
T-1
P [th(xt) >A-(20 +1) | <27
t=s

Proof. We first prove that for all pairs of states u,v € V and any T > ty;; that,

T-1
prw <8-TH - 7(v).
t=0

Suppose for a sake of contradiction that ZtT;()l P, > 8- T -m(v). Then, for an arbitrary vertex

w € V, by Markov’s inequality, P [T (w, u) < 2tpi] > L

5, where we recall that Tyt (w, u) is the
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first time step at which a random walk starting at w hits u. We will use N¢(u,v) = Z;é 1x,—y to
denote the number of visits to v up step ¢t — 1 starting at u. Therefore,

E[Nap+(Xo,v) | Xo=w] = P[Th(w,u) < 2tpit | - E[ Np+ (Xo,v) | Xo = u]

1 T-1
> 5 ;PZ,U >4-T 7(v).

Since this holds for every vertex w € V, we conclude E[Nsp+(Xo,v) | Xo~7] > 47T - w(v).
However, by definition of the stationary distribution, we also have E [ N3p+(Xo,v) | Xo~7] =
3T+ - w(v), which yields the desired contradiction. Now the first statement of the lemma follows
simply by linearity of expectations:

T-1 T-1
E|Y f(X) | Xo=w|=FE|> > 1x—u flu) | Xo=w
t=0 t=0 ueV
T—1
=D > fw) E[lxy | Xo=w]
ueV t=0
T-1
ueV t=0
<D f(u)- 8T -w(u) =8-TF - f.
ueV

We now prove the second statement. By Markov’s inequality, for every w € V,

P

N | =

T—1
ST HX) =167 F | onw] <
t=0

Hence with 7 := min {s eN: Y7 f(Xy)>16-TT 7} we have for every w € V,

1
]P’[T<T—1|X0:w]<§.

Since f is bounded by 1, we get >, f(X¢) <16 -T" - f + 1 and therefore,

T—1 A
PIY f(X)=A-(16-TT - f+1) | Xo=w <<maxP[T<T1|X0:v]> <27
pard veV

The third statement is derived in exactly the same way we proved the second statement. O

The third statement of Lemma 4.1 is very useful in that it can be used the following concentra-
tion inequality on Z. Notice that the variable random variable Z is defined using only one random
walk (X¢)i>0, but it can be viewed as the expected number of collisions on the vertex set S of
the random walk (X;);>0 with another (unexposed) random walk (Y;)¢>0, starting from the same
vertex u.

Lemma 4.2. Let S be any subset of vertices such that the degree of any pair of vertices in S differs
by at most a factor of v. Consider any random walk (Xy)i>0 that starts at an arbitrary vertex
u €S, and for any T > 0

S

— t
Z = 1x,es *Pu, X

if
o
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Then with T = max{tyy, T'} it holds that

E [2] <167 TT -maxm(w) =: Y.

weS

Furthermore, for any A > 1
P{Z)A-(zrﬂ)} <27M

Proof. First note that 7 is a random variable over the walk (Xo=u,X1,Xo,...,Xp_1) withu € S.
Let us first upper bound the expectation of Z:

[ } Zzpuv puv\’y Zzpuv pvu\’y Zp 8’7'T+-7T(u),

t=0 vesS t=0 vesS

where the second inequality is due to reversibility, i.e., pfw m(u) = pfw -7(s) and the fact that the
degrees in S differ by a factor of at most «, and the fourth inequality uses p?fu < 7m(u) which hold
since pf, ,, is non-decreasing (Lemma A.1) and the first statement of Lemma 4.1.

Furthermore, suppose now that we condition on the walk (X;);>¢ being at an _arbitrary vertex
w € S at step s, where 1 < s < T — 1. Then the remaining contribution towards Z is at most

T-1

Z]-XtES'pZ,Xt | XS:w :Zzpwv puv

t=s t=s veS

T-1
<YLY phs b

t=s vesS

T—-1
t— t
<Y DD Pas Poa
t=s veV
Qt
=7 Z Py
2T -2

<7 Z pz,w
t=0

<y-16-TY - 7w(w) <,

where the penultimate inequality is due to the first statement of Lemma 4.1, applied to the number
of visits to w of a random walk of length T', i.e., f(v) := 1,—. Finally, by the third statement of
Lemma 4.1, applied to the functions f;(v) := Lyes - pl,,, 0 <t < T —1,

P [Z >\ (32’7-T+-max7r(w) + l>] <27

weS

4.2 Reducing the Walks from n to O(log®n) in O(ty)

We now present our first reduction result that reduces the number of walks from n to O(log®n) in
O(tpit) time.
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Theorem 4.3. Let G = (V, E) be an arbitrary, possibly non-reqular, graph. Then after O(tnit)

steps, the number of walks can be reduced from n to O(log3 n) with probability at least 1 —n~!,

Thanks to tmeet < 4tniy (Proposition B.9) and teoa1(So) = O(tmeet 10g |So|) (Proposition 3.4),
the result of Theorem 4.3 implies, among other things, a bound of t.a = O(tn - loglogn) for any
graph. The proof idea is as follows. First, we use the concentration inequalities of the previous
section to show for a given random walk (X;);>0, there exists w.h.p. a set S’ = S"((X¢)¢>0) of nodes
where (i) all nodes have up to a factor of 2 the same degree, (ii) the stationary mass of that set
is at least (S’) > 1/log®n, and (iii) the nodes S’ receives at least Q(tyi;/logn) visits during the
interval [tsep, tsep + 2thit). From this we will be able conclude that any random walk collides with
(X¢)i=0 w.p. at least p = Q(1/log?n). Second, we consider the process Pnm of Section 3.1 and
make use of the majorization given by Proposition 3.1. We divide the walks into two sets G; and
Gy with |G1| = ©(log®n). We show, using the first part, that w.h.p. each walks (X;)¢=0 of Go will
vanish due to its frequent visits to S’ and the fact that each independent random walk (Y;)¢>0 of
g1 intersects with (X;);>0 on S" w.p. at least p: Using independence, the probability for each walk
of Gy to survive is (1 — p)!91 < n=2. The claim then follows by the Union bound.

Proof of Theorem 4.3. First consider any random walk (Xt)?:egﬂthirl, that reaches an arbitrary
vertex u at time tsep. Next divide all vertices in V into buckets S; = {v € V: deg(u) € [2071,2%)},
where 1 < i < logyn. For any bucket i with 7(S;) < 1/log®n, let Z; := Ziiﬁ:jth“_l 1x,es, count
the number of visits to S;. Then by the first statement of Lemma 4.1, E[Z;] < 16tp; - 7(S;) <

16t/ log® n. By the second statement of Lemma 4.1, it follows that
P[Z; >t/ (2logon)] <P [Z; = log" P n - (32t /log® n +1)] < 271" < n=2/(2logy n),

where we used the fact that tp;; > n (Lemma A.7). Hence with

S = U S;

1<i<loggy n:
w(S;)=1/log®n
it follows by the Union bound that S gets at least tni; — logy n - thit/(21oge 1) = thit/2 visits with
probability at least 1 —n~=2/2.
Let us now consider any S; with 7(S;) > 1/log®n, and define

tsep+2thit_1
Zi(s) := Z 1x,es; -pt);:Xt, for any s € [tsep, tsep + 2tnit — 1].
t=s
Notice that by Lemma 4.2, k = 2, setting T = 16 - k - max{tnit, 2thit — 1 — s} - maxyeg, m(w) <
641ni, - maxyes, T(w) we have

P {Z(s) > 520logn - thit - mas)cﬂ(w)] <P [Z(s) > 8logn(2Y +1) | <n™ %,
wWED;

7

having used the fact that tp;; > 1/ minyey 7(v) due to Lemma A.7. Since tn;; = O(n?®) and there
are at most logy n buckets, by the Union bound,

Pl U U Zi<s>>clogn‘thit-masx7r<w>} <n 2.
S
1<1<10g2 n: tsepgsgtsep +2thit_l v
#(3)>1/ log? n
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Hence by the Union bound, with probability at least 1—n "2, the trajectory (zq, z1, . . ., Toept 2o —1)
of (Xt)?:egwth“ is good, i.e., its trajectory (i) makes at least ty;;/2 visits to S during the steps
[tseps tsep + 2tnit] and (ii) all Z(s) are bounded by clogn - t;; - max,eg, m(w).

In the following, condition on (Xt)is:egﬁth“_l being a good random walk, and let us denote by
(w0, T1, ..., Ttypt2t,;,—1) the deterministic trajectory. Since S gets at least ty,;;/2 visits in the time-
interval [tsep, tsep + 2tnit — 1], by the pigeonhole principle, there must be at least one bucket S; with
7(S;) = 1/log® n so that bucket S; gets at least (1/8) -t/ logn visits in that time-interval. We shall
now prove that any other random walk (E)::BJFZthirl, starting from an arbitrary vertex w € V,
collides with this deterministic trajectory on a vertex in S; in the time-interval [tsep, tsep + 2thit — 1]

with probability at least Q(1/log?n). To this end, let us define

tsep+2thit_1
Z = E 14Ut€sj . 1}/tzg;t

t=tsep
Since for any ¢ > ts, we have piuw > % - 7(v) for any pair of vertices w,v € V, it follows that

tsept2thit—1
E [Z | (@o, 21, xtsep+2thit_1):| 2 Z Z 1= 'pfuw

t=tsep ’UESJ‘
tsep +2tphi—1

.
> 3 gélg 7(w) - Z Z 1=

1 in 7(w) 1
— - min 7(w) - - thit,
16 wes; logn hit
where the last inequality holds because the deterministic path (zg,21,. .., T, 126, 1) Makes at
least (1/8) - thit/ log n visits to Sj.
Furthermore, since the deterministic walk (zo, 21, ..., %4, 426, 1) satisfies invariant (ii), con-

ditional on Y; having its first collision with X; at step s on a vertex =, € 9},

tsep+2this—1
E|Z | (x0,21,...,% 9. —1), 2 =211 < max E 1 plos
[ | ( 0 ’ ’ tsep+ thit )7 - ] \tsep<5<tsep+2thit_1 t xtESJ pxs’mt
=s

= O(logn - tyit - max w(w)),
wESj

by part (i7) of the definition of a good walk. Combining our last two bounds yields

E[Z | (20,21, Ttep 2t —1) |
IP Z 2 1 . - = ’ ) ) sep hit
[ | (x(), X1, » Ttgep+2tnit 1)] E [Z | (.130, L1y 7$tSep+2thit_1)’ Z > 1]
=Q(1/log’n) = p (20)

To complete the proof of the theorem, divide the k& > 2/p - Inn random walk arbitrarily into
two disjoint groups G; and Go such that |G| = 2/p-Inn. We will analyze the P, process defined
in Section 3.1 in which random walks from G; are immortal. By making use of the majorization
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given in Proposition 3.1, to show the claim it suffices to bound the time it takes in P,y for all
walks of G be eliminated.

By the above argument, any random walk (X}) in Go will be good with probability
at least 1 — n~2. Hence by Markov’s inequality, all trajectories of the random walks in Gy are
good with probability at least 1 — |Ga|n~2. Conditioning on this event, (20) shows that any from
the random walks in G; collides with the trajectory of any fixed good random walk in Go in the
time-interval [tsep, tsep + 2thit — 1] with probability at least p. By independence of these events

across random walks in Gy, random walk (Xt)iigwth“_l is not eliminated with probability at most

tsep+2thir—1
t=0

(1=p)9 = (1= p)» ™" <02,

Note, that we neglected the fact that random walks of Go can eliminate each other, which only
further decreases the probability of a walks of G to survive. Combining everything, and using Union
bound, it follows that with probability at least 1 —n~! all random walks in G, are eliminated. The
claim follows by noting that the number of steps used is tgep + 2thit = O(tmix + thit) = O(tnit). O

4.3 Reducing the Walks from log" n to (A/d)°WM in O(ty)

Theorem 4.4. Let G = (V, E) be any graph with maximum degree A and average degree d. Then
the expected time to reduce the number of walks from log*n to (A/d)'% is at most O(tps).

4.3.1 Proof Overview

In comparison with Theorem 4.3, the reduction in Theorem 4.4 is more subtle, as there might be a
sub-logarithmic number of random walks preventing us from using the simple bucketing-argument
into “nearly-regular” partitions used in Theorem 4.3. Furthermore, Theorem 4.3 achieved the
reduction in just a single phase of O(ty;;) steps: All random walks have w.h.p. a distribution of
visits to nodes which is reasonably close to the expectation of visits to these nodes when starting
from the stationary distribution.

Here however, we are only able to prove an “exponential” progress and consider periods which
can be much shorter than the mixing time. This means that we need to cope with random walks
whose distribution may be far from the stationary distribution. Specifically, if there are k random
walks left, we will analyze a phase of length ~ ty; /K, with k& = k1% and show that a constant
fraction of random walks will be eliminated. To account for the fact that the random walks are
not mixed, we will identify certain “dense” subsets Dy having the crucial property that each node
in Dg has a sufficiently large stationary mass and all nodes together have a stationary mass which
is close to 1.

We then show the existence of a subset of Dj(i) C Dy which random walk ¢ will pay enough
visits to within tp;;/k steps (see first part of the proof of Lemma 4.7). This is derived via our new
concentration inequality (Lemma 4.1) to show that (i) random walk ¢ does not spend too many
steps outside Dy and (i) most vertices do not receive much more visits than predicted by the
stationary distribution. Thus we end up in a favorable situation where for most walks 1 < ¢ < k,
we have a subset Dq(i) C Dy with |D1(i)| = 2n/x8. Since we have ~ k = k1% of such walks, an
overwhelmingly large fraction of these subsets S(i), 1 < i < k, must overlap.

Unfortunately, we are still not done since in order to reduce the number of random walks, we
also need to consider when the visits to D1 () occur. Specifically, if random walk ¢ makes a visit to
a vertex u € D1 (i) at time, say, ¢, then we need to ensure that there are enough other random walks
7 which could potentially also visit vertex u at time ¢. To ensure this, we will discard “surprising”
visits, which are visits to vertices when the probability for this to happen at this step or before is
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at most k723, It is worth pointing out that the property of a visit to u being surprising, depends
not only on the vertex but also on the start vertex of the walk. The second part of the proof of
Lemma 4.7 deals with this issue and shows that for most walks, there is a subset Dy(i) C D;(4)
with |Da(7)| > n/k® containing only vertices which receive enough “unsurprising” visits.

Equipped with these subsets Dj(i), we regard the “unsurprising” visits as a balls-into-bins
configuration, where each ball on a bin (vertex) is associated to a walk i which may visit this vertex
(we refer to Figure 5 for an illustration). Through a series of counting arguments Lemma 4.8, we
establish that for most random walk i there is a subset Dy(i) C Ds of vertices, so that each vertex
receives enough visits and for each such visit at some time ¢, there are sufficiently many other walks
j which have a probability of at least £~2% each to visit the same vertex at time ¢.

After all these preparations, we analyze the coalescing process and achieve the desired reduction
in the number of the random walks in Lemma 4.9. Similarly to previous analyses, we use a division
of random walks into groups G; and Go. The roles of G; and Gy are as before; walks in Gy are
merely used to eliminate walks in Gs. This time, however, the division into G; and Gs is completely
uniformly at random, in particular, this means that G; and Gs are roughly of the same size. We
establish that for most fixed random walks 1 < i < k, conditional on being in group Gs, there is a
constant probability of picking a trajectory that will likely lead to an intersection with any of the
other k — 1 unexposed random walk.

Combining the two steps of the proof, the structural result in Lemma 4.7 with the probabilistic
analysis in Lemma 4.8, it immediately follows that the number of walks can be reduced by a
constant factor within O(tpit/k) steps, yielding Theorem 4.4.

4.3.2 Definitions and Lemmas required to prove Theorem 4.4

Before giving the formal proof of Theorem 4.10, we introduce additional notation. Recall that k is
the number of random walks at a certain time, w.l.o.g., say t = 0. Consider a fixed random walk
(X1)9°, with label 1 < i < k, where k = £!% that is run for

7= At /K

steps, and starts at an arbitrary vertex Xy = w;. Since we seek to reduce the number of random
walks to (A/d)'% we assume the following.

Assumption 4.5. Throughout this section we assume k1% = k > max{2'9, A/d}.

Note that if £ < max{2'°, A/d} the claim follows immediately from Proposition 3.4. We define
a “dense” subset of nodes as

Do:={veV:n(v)>1/(nk*)}.

Clearly,
1
(Do) =1 — |V \ Dg|-1/(x%n) > 1-—. (21)
A 1 1
< < = Y002 e 2
w(u)\ﬂmax\nd\k - K = (22)

where the penultimate inequality holds since k/100 > A /d by assumption. Hence the degree of any
two vertices in Dy differ by at most a factor of 3.
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Before proceeding further, we introduce another piece of notation. For any random walk 1 <
i < k denoted by (X¢)i>0, we call a time-step s € [0,7 — 1] is bad if X € Dy and additionally,

7—1

t— 10
letepo Pxlx, 216K - thig/n.

t=s

Intuitively, a time-step s is bad, if the expected number of collisions for another random walk
starting at vertex X, € Dy at step s with the walk (X, Xs41,...) is too large.

Lemma 4.6. Consider a random walk (Xt),:Ol of length T = 4ty /k. Then with probability at least

1 — 27", there are at most T - 27" bad time-steps t € [0,7]. Consequently, for a collection of k'
random walks with k > 210, all of these walks have at most T-27" bad time-steps t € [0,7 — 1] w.p.
at least 1 — 1/k.

Proof. First, let us fix any step s € [0,7 — 1], and following the notation of Lemma 4.2, let

—1
Z(s) := Z 1x,ep, 'pg(_th'

t=s

Then, since 7 — s < tpi, by Lemma 4.2, for any vertex u € Dy,

E [2(3) | X :u} < 8K3 -ty - max w(w) < 8k -ty /n =: Y.

we Do

Since tnit = n by Lemma A.7, we have T > 2 and the concentration inequality in Lemma 4.2
implies

P [Z(s) >16- k' 'thit/n} <P [Z(s) > 2k - (27 + 1)} <272,
Now let B denote the number of bad time-steps, i.e.,
B := HO <s<T—1: Z(s) > 16-/@'10-thit/n}’.
Then, by linearity of expectation
E[B]=Y P [Z(s) >16- 410 thit/n} <27
and a simple application of Markov’s inequality implies the first part of the claim. For the second
part we simply take Union bound over all k!9 walks and using that 1 — x!9°/2% > 1 — 1/k. O
Let Ny(i,v) denote the number of visits of the random walk ¢ to v within ¢ time-steps. Let
Dy(i) == {v € Dy: N;(i,v) > 27/x* - 7(v)},

i.e., Dy are all vertices v € Dy that are visited at least 27/k* - 7(v) times before time-step 7. Notice
that D; is a (random) set that depends on the realization of the walk.
Furthermore, let
t(i,v) := min {¢: P [T (us, v) < t] > /@_23} .

Basically (i, v) is the “smallest” step ¢ so that the probability that random walk ¢ visits vertex v
at step ¢ or earlier is bounded below by x~23. Note that ¢(i,v) is a deterministic integer that does
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not depend on the realization of the walk. With reference to our proof outline, we regard any visit
before t(i,v) as a “surprising” visit, while visits at step t(i,v) or later as an “unsurprising” visit.

Let Do (i) be the set of vertices v that get at least 7/x*-7(v) visits between the time steps #(i, v)
and 7; in symbols

Dy(i) := {v € Dy(i): N-(i,v) — Ny (i, 0) = /K% m(v)}. (23)

We now to state a structural lemma, providing lower bounds on the size of Dj(i). Recall that
Dy(i) is a subset of the “dense” set Dy that has a large stationary mass and contains only vertices
with sufficiently high degree. This “projection” is not required on regular graphs, where we could
simply work with all vertices, i.e., Dy = V. However, for non-regular graphs, the projection on Dy
is essential since on the set Dy, the random walk will behave sufficiently similar to a random walk
on a regular graph.

Lemma 4.7. Let G = (V, E) be an arbitrary graph and let k > 2'° be any integer. Consider any
random walk (X¢)i=0 with label i. Then, we have that |D2(i)| = n/k® w.p. at least 1 —6/k.

Proof of Lemma 4.7. First we bound the number of visits of walk i to V' '\ Dy. To this end, let C
be the hits from ¢ to the vertices which are not in Dy before time step 7, in symbols,

T—1

C:= letgpﬂ.

t=0

By Lemma 4.1 and using 7 < tpj;, we derive
E [5] < 8max{tue, 7} - 7(V \ Do) < Stuie/k2 = 27/,

where we used the fact that 7(V \ Dy) < 1/k2 by (21). Hence by Markov’s inequality,

~ ~ ~ 4
IP’[C’)T/2}<IP’[C’2/€/4-IE[CH<7. (24)

K
Next for any fixed vertex v € V, we know that for any A > 1 the probability that the random

walk makes more than 32\ - ty,;; - m(v) visits to v is
PN, (i,0) = 32X -ty - 7(0) ] SP[N,(,0) = X (16 -ty - w(v) +1)] <272, (25)

where we used the facts that tpi - 7(v) > 1 (Lemma A.7) and the second statement of Lemma 4.1.
Recall that N;(i,v) denotes the number of visits of the random walk ¢ to v within ¢ time-steps.
Define

B = Z LN, (i,0) k2t m(v) - Nr(6,0)-
veV

Then
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:Z Z J-P[N-(i,v) =j]

UEV j:liz'thitﬁl’(’u)
(04+1) thip-m(v)—1

S YD ten) > PN =]

VeV o=x2 Jj=0 tnit-m(v)

<D Y (o +1) tyie - 7(v) - P[No(i,0) = 0 - tig - 7(v) ]

veV g=x2
00
=Y tne-w(@) - Y (0+1) - P[N(i,0) > 0ty - 7(v)]
veV o=kK?2
(25) o0
< Zthit -7T(U) . Z 20’-270/32
veV o=xr?2
0
= thit - Z 20 - 2_‘7/32
o=kK2

<2y -k 0 <7 R,

where we used that £ > 2!9 and )", ., 7(v) = 1. Hence, by Markov’s inequality,
IP’[B>T-I~@‘8]<—. (26)

Suppose now that { 7/2} and {B <T-K 8} both occur. Conditioning on B < 7/x% and
< 7/2, we will show by pigeonhole principle

|D1(i)| > 2n/kS. (27)

Suppose for the sake of contradiction that |D;(i)| < 2n/k®. Then, using mmax < #/n by (22), we
have that the total number of visits to nodes in D is at most

Yo Niyu) = > NGu)+ Y Ne(iyu)

u€ Do uGDo\Dl(i) UGDl(i)
< D) 2m(w) T/t + > Ny (i,u) + >
u€Do\D1 (i) u€D1(4): Nr(4,u)<K? thig-m(u) u€D1(é): Nr(i,u)>k2 thie-m(u)
< Z 2m(u) - 7/k% 4 |D1(7)| - max 7w(u) -ty - K2+ B
. u€ Dy
uEDo\Dl(l)
2(|Do| — |D1(i)] max m(u) - /K% + |D1(i)| - max 7 (u) -ty - K2 + B

) u€ Do
< 2(1Dol = [D1(8)]) - (fﬁ/n) 7/ + [Di(0)] - (K/n) - tuie - &7+ B
< 2(|Do|l = |D1(2)]) - 7/(n - k) + 2n//¢ (k/n) -ty - K2 + B
<27/ +2n/k8 - (k/n) - T k- K2+ 7/K

=27/k + 7/ +7/K® < <37
Thus, C > 7 — %’T = 27’ which is a contradiction to the assumption that the event { <7/ 2}
occurs.
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Finally, we will upper bound the number of “surprising” visits, which are visits to vertices that
happen too early. That is, we will upper bound the number of visits to vertices v before time (7, v);
in symbols,

B:=Y" > 1x-..

VeV 0<t<t(iv)

By definition of ¢(i,v), with probability at most =23 the random walk visits the vertex v before

t

t(i,v). Conditional on this event occurring, the expected number of visits is at most Zi(:l(;)) Pyv-

Hence by linearity of expectations,

veV t=0

Since t(i,v) < 2y, it follows by the first statement of Lemma 4.1 that Eig’(;})_lpfw < 16ty - 7(v)
and hence

E [E} < KT 16ty - Z m(v) < 7/2- k16,
veV

and thus by Markov’s inequality,
- - - 1
P[B}T/Q-n_m}<IP’[B>/{-E[BH<—. (28)
K

Hence, the total number of visits to vertices in V before time #(i,v) is at most 7/2 - k=% with
probability at least 1 — 1/k.
Hence, by (24), (26), and (28) and by taking Union bound, we have

[{ezmpln(Bzrn?yn{Bzr2 5} ]

p:=P
>1-P[{Gzr}u(B2r wtyU{B2r/2 )]

>1—-—.
K
In particular, w.p. p and by (27), we have |D;(i)| > 2n/k®. Observe that, by definition of the sets,
each vertex v € Dy (i) \ Do(i) is visited at least 27/k* - w(v) — 7/k* - 7(v) = w(v) - 7/k* times before
time-step t(i,v) and thus,

B 2n /2 k15 n
minges m(w) - 7/k4 7 K 1/(k3n)-7/k* T K8

O]

[D2(i)| = [D1(2)| = [D1(2) \ Da2(2)| = [Dr(i)| —

The next step in the proof is to elaborate on the sets Dy(i) from Lemma 4.7 in order to analyze
collisions on this set. Before doing this, we need to introduce additional notation in order to define
a balls-into-bins configuration.

Let us denote the random walk with label i by (X})7_,. The random walk may start from an
arbitrary vertex Xé = u; and is run for 7 = 4tp; /K steps. Recall

t(i,v) := min {t: P [Ty (s, v) < t] > 62},
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7 t(i.,vl) t(i,vz) t(i,v:;) t(i,v4) t(z’,v5) t(i,vﬁ)
1 4 3 > T 3 6 > T
2 4 >T >T 4 5 >T
-|-- 3 5 3 > T 2 > T >T
4 >T 2 5 3 4 > T

Figure 5: Illustration of the balls-into-bins configuration of & = 4 walks labeled 1,2,3,4 into 6
vertices vy, ve, ..., ve. In the illustration, a ball (i,¢(¢,u)) on bin u is good if there is at least one
other ball with ¢(i,u) < ¢(j,u) (or ¢t(i,u) = t(j,u) and i < j). For each of the random walks 1, 2
and 3, there are at least two good balls, while for random walk 4 only one ball is good.

We now consider the following balls-into-bins configuration, where we emphasize that the balls-
into-bins configuration is completely deterministic (for fixed start vertices at time 0) and does not
depend on the realization of any of the random walks. Every vertex in V' corresponds to a bin. For
every walk j and u € Dy(j), we place deterministically a ball with label (j,¢(j,u)) into bin u. We
call a ball with label (4,¢(j,u)) in bin u bad if there are fewer than x°° other balls i in the same bin
such that either (i) t(i,u) < t(j,u) or (i) t(i,u) = t(j,u) and i < j. Next define a random walk j
to be bad if at least n/k” bad balls have label j and otherwise we call j good. Since there are at
most k%% - n bad balls, it follows that the number of bad walks j € {1,...,k} is at most

55

—— 29
A (29)
In the following, we will focus on the x£'%° — x4 good walks and ignore all other walks. Recall
that any fixed good walk i has at most n/x” bad balls. We now make another central definition of
a random subset:

Dy(i) := {v € Dy: the ball (i,t(i,v)) is good and NC(i,v) > T/(Kgn)} ,

where NY(i,v) denotes the number of times v € Dy is visited by walk i on a good time step in the
interval [t(i,v), 7 — 1]. Intuitively, every such visit of a random walk i to a vertex v € Dy(i) at a
time ¢ is very helpful for the following reason: Since the ball (i,t(i,v)) is good, there are at least
1% other random walks j # i with #(4,v) < t(i,v) < t, and thus each walk j has a probability of
at least k23 to visit vertex v at a time ¢(j,v) and potentially collide with random walk i at time
t later. The next lemma provides a lower bound on the size of |D4(7)].

Lemma 4.8. Consider any random walk (X¢)i>o0 with label i. Then P [|D4(i)| = n/(4x%)] >
1—-8/k.

Proof. Recall that, (see (23))
Ds(i) = {v € D1(i): N-(i,v) — Nygi oy (i, v) = /Kb m(v)}.
Let us now define
Ds(i) = {v € Dy(i): the ball (i,t(i,v)) is good }. (30)

By Lemma 4.7, we have P [|D2(i)| > n/k®] > 1 —6/k. In the following assume that the event
{ID2(i)] = n/K®} occurs. Since by definition a good walk has fewer than n/k? bad balls, we have
n

|D3(i)| = |D2(i)| — number of bad balls of i > n/x® —n/k® > 2.8 (31)
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Further, by definition of Dy (i) each vertex in v € D3(i) is visited at least
/Y w(v) = 7/(kn) (32)

times during the interval [t(i,v), T — 1], where the inequality is due to the definition of Dy and the
fact that Dy(i) C Dy. We now define the following random variables. Let

1. N%(i,u) be the number of times u € Ds3(i) is visited by walk i on a good time step in the
interval [t(i,u), T — 1] (as defined previously).

2. NB(i,u) be the number of times u € D3(i) is visited by walk 7 on a bad time step in the
interval [t(i,u), T — 1].

3. NE(i) be the set of nodes u € D3(i) that are visited by walk i prior to t(i,u), i.e., NE(i) :=
{u € D3(i): Thit(ui,v) < t(i,v)}.

We have
E [NE(Z)] =E Z 1p,, (ui,0)<t(iw) | = Z E [lThit(uiav)<t(ivv) ]
veED3(1) vED3(1)
= Y P[Thit(wi,v) <t(i,v)] < Y 1/6* = |D3(i)| /s,
vED3 (i) v€D3(1)

where the inequality comes from the definition of #(i,v). By Markov inequality,

IP’[NE(z‘) < %’2(;)'} 21—1. (33)

K

In the remainder we condition on N¥(i) < %. By Lemma 4.6, with probability at least
1 — K, all random walks have at most 7 - 27" < tp,;/k?° bad time-steps s € [0, 7], where we recall ¢
is bad if X5 € Dy and Yy /__1x,ep, ~p§(_:Xt > 16 - k!0 - 5 /n. In the following we condition on the
number of bad time steps being bounded by tp;/ %20, We claim that

[Da(i)| = |D3(i)] /2. (34)
Assume, for the sake of contradiction, that |D4(i)| < 3|Ds(i)|. Let
D = {v € D3(i) \ Da(i): Thit(ui,v) > t(i,v)}.

We have, using |Ds(i) \ Da(i)| > |D3(i)| — [Da(i)| = 4| Ds(i)| that

DI > 1D5()\ Da(i) ~ N%() > 11Ds(i)] — 25 > 2y

For each vertex u € D C Ds(i) \ D4(i), we have NC(i,u) < 7/(2nx?) and thus

NB(i,u) "€ Ny (i, 1) — Ny (i, u) — NO(i,u)
> 7/ w(u) — 7(2nk°) > 7/(kTn) — 7/(2nk°) = 7/(2nK"),
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where the first inequality follows from (32) and u € D2 (i). In words, at least 7/(2nk") visits to
u happened on a bad time step during the interval [t(i,u), 7]. Thus, the total number of visits to
nodes of D at bad time steps is at least

T Bty

nK’ K207

> NP(i,v) > D] 7/(2nk") > é\Dg(i)\ :
veﬁ

This contradicts the assumption that there are at most ty;;/x2° bad time steps in total. Thus, (34)
holds and we derive using (31)
|Da(i)] = n/(45"). (35

)
As shown above, this lower bound on |Dy4(i)| holds whenever the following three events all occur: ()
|Da(7)| = n/k® (which holds with probability at least 1 — 6/« by Lemma 4.7), (ii) N¥(i) < ‘%2(; |
occurs (which holds with probability 1 — 1/k by (33)) and (¢i¢) the number of bad time steps of
random walk i is at most ty;/#x2° (which holds with probability 1 — 1/x by Lemma 4.6). Hence by
the Union bound,

P[|Ds(i)| > n/(46%)] 21 —6/k —1/k —1/k =1 —8/k.
O

The previous lemma established that with reasonably large probability, any fixed good random
walk i satisfies |D4(7)] = n/k'°. In the next lemma we show that, conditioning on this event
occurring, that random walk i is eliminated by any of the other random walks with some constant
probability > 0.

Lemma 4.9. Assume that a good random walk i has a trajectory (vo = w;, T1,...,xr—1) satisfying
|Dy(7)| = n/k!°. Then random walk i will be eliminated before time T with probability at least 1/10.

Proof. Consider now another random walk j # ¢ starting from an arbitrary vertex u;. Define
D5(2a.7) = {UE D4(’L) t(]vu) <t(27u)} (36)

With reference to Figure 5, uw € Ds(i,7) if the green ball (i,¢(i,u)) lies above the ball (j,t(j,u)).
Intuitively, Ds(7,j) contains all the vertices in u € Dy4(i) so that each time random walk ¢ visits
u, also random walk j could visit that vertex with sufficiently large probability. For u € Dy(1)
we have that (u,t(i,u)) is good and for each such good ball, by definition there at least x°® other
random walks j such that t(j,u) < t(i,u) (or t(j,u) = t(i,u) and j < i). Hence by considering all
bins we conclude

1100

> IDs(i, 4)| = 6% - | Da(i)] = 6% - n/(46%) = nk'T/4, (37)
J=1,57

where the second inequality holds by our assumption |Dy4(i)| = n/(4x%).

We are now in a position to apply our common analysis method. We consider the Py, process
of Section 3.1 and make use of the majorization of Proposition 3.1. We assign each random walk
1 <i < k= x'" into group G; and Go independently and uniformly at random. Recall that
walks of G; cannot be eliminated. In the following, we define the following event &; for walk i:
& = {i € Go}. Clearly, P[&;] = 1/2. We will prove that conditional on this event occurring,
random walk ¢ is eliminated by one of the walks in G; with at least constant probability > 0. Let
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Z(i,j) denote the number of collisions between random walk i, denoted by (X;)¢>0, and j denoted
by (Y;)t>0, that happen on a vertex in D5(i,7) at a good time step, in symbols,

Z(Z,j) = 1i€g2 : 1j€g1 ' Z Z 1Xt:u : 1Y}=u

w€Ds5(4,7) t(i,u)<t<T—1:
t is good

By conditioning on &; and the trajectory of (zg,z1,...,2,—1) of the good random walk i,

. . , 1
E[Z(i,j) | trajectory i =(xo, 1, ...,Tr-1),& ] = 3 Z Z pfl],,u.
u€Ds5(4,7) t(i,u)<t<T—1:
t is good and x¢=u
We now would like to derive a lower bound on pzj,u, where t(i,u) <t <7 —11is a good time-step
with X} = u, u € Ds(i,j). By definition of Dj5(i,j) we have t(i,u) > t(j,u). By conditioning on
the first visit of random walk j to u, we obtain

t t
Lemma A.1
P = SOP Thclugu) = s]pt 5 () - S P [T u) = s]
s=0 s=0
u€Dg t>t(i,u)>t(j,u)

> /(5% n) P[Tha(uju) <t] - > 1/(5%n)  P[Thie(uj, u) < t(j,u)]
def. of t(j,u)
> 1/(k% - n).
By definition of Dy4(i), for any vertex u € Ds(i,7) C Dy(i), u is visited at least 7/(xk"n) times
during the interval [t(i,u), T — 1]. Therefore,

E[Z(i,j) | trajectory ¢ =(xo,x1,...,2r—1),&]
1

1 .. T
~ 9 D5 (2, 7)| - W35 2

1 T 1
> = |Ds(i,5)] - ——— -
9 | D52, 7)] 9 k2.
Recall that if a time step s € [0,7 — 1] is good (i.e., not bad), then X3 € Dy implies
7—1

Z 1Xt€D0 : th_SS’Xt <16 - k10 thit/n.

t=s

Since Z(i,j) sums only over good time steps and using D5 (7, j) C Dy we conclude that

E[Z(i,j) | trajectory i =(xo,x1,...,2r—1),&, Z(i,7) = 1]

th:

— 10 hit

< max E 1 NN < 1610 .

= s: X,eDo Z Xi€D5(i5) " Pxox, | S e
s<i<Tt—1:

t is good
Combining the last two inequalities yields

P[Z(i,j) = 1 | trajectory i =(xo,z1,...,2r-1),&]
B E[Z(i,j) | trajectory i =(xo,z1,...,2r—1),&]
B E[Z(Za.]) | trajectory i :(x07$1a" '71:7‘71)75’£7Z > 1}
> |D5(i»4‘7%)|
n-K
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We are interested in the probability for ¢ being eliminated. Neglecting the possibility that ¢ might
even be eliminated by another rand walk of Go, which can only increase the probability of ¢ being
eliminated, we derive

P[Walk i is eliminated | trajectory i =(zo,z1,...,27-1),&;]
KIOO

=P |: j=1,57#1i {Z(Zvj) 2 1} | trajectory i :($0>1"17 s 7$T71)75i1|
D57, j)|
52,7
>1- ] (1— o )
J=1jA
1 K:IOO
e Z D5 (i, 7)]

J=Lj#

>1—exp

(37)

> 1—exp(—1/4).

Note that the above derivation was conditional on &;, but this event holds with probability 1/2.
Hence with probability at least 1/2- (1 —exp (—1/4)) > 1/10, the trajectory of i meets with that
of a random walk in G; and hence the random walk 7 is eliminated before time step . ]

4.3.3 Completing the Proof of Theorem 4.4

We are now ready to complete the proof of Theorem 4.4 by combining Lemma 4.7, Lemma 4.8 and
Lemma 4.9.

Proof of Theorem 4.4. Let k = x'% be the number of random walks. Since we seek to reduce
the number of random walks to (A/d)'%, we assume in the following that that k/190 = x > A/d
and x > 210 (cf. Assumption 4.5). Otherwise, if © < 20 then with V{ denoting the set of start
vertices of the k walks, we have teoa (Vo) = O(tmeet - log(|Vo]|)) = O(tnit), by Proposition 3.4
and Proposition B.9. As derived in (29) we have that out of the x!%0 random walks at least
k100 — 54 random walks are good. By Lemma 4.8, any good random walk (X;);>o with label i sat-
isfies P [ |D4()| = n/(4x%)] > 1 —8/k. Conditioning on the trajectory (zq,z1,...,z,—1) satisfying
|D4(7)| > n/(4k®), Lemma 4.9 shows that with probability at least 1/10 the random walk i will
be eliminated before time step 7 = O(tni/k). Hence a constant fraction of all k = x!%° random
walks are eliminated in a single phase of O(ty;/K) steps with constant probability > 0, provided
that Kk > A/d.

In conclusion, for any k' > (A/d)!%, there exists a constant ¢ > 0 such that the expected time
required to reduce the number of walks from &’ to max{k’/2, (A/d)'%} is bounded by ¢ty / ‘VE,
by Lemma A.9. Therefore, the expected time to reduce the number of walks from k' < log*n to
(A/d)1% is upper bounded by

log(log* n)

¢ - thit > 1 i_ C-thit
Z 10\0/§ < ¢ thig E% < 10\0/5) - 1— 10{)/1/72 - O(thit)'
1=

1=0

4.4 Bounding t.,, in terms of ty;

In this subsection we prove the following theorem relating tcoal to this. Recall that tmeet < 4tnis
(Proposition B.9) for any graph.
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Theorem 4.10. Let G = (V, E) be any graph with maximum degree A and average degree d. Then
teoal = O(thit + tmeet - l0g(A/d)). So in particular, for any almost-reqular graph, teoa = O(thit)-

Theorem 4.10 follows almost immediately from the previous two reductions in Theorem 4.3 and
Theorem 4.4.

Proof of Theorem 4.10. By Theorem 4.3, we can reduce the number of walks from n to O(log®n) in
O(tnit) steps with probability at least 1 —n~!. Then, using Theorem 4.4, we can reduce the number
of walks from O(log®n) to (A/d)'%° in O(ty;;) expected time. Finally, we apply Proposition 3.4 to
reduce the number of walks from (A/d)!% to 1 in O(tmeet - log(A/d)) expected time to obtain the
result. O

4.5 Proof of Theorem 1.3

Part (i) follows from Theorem 4.3 together with tyeet < 4tnie (Proposition B.9) and teoq(So) =
O(tmeet log |So|) (Proposition 3.4).

Part (ii) is the statement of Theorem 4.10. To prove Part (iii) follows from the following three
facts. First, thit = O(tmeet) by Proposition B.9. Second, tcoa1 = O(thit + tmeet) by Part (ii). Third,
teoal = tmeet. Finally, Part (iv) follows from the results presented in Appendix C.

4.6 Conjecture and a Possible Improvement for Non-Regular Graphs

Before concluding this section, we mention an intriguing conjecture that might be useful to improve
our bound on t.u, when A > d.

Conjecture 4.11. There exists a universal constant C' > 0 so that for any graph G = (V, E), any

vertex w € V' and any path of vertices (zo, x1, ..., %4, ), i.e., either x; = xit1 or {z;,xiy1} € E(G),
thit thit
t
Zpu,xt <C- Z W(mt)'
t=0 t=0

Note that the inequality is a stronger version than the one given in the first statement of Lemma 4.
or Lemma 4.2. We do not know whether the conjecture is actually true in this generality. However,
if it is true, it would imply that any random walk of length 4t;; starting from an arbitrary vertex
meets with any deterministic path of length 4ty;; with constant probability > 0. This would then
result in a simple proof that tcoa = O(thit - log* n) for any graph, since each phase of O(ty;;) steps
would reduce the number of walks from k to O(log k).

Conjecture 4.11 can be also seen as the optimization problem of “predicting” a random walk
(Y})i>0 for tpi time steps. More precisely, we are given the start vertex of the random walk Yy = u
and for each time step 1 < t < ty;t, we have to specify a vertex z; that acts as a predictor of the
random location of the random walk at step ¢. The goal is to maximize the (expected) number of

correct predictions, which is equal to
thit

t
Z pu,mt °
t=0

The conjecture states that regardless which prediction, i.e., which path (zo,x1, ...,y ) is picked,
the expected number of correct predictions cannot be made larger than in the setting where the
random walks starts from stationarity (and the start vertex is unknown).
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GI“dph tmeet tcoal

General Graphs Q(1), O(n?) Thm. B.1 Qlogn), O(n3) Lem. 5.2 & Thm. 1.3
Regular Graphs Q(n), O(n?) Thm. B.1 & Thm. 1.5 Q(n), O(n?) Thm. B.1 & Thm. 1.3
Vertex-Trans. Graphs Q(n), O(n?) Thm. B.1 & Thm. 1.3 Q(n), O(n?) Thm. B.1 & Thm. 1.3

Table 2: A summary of bounds on the meeting and coalescence times graph classes. All bounds are
easily shown to be tight: For general graphs the meeting time and coalescence bounds are matched
by the star and the barbell graph. For vertex-transitive and regular graphs the bounds are matched
by the clique and the cycle.

One specific strategy would be to choose xg = x1 = --- = x4, = v for some vertex v. In that
case we know by Lemma 4.1 that

thit

D Pl <4+ (i + 1) - (),
t=0

so the conjecture holds in this case.

It is also worth mentioning that we cannot replace iy by a smaller value, say, tmix. Indeed if
G is a two-dimensional grid, then tmix = ©(n) and choosing zop = z1 = - = x¢,,, = u, we obtain
S pl,, = Q(log n), while, Y= w(z,) = O(1)

Finally, there is some resemblance to the meeting-time-lemma in the continuous-time set-
ting [Oli12], however, one important difference is that in Conjecture 4.11, the right hand side
depends on the actual path (zo,x1, ..., 24, )-

5 Bounding t.. € [Q(logn), O(n?)]

Given that worst-case upper and lower bounds have long been known for tyix, thit and teoy, it is
very natural to pose the same question for ¢yt and teoq1- In the following we determine the correct
asymptotic worst-case upper and lower bounds for teet and teoa on (i) general graphs, (ii) regular
graphs and (iii) vertex-transitive graphs. We refer to Table 2 for an overview.

5.1 General Upper Bound ¢, = O(n?)

In this section we establish that t.o, = O(n3) on all graphs, which is matched for instance by the
Barbell graph.

Theorem 5.1. For any graph G we have teon = O(n - |E| - log(|E|/n)), so in particular, teoa =
O(n?3).

Proof of Theorem 5.1. Tt is well-known that tn;x < n - 2|E| (cf. [AKL+79]). From Proposition B.9
and Theorem 4.10 we derive

teoal = O(thit + tmeet lOg(A/d))
= O(tnit + tnit log(n?/|E|))
— O(n-|E| +n-|E| - log(n?/|E])) = O(n?),

where the last inequality holds since |E| < n?. O
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5.2 General Lower Bound ¢, = Q(logn)

In this section, we prove that the coalescing time of any graph is Q(logn). We consider a process
P’ where there is exactly one random walk starting at each node in the graph. For every node
u € V and every time step ¢ € N we draw an independent random variable Z,; € {0,1} with
P{Z,,=1]=1/2and P[Z,; =0] = 1/2. If Z,; = 1, then the random walk on u at time ¢ (if
there is any), moves to a neighboring node chosen u.a.r.. Otherwise (Z,; = 0), the random walk
on u at time t (if there is any) stays on the same node. It is straightforward to show that the
set of nodes which have an active random walk according to this process can be coupled with the
coalescence process defined in Section 2.

We show that after clogn steps, for a sufficiently small ¢, there are at least two surviving walks
in this process. In order to do this, we simply argue that there must be at least two walks that
have not left their starting position. Note that there is no way for these walks to be eliminated,
because even if other walks visited one of their starting nodes, there are two nodes from which no
walks can have left. The formal proof follows.

Lemma 5.2. For any graph G = (V, E), |V| = n we have t.o = (logn).

Proof. Consider the process P’ defined above. Let T be the coalescence time. Note that coalescence
at time 7 in P’ requires that for n — 1 nodes u € V there exists ¢, < 7 such Z,;, = 1. In symbols,
let T be the first point in time where all walks coalesced, then T" > T’, with 77 := min{t’ €
N: {u: 3t, <t st. Zyy, = 1} = n—1}. Let Y, be the indicator variable which is 1 if Z,; = 0
for all t < 7 := logn/2. The process ensures independence of the Y,,. Due to the laziness of the
random walk, P[Y, = 1] =1/27 = 1/y/n. Thus, using the independence of the Y,,

ZYu>2

ueV

PT>7|2P[T' 27| >P = P [ Binomial(n,1/v/n) > 2] =1—o(1),

where Binomial(n, p) denotes the binomial distribution with parameters n and p. We conclude that
E[T] = Q(logn) which yields the claim. O

5.3 Proof of Theorem 1.5

We are now ready to put all the pieces together. The upper bound on general graphs follows
directly from tmeet < teoal = O(n3), by Theorem 5.1. The lower bound on the meeting time holds
by definition and the lower bound on the coalescing time follows from Lemma 5.2. For the upper
bound on regular graphs we have tieet < teoal = O(tnit) = O(n?) due to Theorem 1.3, having used
the standard bound ty;; = O(n?) for regular graphs (see [AF02]). The lower bound follows from
teoal = tmeet = theet = 2(n), by Theorem B.1.
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A Basic Results about Markov Chains

We will frequently use the following basic fact about lazy random walks, which in fact also holds
for arbitrary reversible Markov chains:

Lemma A.1 (cf. [LPWO06, Chapter 12]). Let P be the transition matriz of a reversible Markov
chain with state space ). Then the following statements hold:

(i) If P is irreducible, then for any two states x,y € €,

pz:,y < ﬂ-(y) + H ;I:Ei% : /\t7

where A := max{Ae, |\n|} and \y = Ao = -+ = A, are the n real eigenvalues of the matrix P.

(ii) If the Markov chain is a non-lazy random walk on a bipartite reqular graph with two partitions
V1 and Vs, then for any pair of states x,y in the same partition

2
Poy < o (14 (=1)71) + 2 (max{Ao, [Ana [}

Similarly, if x and y are in opposite partitions,
2
phy <= (14 (1)) +2 (max{Xe, [A_1]})" .

’ n

(iii) If the Markov chain is lazy, then for any state x € €, ptx’x is non-increasing in t. In particular,
¢
Pra = (1)
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Proof. The first statement can be found in [LPWO06, Equation 12.11].
For the second statement, recall the spectral representation [LPW06, Lemma 12.2 (iii)]

pi,y = Z ug(z ) - AL (38)

where uy, is the corresponding eigenvector to Ag. Since all eigenvalues are non-negative, we conclude
from (38) that ptgwB is non-increasing in t as needed. Since G is bipartite and regular, it is not
difficult to verify that A\, = —1 and u,(z) = \/1/n if z € V} and u,(x) = —/1/n if z € V3 is the
corresponding eigenvector. Hence,

n—1
ptx,y_%'(l"‘(—l)t_l) < 7(y) Zuk(w) ur(y) - A\j,
2 o 1 n—1
< pdpme PG 2 @) ue(y)
2 n—1 n—1
< pdmm DIy D k(@) D unly)?

As in [LPWO06, Proof of Theorem 12.3], using the orthonormality of the eigenvectors, we have

n—1 n
D up(@)? <) up(z)? <,
k=2 k=2

and the second statement follows if u and v are in the same partition. The case where v and v are
in different partitions follows analogously.

For the third statement, first note that by [LPWO06, Exercise 12.3], all eigenvalues of the transi-
tion matrix P are non-negative. Since all eigenvalues are non-negative, we conclude from (38) that
pfm is non-increasing in ¢ as needed. Due to this and the fact that ptz@ converges to 7w, we get
that pﬁc’z > Ty O

The following is a simple corollary from a recent work by Marcus et al. [MSS15] on the existence
of Ramanujan graphs.

Lemma A.2 (cf. Marcus et al. [MSS15]). For any integer d > 3, there are d-regular bipartite
Ramanujan graph H = (V, E) with tyix = O(logn/logd).

Proof. Marcus et al. [MSS15]  show that the existence of a d-regular bipartite Ramanujan graph H
such that max{A2(Q), |\_1(Q)|} = O(1/Vd), where Q = L A is the transition matrix of a non-lazy
random walk where A is the adjacency matrix. By the second statement of Lemma A.1, for any
pair of states x,y in the same partition

At 2

dy< - (14 (=11 + 2 (max{Aa, [Ano1|})"-

Similarly,  and y are in opposite partitions,

(14 (=1)") + 2 (max{Aas, [A\n_1]})"

2
q;cy ;
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Furthermore note that ¢}, > 2/n due to Lemma A.1.(iii) for even (or odd) ¢ depending on whether
z and y are in the same partitions.

. A\t
Fix t = O(logn/logd) such that 2 (max{)\g(Q), ])\n_l(Q)]}> < 55, where we note that such

a t exists due to max{)\g(@), |)\n_1(@)|} = O(1/+/d). We choose s to be the smallest odd integer
being greater than 20¢. To translate from the non-lazy random walk @ to a lazy-random walk P,
let Z denote the number of non-loops performed by a lazy random walk of length s. Since, the
probability for a self-loop is 1/2 and the number of self-loops is binomially distributed, we have

P[Z >t] > 19/20.

By symmetry and the fact that s is odd, P[Z is even| = % Hence, by the Union bound,

9
P[Ziseven | Z>2t|>2P[ZisevenNZ >2t|>P[Ziseven| —P[Z <] 25,

and similarly, P[Z isodd | Z > t] > %. Let V1 and V; be the bipartite partition of V.

11 1 11 | 1
ot —rloe <P(2 <0} 1401231 | 8 Rt =2+ 3 [t -
veV; vEVs
11 /2 1 1
srtz<aaeetzza (Sl () —l)
= 20 \n  20n n

22 1 11
< .1 >t]- it Rt
P[Z<t]-1+P[Z>t] (Z T +400>
veV
o 1 - 19 /2 . 11 <1/
S20° " T 20\20 " 400 ©
where the first inequality follows from the equations for pﬁc’y above. ]

Corollary A.3. Let ng be a sufficiently large constant. Let H, be the graph of Lemma A.2 with n
nodes and d = [\/n] forn > ng. There exists a universal constant C such that maxy, > {tsep(Hn)} <

C.

The corollary follows directly from Lemma A.2 and tsep < 4tmix.

The following lemma will be helpful to define a coupling between distributions that are close to
the stationary distribution and the exact stationary distribution. (A very similar lemma has been
derived in [ES11, Lemma 2.8])

Lemma A.4. Let ¢ € (0,1] be an arbitrary value. Let Zy and Za be two probability distributions

over {1,...,n} so that P[Zy =i] > e-P[Zy = i] for every 1 < i < n. Then, there is a coupling
(Z1,Z32) of (Z1,Z2) and an event € with P[E] > € so that

P[leﬂg}:]?[zz:i} for every 1 <1 < n.

Proof. Let U € [0,1] be a uniform random variable. We next define our coupling (21, 22) of Zy
and Z, that will depend on the outcome of U. First, if U € [0,¢), then we set

Zy=Zy=1i, ifisatisfieseY i \P[Zo=k]|<U<eXi P[Za=k]
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For the case where U € (g, 1), it is clear that the definition of U can be extended in a way so that
Z1 has the same distribution as Z;, and Zg has the same distribution as Zs. Furthermore, notice
that if U € [0,¢) happens, then Z; has the same distribution as Z,, and 21 Zg. Observing that
P[U € [0,¢) ] = € completes the proof. O

The following lemma is an immediate consequence of Lemma A.4.

Lemma A.5. Consider a random walk (Xi)i=0, starting from an arbitrary but fized vertex x.
Then with probability at least 1 — 1/e, we can couple Xy . with the stationary distribution.

Proof. Consider the random walk (X¢):>o after step s := tgp < 4tmix. By definition of teep,
P, = (1—1/e)m(v). Applying Lemma A.4, where Z; is the distribution given by pf, , and Zj is the
stationary distribution shows that with probability at least 1 — 1/e, X, has the same distribution
as m. If this is the case, then the same holds for Xy . as well. ]

The lemma above shows that for t,eet and teoa it suffices to consider the stationary case:

Lemma A.6. For any graph G,

2
maX{(l/e)tmiX’ t&eet} < tmeet < m : (4 mix T theet)

and similarly, teoal < 4 - (4tmix + 2t7 ).

Proof. We begin by proving the lower bound on tyeet. First, consider two independent random
walks (X;)¢>0 and (Y;)¢>0 that are run for ¢ = e - tyeet time-steps. Then, we have

—_

<PlU_ X, =Y,] <=

d(t) = max |[py,. -
u,v ’

Cb

where the first inequality is due to the coupling method [LPWO06, Theorem 5.3] and the second
inequality follows by Markov’s inequality. The above inequality implies tpyix < €-tmeet- Furthermore,
M eet < tmeet holds by definition, and the lower bound follows.

For the upper bound, we divide the two random walks into consecutive epochs of length ¢ :=
At mix + 2t7 ot For the statement it suffices to prove that in each such epoch, regardless of the start
vertices of the two random walks, a meeting occurs with probability at least (1 —1/e)?-1/2.

Consider the first random walk (X});>0 starting from an arbitrary vertex after s := 4t,;x steps.
By Lemma A.5, we obtain that with probability at least 1 — 1/e, the distribution of X is equal to
that of a stationary random walk. Similarly, we obtain that with probability at least 1 — 1/e, the
distribution of Yj is equal to that of a stationary distribution. Hence with probability (1 —1/e)?,
X and Yy are drawn independently from the stationary distribution. In this case, it follows by
Markov’s inequality that the two random walks meet before step s + 2¢7 ... with probability at
least 1/2. Overall, we have shown that with probability at least (1 —1/e)?-1/2, a meeting occurs
in a single epoch. Since this lower bound holds for every epoch, independent of the outcomes in
previous epochs, the upper bound on the expected time tyeet follows. The upper bound on tep,) in
terms of ¢, is shown in exactly the same way. O

Lemma A.7. For a lazy random walk on an n-vertex graph with n > 2, we have tniy = — 2.

In particular for n > 2, we have tyiy = 1/Tmin = n.

Tmin

Note that tpy > % — 2 is tight in the sense that the hitting time of the clique is indeed

2(n—1) = L — 2 since the random walk moves w.p. 1/2 and when it moves the probability to
hit the target node is 1/(n — 1) (assuming that the random walk is not on the target node).

o8



Proof. Let u be a vertex attaining mmin = 7(u). Consider the random walks (X;);>0 starting at .
Then it is well-known (cf. [AF02]) that for the first return 77 (u, u) := min{t > 0: X; = u, Xo = u},

we have E [77(u,u)] = 1/7(u) = 1/Tmin. By conditioning on the first step of the random walk, we
obtain
1 1 1 1
=K + =1 = = -t i ) )
p— [7‘ (uju)] + 5 0+ 5 ENE( )deg(u) hit (v, w)

and rearranging yields

Now by the pigeonhole principle there exists a vertex v € N(u) with ty(v,u) > =2 2, and

Tmin

the first claim follows. The second part follows from observing that if n > 2 we have my, < 1/2
and thus tp; > % -2 % > n, where the last inequality follows from the simple pigeon hole
principle. O

Observation A.8. Consider two random walks (X¢)i=0 and (Yz)i>o starting on nodes drawn from
the stationary distribution. Fix an arbitrary t € N. Define the collision-counting random variables

Zi =1 xyi Zo =Yy Ixomve and Z = Zy + Zy. ThenP(Z1 21| Z>1] > L.

Proof. Since both nodes start from the stationary distribution, P[Z; > 1] > P[Z2 > 1]. By the
Union bound, P[Z > 1| < P[Z1 2 1]+ P[Zy > 1] <2-P[Z; > 1]. By law of total probability,
P[Z1|=P[Z1 21| Z>1]-P[Z > 1]. Putting everything together yields P[Z; >1 | Z>1] >
L .
Lemma A.9. Let (X¢)i=0 be a stochastic process satisfying (i) E[ X¢|Fi—1] < B+ X¢—1, for some
B <1, and (i) X¢ =0 for allt > 0. Let 7(g) := min{t > 0|X; < g} for g € (0,|Xo|), then

E[7(g)] <2 [logz(g/(2X0))].

Proof. By the iterative law of expectation, we have
E[X;] < B Xo.

Furthermore, by Markov’s inequality, for any A > 1

E[X/\ﬂogg(g/(?Xoﬂ -
p .

N

P [7(g) > A [logg(g/(2X0)]] <P [X/\~[log6(g/(2Xo)] > g} <

Therefore,
E[7(9)] = >_P[r(g) > 1]

< Mogs(g/(2X0))1+ D _Tlogs(g/(2X0))] - P[7(9) > A - [logs(g/(2X0)1]
A=1

< 2- [logg(g/(2X0))].
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B Bounding ¢, and Implications for t..., tni; and %y

Although the focus of this work is on understanding the coalescence time, in order to apply our
general results, we need to devise some tools to obtain lower and upper bounds on fpyeet. In
Theorem B.1 (Section B.1) we establish upper and lower bounds on the meeting time in terms
of |73 = Y ,cv m(u)®. Section B.1 contains several additional upper bounds on tmeet and ;.
Through combination with other results, we also obtain new bounds on t..a and teoy. A common
feature of many of these bounds is a sub-linear dependence on the spectral gap 1/(1 — A\2), which
we obtain by an application of short-term bounds on the t-step transition probabilities.

In Proposition B.9 (Section B.2) we establish a discrete-time counterpart of [AF02, Proposition
14.5], albeit with worse constants, stating that the meeting time is at most of the order of the
hitting time; on vertex transitive graphs these quantities are asymptotically of the same order.

B.1 Relating Meeting Time to t,; and

We first state some basic bounds on tpi; and tpeet, which mostly follow directly from (1) and its
counterpart for the hitting times (cf. Cooper, Frieze [CF05]). In these bounds, we will use the
following notation:

IIllX

C := max g Z
max uev pu’u b

t=0 UEV

mlx

rnln = mll’l Z Z pu’u

t=0 wveV

Note that Cihax and Ciin provide worst-case upper respective lower bounds on the expected colli-
sions of two independent random walks of length tyix, starting from the same vertex u. Similarly,
we define

mlx

Rpyax = maX Z puu

Note that Rpax is the number of expected returns of a random walk to u during fumix steps.
This quantity is more convenient to bound than Ci,.x, for instance, it can be easily bounded
by maxyecy m(u) - tmix + ﬁ (cf. Lemma A.1, or also [CEOR13]).

Theorem B.1. For any graph G = (V, E), the following statements hold:

(i) For any pair of vertices u,v € V,

Se - (45 pho)

)

In particular, if the graph G is I'-approximative regqular, then tpi(u,v) < Be‘F-n'ZEQ‘g*l pfw.

thit(u7 U) g

(i) For any pair of vertices u,v € V,
5€2 - Crnax
713
In particular, if the graph G is I'-approrimative regular, then
10e? - (4 +1ogy(T')) - Rinax

Il

tmeet (Ua U) <

tmeet (U U) <
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(iii) It holds that,
len

¢
et = ed|xl3

In particular, if the graph G is T'-approximative regular, then t7 .. = Q(n/T).

Since Chyin = 1, the last statement of the lemma implies also ]} .., = Q(W) We remark that
2

the second upper bound on tpeet (4, v) depends only logarithmically on I'.

Proof. We begin by proving the first part. Consider one random walk (X;);>0, starting from an
arbitrary vertex. Divide the time-interval into consecutive epochs of length tsep + tmix, and let

tscp Ftmix—1

Z = Z 1x,—y

t=tsep
denote the number of visits. Then, by the separation time, E[Z] > tyix - < - m(v), and (1) yields
Lmix * %

E[Z|Z>1]

—

PlZ>1]>

tmlx 1 mix tle
Clearly, E[Z | Z > 1] < max{mx ' S il R P pfw. Hence,

(v)

] Umix - T
Ztmlx pv U

This means that in every epoch of length tsep + tmix < 5tmix, the random walk has a probability of
at least p to visit vertex v, and this is independent of any previous epoch. Therefore, the expected
number of steps until v is visited is upper bounded by

1 be- S tmix—dpt
thit(u,’l)) < 5tmix -— < t=0 v,V '
D m(v)

The claim for I'-approximative regular graphs follows from the observation that min,cy 7w(u) >
1/(I'n). We continue with the second part. Consider two independent random walks, (X;)¢>o,
(Y2)t=0 of length teep + tmix with arbitrary start vertices. Let Z be the random variable counting
the number of collisions between steps tsep and teep + tmix — 1, i.¢.,

P[Z>1 =:p.

tsep+tmix_1
Z = Z 1x,—y,.
t:tsep
By linearity of expectation,
tbep+tmlx 1
E[Z] = P[X;=u] -P[Y;=u] > tmix- — - ||7]|3 39
2= Y Y RX =l PlY =) mix 5 113 (39)

t=tsep ueV

Let us now consider E[Z | Z > 1] and recall that conditioning on Z > 1 can be regarded as
jumping to the first step 7 := min{t: teep < t < tmix — 1, X; = Y;} without knowing anything
about the future steps ¢ > 7 of both walks. Therefore,

mlx

[Z | Z =z qulea‘i( Z Z p’u,’u = Chax-

t=0 wvweV
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Plugging this into (1) and using (39) we finally arrive at

P(z>1]=— 22

tmix T2

1

Hence,

1

tmeet (u7 U) < Stmix - ]; <

E[Z|Z>1]"

52+ Chax

I3

Let us derive the result for [-approximate regular graphs. To this end, define

S;={ueV: deg(u) €

and note that So, ...

[21'—1’ 2@)} ,

; Slog, n forms a partition of V. Since the graph is I'-approximate regular, at

most 4 +log,(I") of the S;’s are non-empty. Hence there exists a set S; with

JES;

. 1
Z W(])Q P m

l13-

Let us now by Z; denote the collisions on the set S;, i.e.,

tsep+tmix_1
Zii= )
t:tscp
Then,
tsep+trrxix
Y. D PBIXi=ul-P[Yi=u]> tmix-
t:tsep UES]'
Furthermore,
E[Z; | Zj>1 gle%xzz pho)?

t=0 veS;

having used reversibility, i.e., ptu’vw(u) = pl ,7m(v) and 7(v)/7(u)

mlx

< 2-max

E[Z: | Z;>1
12 1 7 ma

t=0 veV

where the last inequality holds since pfw is non-increasing by Lemma A.l.

before,

2. Rmax

Z Zpu'u pvu\2 max Z p

1{Xt=Yt}ﬁ{Xt€Sj} .

tmix 1
4 +logy(T)

1 )
> 5l i3

2
e
JES;

mlx

<Smaxd D Pl Wi

t=0 veS;

< 2 by definition of S;. Further,

mlx mlx

<2 max Z puu—

Hence, similarly as

max i

1062 . (4 + logg(T)) - Riax

tmeet(ua 1)) < Htmix -

tmix

1
e2  dilog,(T)

Il

h Il

Finally, for the third statement, let (X;)¢>0, (Y7)i=0 be two random walk starting from stationarity.
Let Z be the random variable counting the number of collisions between steps 0 and 2tpix, i-€.,

mlx

Z x=v;-
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Then,
E[Z] = 2mix - 1713

In order to lower bound E [2 | 7> 1} let us write Z = 21 + ZQ with 21 = Zifg 1x,-y, and

Zg = th;li +11x,=v;- By Observation A8, P [Zl 1| 7> ] /% Therefore, by law of total
expectation,
- 1 - 1 ix
E[Z|Z>1]>§-E[Z|Z1>1} >3 -m Z;pw zf-cmm.

Hence,

~ 2
p[z>1}<2t11m7”””2::p'
I o
2 min

Consider now [ | consecutive time-intervals of length 2t,,;x each. Note that if 2ty >

l, Crnin
2 16[x[3”

Cmin
16]| 715 tmix
then we have

len
tr >t —
meet = Umix = 64H7TH
and the claim follows immediately. Hence we may assume for the remainder of the proof that

2tmix < % . lgl‘l“"ﬁz and we conclude that, if B denotes the total number of collisions between the

walks across all the intervals,

[B] < ’V CYmin -‘ -p< Cmin . 2tmix'H7TH% < 1

16H7T”% * Trmix 8“71-”% * Tmix % - Crin S 2
Hence by Markov’s inequality, P[B > 1] < 1 and thus tT ., > % - gf“;l“g in this case. The claim
for I'-approximate regular graph follows immedlately since ||7||3 < max,ey m(u) < T'/n. Together

with Ch, = 1 this completes the proof of the theorem. ]

It is interesting to compare the upper bound on fyeet in Theorem B.1 with the bound teet =
O(ﬁ . (W + logn)) from Cooper et al. [CEORI13, Theorem 2|. Using the trivial bound
2

Crmax < tmix and tpix = O(i(lg;;), we obtain tmeet = 0(171)\2 h"g”’;), which is at most a logn-

factor worse. However, for certain graphs like grids or tori one may have a better control on the
t-step probabilities, so that Ciax < tmix could be established.

Proposition B.2. Combining the upper bound on tyeet tn Theorem B.1 with the bound tyeet =
O(ﬁ . (||7r||2 + logn)) from Cooper et al. [CEOR13, Theorem 2] together with Theorem 1.1 we

derive
teoal = O L 1 + tmix - log?
= ——  ——— + tmix - log®n |,
coud 1=2o |73 °

which is at least as good as the bound of [CEOR13, Theorem 1] and equally good if one uses the
trivial bound tpix = O <i°_g/\’;>

63



Proof. First assume tmeet/tmix = log? n. In this case, by Theorem 1.1,

1 1
teoal = O(tmeet) = O | ——— - + logn
1= Ottt =0 (=5, (o 106 )

follows immediately. Next assume tmeet /tmix < log N, SO tmeet < Tmix * log n. By Proposmon 3.4,
teoal = O(tmeet logn) = O (tmix log® n) Using tmix = O (log Z) we derive indeed O(m (i 2 +
log? n)) the same bound as [CEOR13, Theorem 1].

[

O

In the following, we will try to get more concrete estimates than the ones in Theorem B.1 by
expressing the number of expected returns or Ci,x through 1 — Ao and t,;x. To this end, we define

pom i { YO0 |

1—X

Note that since tmix = Q2(1/(1 — X2)) (e.g., [AF02]), we have 5 > Q(1/(1 — A2)). Further, 8 <
tmix = O(logn/(1 — A2)). Hence § is always sandwiched between the relaxation time 1/(1 — A2)
and mixing time.

We will frequently make use of the following result, which is a straightforward generalization of
a result in the textbook by Aldous and Fill [AF02] from regular to I'-approximate regular graph.

Lemma B.3 ([AF02, Proposition 6.16 (iii)]). Let G be any T'-approzimate regular graph. Then for
any T < 5n?,

7—1
prw <20 VoT.
t=0

Since p?u’u is non-increasing, this implies for any 1 <t < 5n?, p

Theorem B.4. For any reqular graph we have

ol
hit — m )

and by Cheeger’s inequality we obtain tn;, = O(g), where ® is the conductance of G. Furthermore,
for any non-reqular graph with mazximum degree A, average degree d and minimum degree 0, we

have
v Ad
thit = O ( 5 “ )

V1= o
Proof. By [LPW06, Lemma 10.2] and [LPWO06, Proposition 10.19],

thit < 2m3xz thit (v, u)m(v) = 71(2u) Z (pfw — ﬂ(u))
v t=0
21l 00
<23 (bh) +— PR
) 2 P * 2y 2
< O Vha + st Z (PR — () (40)
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where the bound on the first term of the last inequality follows from p;/ﬁ,f: <0 (ﬁ) (Lemma B.3).

We can bound the sum as follows using that 7w(v) = 1/n and that for regular graphs any 7 it
holds that p27, = >, oy (ph,,)? as follows

o
1
Z ( u(&/:'i‘ktrel) ) Z (Z <p\/I+k:trel) _ n)
k=0 = veV
= 1 1
= Z (Z (p’zb/vrie""ktrel) 2 Zp\/:""ktrel . E + Z n2>
k=0 \veV veV veV
> 1P & 1
trel rel _ Z Pk‘ trel - < Z )\éptre] frel g
k= k=0
- zwfd (ZF WIS )
veV veV UEV
< )\k'trel 2\/@ (_*) O )\k'trel 1 (*_*) O 1 41
< S Mt Qo (St} @o (L), m
k=0 k=0 rel rel

where (%) follows from pﬁ{ff? <O (\/tl*l) (Lemma B.3) and (x*) follows since f(y) = y%/(1=¥) is

bounded from above by 1/e for any y € (0,1) and hence the sum is a geometric series. Combining
(40) into (41) yields the claim.

To obtain the result for non-regular graphs, we consider the modified Markov chain with transi-
tion matrix ) where the loop probability of every vertex is 1 — degT(u). As a result, every transition
of the walk to another vertex is made with probability 1/A. Thus @ is symmetric and the station-
ary distribution 7 is uniform. We can apply the result from the first statement to ) and it only
remains to relate A\a(Q) to A2(P). The variational characterization of Ao(P) gives:

1—X(Q) = inf :

Similarly,

» . D uwev (0(u) — @(v)*5
1- )\2( ) - V—-R 1Irllon—constaunt 2 u)  deg(v)
w: ® Zu,uev(sﬁ(u) —p(v))?- 2[E] " 2[E]

Comparing the two equations, we can see that

2
1= 0(@ > (-2 5 ()

O

It turns out that the hitting time bound of Theorem B.4 is tight in the sense that for for any ®
there exists a graph with conductance ® and hitting time and coalescence time of order Q(n/®).

Proposition B.5 ([BGKMI16] ). For everyn, d > 3, and constant ®, there exists a d-reqular graph
G with n nodes and a constant conductance such that the expected consensus time on G is Q(n).
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Furthermore, for every evenn, ® > 1/n, and constant d, there exists a d-reqular graph G with ©(n)
nodes and a conductance of O(®) such that the meeting time time on G is Q(n/®). Therefore, the
coalescence time and hitting time are of order Q(n/®).

Theorem B.6. Let G be any non-regular graph with mazimum degree /\, average degree d and

minimum degree §, we have
’ _0 VAd n
meet = O\ T T )

In particular,

v Ad n
0 1— X

teoal = O(tnit log(A/d)) = O < log(A/5)>

Furthermore,

v Ad n
teov = O . logn
0 V1=

The upper bound on #yeet and teoa gives tmeet = O(n?) for cycles and paths, and tpee; = O(n) on
regular expanders (since 1/(1—MX2) = O(1)). It thus improves the bound by Cooper et al. [CEOR13,
Theorem 1], which states that for any regular graph, tmeet = O(n/(1 — A2)).

Proof. The proof of the first part follows from Theorem B.4 and tyeet < 4thie (Proposition B.9). The
Second part is due to Theorem B.4 and Theorem 1.3. The last statement follows from Theorem B.6
and the well-known trivial bound tcoy = O(tht - logn). d

For any I' = O(1)-approximate regular graph, we also improve the best-known bound on the
cover time tqo, in terms of the eigenvalue gap, which is teoy = O (nlogn/(1 — A\2)) established by
Broder and Karlin in 1989 [BK89].

As mentioned earlier, i‘;i(’)‘_lpfw < tmix - m(u) + ﬁ are well-known bounds. The next
corollary provides an improvement in many cases:

Corollary B.7. For any I'-approximate regular graph G = (V, E)

tmix—1
mix 1 1 1 _
Rimax = max § pft,u = O | min F\/d Og( /( >\2)) ) F?’/Q\/@ =0 (FB/Q ' \/B) .
t=0

ueV 1) 1-— AQ

Proof. Thus, using that pzvu is non-increasing (e.g., Lemma A.1) and Lemma B.3, we derive for
any T

T7—1 T—1

201
S oph.<20VEr+ > P < 2VET 4, (42)
t=0 t=5n2 \/gn

where we used that pi”i < %, by Lemma B.3. In particular, using tmix < this = O(I'-n?) ([AF02,
Corollary 6.9])

200
VBn

=0 (F "V trmix (1 + Vv ZL/mix/n)) tmix:g(F'”Q) O <F3/2 Vv tmix)

Rmax < 2r Vv 5tmix + tmix :
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In the remainder we derive a bound in terms on Ryax in terms of W. We split the
expected number of returns to u at time x < t,;x and obtain

bmix bmix Lemma A.1 & (42) tmix—1
Z puu Zpuu-i- Z puu < <2F-v5x+$'20F/n)+ Z (W(u)—l—)\g)
t=
AL '
<20 - Vbx + 21T - tyi /0 + ; QA :
— A2

Next choose z = M Since f(y) = y*/(1=¥ is bounded from above by 1/e for any y € (0, 1),
we have

—1
i dIn(1/(1— A
Z p, < 10T —M—FQlF‘tmix/n—i—l.

51— X

We next prove that the second term in the bound above is always asymptotically upper bounded by
the first one. This is established via a simple case distinction. First, if 1/(1 — A\2) < n'/2, then the
claim holds because of tmix = O(logn/(1 — A\2)) = O(y/nlogn) and hence I'tyix/n = o(T") whereas
the first term is Q(T). Secondly, if 1/(1 — A3) > n!/2, then using the same bound on ty;y along
with the fact that 1 — Ay > d62, where d is the average degree and § the minimum degree:

By [CG97, Lemma 1 9], we have 1 — \g > and since the diameter of a graph is at most
n/d, we get 1 — Ao >

dlam dn’

dn2

o log n B dn? 2log(n'/?) dlog(1/(1 — A2))
tleO(\/l—)\Q-\/l—A2>O< m) 0O 7’11\/(s 1_)\2

O]

We now derive an extension of Theorem B.6 that is more suited for graphs with a very high
degree discrepancy.

Theorem B.8. Let G = (V, E) be any I'-approxzimate reqular graph. Then,

trneet = O <F3/2 logy(T7) - \/B) .

I3

Furthermore,

lfg()\ ) + logQ( ) * Imix * MaXycy 7T(U,)
tmeet = 0 2 )
713

We point out that for constant I', the first statement of the theorem recovers the second state-
ment of Theorem B.6.

Proof. Similar to the proof of Theorem B.1, we define S; := {u € V: deg(u) € (271,27}, and
note that So, ..., Slg,n forms a partition of V. Since the graph is I'-approximate regular, at most
4 4 logy(I') of the S;’s are non-empty. Hence there exists a set S; with

1
N2 > ) 2

jESj
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We will only count collisions on vertices in that bucket, i.e., Z := Ziiﬁszmi"_l 1x,=y; - Lx,es;,
where (X;)i>0 and (Y3)i>0 are two arbitrary walks. Then,

tmix - |13

E|Z|> .
[Z] €2 - (4+log(T))
Furthermore,
tmix_1 IﬂlX
E[Z|Z>1]< m%x Z Z (pfw 4m%x Z th —O<I‘3/2 \/B)
ue ue
t=0 UESj

where the second inequality holds due to the fact that vertices in S; have the same degree up to a
factor of 2 and the final inequality holds due to Corollary B.7. Plugging the two bounds into (1)
yields

]P’[Z>1]=Q< b |1l )z-p
: I5/2l0gy(T) - VB /) 7

Hence, by iterating over consecutive time-intervals of length tsep, +tmix < 5tmix that are independent,
we conclude

1 '3/210g,(T) -
s ; 5tm1X:O< 0g2( ) \/B>

I3

For the second statement, we also have, by Lemma A.1,

le 1
411?6%’){ Z pu WS4 W + tmix - Iz?ea“zgﬂ(u)’
and the bound on tyeet is derived in exactly the same way as before. O

B.2 Relating Meeting Time to ty;;

In this section we prove the following proposition which can be seen as an analogous version of
[AF02, Proposition 14.5] in discrete time.

Proposition B.9. For any graph G = (V, E) and u,v € V we have
(glelf‘} thie (7, u') + thie (u, v) — thie(7,0)) /2 < tmeet (1, v) < 2(512575111&77’“/) + thit (U, v) — thit (T, V).

Consequently, for any graph we have tmeet < 4tniy and for any vertex transitive graph G we have
7fhit/2 < tmeet < 2thit'

Proof. We define a pair of chains ((X¢)i>0, (Y;)i>0) with arbitrary start vertices Xo, Yy € V, called
sequential random walks, by

v € N(X¢) W.p. s if ¢ is even
Xi41 = 2[N(Xy)] '
X otherwise

and

Vis — v € N(Y;) w.p. W if ¢ is odd
* Y; otherwise
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In particular, for odd t (even t, respectively) the random-walk is lazy meaning X;+1 = X; (and
Yir1 =Y, respectively).

Consider two “non-sequential” random walks (X7);>0 and (V)0 with X = X and Yj = Y.
We will couple their decisions with the walks (X;);>0 and (Y2)¢>0, by setting X; = Xo; and Y/ = Yo,.
Due to this coupling and since each random walk is lazy w.p. 1/2,

PlX =Y | Xot=Ya| =P[Xopyo = Yoyo | Xor =Yar] > 1/4,

and
P[X{ =Y | Xog1=Yors1 | =P[Xopyo = Yorpo | Xopp1 = Yarp1] =1/2

Let t5od . (u,v) be the meeting time of the sequential chains X; and V3, i.e.,

tod i (u,v) =min{t >0 | Xy =Y;, Xo=u,Yy =v}

meet

and el = Maxy,y taet (U, V). We seek to relate tmeet With tee,. Clearly, trae /2 < tmeet Since
a meeting of X/ = Y/ implies that Xo; = Y2. For an upper bound on tpeet recall that X, and
Y/ meet, i.e., X; =Y/ w.p. at least 1/4 whenever Xo; o = Yo;_o or Xo;—1 = Yo;_1. Hence, by

independence tmeet = Maxy,y tmeet (U, V) < (oot /2) = 2tnd. We conclude,

meet meet*
tmeet (U V) /2 < tmeet (U, 0) < 2t5ieq (u, v). (43)

We proceed by deriving upper and lower bounds on ¢;°% | which gives us bounds on tyeet. We

will make use of the following statement that is a weaker version of the original statement Aldous
and Fill [AF02, Proposition 3.3]. For all u,v € V' we have

min g (7, 4') < et (8 v) = (tnit (1, v) — thi (7, v)) < max tyi (7, u')
u'ev uw' eV

Using (43) we derive,
tmeet(ua 'U) < zti’fget(u7 U) g 2(thit (U, U) - thit(ﬂ-a U) + un/lg‘)/{ thit(ﬂ-a u,))7

and

tmeet (U, ’U) = tISIfget(ua U)/2 = (g}lel‘r} thit(ﬂ-v ul) + (thit (U, 'U) - thit(ﬂ-v 1))))/2,

which yields the first part of the claim. For vertex transitive chains we get using tpit(m,u) =
thit(m,u') for all u,u’ € V and thus

brveet (U, ) = thig(u, v).

Thus, putting everything together and fixing u,v € V to be the nodes maximizing tn(u,v), we
derive
thit = thit (U, V) = tpnaey (U, 0) <oy < 2tmeet.-

Similarly,

tmeet < Qtfrfget = 2%%}{ tfrfget (uv U) < 2tpit.-

This yields Proposition B.9. 0

B.3 Proof of Theorem 1.4

The proof follows from Theorem B.4 and Theorem B.6.
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C Applications to Concrete Topologies

Here we derive tyeet and teoa on specific topologies. Note that more general bounds for certain
graph classes like regular graphs or vertex-transitive graphs have been stated earlier, see, e.g.,
Theorem 1.3 or Appendix B.

C.1 2-Dimensional Grids/Tori and Paths/Cycles

Next we apply our machinery to the 2-dimensional grid and the 2-dimensional torus. For the
continuous case a manual approach to bound meeting and coalescence times can be found in [Cox89].
Thanks to our general results, we can not only easily derive the correct bound on tyeet, but also on
teoal- First, we recall the following well-known fact that for 2-dim. grid and torus: For any integer

t=0(n),
P = () + Q(t7H), (44)

which can be derived, e.g., by using the central limit theorem. Further, t,;x = ©(n), and combining
these two results, we immediately obtain

mlx mlx

Chin = mlnz Z pu v 2 Znel‘r/lzp IOg n)

t=0 veV

Thus, by Theorem B.1.(7i7), tmeet = 2(nlogn). For the upper bound, we apply Theorem 1.3
together with the well-known bound tp;; = O(nlogn) to derive teoa = O(thi) = O(nlogn).
For cycles or paths, the corresponding formula to (44) is, for t = O(n?),

Pl = m(u) +Qt3).

Hence Cpin = 2(n), and therefore the third statement of Theorem B.1 implies tyee; = $2(n?). For
the upper bound, we apply Theorem 1.3 together with tn;; = O(n?) to derive tea = O(tni) =
O(n?). Alternatively, the upper bound on . could be also shown by using tyix = O(n?) and
applying the third statement Theorem B.6.

C.2 d-Dimensional Grids and Tori, d > 3

Here the bounds on tyeet and teoa follow immediately from our general results. First, for any
regular graphs we have tpeet = Q(n) (Theorem B.1.ii). Further, it is well-known that tn;; =
O(n) (e.g., [LPWO06]), and the result follows by tcoa1 = O(tnit) shown in Theorem 1.3. Alternatively,
we could also use tmeet = O(tpit) (Proposition B.9) to deduce tpeet = O(n). Combining this with
the fact that i, = O(n??) [AF02], Theorem 1.1 yields the correct bound tepa = O(n).

C.3 Hypercubes

Tight bounds for the hypercube can be obtained through different tools we provide.

Firstly, it follows trivially from Theorem 1.3: Since the hypercube is regular (in fact, it is even
vertex-transitive) it suffices to consider the hitting time. We have t,;; = O(n) (see e.g., [Lov93]) and
recall that tp;; = Q(n) by Theorem B.1. Hence applying Theorem 1.3 yields tcoa1 = O(tnit) = O(n).

Alternatively, we could also use the more elementary bound tyeet < 2thiy by Proposition B.9 to
conclude tmeet = O(n). Since it is a well-known fact that tmix = O(logn - loglogn) [LPWO06], we
obtain by Theorem 1.1 that teoa = O(tmeet) = O(n).
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C.4 (Regular) Expanders

It is not surprising that on regular expander graphs, we have t.,, = ©(n) and there is a multitude
of approaches to establish this (for instance, the result is a consequence of the main result by
[CEOR13]). With regard to our bounds, the easiest route is to follow the arguments for the
hypercube: Combine the result tp;y = O(n) (e.g., [BK89]) together with our bound ¢coa1 = O(nit)
(Theorem 1.3). The lower bound tcoa1 = tmeet = §2(n) holds for any regular graph.

C.5 Real World Graph Models

There is a variety of different graph models for “real world” networks. In this subsection we
demonstrate that random walks coalesce quickly on these graphs by establishing several bounds on
tecoal Which are sublinear in n.

First note that common features of real world graph models are (i) a power law degree distri-
bution with exponent 5 € (2,3) and (ii) high expansion, i.e., 1 — Ay is not too large, and hence

tmix = O(logn). Notice that (i) 8 € (2,3) implies that w.h.p. we have A = O(n'~¢), and hence
|73 < maxy,ey 7(u) < n=¢, for ¢ > 0.

For the sake of concreteness, let us take a specific model by Gkantsidis, Mihail and Saberi [GMS03],
which was also analyzed by Cooper et al. [CEOR13]. In this model, for some o € (2, 3) we generate a
random graph which has ©(n/d®) vertices of degree d and an eigenvalue gap 1/(1—\2) = O(log® n).
Cooper et al. [CEOR13] derived the general bound teoa = O(ﬁ - (||7]13 +log*n)), which implies

teoal = O(n(a_l)/ 2. log2 n) - a sublinear bound on the coalescing time. However, this leaves open
how close t¢oa and tpeet are.

Combining Theorem 1.1 with the fact that ty; = O(logn/(1—X2)) = O(log® n), we immediately
obtain teoal = O(tmeet), Without having to know the actual value of #yeet. '

More generally, we have the following result, saying that we have tcoa1 = O (tmeet) Whenever tpyiy
is slightly smaller than 1/||7|3:

Theorem C.1. Let G = (V, E) be any graph. Then,

teoal = O (tmeet : <1 + \/tmix Hﬂ" % -log n>> .

In particular, whenever tmiy - log? n < 1/||7]13, we have teoal = O (tmeet)-

Proof. First, by the third statement of Theorem B.1, we have t;eet > Inserting this into The-

1
9l
orem 1.1 yields the upper bound. The lower bound for the setting tuiy - log®n < 1/||7||3 trivially
holds since tcoa = tmeet- ]

It is worth comparing this result with the bound derived by Cooper et al. [CEOR13]:

toa =0 (77, <le1§ ) (#0)

The advantage of (45) is that requires relatively little knowledge about G; only 1— /\ and

I=13 Hz
(which is equivalent to knowing the degree distribution) are needed. One potentlal drawback of the

bound in (45) however, is that it involves the product of two factors 1= /\ and i ”2, each of which is

13That being said, deriving the correct bound on tmeet is an interesting open problem. So far, it seems rather
difficult to use one of our “off-the-shelf” bounds or the results from [CEOR13]. One potential route towards a tight
bound may involve stronger bounds on Rmax, as suggested by the second upper bound on tmees(u, v) in Theorem B.1.
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a lower bound on the meeting time on its own. For instance for regular graphs, by Theorem B.6, we

immediately obtain that tcoa = O(tmeet logn) = O (n logn - \/ﬁ : log(ﬁ)). As a consequence,

for regular graphs, our bound improves over the bound in (45) whenever ﬁ > log?**n for an
arbitrarily small constant € > 0.

It is also interesting to consider an alternative graph model for real world networks, proposed
by Mihail et al. [MPS06]. Also in this model, the degree distribution has the same Power law with
exponent « € (2,3), but there is a stronger bound on the spectral gap, ﬁ = O(1) [MPS06]. Hence
Theorem C.1 implies teoa) = ©O(tmeet). Further, thanks to Proposition B.2 (or alternatively, the
bound by Cooper et al. (45)) we get the explicit bound teoa = O(1/||7||3), which is asymptotically
tight due to the trivial lower bound tyeet = Q(1/]|7[|3) (Theorem B.1).

C.6 Binary Trees

In this subsection, we derive a lower bound tpeet = Q(nlogn) for complete binary trees. Un-
fortunately, this bound does not follow directly from our general results and a manual analysis
is required. To some extent, this is due to the structural difference between nodes close to the
leaves and nodes close to the root. While a collision close to the leaves triggers ©(nlogn) expected
additional collisions, a collision near the root triggers only ©(n) additional collisions.

Our proof consists of the following two steps. In Section C.6.1, we first provide a lower bound
on the probability that a random walk starting from any nodes u € V' is on a leaf after O(logn)
steps. We also show that any t-step probability pfw is at the most return probability for a leaf.
Both results shown in Lemma C.3 are derived by projecting the random walk on the tree to a
random walk on a weighted path of length log, n — 1.

In Section C.6.2, we proceed to analyzing the expected number of collisions between two random
walks in n steps. The main component is Lemma C.5, establishing that this number is at least
Q(logn) provided the walks start from the same vertex not too far from the root. This result is
complemented by a union-bound type argument in Lemma C.4, showing that it is unlikely that two
random walks collide on a vertex close to the root. Combining the two results and applying them
to (1) establishes the desired lower bound teet = 2(nlogn).

For the other bounds on tpeet and tepa1, we combine teoa) = O(thit) (Theorem 1.3) with the well-
known fact tpiy, = O(nlogn) (cf. [AF02]) to obtain s = O(nlogn). Together with the established
lower bound, this shows that tyeet and teoa are both of order ©(nlogn).

C.6.1 Bounds on the t-step probabilities

We assume that the complete binary tree has logy n—1 levels, i.e., there are n/2 leaves and the total
number of nodes is n—1. We define £ C V' to be the set of leaves. For the analysis, it will be helpful
to relate a random walk on the binary tree to a corresponding random walk on a weighted path G
of length logy n—1 with nodes V.= {1,2,...,log, n—1}, where each vertex on the path corresponds
to all vertices in the binary tree on the same level. Let ) denote the (logyn — 1) x (logyn — 1)
transition matrix of the corresponding weighted random walk. For i,j € V' we have

(12 ifi=

s ifj>i,i# 1

gij = Y2 ifj>ii=1

e if j <i,i#logyn—1
12 ifj<ii=logan—1.
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Let 7 denote the stationary distribution of this process. Since the random walk on G is also lazy,
Lemma A.1 implies that qfog2 n—1,logy n—1 > % for all ¢ > 0. Define 7, ¢ := miny,ez 7y, to be the first
time-step a leaf is visited, where the walk starts at u; 7, £ = 0 if u is a leaf. We will frequently use
the following two simple facts about random walks on binary trees:

Lemma C.2 ([Moo73]). Let G be any tree, and u and v be two adjacent nodes. Then ty;(u,v) =
2Ny — 1, where ny, is the number of vertices in the subtree containing u obtained by deleting the
edge {u,v}.

Lemma C.3. Let G be a complete binary tree, and let uw be an arbitrary node. Then the following
statements hold: there is a constant ¢y > 0, so that

1. for anyt > c1logyn, p’;’[: > % Moreover, if u is a leaf, then the same inequality holds for all
t>0.

2. For any vertexv € V, pfw <7 'pf;icl loan, where w is any leaf.
Proof. To derive a lower bound on ptu’ £» we consider the contracted binary tree G. Recall that
Tu,c 1s the random variable of the first time-step at which the random walk visits a leaf where the
random walk starts at u; 7,0 = 0 if u is a leaf. By conditioning on the first visit to a leaf,

2c1 logg n

P = Z Pruc=5]-qz;> - (1 =Pl >2clogyn]),
s=0

|

since the chain ) can be seen as a projection of P to the line. Our next claim is that P [ 7, > ¢1logyn] <
n~2, provided that the constant ¢; > 0 is sufficiently large. This can be derived by coupling the
random walk on a binary tree, starting from the root, with a random walk on the integers, starting
from zero and waiting until the random walk reaches the vertex log, n — 1. Using a Chernoff bound
for X 1= %" X, with P[X; = +1] = 1/3, P[X; = —1] = 1/6 and P[X; = 0] = 1/2, we
conclude that P[7, 2 > ¢1logyn] < n2, which implies the first statement.

To prove the second statement, consider the first c; logy n steps of a random walk starting at
u. Similarly as before,

c1logy n
Pl < Z P [Ty = 5] 'Elulgzipfu_ﬁ + P [Ty, > 4logyn].
s=0

As seen above, P71, > c1logon] < n~? and therefore

t S -2
Py < max maxp,, , +mn °. 46
WU 4 el logy n<s<t wel Y (46)

Let us now compare pf, , to p! . Since the random walk is time-reversible, we have
) )

Puy  T(W) = Pl - 7(v),

and hence
pl < max max3 - pS , +n 2
v t—cy logyg n<s<t wel 0w
Applying (46) to each p; ,,, we conclude that
Phy <6 max max pr, v + 4n~2,

t—2c1 logy n<s<t w,w’ €L
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Further, by symmetry p? ., is maximized if w = w’, so that

t <6- s 4 —2
Puop S t_261111(;1§;};<5<tpw,w +4n 7,
where w is any leaf. Applying Lemma A.1, it follows that the maximum is attained for s =
t —2cylogyn and py, ., = 271%2, which implies the second statement. O
C.6.2 Establishing the Lower Bound on the Meeting Time

We now prove that the meeting time on binary trees is Q(nlogn). The intuition for this is as
follows. While two random walks of length ©(nlogn) will lead to ©(logn) expected collisions,
it turns out that the distribution of collisions is poorly concentrated. In fact we will prove that,
conditional on the existence of at least one collision, the expected number of total collisions is
Q(logn). This will imply the desired lower bound on the meeting time. A slight complication is
that the collision could occur on different nodes, which is why we will first bound the probability
for a collision to occur close to the root.

Let us define U to be the set of all nodes that have distance at least %logg n from the root.
Note that |V \ U| < 2 - y/n. Further, let £ denote the event that two random walks starting from
the stationary distribution of length nlogs n meet on a vertex in V'\ U.

Lemma C.4. We have P[£] < n~ /3.

Proof. By the Union Bound, P[£] < ?:k{gw > e\ m(u)? = nlogyn - 2y/n - (%)2 g Blogzn

Lemma C.5. For any node u € U and any 2y/n <t < n /200, we have Y, (pl, ,)* = Q(1/t).

Proof. Recall that ), ‘,3(17271,)2 is the probability of two non-interacting, independent random walks
starting from u to meet at the same leaf at time t.

Our first claim is that with probability at least ¢; > 0, both random walks reach a leaf before
returning to u within 4logyn steps. To prove this claim, recall that with probability at least
1 — 2n~2, both random walks reach a leaf before step 4logyn. Secondly, by [Lov93, Proposition
2.3], applied to the collapsed binary tree GG, where node u is at level ¢ and the leafs are in level
logyn — 1, it follows that the probability that a random walk starting at u visits a leaf before
returning to u is

1
(tfit(ﬂ, logon — 1) + tﬁt(logg n—110))- 7r€G

Further, t& (¢,logon — 1) = O(logn) and t&, (logyn — 1,£) < minger this(w,u) < 210827742 by
Lemma C.2 and 7§ < 271082772 where dist(L£, u) = minge, dist(w, u). Hence p is at least some
constant > 0. Hence with probability at least p?> — 2n ™!, both random walks reach a leaf before
time 4log, n without returning to w.

Consider now the original binary tree, and one of the two random walks starting from a leaf
w at some time € [1,4logy n] up until time step ¢ — 4logy n. Consider the shortest path from w
to the root, and let z be a node that is on this shortest path and has distance log,(100¢) from w.

Applying Lemma C.2, it follows that tni(w, z) = Ziozgf(moﬂ 2t — 1 > 49t. By Markov’s inequality,

P[Thit(w, z) = 2tpie(w, 2) | < 1/2. (47)

Now divide the random walk into consecutive epochs of length 2ty (w, 2) + 4logy n. Combining
(47) and Lemma C.3 it follows that the random walk will visit the vertex z in each epoch with
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probability at least %, conditional on having not visited the vertex z in any of the previous epochs.
Therefore for any integer A > 1,

P[Thit(w, z) = A+ 3 - thig(w, 2)) | < P[Thit(w,2) = A+ (2 thie(w, 2) +4loggn) | < 27

where the first inequality holds since tyit(w, z) = Q(t) = w(logn). Hence,

1 1 >
hie(1.2) < ot (w,2) + B [Thit(w,z> > mthit<w,z>] e B, 2) + 302NN 3w, 2),
A=c1

and it follows that by choosing the constant ¢; > 0 large enough, there is a constant co = ca(c1) > 0
so that

P [Thit(w,z) > 110thit(w,z)] > co.
Hence with probability at least co > 0, the random walk does not reach the node z before time ¢.
Further, with probability at least 1 — n~2, the random walk visits a leaf, say, w’, before step ¢, say
at step s, and therefore by Lemma C.3, the random walk is at a leaf at step ¢ with probability at
least (1—n"2)- 1.
Now define Fy := {Thit(w,2) >t} and Fy := {X; € L}. Clearly, the events F; and F; are
positively correlated so that

P[fl 0.7:2] > P[fl] ~P[f2] = co - (1 —n_Q) . é

Combining all the events, we conclude that with constant probability cg > 0 both random walks

are on a leaf at step ¢ and have never left the subtree with root z. For one walk, the distribution

will be uniform over all the leafs within a subtree whose root is the vertex closest to the root ever

visited. Hence let £ be all the leafs that have a non-zero probability to be visited at step ¢ by the

first random walk, and Lo similarly. W.l.o.g. let |£;| < |£2| and observe that £; C Ly since both
walks start at the same node. Therefore,

1 1

to)\2 2 -1 1 1 2 -1 2 -1
g P = (p°—2n c3 - E — —— 2= (p"—2n 3 = (p° —2n SC3 ——,
Uec( u,v) ( ) 3 = IL1] Lo ( ) 3 Ls] ( ) 3770t

where the last inequality holds since we are conditioning on the event that none of the two random
walks reaches the vertex z. O

Theorem C.6. For the binary tree it holds that tmeet = 2(nlogn).

Proof. We first only consider collisions on nodes in U by two random walks (X;);>0, (Y2)¢>0 starting
from the stationarity distribution. More formally, we are interested in the random variable

cnlogy n
t=1 veV\U
By linearity of expectations,
cnlogy n 9 )
E[Z] < P[X, =Y, =v] <enl : 2 < nl n-[2) =4el ,
[Z] ; g/ [ Xy r=v] <cnlogyn ;W(U) nlogyn-n (n) clogyn
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and clearly,

E[Z]

- r A=)

Hence to derive an upper bound on P[Z > 1], we will derive a lower bound on E[Z | Z > 1]. In
order to this, it will be helpful if we can work under the assumption that the first collision occurs in
the first half of the walk. To this end, let Z; be the indicator random variable that is 1 if a collision
appears before time %nlog2 n and Z» be the indicator random variable if a collision appears after
time %nlogg n. Applying Observation A.8, we get P[Z; > 1 | Z > 1] > 3. Thus,

E[Z | Z>1]>P[Z 21| Z>1]-E[Z | Z1 >1]

tmix

1
2 5 ’ Z Z (pz,v)2
t=0 veV
1 tmix tmix
>3 > D Wh)?= Y, 1/t =cilogyn,
t=2,/nveEL t=2y/n

where ¢4 > 0 is a constant (the penultimate inequality is due to Lemma C.5).

Consequently, for the modified process where collisions are only allowed on nodes in U

4cl
P [ 7 > 1] < M_
cqlogyn
Hence by choosing ¢ = min{c4/8,1}, it follows that P[Z > 1] < 1/2.

This implies that with probability at least 1/2, no collision occurs on nodes in U before time
cnlogy n. Furthermore, by Lemma C.4, with probability at least 1 — n~1/3 there is no collision on
nodes in V' \ U. Therefore, with probability at least 1/2 — n~1/3 there is no collision among two
random walks before time cnlogy n, and we have shown that tpeet = Q2(nlogn). O

C.7 Star

Clearly, the coalescing time is O(logn) which could be easily shown by a direct analysis. For the
sake of completeness, we point out that the upper bound also follows from Proposition 3.4 and the
fact that tymeet = O(1). The matching lower bound follows from the general bound t.q. = 2(logn),
holding for any graph (see Lemma 5.2).
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