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Summary

Background: Currently, it is not possible to predict disease behaviour for children with inflammatory
bowel disease (IBD), which is a major obstacle in an era where we strive to deliver personalised,
tailored therapy. Previous investigation of gene expression profiles from CD8+ T-cells in adult IBD
cohorts identified promising signatures, including a T-cell exhaustion signature, to predict disease
outcome in these patients.

Hypothesis and aim: We hypothesised that adult CD8+ T-cell prognostic signature and T-cell
exhaustion signature would also predict outcome in paediatric IBD. We also hypothesised that CD8+
methylation profiles would underpin changes in gene expression, hence providing an alternative
potential predictor. The aim of this project was to test whether CD8+ T-cell gene expression and
methylation signatures can predict disease outcome in children with IBD.

Methods: Purified CD8+ T-cells from a prospective cohort of 112 children newly diagnosed
(treatment naive) with IBD were subjected to cellular genome-wide RNA and DNA profiling
(affymetrix and epic methylation microarrays). Detailed clinical information from each patient was
recorded in a clinical database (1.5 years follow-up). First, the adult CD8 prognostic signatures were
applied to the paediatric data in order to test for their ability to differentiate children according to their
disease behaviour. Subsequently, the paediatric data was analysed on its own through unsupervised
clustering analysis and Weighted Gene Co-expression Network Analysis (WGCNA) to test for
correlations between gene expression data and clinical outcome parameters. Survival analysis
(kaplan meyer) was used to compare patient groups for disease outcomes, including number of
treatment escalations, use of biologic treatments and surgical intervention.

Results: Applying the adult CD8 prognostic signature and the T-cell exhaustion signature to the
paediatric dataset did not generate groups with significant differences in disease outcomes.
Furthermore, the clinical data collected from the paediatric cohort showed that two thirds of the
children had at least two treatment escalations, compared to less than 40% of the adult patients from
the previous study. The analysis of the paediatric data per se identified correlations with clinical
outcomes including use of biologics in Crohn’s (WGCNA correlation index (Cl) < 0.4) and surgical
intervention in ulcerative colitis (top Cl: +0.38 and — 0.59). Preliminary analysis of the CD8
methylation profile did not show any correlation with clinical outcomes in this paediatric cohort.
Conclusion: The adult prognostic CD8 signatures did not prove to be effective in children with IBD.
We speculate that this could be due to the paediatric IBD phenotype being homogeneously more
severe. Our findings hint the hypothesis that absent T-cell exhaustion in paediatric CD8+ T-cell could
underlie a more severe disease phenotype in children. Further understanding of the mechanism of

T-cell exhaustion in children has the potential to open up to future target options in paediatric IBD.
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1.1 Paediatric inflammatory bowel disease (IBD)

The term inflammatory bowel disease (IBD) covers a heterogeneous group of chronic disorders of
the digestive tract, causing relapsing inflammation of the intestinal mucosa. The two main entities in
IBD are Crohn’s disease (CD) and ulcerative colitis (UC). While in UC the inflammation is generally
restricted to the mucosa of the large bowel, CD can spread throughout the entire gastrointestinal
(Gl) tract and affects all layers of the bowel wall (i.e., trans-mural inflammation). A third entity
describes patients whose diagnostic features do not fully qualify for either CD or UC and are
therefore diagnosed with IBD-unclassified (IBD-U) 2. In IBD, the disease onset can range from early
childhood to beyond the sixth decade of life, and over the past few decades there has been a
significant increase in the incidence of this condition '. This increase has been particularly noticeable
in children and young adults, who currently constitute almost 30% of all patients diagnosed with IBD
*6_In the absence of any curative treatment, patients are faced with a lifelong, often severely
disabling condition.

Managing IBD in children is particularly challenging for several reasons such as body growth, puberty
and the need to attend school during a crucial phase of their lives. Growth failure and impaired
nutritional status are seen in 65-85% of children and adolescents diagnosed with CD, and 15-40%
of these patients continue to suffer from growth deficiency throughout the course of their disease "2.
Delayed growth may precede any clinical evidence of bowel disease, and can severely affect the
quality of life of children and adolescents with CD *'?. Because of its relevance to the care of children
with IBD of developmental age, growth assessment was included in the Paris classification of

paediatric CD, which replaced the previous Montreal classification ™.

1.2 Epidemiology of IBD

The incidence of IBD is increasing worldwide, and over the past few decades, advances have been
made in understanding its evolving epidemiology. This rising pattern may be due to improvement in
disease detection and recognition, as well as environmental alterations and exposure that impact
the disease onset. IBD was once considered to be a “Western” disease, principally affecting patients
in North America and Western Europe, but it is now clear that the incidence and prevalence of this
condition are both rapidly rising in other parts of the world, with dramatic increases noted in India,
Japan, China, and the Middle East “ IBD is, in fact, emerging in previously low-prevalence areas
such as the developing world, as well as among migrant populations moving to industrialised

westernised countries "¢, (Figure 1.1)
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Figure 1.1 Global map of IBD in established and emerging populations. (Taken from: Cosnes J, et al.
Gastroenterology 2011 16)

The changing epidemiology of IBD across time and geographies (north-south and west-east
gradients) suggests that environmental factors play a major role in modifying disease expression,
and its rising incidence in developing societies seems to be linked to industrialisation and the
Western lifestyle "'°. Individual, familial, community-, regional- and country- based environmental
risk factors could, in isolation or in association, contribute to IBD’s pathogenesis. Urbanisation in
developing countries, diet changes, antibiotics, hygiene status, microbial exposure and pollution
have all been implicated as potential environmental risk factors for IBD 2%%'.

The geographical variability in IBD incidence and prevalence may, in turn, reflect a variety of
underlying genetic patterns in different populations 2 The current mean prevalence of IBD in the
general population of Western countries is estimated at 1/ 1,000 inhabitants ?*?%. IBD primarily affects
the Western world and the highest incidence rates are observed in North America and Europe '’ 2*
% Recent studies in the UK indicate that the incidence of paediatric IBD is 5.2 per 100,000, where
3.1 of those cases are CD, 1.4 are UC and 0.6 are IBD-U #’. Although there is limited epidemiology
data available regarding developing countries, the incidence and prevalence of this disease have
both been increasing over the past 50 years in practically all regions of the world, indicating its
emergence as a global disease '*?%. The trend appears to have stabilised in the adult population but
not in children, especially in central and southern Europe where it still appears to be rising "2
Incidence and prevalence of childhood-onset IBD has almost doubled over the last decade, and
children currently constitute almost 30% of all patients diagnosed with IBD '?. Patients can be
diagnosed with IBD at any age, but peak incidences are observed in childhood (between 10-15 years
of age) and early adulthood (i.e., the second to third decades of life) "'®2%3° Estimates of the
incidence of paediatric-onset IBD reported around the world vary considerably ' as do its patterns

and distributions in the various age brackets of the paediatric population 4%,
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The disease distribution by gender shows a slight male preponderance (1.5:1) in CD patients before
puberty, whereas a female preponderance is reported in adults **°. While initially relatively low, CD
incidence has gradually risen to levels that are similar to those of UC '®. CD incidence rates seem to
have been stable in most industrialised countries since the 1980s, whereas an increase in childhood-
onset IBD continues to be observed .

Accordingly, this disease represents an increasing burden upon global health, which is likely to

continue to grow in the future.
1.3 Current models of IBD pathogenesis

The molecular patho-physiology of IBD remains largely obscure. Experimental studies and genetic
evidence suggest that chronic intestinal inflammation is triggered by various environmental factors
in genetically susceptible individuals. During the last decade, several genome-wide linkage and
association studies have revealed over 200 genetic polymorphisms associated with an increased

susceptibility to CD and UC *°**. (Figure 1.2)
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Figure 1.2 Mutations in genes implicated in the pathogenesis of IBD regulate various biological functions such

as immunomodulation, mucosal barrier integrity and microbial homeostasis. (Taken from: Lees CW et al. Gut

2011. %)

Major efforts have focused on investigating the role of genetic factors in IBD pathogenesis. A number

of disease-predisposing genetic variants (i.e., Single Nucleotide Polymorphisms (SNPs)) have been

46,47

identified, but these can, at best, explain up to 30% of IBD cases , which suggests that other

factors make a substantial contribution to IBD pathogenesis.
Genes that are implicated in the pathogenesis of IBD regulate various biological functions such as

immunomodulation, mucosal barrier integrity and microbial homeostasis **°.
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However, despite extensive research in the field of adult and paediatric IBD using increasingly
sophisticated tools, our understanding of disease pathogenesis remains incomplete for the majority
of cases. Hence, the most widely accepted general hypothesis to explain the development of IBD
continues to include three main factors: genetic predisposition, environmental influences and the
homeostasis between the intestinal microbiome and host immunity *° (Figure 1.3). The complex
interaction of these factors is ultimately considered to cause chronic relapsing inflammation of the

intestinal mucosal lining and the well-described phenotypes.
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Figure 1.3 Interaction of various factors contributing to chronic intestinal inflammation in a genetically
susceptible host. (Taken from: Sartor BR, et al. Nature Clinical Practice Gastroenterology & Hepatology
2006.%)

In the absence of a major genetic factor, the environment has moved back into the focus of
researchers as the possible main causative factor. Epigenetics can be defined as heritable changes
to phenotype (e.g., gene expression) that are due to mechanisms other than changes to the
underlying DNA sequence. These mechanisms operate at the interface between environmental
stimuli and long-lasting molecular, cellular and even behavioural phenotypes that are acquired during
periods of developmental plasticity °*%. The study of epigenetic mechanisms in IBD aims to address
questions currently unanswered about the processes mediating the effects of environmental factors
on the intestinal mucosa. Unlike our genetic code, which remains stable throughout life, epigenetic
profiles are influenced by exposure to environmental factors (e.g. smoke), diet or even behaviour.
Nevertheless, as such environmentally induced epigenetic changes are passed on during cell

division, they can ultimately determine a newly acquired phenotype in offspring ****.
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Epigenetics could therefore provide the missing link in explaining clearly heritable complex, but non-
Mendelian, diseases such as IBD. To date, DNA methylation is amongst the best-studied of all
epigenetic mechanisms and describes the enzymatic addition of a methyl group (CH3) to the fifth
position of cytosine, forming 5-methylcytosine (5mC) *°. DNA methylation plays a role in regulating
gene expression; in particular, it is thought to target regulation sites and make them inaccessible in
direct or indirect ways *°. In mammals, cytosine methylation is not equally distributed across the
genome but occurs mainly at CpG dinucleotides. The abbreviation CpG, standing for 5’-cytosine-
phosphate-guanin-3’, describes the linear sequence of a cytosine base followed by a guanine base,
bound together by a phosphodiester bond. Overall, CpG dinucleotides are rare in the human genome
but they are known to cluster together in so called CpG islands. CpG islands are often found in close
proximity to the promoter region and the transcription start site of a gene and are mostly
unmethylated "%,

Aberrant DNA methylation patterns have been associated with numerous pathologies, including
autoimmune, metabolic, and neurological disorders, as well as cancer **%.

In support of the role played by epigenetic mechanisms, and DNA methylation in particular, in
paediatric IBD, recent work has identified alterations in the DNA methylation profile of intestinal
epithelial cells purified from children that are newly diagnosed with IBD, compared to those of control
cells ®. Moreover, disease specific changes in DNA methylation and transcription patterns of the
intestinal epithelial cells have been described in patients with CD and UC. These changes appear to
be stable over time and correlate with disease outcome parameters .

In conclusion, within a plausible model for disease pathogenesis in IBD, epigenetics may represent
one of the major underlying mechanisms that mediate the effect of genetic predisposition,

environmental triggers and the intestinal microbiome.

1.4 T-cell subsets and their role in IBD pathogenesis

T-cells play a central role in cell-mediated immunity. They are produced in the thymus where they
mature from thymocytes. T-cells are distinguished from other lymphocytes by the presence of a T-
cell receptor (TCR) on their surface.

Effector T-cells promote an active immediate response to a stimulus. The response involves helper
T-cells, killer T-cells, and regulatory T-cells. At the opposite end of the spectrum, memory T-cells are
longer lived to target future infections as necessary.

Memory CD8+ T-cells that circulate in the blood and are present in lymphoid organs embody features
of both naive and effector cells (Figure 1.4). It is still debated whether memory T-cells develop from
effector cells through a process of dedifferentiation or directly from naive cells .

Previous studies show that when memory T-cells are generated after antigen exposure, the more

activated T-cells become in response to an antigen (reflected in the “clonal burst” size), the more
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memory T-cells are subsequently formed ©'.

Helper T-cells (CD4+) assist other processes, including differentiation of B-cells into plasma cells
and activation of cytotoxic T-cells and macrophages. Helper T-cells are activated through
presentation of a peptide antigen by MCH class || molecules, expressed on the surface of antigen-
presenting cells (APCs). Once activated, they secrete cytokines that mediate the active immune
response.

Cytotoxic T-cells (CD8+) destroy virus-infected cells and tumor cells, and are also implicated in
transplant rejection. These cells operate by binding to antigens presented by MCH class | molecules.
Memory T-cells include central memory T-cells (CD45+, CCR7+ and CD62L+), commonly found in
the lymph-nodes and in the peripheral circulation, and effector memory T-cells (CD45+, CD44+,
CCr7- and CD62L-) that lack of lymph node-homing receptors and are mainly found in the peripheral
circulation and tissues.

Regulatory T-cells are crucial for the maintenance of immunological tolerance, by terminating the T-
cell immune response toward the end of an immune reaction. They comprise two major classes,
FOXP3+ and FOXP3-.

Natural killer T-cells link the adaptive immune response to the innate immune system through
recognition of antigens presented by CD1d and activation of functions related to both helper T-cells

and cytotoxic T-cells.
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Figure 1.4 The differentiation of CD8+ T-cells and different CD8+ subsets. TN, naive T-cells; T SCM, stem
cell memory T-cells; T CM, central memory T-cells; T EFF, effector T-cells; T EM, effector memory T-cells.
(Taken from: Golubovskaya V, Wu L. Cancers 2016. 68)
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Both CD4+ and CD8+ are known to play a role in the pathogenesis of IBD %*"°,

Immune responses in the intestine are regulated in a way that allows protective immunity against
pathogens, while limiting responses to dietary antigens and commensal gut flora ”'. The gut-
associated lymphoid tissue acts as a “mucosal firewall” by preventing systemic dissemination of
pathogens. Dendritic cells drive regulatory T-cell differentiation in response to dietary antigens and
commensal bacteria. Although this process can be beneficial during homeostasis, recent evidence
from animal studies suggests that tolerance to commensal-derived antigens may be lost during
pathogen-induced epithelial damage and subsequent transient exposure to commensals, causing
deranged responses to commensals and promoting inflammatory conditions, such as IBD .

In addition to activated effector CD8+ T-cells being detectable in the mucosa of patients with IBD,
several animal models "?”® have identified in the destruction of intestinal epithelial cells by CD8+ T-
cells the primary event leading to the loss of barrier function and exposure to microbial antigens.
Based on this evidence, it has been speculated that CD8+ T-cells may play an early role in triggering
IBD whilst CD4+ T-cells would play a secondary role in the disease pathogenesis. ¢

Recently, using transcriptional signatures from CD8+ T-cells separated from patients with
autoimmune conditions including systemic lupus erythematosus (SLE), vasculitis (AAV) and IBD,
researchers were able to separate patients into different prognostic groups ®"*. These groups
differed in gene expression within the IL-7 and TCR signaling pathways, including CD28 co-
stimulation and IL-2 signaling. These pathways are implicated in T-cell activation and the subsequent
development of antigen-specific T-cell memory. Moreover, IL-7 signaling facilitates the survival and
differentiation of effector cells into long-lived antigen-specific memory cells (through Bcl2 family-
mediated inhibition of the pro-apoptotic effects of Bim22) ¢""“.

This data stands in support of a role for CD8+ T-cells in determining the disease course of IBD.
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1.5 Clinical presentation and diagnostic work-up

The clinical presentation of childhood IBD is highly variable and symptoms can be subtle. However,
there are a number of classical symptoms and, most importantly, some red flags that may indicate

the presence of IBD in children and warrant further investigations.

Symptoms of CD commonly include chronic diarrhoea (i.e. longer than 6 weeks), abdominal pain
and/or weight loss. Unexplained anaemia and growth failure in children are red flags and therefore
should be investigated further. Similarly, blood and/or mucus in the stool may be seen in up to 40-
50% of patients with CD and always requires further investigations ?°. Perianal fistulas are present
in 10% of patients at the time of diagnosis, and may be the presenting sign of CD %°.
Extra-intestinal manifestations (EIMs) are seen in 10-20% of CD patients, and may even be present
prior to the onset of gastrointestinal symptoms. Abnormalities of the musculoskeletal system, such
as sacro-ileitis, ankylosing spondylitis, peripheral arthritis are the most frequent EIMs in CD.
Classical symptoms of UC are bloody diarrhoea, tenesmus and abdominal pain >’®. Nocturnal
defaecation is also frequently reported. Systemic symptoms of malaise, anorexia, or fever are
features of a severe presentation 2. EIMs in UC include arthropathy, episcleritis and erythema
nodosum and may accompany the presentation in about 10% of cases %. Another important EIM in
patients with UC is primary sclerosing cholangitis (PSC). Hence, elevated liver enzymes combined
with Gl symptoms are highly indicative of UC and PSC %

As outlined in the ESPGHAN revised Porto criteria 2, diagnosing IBD in children and adolescents
now requires a combination of clinical evaluation and endoscopic, histological, radiological, and/or
biochemical investigations ***>7¢%! Upper and lower gastrointestinal endoscopies and histological

examination are essential to assess the extent and activity of IBD 2.

1.6 Treatment

In the absence of a curative treatment, the overall aim of managing childhood IBD is to reduce
symptoms, to optimise growth, and to maintain or improve quality of life, whilst minimising toxicity

related to drugs over both the short and long term.

Treating active inflammation in IBD involves two phases, i.e. induction and maintenance of
remission. Current treatments available encompass three main areas: nutrition, medical options, and
surgery. Exclusive enteral nutrition (EEN) with polymeric formulas is used as induction treatment,
but drugs for IBD are considered as either induction therapy or maintenance treatment, with some
drugs being used for both. Surgery is required to either manage complications or as a last resort in

case of treatment-resistant inflammation.
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As reliable predictors of response to treatment are currently lacking in clinical practice, two
therapeutic approaches (i.e. “step-up” versus “top-down”) are being used, mainly based on disease
presentation at diagnosis. However, response to treatments still remains unpredictable, hence there
is a need to escalate or de-escalate therapies according to the disease activity and behaviour of
individual patients. A “step-up” therapeutic approach consists of escalating initially with
corticosteroids, then with immunomodulators, and finally with biological therapies only if a treatment-

refractory course evolves "*"°

. (Figure 1.5) An alternative “top-down” strategy (i.e. starting with a
combination of biologics and immunosuppressants and “de-escalating” if possible) aims to achieve
higher remission rates, restore “mucosal healing”, and decrease the rate of surgeries and
hospitalizations in children with particularly severe disease onset by preventing mucosal and

transmural damage to the intestinal wall "°%°.

Nowadays, an individualised approach according to the peculiarities of each patient’s disease
behaviour remains the best way to optimise the treatment strategies available. In fact, although early
aggressive therapy is supported by clinical trials, it needs to be balanced with safety concerns
regarding the indiscriminate use of potent immunosuppressants ®’. Over-treating patients destined
to develop an indolent disease course might expose them to rare but potentially life-threatening side
effects of such drugs, including opportunistic infections ®¢, demyelination ®, and malignancy . In

addition, indiscriminate use of biologics upfront is extremely expensive °’.

STEP-UP 1
VS
TOP-DOWN {

Biologic Therapy

5-ASA, Antibiotics

Figure 1.5 Treatment strategies for paediatric IBD. 5-ASA: 5-Aminosalicylates; 6-MP: 6-mercaptopurine.
(Taken from: Aloi M, et al. Nat Rev Gastroenterol Hepatol 2014 89)

With regards to paediatric CD, the most recent NICE guidelines suggest that a course of a
conventional gluco-corticosteroid (e.g. oral prednisolone, i.v. methylprednisolone or hydrocortisone)
should be offered as a first line treatment to induce remission in patients with a first presentation or

a single inflammatory exacerbation of CD in a 12-month period *'.
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EEN with polymeric formulas represents an equally effective alternative to conventional gluco-
corticosteroids for the induction of remission in children for whom there is concern about growth or

90,91

side effects . EEN offers the advantage of improving the patient nutritional status as well as

enabling the mucosa to heal at much the same rate as is achievable with corticosteroids 2.
5-aminosalicylates (5-ASA) are used for induction treatment of mild to moderate UC and for
maintenance of UC at any disease severity '°, whereas the role of these medications is currently

unsupported for children with CD #’. Mesalazine and sulfasalazine are the 5-ASAs of choice.

The main drugs currently used for maintenance treatment of paediatric IBD are thiopurines (i.e.
azathioprine or mercaptopurine), 5-ASAs and biologics. Additionally, methotrexate, cyclosporine and
tacrolimus are alternative options when first line treatment fails.

Thiopurines are purine analogues used for the maintenance of disease remission in patients with
CD and UC; they include the prodrug azathioprine (AZA) and the antimetabolite 6-mercaptopurine
(6-MP) °7*8_ These drugs are steroid sparing agents and are able to block the rapid proliferation of T
and B lymphocytes involved in inflammatory processes, which results in immunosuppression %&°.
Thiopurines are also used effectively to maintain surgically-induced remission in CD *°. The use of
thiopurines is limited by an extensive spectrum of adverse events in up to almost half of patients,
particularly within the first 12 months of treatment. Adverse effects include myelotoxicity,
hepatotoxicity and pancreatitis “*%¢1%°

Methotrexate (MTX), a dihydrofolate reductase inhibitor, has become one of the principal alternatives
to thiopurines as a maintenance treatment "% and is a first-line treatment option in patients who
have concomitant inflammatory arthritis. Adverse events associated with MTX include flu-like
symptoms, nausea and vomiting, transaminitis and, less frequently, myelosuppression, which may
require an adjustment in dosage or drug withdrawal '®.

Biologics are a relatively new class of drugs '"'%. The most frequently used for children are
antibodies against TNF-alpha such as infliximab (IFX) or adalimumab (ADA). While IFX is licensed
for use in children from 6 to 17 years of age, ADA is only approved for paediatric CD and is still off-
label for paediatric UC 372107

One-year response and remission rates for IFX in luminal disease are reported as up to 90% and
55%-60%, respectively %"’ Repeated administration of IFX can lead to immunogenicity in some
patients, with possible loss of efficacy and delayed-type hypersensitivity ''"''%. A low proportion of
children with CD (10%-25%) are primary anti-TNF non-responders, i.e. they fail to respond after a
six-weeks induction course. More commonly, however, the formation of antibodies against the drug
over time can result in a secondary loss of response. Concomitant treatment with either thiopurines
or MTX has been shown to hinder this process "™ In anti-TNF antibody naive children, the one-year
remission rate for ADA is 45%, and its efficacy has been documented in nearly two-thirds of patients

for whom IFX was unsuccessful '3,
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Anti-TNF agents are also used as a primary induction option for children with active perianal

fistulising disease, in combination with targeted antibiotic and surgical intervention.

With regards to the use of biologics for maintenance of remission in children with UC, IFX (approved
by the Food and Drug Administration for children = 6 years of age with moderately-to-severely active
UC) should be considered for treatment of cases with persistently active, or steroid-dependent UC,

uncontrolled by 5-ASA and thiopurines. IFX should also be considered for steroid-refractory (whether

oral or intravenous) disease ">"*.
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1.6.1 Surgical treatment

The role of surgery in the management of paediatric IBD lies in treating complications as well as
complementing the management of cases resistant to medical treatment.

Overall, approximately 50-80% of patients with CD will undergo surgery during the course of their
disease **. The most common interventions include treatment of strictures causing symptoms of
obstruction, or other complications such as fistula formation, perforation or failure of medical therapy.
In patients with localised ileo-caecal CD, ileo-caecal resection is frequently performed as a useful
surgical option to treat the isolated inflammation of this area.

For patients with severe, treatment-resistant UC, colectomy (and formation of ileostomy) is still a last
resort °. Resecting the colon in patients with severe UC that is non-responsive to medical options
represents a cure, as, by definition, UC only involves the large bowel. The main down side is the
formation of an ileostomy which generally remains unreversed until adulthood. At this stage, ileo-
anal pouch or ileal pouch-anal anastomosis are the preferred methods of choice for re-joint and
reversal of ileostomy. Due to the major advances in the field, a laparoscopic surgical approach can

be used safely in children with low complication rates and superior cosmetic results *°.

1.7 Natural history of paediatric IBD

The natural history of paediatric IBD is characteristically unpredictable, but data available so far
shows that 25-33% of IBD patients with a non-complicated form of the disease transition to a
stricturing or internal and perianal penetrating disease after 5 years, i.e. one third of patients, if
undertreated, will transition from a non-complicated to a complicated disease state if followed up for

a sufficient time '1°~122,

In particular, a number of studies so far suggest a more severe disease phenotype and course in
childhood onset IBD compared to adult patients. Vernier-Massouille G et al. described the
complicated behaviour of CD in 29% of children at diagnosis and in 59% during the follow-up '%.
Intestinal surgery is required in as many as 80% of children with CD, with more than 10% of them
having permanent stoma formation ">, Post-surgical relapses occur in 50% of children with CD

compared to 20-30% of adult patients after 5 years, with variability depending on disease location
124-127

In UC, the cumulative rate of colectomy in children is 8% at 1 year, 15% at 3 years, and 20% at 5
years following diagnosis '%.

Whilst patients with CD have higher mortality rates with respect to the general population, this has

not been observed for UC patients '2%"3",
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1.8 Disease prognostic biomarkers in IBD

The behaviour of IBD varies unpredictably among patients ®” and increasing evidence suggests that
early, risk-stratified treatment (i.e. specific to those who will develop a severe disease phenotype) is
likely to improve long-term disease outcomes %2133,

The development of a reliable prognostic biomarker would enable the stratification of patients based
on their predicted risk for a poor or benign prognosis, which would lead to personalised treatment.
Patients destined to experience an aggressive form of the disease could receive appropriately robust
intervention from the point of diagnosis, while those who will experience a more indolent disease
course could be treated with more conservative therapeutic approaches with a lower risk of toxicity,

as appropriate 671341%,

Although the biomarker concept is old, so far very few useful parameters have been identified in IBD
136138 \Whilst a number of candidate biomarkers for IBD have been explored, ranging from genetic

45,115,139-141

predictors (SNP-based risk scoring system) , and biochemical tests (in isolation or

83,148-153

combination) "?'8 to endoscopic, histological "**'*" and clinical parameters , none have

made it into routine clinical practice due to limitations in sensitivity, specificity or practical feasibility.

Recent paediatric literature has shown convincing results of a correlation between PUCAI score at
3 months over diagnosis and long-term outcomes (including risk for colectomy) in children with UC
148150 " Although the use of this predictor is recommended in clinical practice, it is only applicable to
UC and it is not accessible at diagnosis as it is based on response to treatment after 3 months.
However, it might be of limited help to severe children in whom progression to severe pancolitis
requiring colectomy could be already irreversible at that stage.

Faecal calprotectin is an example of a helpful tool for monitoring disease activity during the follow-
up, as it enables the early prediction of relapses and prompt treatment escalation. However, it does
not provide an overall prediction of disease severity and cannot be used to stratify patients based

on risk at the time of diagnosis '**.

In summary, the main limitations in developing prognostic biomarkers so far have included failure to
fulfil the classic traits of an ideal biomarker test (i.e. simple, accurate, easy to perform, minimally
invasive, cheap, rapid and reproducible), low sensitivity, specificity and/or prognostic predictive
values, lack of validation in independent cohorts, or inconsistent results when validation has been
attempted. As a result, we are currently not in the position to advise children and parents at the point
of diagnosis on disease outcomes, and hence are unable to propose a tailored, potentially more
individualised treatment strategy. There is therefore a great need for prognostic biomarkers for the

prediction of clinical outcomes and therapeutic effects in IBD.
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1.8.1 CD8 T-cell gene expression signatures are promising prognostic biomarkers in adult
IBD

Recent progress in the field of prognostic biomarkers in autoimmune diseases has been made by
McKinney et al. * They identified a common CD8 T-cell transcriptional signature in two unrelated,
autoimmune diseases: systemic lupus erythematosus (SLE) and ANCA-associated vasculitis (AAV).
This signature predicted disease prognosis in both conditions .

Leading on from these findings, the group tested the potential value of CD8+ T-cell gene expression
as a prognostic biomarker in adult onset IBD. Indeed, based on analyses of a large, prospectively
recruited patient cohort, unsupervised clustering of IBD patient-derived CD8+ T-cell gene expression
profiles separated patients into two distinct groups. Importantly, these groups differed significantly in
their disease outcome as evaluated by the number of treatment escalations required ®’. Furthermore,
the specific signature, i.e. set of genes that are differentially expressed between the two groups, was
found to overlap with genes forming the prognostic signature in SLE and AAV (Figure 1.6 A-C).
Together, these findings suggest the presence of a common CD8+ T-cell gene expression signature,
which can be used to predict disease outcome in SLE, AAV and adult-onset IBD.

With the aim of identifying the potential underlying biological mechanisms at play, the group went on
to demonstrate that CD8+ T-cell exhaustion strongly correlates with a better prognosis in these
conditions. These findings were supported by demonstrating a major overlap of the disease
prognostic CD8+ T-cell expression signatures with an “exhaustion signature” as well as the ability of
the latter to divide patients according to the disease outcome. In addition, a more recent publication
by McKinney et al. focused on the process of T-cell exhaustion during chronic infection, a mechanism

that inhibits the immune response and facilitates viral persistence '*° (Figure 1.6 D-F).
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Figure 1.6 Summary of the main findings from studies on adult prognostic IBD signature and T-cell exhaustion
signature (A., B. and C. are taken from Lee, J.C., et al. The Journal of Clinical Investigation 2011  D. E. and
F. are taken from McKinney, E.F., et al. Nature 2015 *°). A. shows CD8+ gene expression Consensus
Clustering plots of adult CD and UC patients showing detection of subgroups IBD1 and IBD2. B. gives a Venn
diagram illustrating the overlap between the gene signatures that distinguish the respective subgroups in CD,
UC, and SLE/AAV. The statistical significance of each overlap was determined using a hypergeometric test.
In C. survival analysis shows that the groups identified (IBD 1 and IBD2) have significantly different disease
courses. In D., a heatmap shows hierarchical clustering of CD8+ T cell that are “exhausted” (blue) and “non-
exhausted” (red) in IBD patient subgroups defined from the primary division of the cluster dendrogram. In E.,
Kaplan-Meier curves show censored flare-free survival for the adult IBD cohort. In F. scatterplots show

normalised flare-rate against duration of follow-up for IBD patient subgroups.
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1.9 Hypothesis and aims

We hypothesise that CD8+ T-cell gene expression can predict disease outcome in children that are
newly diagnosed with IBD. Furthermore, we speculate that CD8+ T-cell DNA methylation may

provide the epigenetic underpinning of prognostic gene expression signatures.

The specific aims of our study are:

- To apply the prognostic CD8+ T-cell signature and the T-cell exhaustion signature identified in adult
patients to a cohort of children that are newly diagnosed with IBD and test their ability to
differentiate patients based on the disease outcome;

- To investigate the existence of paediatric-specific prognostic CD8+ T-cell expression signatures;

- To investigate the use of CD8+ T-cell DNA methylation as an alternative prognostic biomarker,

and/or elucidate a potential epigenetic signature that underlies variations in gene expression.
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CHAPTER 2

Materials and Methods
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2.1 Patient cohorts

This study was undertaken at Cambridge University Hospitals — NHS Foundation Trust in the
Department of Paediatric Gastroenterology, Hepatology and Nutrition. 112 treatment-naive,
Caucasian patients aged between 5 and 16 were recruited prospectively at the point of IBD diagnosis
between March 2013 and March 2016. Diagnosis was made according to current guidelines
(ESPGHAN Porto criteria ) and included upper and lower gastrointestinal endoscopies and
histological examination. A sample of peripheral blood for the purification of CD8 + T lymphocytes
was taken on the day of diagnosis, i.e. before any treatments were started. Exclusion criteria
included any patient with gastrointestinal and/or extra-intestinal diseases other than IBD, and any
controls.

Patients were recruited for this project under an encompassing study (Genomics and Epigenetics in
Paediatric Gastrointestinal and Immune Mediated Disease — GEPaedGl) which received ethics
approval from the Central Cambridge Research Ethics Committee (REC 12/EE/0482) in November
2012 for the prospective enrolment of paediatric patients undergoing endoscopic investigation at
Addenbrooke’s Hospital, Cambridge, to support a clinical diagnosis. All investigations were carried
out according to the Declaration of Helsinki and Good Clinical Practice Guidelines.

The final number of patients (samples) analysed was established through data pre-processing
(bioinformatic analysis). Following the removal of samples that failed quality control, 107 samples
remained and were included in the study (67 CD and 40 UC).

Table 2.1 illustrates the patient population demographics as well as the number of samples analysed
at each step. Information on clinical outcomes including the number of treatment escalations, the
use of biologics and the number of surgical interventions in the paediatric cohorts analysed is also

included.
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Paediatric Gender | Diagnosis Age at Main clinical | Number of patients
population diagnosis outcomes removed from the
recruited (CD8+ (years) n (%) analysis
T lymphocytes
purified)
Initial population M 71 CD and Average
n=112 F 41 IBD-U CD- 124 +
like 71 SD24
UC and Range 5-16
IBD-U UC-
like 41
Unsupervised M 67 CD and Average 0 treat escal Ouitliers as per QC
analysis n=107 F 40 IBD-U CD- 12.41 + 25 (23%) report: n=4
like 67 SD 2.44 1 treat escal
34 (32%) Incomplete clinical
UC and Range 5-16 | 2 treat escal information as
IBD-U UC- 20 (19%) patient lost in follow-
like 40 3 treat escal up: n=1
20 (19%)
4 treat escal
8 (7%)
Biologics
39 (36%)
Surgery
6 (5.6%)
WGCNA analysis M 60 CD and Average 0 treat escal | Patients treated with
n=98 F 38 IBD-U CD- 12.33 + 23 (24%) biologics at time O,
like 60 SD 2.511 1 treat escal | i.e. within 8 weeks
32 (33%) from diagnosis: n=9
UC and Range 5-15 | 2 treat escal
IBD-U UC- 18 (18%)
like 38 3 treat escal
18 (18%)
4 treat escal
7 (7%)
Biologics
30 (31%)
Surgery
3 (3%)

Table 2.1. Population flow-chart, demographics and summary of the main disease outcomes. CD: Crohn’s

disease; SD: standard deviation; UC: ulcerative colitis; F: female; IBD-U: IBD unclassified; M: male; QC: quality

control; treat escal: number of treatment escalations during follow-up; WGCNA: weighted gene co-expression

network analysis.
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2.2 Clinical information

All patients were followed for 1.5 years in our unit as part of their routine clinical care, and extensive
clinical data including parameters at diagnosis (e.g. presence of diarrhoea, rectal bleeding, weight
loss, EIMs, perianal disease, disease activity scores) and information on disease course and
outcomes (e.g. number of treatment escalations, use of biologics, number of unplanned inpatient
days, IBD related surgical intervention) was collected by the same researcher from the hospital
patient electronic database (EPIC).

Appendix 1 on page 174 summarises the definitions, measurement units and normal values of each
clinical item collected; Appendix 2 on page 165 shows the complete clinical database that was
collected and used.

Appendices 3 (page 200) and 4 (page 205) show the IBD activity scores at diagnosis: Paediatric
Crohn's Disease Activity Index (PCDAI) and Paediatric Ulcerative Colitis Activity Index (PUCAI) 3
35

Appendix 5 on page 207 outlines the classification of IBD by disease location according to the Paris

classification ™.

2.2.1 Severity score

In order to take into account that a severe disease course is reflected in a number of individual
disease outcome measures, a specific disease severity score was developed by considering the key
parameters that are strong indicators of disease outcome (Figure 2.1). This summary score was

used as an additional outcome measure to correlate with CD8+ T-cell specific molecular signatures.

Crohn’s disease

1. Number of treatment escalations:

Ulcerative colitis

1. Number of treatment escalations:

0-1: O 2: 1 >=3: 2
2. Biologics:
No: 0 Yes: 2

3. Surgery (intestinal resection / diversion ileostomy):

No: 0 Yes: 2
4. Perianal disease

Absent: 0
Medical management (Antibiotics/Seton/IFX): 1
Surgical management (Fistulotomy/Fistulectomy): 2

0-1: O 2: 1 >=3:
2. Biologics:
No: 0 Yes: 2

3. Surgery (colectomy):

No: 0 Yes: 2

4. Response to steroids at 3 months:
Yes: O No: 2

5. Unplanned/urgent inpatient days:

. . 0-2: O 3-4: 1 >=5: 2
5. Unplanned/urgent inpatient days:

0-2: 0 3-4: 1 >=5: 2

Total: 0-1: Mild 2-4: Moderate 5-10: Severe Total: 0-1: Mild 2-4: Moderate 5-10: Severe

Figure 2.1 Severity scores for CD and UC used to provide an overall estimate of disease course severity and

to identify predicting modules (signatures) through WGCNA analysis. IFX: Infliximab.
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2.3 Collection of blood samples and purification of CD8 + T-cells

Blood samples were obtained at diagnosis from all patients during the endoscopic procedure while
under general anaesthetic (Table 2.2). Whole blood samples were collected in Falcon tubes with 4%
sodium citrate. Samples were immediately sent to the lab for processing as per cell separation

protocol '*® (Appendix 3 on page 200).

Age of the | Volume of blood | Volume of 4% sodium citrate (1ml/10ml of blood)
patient (ml)

5-10 years 10 1

10-16 years 25 2.5

Table 2.2 Volume of blood collected according to patient age.

Samples were diluted in a 1:2 ratio with MACS rinsing buffer. Peripheral blood mononuclear cells
(PBMCs) and neutrophils were isolated by centrifugation over Ficoll (Histopaque 1077) (density
gradient separation). Following the removal of the plasma, the PBMC interface was transferred to a
fresh Falcon tube and after several wash and centrifugation steps, CD8+ and CD8- T lymphocytes
were separated through anti CD8 microbeads and magnetic sorting (auto-MACS). CD8+ T
lymphocyte samples were stored at -80°C until required for further processing.

See Appendix 3 on page 200 for further details on the CD8+ T-cell separation protocol.

2.4 Purity assessment via Fluorescence Activated Cell Sorting (FACS)

Flow cytometry was performed on selected samples following CD8+ T cell isolation using BD
Fortessa to determine the level of purity. The CD3-PE and CD8-APC antibodies were used (BD
Pharmingen), along with the Zombie Aqua Fixable Viability Kit (Biolegend).

A total of 8 randomly selected samples were subjected to flow cytometry analysis, and the average
cell purity for CD8+ T-cells was 84% (Table 2.3).

Figure 2.2 demonstrates the process of flow cytometry in one example patient sample through a
series of plots. In A., analysis was conducted on the PBMC sample (pre-purification protocol) to
visualise the data and set gates, with each dot on the plot representing a cell. In B. and C., the same
gates were applied to the positive and negative fractions of T-cells, respectively. The plots were
further gated to analyse single cells and avoid doublets and debris etc. Cells were also stained with
Aqua Zombie to distinguish between the live and dead cells. The final image within Figures A. B.
and C. displays the live single cells only and the gate surrounds those samples that are dual stained
for CD3 and CD8+ T-cells.
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For this particular sample, out of a total of 10,000 events, the CD8+ T-cell sample purity came out

as 93.3% within the gated region of all dual stained (CD3 and CD8) live single cells, or 82.1% when

taking into account the total cell population. The series of plots in Figure C. for the negative fraction

(CD8-) confirms that the CD8+ T-cells have been eluted in the positive fraction, as very few appear

in the negative plots.

Together, this data confirms the successful isolation of CD8+ T-cells and a level of purity that was in

the region of that reported in previous work published on adult IBD patients (Lee et al, 2011 7).

Sample number

% cell purity (CD8+ T-cells)

75.7

86.3

89.3

90.9

93.8

80.5

N O g A WO N =

80.7

8

72.5

Average cell purity

84%

Table 2.3 Percentage of cell purity for CD8+ T cells across 8 samples subjected to flow cytometry.
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Figure 2.2 Flow cytometry (FACS analysis) for a single patient sample. A. shows the plots for PBMC (pre-
purification protocol). B. and C. demonstrate the analysis of the positive and negative CD8 fractions
respectively.
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2.5 RNA and DNA Extraction

DNA and RNA were extracted simultaneously from the CD8+ samples using AllPrep DNA/RNA
MiniKit (Qiagen, UK). Quantification and purity of RNA and DNA was evaluated using a Nanodrop
1000 spectrophotometer (Thermo Scientific, UK) and a Qubit. A ratio absorbance at 260nm/280nm
of 1.8 for DNA was considered to be pure.

The RNA yield was in the region of 1-4 ug and hence was sufficient for genome-wide downstream

analysis.

2.6 DNA bisulfite-conversion

Prior to genome-wide DNA methylation profiling, DNA samples were bisulfite-converted using Zymo
DNA methylation Gold kit (Zymo Research).

DNA bisulfite-conversion consists in treating DNA with sodium bisulfite, so that unmethylated
cytosine is converted to uracil by deamination, whereas methylated cytosine remains unchanged.
Uracil is then amplified as thymidine. One limitation of this technic is that 5’ hydroxymethylation
cannot be distinguished from 5’ methylation.

The conversion reagent supplied was added to the DNA samples (500 ng). Subsequently, the
samples were heated following 4 main steps as per manufacturer’s protocol (98*C for 10 min; 53*C
for 30 min; 53*C for 6 min; 37~C for 30 min; steps 3 and 4 were repeated 8 times). Following, the
samples were cooled down and stored at 4*C. Finally, the converted DNA was purified from the mix

as per kit protocol, it was diluted in water and stored at -20”C.

2.7 Microarray analysis

Microarray analysis in this study was used to generate genome-wide transcriptional and methylation

profiles.

Gene expression was analysed using Affymetrix Human Gene ST 2.0 Array (Affymetrix UK Ltd, High
Wycombe, UK), which covers 53,617 probes.

Genome-wide DNA methylation was profiled using bisulfite-converted DNA on the EPIC BeadChip
platforms (lllumina, Cambridge, UK). EPIC methylation array provides a quantitative measure for

DNA methylation at > 850,000 single CpG sites across the genome.
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2.7.1 Preparation of samples for microarray analysis

As a first preparation step for gene expression microarray analysis, RNA samples were bioanalysed
using Agilent 2100 Bioanalyser System. The kit contains RNA chips with an interconnected set of
microchannels that is used for separation of nucleic acid fragments based on their size as they are

driven through it electrophoretically.

Next, the samples were prepared for hybridization onto Affymetrix Human Gene ST 2.0 microarrays

by using the Ambion WT Expression Kit, according to the manufacturer’s instructions.

In brief, first-strand and second-strand of cDNA were synthetized. Antisense cRNA was then

produced by in-vitro transcription of the second strand cDNA template using T7RNA polymerase.

Subsequently, the cRNA was then stabilized by purification aimed to remove the enzymes, salts,
inorganic phosphates and unincorporated nucleotides. Sense-strand cDNA was then synthesized
by reverse transcription of cRNA, using random primers, followed by hydrolysis using RNase H which

degrades the cRNA template leaving single-stranded cDNA.
Finally, the second-strand cDNA was purified to prepare for fragmentation and labeling.
2.8 Bioinformatic analysis

Bioinformatic analyses were performed by importing raw data into the statistical software “R”,

followed by data analysis using BioConductor packages.

Patients were initially analysed altogether (i.e. all IBD, n=107) and subsequently grouped by type of
IBD (i.e. CD (n=67) and UC (n=40)).

The following sub-sections provide information on the methods used for bioinformatic data analysis

in this project.

50



2.8.1 Data pre-processing: normalisation, quality control and batch correction

Quantile normalisation was performed using BioConductor package “affy” (“rma” function). Package
“arrayQualityMetrics” was then applied to assess the quality of the normalised gene expression
dataset, to identify outliers and proceed to their removal prior to subsequent data analysis.

As the presence of a batch effect was noted, batch correction was performed through the “Combat”
function (“sva” package). An adjustment for gender and type of diagnosis (i.e. CD vs UC) was also

performed alongside batch correction, by adding these variables as co-variates.

2.8.2 Gene filter

The “genefilter’ package was used to subset 50% of the probes (genes) with more variation in gene

expression (var.cut-off: 0.5) from the microarray expression dataset.

A selection of 20% of the probes (genes) with more variation in methylation (var.cut-off: 0.8) was

used for the array methylation dataset.

2.8.3 Hierarchical Clustering

This methodology (BioConductor function “hclust”) was used to determine whether the data was
organised in clusters, i.e. whether a substructure could be detected. In the context of this study,
clusters are groups of samples with similar gene expression profiles. The main limitation of this
method is that it doesn’t provide with a measure of the strength of the clustering (i.e. there is no p-

value associated to the clusters detected).
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2.8.4 Consensus Clustering

Consensus Clustering is a clustering method that indicates whether stable and reproducible clusters
(i.e. groups) are present across a dataset '*’. This analysis was performed through BioConductor

package “ConsensusClusterPlus”.

This method clusters fractions of the data and provides a consensus output, indicating whether
stable/reproducible subgroups are present. K indicates the specified cluster counts, i.e. the number

and membership of possible clusters within a dataset.

The consensus matrix is summarized in several graphical displays that enable a user to decide upon
a reasonable cluster number and membership (one example on Fig. 3.1, page 60). The graphics
provided are heatmaps of the consensus matrices for the selected k (e.g. 2, 3, 4, 5, 6 etc.). The
consensus matrices have items values range from 0 (never clustered together) to 1 (always clustered

together) marked by white to dark blue.

The consensus CDF plot shows the cumulative distribution functions of the consensus matrix for
each k. This allows a user to determine at what number of clusters, k, the CDF reaches an
approximate maximum, thus consensus and cluster confidence is at a maximum at this k (one

example on Fig. 3.1, page 60).

The Delta area graphic shows the relative change in area under the CDF curve comparing k and k-
1 (one example on Fig. 3.1, page 60). This plot allows a user to determine the relative increase in

consensus and determine k at which there is no appreciable increase.

Although superior to hierarchical clustering in detecting the best clustering option, Consensus
Clustering also does not provide with a p-value expressing the strength of the clustering detected.
Hence, we also resorted to the SigClust method described below in order to assess the significance

of the clusters identified.
2.8.5 SigClust Clustering

This method tests the reliability of the clusters identified through the above methods, by using the 2-
means (k = 2) clustering index as a statistic. It assesses the significance of clustering by simulation

from a single null Gaussian distribution. Null Gaussian parameters are estimated from the data '*®.

The null hypothesis of SigClust is that the data are from a single Gaussian distribution. The SigClust
method uses a test statistic called the cluster index (Cl) which is defined to be the sum of within-

class sums of squares about the mean divided by the total sum of squares about the overall mean.
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SigClust is superior to the alternative clustering methods described above as it assesses the

significance of a given clustering by calculating an appropriate p-value.

2.8.6 Differential Gene Expression Analysis and Annotation

Differential gene expression analysis (DGEA) was used to identify genes that were differentially
expressed between groups of patients identified through Consensus Clustering. The Bioconductor
package “Limma” was used. The threshold for the Bonferroni Correction was set at a p-value of 0.05.
Annotation of differentially expressed genes was performed through packages “Annotate” and

“hugene20sttranscriptcluster”.

2.8.7 Gene Set Enrichment Analysis

In our experiment, mRNA expression profiles were generated for thousands of genes from a
collection of samples, which were then categorised into two groups, based on unsupervised
clustering (Consensus Clustering).

Gene Set Enrichment Analysis (GSEA) was used to detect whether significant differentially
expressed genes between groups identified through Consensus Clustering were coordinately found

within specific cellular pathways, which could elucidate aspects of the underlying biology.

2.8.8 Weighted Gene Co-expression Network Analysis (WGCNA)

This analysis investigates correlations between gene expression profiles and clinical information,
including disease outcomes **'%°. BioConductor package “WGCNA” was used.

Clinical information was collected as a “.csv” file, as shown in Appendix 2 on page 176.

The general concept of WGCNA is the clustering of data points into modules to reduce the
dimensions of the dataset. In the context of this study, modules are groups of genes with similar
gene expression or similar methylation profile. Using modules relieves the necessity of multiple
testing as the number of tests performed is not based on the size of the dataset, but rather on the
number of modules and the clinical parameters.

By using WGCNA, the data is clustered in modules that are then matched with clinical variables (as
opposed to identifying clusters of samples/patients and comparing these groups for specific clinical
outcomes with survival analysis).

Significant correlations (positive or negative) between modules and clinical outcomes, allow for the

identification of potential prognostic signatures of interest for those specific outcomes.
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2.8.9 Survival Analysis

Censored Kaplan-Meier survival curves for events including treatment escalations, use of biologics
and surgery were created using the function “survfit” from CRAN package “survival”’, based on a

tabulation of the number at risk and the number of events as recorded in our clinical database.

The significance of any split observed in the Kaplan Meier plots was checked through the “coxph”
function, which uses a Cox proportional hazards regression model. The function “summary.coxph”
returns a summary of a fitted coxph model, displaying p-values based on a likelihood ratio, Wald test
and score (logrank) test.
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CHAPTER 3

Testing the predictive value of an adult prognostic
CD8+ T-cell and T-cell exhaustion signature

on a paediatric patient cohort
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3.1 Introduction

Prognostic CD8 T-cell transcriptional signatures have been identified in adult autoimmune diseases
including systemic lupus erythematosus (SLE), ANCA-associated vasculitis (AAV) and IBD by
researchers from the Cambridge Department of Medicine "*. In particular, they identified a specific
gene expression signature in CD8+ T-cells isolated from adult patients with IBD, which is able to
cluster them in subgroups with different disease course and outcomes . In addition, a more recent
publication from their research group focused on the process of T-cell exhaustion during chronic
infection, a mechanism that associates with poor clearance of chronic viral infection, but conversely
predicts better prognosis in multiple autoimmune diseases '*°.

In the first part of this thesis, we aimed to test whether the CD8 signature and the T-cell exhaustion
signature identified as prognostic in previous studies on adult patients with IBD (Lee JC et al. ®” and

155
l.

McKinney E et a ) would also be able to distinguish paediatric IBD patients based on their disease

severity.

Our first goal was therefore to test the prognostic power of signatures available from previous studies

in adult patients with IBD, on a prospective paediatric cohort, for the first time.

3.2 Materials and methods

Two alternative and complementary methods were used to address the question above:

unsupervised clustering analysis and WGCNA.

In the first instance, annotated gene lists corresponding to the adult prognostic signatures were used
to filter out the matching probes from the paediatric dataset. BioConductor function “subset” was
applied and subsetting was based on gene “entrezID”. This provided a submatrix of the paediatric
data, only including probes related to the adult signatures of interest, and their expression levels

across the paediatric cohort.

Unsupervised clustering analysis (Consensus Clustering) allowed identification of reliable subgroups

of patients, based on the gene expression profiles of this selection of probes across the dataset.

Survival analysis (Kaplan-Meier) was then performed to compare the groups above for main disease
prognostic outcomes including number of treatment escalations, treatment with biologics and

surgical intervention.

As a second step, WGCNA was performed to identify modules (i.e. groups of gene with similar gene

expression levels) correlating with disease outcomes of interest.
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The adult study " was published in 2011 and findings were mainly based on unsupervised clustering
analysis and GSEA. WGCNA was not applied to the data in that study. We resorted to WGCNA in
our paediatric study as an improved methodology compared to clustering analysis.

In order to compare the paediatric and the adult data, we first ran WGCNA in the adult dataset to
identify the modules corresponding to the adult prognostic signature, i.e. modules correlating to
prognostic groups 1 (severe) and 2 (mild) based on number of treatment escalations.

We then applied these modules to the paediatric data to test whether they would still show a
correlation with disease outcomes in the paediatric cohort. More specifically, probes in the modules
corresponding to disease severity in the adult population were first subset from the paediatric data.
Subsequently, WGCNA was run for this selection of the paediatric data and correlations between
modules and specific outcomes (number of treatment escalations, use of biologics, surgical
intervention and severity score) were investigated.

Children who were treated with biologics right at diagnosis (e.g. because of perianal disease) were
removed from WGCNA; in fact, outcomes like “treatment with biologics” and “number of treatment
escalations” would not have been comparable with the majority of children who received a strict step-

up treatment (i.e. escalation to biologics only after failing conventional immune-suppressants).

Therefore, as shown in Table 2.1 (page 44), the number of patients included in the WGCNA analysis
was 98 (60 CD and 38 UC).

The same protocol was used to analyse all of the paediatric samples together (i.e. paediatric IBD
cohort) as well as subgroups by type of IBD diagnosis (i.e. paediatric CD cohort and paediatric UC
cohort).
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3.3 RESULTS
3.3.1 Testing the adult CD8 prognostic signature on paediatric IBD: unsupervised analysis

In the first instance, we tested whether the adult prognostic signature identified in the study by Lee
JC atal. % could also be applied to the paediatric data and whether it would identify groups of children
with different disease course and severity.

First, we filtered out of the paediatric data the probes corresponding to the adult prognostic signature,
and ran Consensus Clustering analysis. Clusters based on gene expression profiles of this selection
of the paediatric data (i.e. adult prognostic signature applied to the paediatric IBD cohort (n=107))
were identified as shown in Figure 3.1.

At this stage, we focused on whether the groups identified through Consensus Clustering (Figure
3.1C k5: group 1 (n=95) vs groups 2+3+4+5 (n=12), renamed as group 2) would differ in respect to
their disease course and outcomes.

Survival analysis did not identify a significant split between the groups in terms of treatment
escalations, use of biologics and surgical intervention during a follow-up of 1.5 years (Kaplan Meier
curves on Figure 3.2).

In summary, applying the adult signature to the paediatric data did not generate any significant split

in clinical outcomes.
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Figure 3.1 Consensus Clustering plots of a selection of the paediatric data (paediatric IBD cohort, n=107)
based on the CD8 prognostic signature identified in adult IBD % In A. Consensus Cumulative Distribution
Function (CDF) shows at what number of clusters (k) consensus and cluster confidence reach a maximum. In
B. Delta area plot shows the relative change in area under the CDF curve, i.e. at which k there is no further
appreciable increase. K5 is identified as the strongest clustering split. In C. clusters are shown as dendrogram

(top), colour bar, and gene expression heatmap.
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Figure 3.2. Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=95) and group 2

(n=12) identified through Consensus Clustering limited to genes in the adult CD8 prognostic signature (Lee

JC et al. 67) (Figure 3.1C). Patients in the two groups are compared for the following outcomes: A) first

treatment escalation; B) second treatment escalation; C) third treatment escalation; D) fourth treatment

escalation; E) use of biologics; F) surgical intervention.
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3.3.2 Testing the adult CD8 prognostic signature on paediatric IBD: WGCNA

In order to address whether the adult CD8 prognostic signature would identify groups of children with
different disease outcome, we first ran WGCNA on the adult data ® and identified modules that
correlated strongly with disease severity in the adult cohort, i.e. adult group IBD1 (severe) vs adult
group IBD2 (mild) based on number of treatment escalations (More details on this step are provided
in the Materials and Methods part on page 53).

Module-trait relationships from WGCNA analysis of the adult data is shown in Figure 3.3, where a
selection of modules strongly correlated with the clinical variable “Group” (i.e. adult prognostic
groups IBD1 (severe) vs IBD2 (mild)) is highlighted.

At this stage, the top modules identified above were applied to the paediatric data. Probes included
in these modules were filtered out of the paediatric dataset and modules were matched against
clinical outcomes including use of biologics, surgical intervention, number of relapses, number of
unplanned inpatient days and severity score.

As shown in Figure 3.4 (top positively correlated modules in the adult dataset), and in Figure 3.5 (top
negatively correlated modules in the adult dataset), there was no significant correlation (i.e.
correlation index < 0.3) between modules and clinical outcomes in the paediatric dataset.
Together, these results suggest that the prognostic CD8+ T-cell gene expression signatures derived
from an adult cohort of IBD patients are unable to differentiate children suffering from IBD at the

point of diagnosis when applied to their CD8+ T-cells.
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Figure 3.3 WGCNA. Module-trait relationships in the adult dataset (Lee JC et al. ') (n=67) showing modules
(colour bars on the y axis) and clinical variables (x axis) including “Group” (i.e. different prognostic groups IBD1
(severe) vs IBD2 (mild) based on number of treatment escalations during the follow-up). The figures in the plot
refer to correlation index and p-value (in brackets). A selection of the modules highlighted correlates

significantly with “Group” either directly (in red) or inversely (in blue).
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Figure 3.4 WGCNA. Module-trait relationships in the paediatric dataset (paediatric IBD cohort, n=98).
Significant prognostic signatures from the adult study o (i.e. top modules directly correlated to the outcome
“‘number of treatment escalations”) were applied to the paediatric dataset and plotted against clinical outcomes.
The plot shows modules (colour bars on the y axis) and clinical variables (x axis) including number of relapses,
use of biologics, surgical intervention and severity score. The figures in the plot refer to correlation index and

p-value (in brackets).
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Figure 3.5 WGCNA. Module-trait relationships in the paediatric dataset (paediatric IBD cohort, n=98).
Significant prognostic signatures from the adult study o7 (i.e. top modules inversely correlated with the outcome
“‘number of treatment escalations”) were applied to the paediatric dataset and plotted against clinical outcomes.
The plot shows modules (colour bars on the y axis) and clinical variables (x axis) including number of relapses,
use of biologics, surgical intervention and severity score. The figures in the plot refer to correlation index and

p-value (in brackets).
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3.3.3 Testing the T-cell exhaustion signature on the paediatric IBD cohort

We investigated whether the T-cell exhaustion signature, identified in adults as predictive towards a

severe course of autoimmune diseases (including IBD) '*°

, would also play a role in paediatric IBD
and whether it may serve as a prognostic biomarker.

Genes (probes) related to the T-cell exhaustion signature were filtered out from the paediatric IBD
dataset (n=107) in order to look for presence of clusters based on the gene expression profiles in
this selection (Figure 3.6). The heatmap on figure 3.6 identifies two groups of patients (dendrogram
on top), although no clear difference was detected in their gene expression profiles.

We performed survival analysis to test whether the groups identified by applying the T-cell
exhaustion signature to the paediatric data (Figure 3.6) would differ in respect to their disease course
and outcomes (Kaplan Meier curves shown in Figure 3.7). The survival analysis did not identify any
significant split between these groups with regard to treatment escalations, use of biologics and

surgical intervention (Figure 3.7).
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Figure 3.6 Heatmap showing gene expression profiles of the paediatric IBD cohort (n=107) for a selection of
probes included in the T-cell exhaustion signature identified in adult autoimmune diseases %% On the y axis,
the exhaustion signature is represented as a dendrogram (leff) and it is colour coded for up-regulated and
down-regulated exhaustion genes as a list. On the x axes the paediatric patients (paediatric IBD cohort, n=107)
are shown as a dendrogram tree (fop). Colour bars on the top of the chart display gender and type of diagnosis

(i.e. CD vs UC) for each patient, as well as the unsupervised Consensus Clustering groups.
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Figure 3.7 Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=80) and group 2
(n=27) identified in Figure 3.6. Patients in the two groups are compared for the following outcomes: A) first
treatment escalation; B) second treatment escalation; C) third treatment escalation; D) fourth treatment

escalation; E) use of biologics; F) surgical intervention.
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At this stage, we moved on to split our paediatric cohort (n=107) by type of diagnosis, in order to
analyse CD (n=67) and UC (n=40) separately, in consideration of the fact that clinical outcomes and
indications to treatments including use of biologics and surgical intervention may differ according to
the specific type of IBD. Nevertheless, separate analyses of CD and UC paediatric cohorts produced
similar findings. No split in disease outcomes including number of treatment escalations, use of
biologics and surgery was observed by applying the adult CD8 prognostic signature ® or the T-cell

exhaustion signature '*°. (Figure 3.8).
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Figure 3.8 Heatmaps showing gene expression profiles of the paediatric CD (n=67) and UC (n=40) cohorts

ameubls

for a selection of probes included in the T-cell exhaustion signature identified in adult autoimmune diseases
"% On the y axis, the exhaustion signature is represented as a dendrogram (left) and it is colour coded for up-
regulated and down-regulated exhaustion genes as a list. On the x axes the paediatric patients are shown as
a dendrogram tree (top). Colour bars on the top of the chart display gender and type of diagnosis for each

patient, as well as the unsupervised Consensus Clustering groups.
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3.3.4 Distinct differences in disease behaviour of children diagnosed with IBD compared to

adults.

In light of our findings so far, we speculated whether the inability of an adult derived expression
signature to predict disease outcome in children could be related to differences in phenotype
between adult and paediatric onset IBD. We therefore compared the two cohorts based on
overlapping clinical outcome parameters that were available for both patient groups (i.e. number of

treatment escalations).

Indeed, as shown in Figure 3.9 (and reported in Table 2.1, on page 44), in the paediatric cohort the
number of treatment escalations was significantly higher than in the adult population, suggesting that
children suffer an overall worse disease outcome and hence could display a “severe” CD8+

expression signature.
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Figure 3.9 Comparison of clinical outcome “number of treatment escalations” between the paediatric cohort
(box plot on the right) and the adult data available from the study by Lee JC et al. o7 Ad_IBD1: Adult poor
prognosis group (n=25), Ad_IBD2: Adult good prognosis group (n=42); Paed_IBD: Paediatric cohort altogether
(n=107).
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3.4 Discussion

In this chapter, we show that the adult CD8 and T-cell exhaustion signatures identified as predictive
for disease severity in adult IBD patients do not generate a similar split when applied to our paediatric
IBD cohort.

The use of two complementary approaches (i.e. unsupervised analysis and WGCNA) showing no
significant differences in outcome between the groups identified, and no correlation between
modules and specific outcomes respectively, negates any prognostic power of these adult signatures

in our paediatric cohort.

The analysis was conducted on the joint paediatric IBD cohort as well as on the paediatric CD and
UC cohorts separately, within an attempt of removing any confounders related to different indications
to treatments and disease outcomes in the two types of IBD. Nevertheless, results were consistently
negative across the three datasets analysed. This may suggest that in paediatric onset IBD, T-cells
are not exhausted, therefore paediatric patients are predisposed to a more severe disease
phenotype and course compared to adults, as they would lack of the protective role of T-cell
exhaustion.

This would also explain the absence of a significant split in clinical outcomes between the groups
identified, as all of the children would fall into the “severe prognosis group”.

The comparison between children and adults in terms of number of treatment escalations during the

follow-up shown in Figure 3.9 would also stand in support of this hypothesis.

At this stage, in the absence of a prognostic role of adult CD8 and T-cell exhaustion signatures in
our paediatric cohorts, we went on to address the question of whether “paediatric specific’ CD8

signatures further able to differentiate patients according to disease outcome exist.
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CHAPTER 4

|dentification of paediatric CD8+ T-cell expression derived

prognostic signatures
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4 .1 Introduction

As demonstrated in previous chapters, applying a prognostic T-cell expression signature derived
from an adult IBD patient cohort to our paediatric data, did not yield any significant separation of
patients according to disease outcome. Furthermore, T-cell exhaustion did not seem to differin CD8+
T-cells derived from paediatric IBD patients, leading us to speculate whether a paediatric specific
disease prognostic expression profile could be identified.

Hence, we next went on to identify such a signature by analysing the paediatric cohort in isolation
using the same analyses as previously described (i.e. unsupervised clustering methods and
WGCNA).

4.2 Materials and methods

Samples were first analysed altogether (paediatric IBD cohort, n=107), and then split by type of IBD
diagnosis (CD (n=67) and UC (n=40)).
Normalisation, removal of outliers and batch correction were performed in the joint IBD dataset

(n=107). Samples were then split by type of IBD diagnosis (i.e. CD and UC).

4.2.1 Unsupervised clustering analysis

Unsupervised clustering analysis included Hierarchical Clustering and Consensus Clustering.
Hierarchical Clustering (BioConductor function “hclust”) was used to test whether datasets had a
substructure, i.e. whether clusters and subclusters could be identified, based on the patients’ gene
expression profiles.

Consensus Clustering was utilised as a more accurate clustering methodology to identify presence
of stable groups across the dataset, and to choose the strongest clustering option. Top clustering
option is shown by the Consensus Distribution Function (CDF) plot; it consists in the recommended
number of clusters amongst various output options displayed and indicated with letter “k” followed
by progressive numbering. Prior to running Consensus Clustering, the data was filtered by using the
R package “genefilter” and half of the genes (var. cutoff: 0.5) with more variation in gene expression
across this dataset were selected. The strength of clusters across the data was also tested by using
R package “SigClust”, a method that measures the reliability of clusters by using the 2-means (k =

2) clustering index as a statistic (Figure 4.1).
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Figure 4.1 SigClust analysis of CD8+ T-cell gene expression data from the paediatric IBD cohort (n=107). In
A., SigClust analysis assesses the significance of clustering by simulation from a single null Gaussian
distribution. The null hypothesis of SigClust is that the data is from a single Gaussian distribution. In B., the
SigClust method uses a test statistic called the cluster index (Cl) which is defined to be the within-class sums

of squares about the mean divided by the total sum of squares about the overall mean.

When significant differences in disease outcomes were observed between groups identified through
Consensus Clustering, GSEA was also performed to compare the groups identified and to detect

whether they would differ in molecular pathways of biological relevance.
4.2.2 WGCNA

WGCNA was performed on 98 IBD patients (i.e. 60 CD and 38 UC) due to the removal of those
treated with biologics from the time of diagnosis. In fact, in terms of disease course and clinical
outcomes these patients would not be comparable with the remainder of the children receiving a
strict step-up treatment approach.

As a first step, WGCNA aligns the gene expression data with clinical information collected on a “.csv”
spreadsheet (Figure 4.2; the “.csv” file used is shown in table format in Appendix 2, on page 176).
The next step of WGCNA consists in the choice of a soft thresholding power **'®° based on the

criterion of scale-free topology (Figure 4.3).
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This number represents the stage where the network (based on gene expression similarity in this
context) stabilises, and corresponds to the point where the curves for scale independence and mean
connectivity reach a plateau.

At this stage, it is possible to compute and display the number of modules identified in each dataset.
We set up minimal module size at 20 probes/module. An example plot of module detection in the
joint IBD cohort (n=98), based on clustering dendrogram of genes and on their dissimilarity according
to topological overlap, is shown in Figure 4.4. Moreover, Table 4.1 shows the corresponding list of
modules identified and their size.

Final step of WGCNA is testing the correlation between modules and measured clinical traits. The
summary profile (eigengene) for each module is used for correlation with clinical variables imported
from the “.csv” file (and aligned with the data in the initial step of WGCNA). Correlation index and p-
value are provided for each match between modules and clinical variables, which in this context
allowed the identification of modules (signatures) more significantly correlated with disease
outcomes.

In order to test further the prognostic role of the relevant modules (signatures) identified, probes in
these modules of interest were subset from the paediatric dataset. Consensus Clustering was then
run on this selection and the patient groups identified were compared for the specific outcomes
through survival analysis. In case of a significant split, GSEA was also performed to detect whether

the groups identified would differ in molecular pathways of biological relevance.
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Figure 4.2 WGCNA analysis of the paediatric IBD cohort (n=98). Sample dendrogram and trait heatmap.

The dendrogram on top displays the samples in this cohort based on hierarchical clustering of their CD8 gene
expression data. The heatmap below aligns all clinical information available for each patient / sample
presented as colour coded for each variable. For dichotomous variables (e.g. presence of symptoms): white =
no, red = yes; for continuous variables (e.g. blood test results): white = minimum, red = maximum, shades of

red for values in between.
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Figure 4.3 WGCNA. Analysis of network topology in the paediatric IBD cohort (n=98) for various soft-
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thresholding power (x axis). The right panel displays the mean connectivity (degree, y axis) as a function of

the soft-thresholding power (x axis). Soft thresholding power chosen: 12.

Height
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Module Number Genes in each Module Number Genes in each
module module
0 24396 12 71
1 837 13 71
2 664 14 52
3 588 15 47
4 583 16 44
5 502 17 41
6 411 18 34
7 249 19 34
8 175 20 30
9 169 21 30
10 118 22 29
1" 96 23 27

Table 4.1 WGCNA of the paediatric IBD cohort (n=98). Module numbers and their size. The label 0 is reserved

for genes outside of all modules, so it is not a module per se.
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4.3 RESULTS

4.3.1 Analysis of CD8+ T-cell gene expression profiles from the combined paediatric IBD
cohort

In the first instance, we performed unsupervised clustering analyses on the combined paediatric IBD
cohort (i.e. samples from children with CD and UC).

We started with Hierarchical Clustering to investigate whether the CD8+ gene expression data in
this cohort had a substructure, i.e. whether clusters of samples with similar gene expression levels
could be detected. As shown in Figure 4.5 A, the data clustered into two main groups, with an

approximate size of 2/3 and 1/3 respectively. Each group was clustered into further subgroups.

We then performed Consensus Clustering as an alternative clustering methodology to identify
presence of reliable stable clusters within the dataset. The consensus output identified three more
solid groups of patients across this dataset. Figure 4.5 D shows the Consensus Clustering plot for
k=3, which provides the strongest clustering: the three groups differ in size, with a larger group
including approximately 90% of the patients and two smaller groups accounting in total for 10% of

the patients.

As a further step, we addressed the question of whether the groups identified through Consensus
Clustering (Figure 4.5 D: group 1 (n=99) vs groups 2+3 (n=8), renamed as group 2) would differ in
respect to their disease course and outcomes, i.e. whether groups identified in this cohort based on
the paediatric CD8 gene expression profiles would be different in their disease outcomes.

Survival analysis did not identify significant differences between these groups in terms of use of
biologics, treatment escalations and surgical intervention (Kaplan Meier curves on Figure 4.6).
Although children in group 2 were milder in their disease course, the difference in the groups’ size
affected the power of the survival analysis which didn’t reach significance except for the outcome

“first treatment escalation” (Figure 4.6 A).
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Figure 4.5. In A. Hierarchical Clustering of the CD8 gene expression data in the paediatric IBD cohort (n=107).

In B. CDF: Consensus Cumulative Distribution Function showing at what number of clusters, k, consensus
and cluster confidence reach a maximum. In C. Delta area plot showing the relative change in area under the
CDF curve, with no further appreciable increase at k=3. k3 is identified as the strongest clustering option. In

D. Consensus Clustering plot (for k=3) of gene expression data from the paediatric IBD cohort (n=107): clusters

are shown as dendrogram (top), colour bar, and gene expression heatmap.
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Figure 4.6 Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=99) and group 2

(n=8) identified through Consensus Clustering (Figure 4.5 D). Patients in the two groups are compared for the

following outcomes: A) first treatment escalation; B) second treatment escalation; C) third treatment escalation;

D) fourth treatment escalation; E) use of biologics; F) surgical intervention.
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Next, in order to address the same question, i.e. whether a paediatric CD8 signature to be able to
predict disease severity exists, we also performed WGCNA of CD8+ T-cell gene expression profiles
from the combined paediatric IBD cohort. More specifically, WGCNA aimed to explore whether the
gene expression data would be organised in groups of genes with similar expression (modules) and
whether any of these modules would correlate with specific disease outcomes reflecting severity of
disease course. The ultimate aim of WGCNA was to detect specific signatures for clinical variables

reflecting disease severity (i.e. outcomes).

First, as shown in Table 4.1 on page 78, 22 modules were detected in this cohort.

As a next step, correlations between modules and measured clinical traits were tested. Figure 4.7
displays correlations between each module and all clinical variables recorded, while in Figure 4.8
only the modules of relevance to disease outcomes are shown.

As recapped in Table 4.2., module lightyellow [5] and module pink [11] showed the strongest
correlation with disease outcomes, though correlation indexes only ranged between + 0.18 and +
0.24. Module light yellow was correlated with several clinical outcomes, i.e. number of relapses,

number of treatment escalations and use of biologics.

82



MEbrown .

MEsalmon 1

MEblack

MEturquoise

MElightyellow

MEtan
MElight
ightgreen L 05
MEroyalblue
MEpurple

MEmagenta

MEpink

MEcyan
MEblue

MEyellow

[]

MEdarkgreen

MEmidnightblue

MEdarkturquoise

MEred 0.5
i

MEdarkred

MEgrey60
MEgreenyellow
MEgreen
MElightcyan

MEgrey

& A 0 D 1D R INH &, D AN R DA D OIS 28 ES o o > Eale
R R e e S A SR R
@QQ%zaﬁ&%fg& AP AN EASINGICTS 05

¢
49
%,
%
b
%
)
)8
5
%%,
@
¥
Cx
o
%
%
O
(N3
)
o
2

Figure 4.7 WGCNA. Module-trait associations. Paediatric IBD cohort (n=98). Each row corresponds to a
module eigengene, column to a trait. Each cell contains the corresponding correlation index and p-value
(colour-coded, numbers not displayed in this plot, but available separately). The table is colour-coded by
correlation according to the colour legend (i.e. 1 = highest direct correlation, red; -1 = highest inverse
correlation, blue). Red frames highlight modules that correlate with outcomes more than they do with clinical
parameters at diagnosis. The green frame highlights clinical oufcome measures (e.g. number of treatment

escalations, surgery, use of biologics etc.)

83



ME lightyellow

ME pink

0.061 0.086 —0.084 0.04 0.18 0.24 -0.053 —-0.24 0.18
(0.5) (0.4) (0.4) (0.7) (0.07) (0.02) (0.6) (0.02) (0.07)

-0.046 0.062 —0.059 —0.047 0.065 0.066 —0.22 —0.0048 0.054

(0.7) (0.5) (0.6) (0.6) (0.5) (0.5) (0.03) (1) (0.6)
'Y AN o 2 & S =3
I NSy S & & & &
& i N & <° N @"Q Qg}
N g\\o Q & & Q& &2
& e & & 5 6)"7} S8
O O
& & & ¥ o
I3 S
-2 ©
&
o\

— 0.5

Figure 4.8 WGCNA. Module-trait associations. Paediatric IBD cohort (n=98). Selection of modules correlated

with clinical outcomes from Figure 4.7. On the x axis are variables related to the disease at diagnosis (e.g.

gender, abdominal pain at diagnosis, diarrhoea and disease activity score at diagnosis (e.g. PCDAI, PUCAI))

followed by variables describing disease outcomes (e.g. use of biologics, surgery). On the y axis, selected

modules are listed (indicated by colour names). The plot shows how these modules correlate more strongly

(directly or inversely) with disease outcomes than they do with parameters describing disease at diagnosis.
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BIOLOGICS

ME lightyellow [5] 0.24 0.02

TREATMENT ESCALATIONS

6 MONTHS STEROID FREE REMISSION

ME lightyellow [5] - 0.24 0.02
ME blue [13] - 021 0.03
ME yellow [14] - 024 0.02
ME midnightblue [16] 0.2 0.05

RELAPSES

ME lightyellow [5]

SURGERY

ME pink [11] - 0.22 0.03

Table 4.2 WGCNA. Paediatric IBD cohort (n=98). Main modules correlating with disease outcomes.

Finally, in order to test the prognostic power of the modules (signatures) identified, we subset their
corresponding probes from this dataset (i.e. paediatric IBD cohort, n=98) and performed Consensus
Clustering of this selection. We then compared the groups identified for the specific outcomes
correlated with those modules.

We first tested module light yellow (34 probes), correlated with number of relapses, treatment
escalations and use of biologics. Groups based on this module were identified through Consensus
Clustering, as shown in Figure 4.9 C (k3: group 1 (n=67) vs groups 2+3 (n=31), renamed as group
2). The survival analysis performed to compare these groups for clinical outcomes (Figure 4.10) did
not show significant differences.

We then tested module pink (175 probes), correlated with surgical intervention. Groups identified
through Consensus Clustering (Figure 4.11 C k3: group 1 (n=85) vs groups 2+3 (n=13), renamed as
group 2) did not show a significant split on the Kaplan Meier analysis for surgical intervention.
Nevertheless, whilst none of the patients in group 2 had surgery, 3 patients in group 1 required

surgical intervention.
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Figure 4.9 Consensus Clustering of a selection of probes included in the WGCNA module light yellow (34
probes), correlated with “number of relapses”, “number of treatment escalations” and “use of biologics”. In A.
CDF: Consensus Cumulative Distribution Function showing at what number of clusters, k, the consensus and
cluster confidence reach a maximum. In B. Delta area plot showing the relative change in area under the CDF
curve, with no further appreciable increase at k=3. k3 is identified as the strongest clustering option. In C.

Consensus Clustering plot for k=3.
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Figure 4.10 Kaplan Meier curves comparing the groups identified in 4.9 C (group 1: n=67 and group 2 (i.e.

2+3): n=31) for the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third

treatment escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention.
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Figure 4.11 Consensus Clustering of a selection of probes included in the WGCNA module pink (175 probes),
correlated to “surgical intervention”. In A. Consensus Cumulative Distribution Function (CDF) showing at what
number of clusters, k, the consensus and cluster confidence reach a maximum. In B. Delta area plot showing
the relative change in area under the CDF curve, with no further appreciable increase at k=3. k3 is identified

as the strongest clustering option. In C. Consensus Clustering plot for k=3.
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Figure 4.12 Kaplan Meier curves comparing the groups identified in 4.11 C (group1: n=85 and group?2 (i.e.

2+3): n=13) for the event “surgical intervention”.
In summary, in the joint paediatric IBD cohort we could not identify strong correlations between gene

expression profiles (i.e. signatures, modules) and prognostic outcomes, neither by using
unsupervised clustering analyses nor by applying WGCNA.
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4.3.2 Analysis of CD8+ T-cell gene expression profiles from the paediatric CD cohort

In this section, we applied the same methods utilised above (i.e. unsupervised clustering analyses
and WGCNA) to analyse our paediatric CD cohort separately (n=67) and identify whether signatures
specific to paediatric CD able to differentiate children for their disease severity exist.

First, we performed Hierarchical Clustering to investigate whether the CD8+ gene expression data
in this cohort had a substructure. Similarly to what identified in the combined IBD cohort, this dataset
also clustered into two main groups, with an approximate size of 3/4 and 1/4 respectively (Figure
4.13 A). Each group was clustered into further subgroups.

Consensus Clustering analysis identified three more solid groups of patients throughout the dataset.
Figure 4.13 C shows the top Consensus Clustering plot, where k=3 provides the strongest clustering:
one bigger and two smaller clusters were identified, with an approximate size of 3/4 and 1/4 for group

1 and for groups 2+3, respectively.

Next, we tested whether the groups identified through Consensus Clustering (Figure 4.13 D k3:
group 1 (n=54) vs groups 2+3 (n=13), renamed as group 2) would split for disease outcomes, i.e.
whether groups identified in this cohort based on CD8 gene expression profiles would differ in terms
of disease severity over time. Survival analysis identified a significant difference between the groups
in respect to treatment with biologics, as well as differences (though not reaching significance) in
number of treatment escalations (Kaplan Meier curves on Figure 4.14). In particular, group 2
included milder patients who never had a fourth treatment escalation and only one child in this group
was treated with biologics, as opposed to 60% of the children in group 1.

As previously shown for the paediatric IBD dataset, the difference in size between group 1 and 2

affected the power of the survival analysis performed (Figure 4.14).
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Figure 4.13. In A. Hierarchical Clustering of the CD8 gene expression data in the paediatric CD cohort (n=67).
In B. CDF: Consensus Cumulative Distribution Function showing at what number of clusters, k, the consensus
and cluster confidence reach a maximum. In C. Delta area plot showing the relative change in area under the
CDF curve, with no further appreciable increase at k=3. k3 is identified as the strongest clustering option. In

D. Consensus Clustering plot (for k=3) of the gene expression data from the paediatric CD cohort (n=67).
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Figure 4.14 Kaplan Meier curves for the paediatric CD cohort (n=67) comparing group 1 (n=54) and group 2
(n=13) identified through Consensus Clustering (Figure 4.13 D). Patients in the two groups are compared for
the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third treatment

escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention.

93



We went on to perform differential gene expression analysis (DGEA) in order to investigate
significant differentially expressed genes between the groups of patients identified through
Consensus Clustering (k3). As summarised in Figure 4.15, 12461 differentially expressed genes
were identified in this cohort between Consensus Clustering group 1 (n=54) and group 2 (n=13);
6342 of these were annotatable.

We also performed GSEA to detect whether genes differentially expressed between groups 1 and 2
identified through Consensus Clustering were organized in molecular pathways of biological

relevance.

4562 gene sets had positive enrichment score (i.e. they correlated with group 1); 68 were
significantly enriched at nominal p-value < 1% and 397 were significantly enriched at nominal p-
value < 5%. None of them was significant at FDR < 25%. Genes in the core enrichment included IL6
receptor, IL12 receptor, IL18 receptor, IFN induced proteins, chemokine receptor 2, chemokine
ligands, TNF-alpha induced proteins, toll-like receptors.

310 gene sets had negative enrichment score (i.e. they correlated with group 2); of these, only 2
were significantly enriched at nominal p-value < 5%, and none at nominal p-value < 1%. None was
significant at FDR < 25%. Genes in the core enrichment included IL15 receptor, IL22 receptor, IL25,

TNF ligands, IFN alpha and chemokine ligands.
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Figure 4.15 Main GSEA findings from the paediatric CD cohort (n=67). Groups as identified through Consensus

Clustering. In A. Heatmap of the top 50 features for each phenotype (Consensus Clustering groups 1 vs 2). In

B. Plot showing correlation between the ranked genes and the groups 1 and 2. In C. Butterfly plot showing the

top 100 positive and negative correlations between gene rank and the ranking metric score (i.e. first and last

100 genes in the ranked list). Observed correlation and permuted (1%, 5%, 50%) positive and negative

correlations are shown for the top genes. This plot describes the extent to which dataset permutations change

the correlation between gene rank and the ranking metric score.
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At this stage, in order to address the same question, i.e. whether a paediatric CD8 signature able to
predict disease severity in this cohort exists, we also performed WGCNA. WGCNA was run on 60
paediatric CD samples, as patients with perianal disease who were treated with biologics from the

time of diagnosis were removed from this step.

The 27 modules identified in this cohort were tested for correlations with measured clinical traits, as
shown in Figure 4.16. In Figure 4.17 only the modules of relevance to disease outcomes are shown.
As recapped in Table 4.3, the positive and negative correlation indexes for the top modules ranged
between +0.25 and +0.33, and between —0.28 and -0.37, respectively. Module orange was correlated
with several clinical outcomes, including number of relapses, number of treatment escalations and

severity score.
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Figure 4.16 WGCNA. Paediatric CD cohort (n=60). Module-trait associations. Each row corresponds to a
module eigengene, column to a trait. Each cell contains the corresponding correlation index and p-value
(colour-coded, numbers not displayed on this plot). The table is colour-coded by correlation according to the
colour legend (i.e. 1 = highest direct correlation, -1 = highest inverse correlation). Red frames highlight modules
that correlate with outcomes more than they do with clinical parameters at diagnosis. The green frame
highlights clinical outcome measures (i.e. number of treatment escalations, surgery, use of biologics, severity

score).
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Figure 4.17 Selection of modules correlated with clinical outcomes from Figure 4.16. On the x axis are variables
related to the disease at diagnosis (i.e. gender, abdominal pain at diagnosis, diarrhoea and disease activity
score at diagnosis (i.e. PCDAI)) followed by variables describing disease outcomes (including use of biologics,
surgery, steroid resistance, severity score). On the y axis, selected modules are listed (indicated by numbers
and colour names). The plot shows how these modules correlate more strongly (directly or inversely) with

disease outcomes than they do with parameters describing disease at diagnosis.
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BIOLOGICS

ME orange [14] 0.29 0.03
ME cyan [24] 0.33 0.01
TREATMENT ESCALATIONS
ME orange [14] . 0.02
6 MONTHS STEROID FREE REMISSION

RELAPSES

ME orange [14]

INPATIENT DAYS

ME darkturquoise [28]

SEVERITY SCORE
ME orange [14] 0.29 0.02
ME darkgrey [20] -0.28 0.03

Table 4.3 WGCNA. Paediatric CD cohort (n=60). Main modules correlating with disease outcomes.

In order to test the prognostic role of these modules further, we filtered out of this dataset the probes
corresponding to modules of interest for specific outcomes. We then performed Consensus
Clustering of this selection to test whether the groups of patients identified would differ in respect to

those outcomes.

First, we tested module orange (29 probes), correlated to number of relapses, treatment escalations
and severity score. Groups based on this module were identified through Consensus Clustering, as
shown in Figure 4.18 C (k3: group 1 (n=52) vs groups 2+3 (n=8), renamed as group 2). The survival
analysis performed to compare these groups for clinical outcomes (Figure 4.19) showed significant
differences in first and second treatment escalations. Children in group 2 were overall milder than

group 1, with only one patient in group 2 receiving biologics as opposed to 60% of those in group 1.

We then tested modules orange and cyan (111 probes), correlated to treatment with biologics.
Groups identified through Consensus Clustering (Figure 4.20 C k2: group 1 (n=44) vs groups 2

(n=16)) did not differ significantly in respect to use of biologics (Kaplan Meier curve in Figure 4.21).

Finally, we looked at the signature in module dark turquoise (34 probes) correlated to the clinical
outcome “unplanned inpatient days”. As shown in Figure 4.23, survival analysis of the groups
identified through Consensus Clustering (Figure 4.22 C, k3: group 1 (n=36) vs groups 2+3 (n=24),
renamed as group 2) showed significant splits between the groups for number of treatment

escalations and use of biologics.
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Figure 4.18 Consensus Clustering of a selection of probes included in the WGCNA module orange (29 probes),
correlated to “number of relapses”, “number of treatment escalations” and “severity score”. In A. CDF:
Consensus Cumulative Distribution Function, showing at what number of clusters, k, the consensus and cluster
confidence reach a maximum. In B. Delta area plot, showing the relative change in area under the CDF curve,
with no further increase appreciable at k=3. k3 is identified as the strongest clustering option. In C. Consensus

Clustering plot for k=3.
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Figure 4.19 Kaplan Meier curves comparing the groups identified in 4.18 C (group 1: n=52 vs group 2 (i.e.

2+3): n=8) for the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third

treatment escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention.
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Figure 4.20 Consensus Clustering of a selection of probes included in the WGCNA modules orange and cyan
(111 probes), correlated to “use of biologics”. In A. CDF: Consensus Cumulative Distribution Function, showing
at what number of clusters, k, the consensus and cluster confidence reach a maximum. In B. Delta area plot,

showing the relative change in area under the CDF curve, with no further appreciable increase at k=2. k2 is

identified as the strongest clustering option. In C. Consensus Clustering plot for k=3.
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Figure 4.21 Kaplan Meier curves comparing the groups identified in 4.20 C (group 1: n=44 vs groups 2: n=16)

for the outcome “use of biologics”.
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Figure 4.22 Consensus Clustering of a selection of probes included in the WGCNA module dark turquoise (34
probes), correlated to “unplanned inpatient days”. In A. CDF: Consensus Cumulative Distribution Function,
showing at what number of clusters, k, the consensus and cluster confidence reach a maximum. In B. Delta
area plot showing the relative change in area under the CDF curve, with no further appreciable increase at

k=3. k3 is identified as the strongest clustering option. In C. Consensus Clustering plot for k3.
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Figure 4.23 Kaplan Meier curves comparing the groups identified in 4.22 C (group 1: n=36 vs group 2 (i.e.

2+3): n=24) for the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third

treatment escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention.
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Given the significant differences in outcomes identified between the Consensus Clustering groups
related to module dark turquoise, we also performed GSEA in order to detect whether such groups

would differ in molecular pathways of biological relevance.

As summarised in Figure 4.24, 2647 gene sets had positive enrichment score (i.e. they showed
enrichment at the top of the ranked list and correlated with group 1); 6 of these were significantly
enriched at nominal p-value < 1% and 23 were significantly enriched at nominal p-value < 5%. None
of them was significant at FDR < 25%.

Genes in core enrichment included NKT recognition sequences, GABA receptors, chemokine
ligands, TNF receptors, TNF receptor associated factors, TNF and IFN induced proteins, IL15 and
toll-like receptor 3.

2225 gene sets had negative enrichment score (i.e. they showed enrichment at the bottom of the
ranked list and correlated with group 2); of these, 8 were significantly enriched at nominal p-value <
1% and 42 were significantly enriched at nominal p-value < 5%. None was significant at FDR < 25%.
Genes in core enrichment included TNF receptors, IFN alpha, chemokine receptors, GABA

receptors, VIP receptor 1.
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Figure 4.24 Main GSEA findings from the paediatric CD cohort (n=60). Groups as identified through Consensus
Clustering (module dark turquoise correlated to “number of unplanned inpatient days”). In A. Heatmap of the
top 50 features for each phenotype (Consensus Clustering groups 1 vs 2). In B. Plot showing correlation
between the ranked genes and the groups 1 and 2. In C. Butterfly plot showing the top 100 positive and
negative correlation between gene rank and the ranking metric score (i.e. first and last 100 genes in the ranked
list). Observed correlation and permuted (1%, 5%, 50%) positive and negative correlations are shown for the
top genes. This plot describes the extent to which dataset permutations change the correlation between gene

rank and the ranking metric score.
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In summary, the paediatric signatures identified from WGCNA of the paediatric CD cohort (i.e.
module orange correlated with “number of relapses”, “number of treatment escalations” and “severity
score”, and module dark turquoise correlated with “number of unplanned inpatient days”) did identify
groups of children with significant differences in disease outcomes (Kaplan Meier curves from the

survival analysis), although with correlation indexes within a range of only 0.25-0.37.
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4.3.3 Analysis of CD8+ T-cell gene expression profiles from the paediatric UC cohort

In this section, we briefly summarise the main results obtained by applying the same analyses shown
above (i.e. unsupervised clustering analyses and WGCNA) to our cohort of children with UC (n=40).
First, we performed Hierarchical Clustering which demonstrated the presence of a substructure, with
two groups including 1/3 and 2/3 of the patients approximately (Figure 4.25 A).

Consensus Clustering of this dataset identified five more solid groups of patients throughout the
gene expression data as shown in Figure 4.25 B and C, where k=5 provides the strongest clustering.
As previously observed in the paediatric CD cohort, the clusters of patients identified in this dataset
also differ in size, with one group including 90% of patients, and the remaining 10% of them clustering

out.

As a next step, we tested whether the groups identified through Consensus Clustering (Figure 4.25
D, k5: group 2 (n=35, renamed as group 1) vs groups 1+3+4+5 (n=5, renamed as group 2)) would
differ in respect to their disease course and outcomes, i.e. whether groups identified in this cohort
based on their CD8 gene expression profiles would have different disease severity over time.

Survival analysis identified differences, although not reaching significance, between these two
groups in respect to number of treatment escalations, use of biologics and surgical intervention
(Kaplan Meier curves on Figure 4.26). In particular, group 2 in the survival analysis (i.e. Consensus
Clustering groups 1,3,4,5 combined) included milder patients who never had more than two
treatment escalations, and who were never treated with biologics, as opposed to 20% of the children
in group 1. Also, children in group 2 never had surgical intervention as opposed to 2 children in group

1 who required colectomy.
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Figure 4.25. In A. Hierarchical Clustering of the CD8 gene expression data in the paediatric UC cohort (n=40).
In B. CDF: Consensus Cumulative Distribution Function showing at what number of clusters, k, the consensus
and cluster confidence reach a maximum. In C. Delta area plot showing the relative change in area under the
CDF curve, with no further appreciable increase at k=5. k5 is identified as the strongest clustering option. In

D. Consensus Clustering plot (for k=5) of gene expression data from the paediatric UC cohort (n=40).
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Figure 4.26 Kaplan Meier curves for the paediatric UC cohort (n=40) comparing group 1 (n=35) and group 2
(n=>5) identified through Consensus Clustering (Figure 4.25 D). Patients in the two groups are compared for
the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third treatment

escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention.
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At this stage, we went on to perform differential gene expression analysis (DGEA) using R package
‘limma” in order to investigate significantly differentially expressed genes between the groups of
patients identified through Consensus Clustering (k5). In this cohort, 3549 differentially expressed
genes were identified between Consensus Clustering group 1 (n=35) and group 2 (n=5); 1312 of
these were annotatable. We also performed GSEA to detect whether genes differentially expressed
between groups 1 and 2 identified through Consensus Clustering were organised into molecular
pathways of biological relevance. As summarised in Figure 4.27, 4290 gene sets had positive
enrichment score (i.e. they showed enrichment at the top of the ranked list and correlated with group
1); 111 of these were significantly enriched at nominal p-value < 1% and 603 were significantly
enriched at nominal p-value < 5%. 1165 were significant at FDR < 25%. Genes in core enrichment
included chemokine ligands, VIP receptor 1, IL2, IL22 receptor, IL25 and GABA receptor.

582 gene sets had negative enrichment score (i.e. they showed enrichment at the bottom of the
ranked list and correlated with group 2); of these, only 1 was significantly enriched at nominal p-
value < 1% and 6 were significantly enriched at nominal p-value < 5%. None was significant at FDR
< 25%. Genes in core enrichment included IL1 receptor associated proteins, integrins, IL18 receptor,

bromodomains and IL11 receptors.
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Figure 4.27 Main GSEA findings from the paediatric UC cohort (n=40). Groups as identified through Consensus
Clustering. In A. Heatmap of the top 50 features for each phenotype (Consensus Clustering groups 1 vs 2).
In B. Plot showing correlation between the ranked genes and groups 1 and 2. In C. Butterfly plot showing the
top 100 positive and negative correlations between gene rank and the ranking metric score (i.e. first and last
100 genes in the ranked list). Observed correlations and permuted (1%, 5%, 50%) positive and negative
correlations are shown for the top genes. This plot describes the extent to which dataset permutations change

the correlation between gene rank and the ranking metric score.
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As a next step, we performed WGCNA as an alternative and complementary method to investigate
the existence of paediatric specific prognostic signatures in our UC cohort. WGCNA was performed
on 38 patients as 2 of them with acute severe onset who needed biologic treatments from the time
of diagnosis were excluded from this analysis.

Forty modules were identified in this dataset. Their correlation with the clinical data collected is
shown on Figure 4.28 while Figure 4.29 shows an excerpt from Figure 4.28 where only the modules
of relevance to disease outcomes are shown.

As shown in Table 4.4, modules yellowgreen [18] and steelblue [36] correlate with multiple outcomes,
i.e. treatment with biologics, number of relapses, surgical intervention (colectomy) and severity
score.

Moreover, modules yellowgreen and steelblue showed high inverse correlation (< -0.5) with clinical
outcome “surgical intervention”. Overall, positive and negative correlation indexes ranged between

+0.31 and +0.38, and between -0.29 and -0.59, respectively.
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Figure 4.28 WGCNA. Paediatric UC cohort (n=38). Module-trait associations. Each row corresponds to a
module eigengene, column to a trait. Each cell contains the corresponding correlation and p-value (colour-
coded, numbers not displayed on this plot). The table is colour-coded by correlation according to the colour
legend (i.e. 1 = highest direct correlation, -1 = highest inverse correlation). Red frames highlight modules that
correlate with outcomes more than they do with clinical parameters at diagnosis. The green frame highlights

clinical outcome measures (i.e. number of treatment escalations, surgery, use of biologics etc.)
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Figure 4.29 WGCNA. Paediatric UC cohort (n=38). Excerpt from Fig. 4.28 displaying modules correlated with
clinical outcomes. On the x axis are variables related to the disease at diagnosis (i.e. gender, abdominal pain
at diagnosis, diarrhoea and disease activity score at diagnosis (i.e. PUCAI)) followed by variables describing
disease outcomes (use of biologics, surgery, steroid resistance, severity score etc.). On the y axis, selected
modules are listed (indicated by colour names). The plot shows how these modules correlate more strongly

(directly or inversely) with disease outcomes than they do with parameters describing disease at diagnosis.
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ME yellowgreen [18]
ME steelblue [36] -0.4 0.01

‘ 6 MONTHS STEROID FREE REMISSION
ME darkgreen [8] 0.34 0.04

‘ INPATIENT DAYS

ME darkgreen [8] -0.35 0.03
ME steelblue [36] -0.39 0.01
ME skyblue [6] 0.31 0.06
ME yellowgreen [18] -0.29 0.08
ME steelblue [36] -0.29 0.08
ME darkgreen [8] -0.36 0.03
ME orangered4 [16] 0.38 0.02
ME sienna3 [17] 0.35 0.03
ME yellowgreen [18] -0.51 9e-04
ME orange [26] -0.32 0.05
ME grey60 [32] -0.4 0.01
ME steelblue [36] -0.59 9e-05
ME lightyellow [39] -0.44 0.005

Table 4.4 WGCNA. Paediatric UC cohort (n=38). Main modules correlating with disease outcomes.

Next, as previously shown in the joint paediatric IBD cohort and in the paediatric CD cohort, we
tested the modules identified in this dataset to correlate with disease outcome parameters by
subsetting them and by running Consensus Clustering of this selection. Subsequently, we performed
survival analysis to compare the groups of patients identified for specif