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Summary 
 

Background: Currently, it is not possible to predict disease behaviour for children with inflammatory 

bowel disease (IBD), which is a major obstacle in an era where we strive to deliver personalised, 

tailored therapy. Previous investigation of gene expression profiles from CD8+ T-cells in adult IBD 

cohorts identified promising signatures, including a T-cell exhaustion signature, to predict disease 

outcome in these patients.  

Hypothesis and aim: We hypothesised that adult CD8+ T-cell prognostic signature and T-cell 

exhaustion signature would also predict outcome in paediatric IBD. We also hypothesised that CD8+ 

methylation profiles would underpin changes in gene expression, hence providing an alternative 

potential predictor. The aim of this project was to test whether CD8+ T-cell gene expression and 

methylation signatures can predict disease outcome in children with IBD.  

Methods: Purified CD8+ T-cells from a prospective cohort of 112 children newly diagnosed 

(treatment naïve) with IBD were subjected to cellular genome-wide RNA and DNA profiling 

(affymetrix and epic methylation microarrays). Detailed clinical information from each patient was 

recorded in a clinical database (1.5 years follow-up). First, the adult CD8 prognostic signatures were 

applied to the paediatric data in order to test for their ability to differentiate children according to their 

disease behaviour. Subsequently, the paediatric data was analysed on its own through unsupervised 

clustering analysis and Weighted Gene Co-expression Network Analysis (WGCNA) to test for 

correlations between gene expression data and clinical outcome parameters. Survival analysis 

(kaplan meyer) was used to compare patient groups for disease outcomes, including number of 

treatment escalations, use of biologic treatments and surgical intervention. 

Results: Applying the adult CD8 prognostic signature and the T-cell exhaustion signature to the 

paediatric dataset did not generate groups with significant differences in disease outcomes. 

Furthermore, the clinical data collected from the paediatric cohort showed that two thirds of the 

children had at least two treatment escalations, compared to less than 40% of the adult patients from 

the previous study. The analysis of the paediatric data per se identified correlations with clinical 

outcomes including use of biologics in Crohn’s (WGCNA correlation index (CI) < 0.4) and surgical 

intervention in ulcerative colitis (top CI: +0.38 and – 0.59). Preliminary analysis of the CD8 

methylation profile did not show any correlation with clinical outcomes in this paediatric cohort. 

Conclusion: The adult prognostic CD8 signatures did not prove to be effective in children with IBD. 

We speculate that this could be due to the paediatric IBD phenotype being homogeneously more 

severe. Our findings hint the hypothesis that absent T-cell exhaustion in paediatric CD8+ T-cell could 

underlie a more severe disease phenotype in children. Further understanding of the mechanism of 

T-cell exhaustion in children has the potential to open up to future target options in paediatric IBD. 

  



 12 

 

  



 13 

Table of contents 
_____________________________________________________________ 

 

Preface _______________________________________________________________________3 

Main Publications _______________________________________________________________ 5 

Main Poster Presentations and Talks ________________________________________________7 

Acknowledgments ______________________________________________________________ 9 

Summary ____________________________________________________________________ 11 

Table of contents ______________________________________________________________ 13 

List of Figures _________________________________________________________________17 

List of Tables _________________________________________________________________ 21 

List of abbreviations used ________________________________________________________ 22 

CHAPTER 1. INTRODUCTION ___________________________________________________ 23 

1.1 Paediatric inflammatory bowel disease (IBD) ______________________________________ 25 

1.2 Epidemiology of IBD _________________________________________________________ 25 

1.3 Current models of IBD pathogenesis ____________________________________________ 27 

1.4 T-cell subsets and their role in IBD pathogenesis __________________________________ 29 

1.5 Clinical presentation and diagnostic work-up ______________________________________ 32 

1.6 Treatment ________________________________________________________________  32 

1.6.1   Surgical treatment _____________________________________________________ 36 

1.7 Natural history of paediatric IBD ________________________________________________ 36 

1.8 Disease prognostic biomarkers in IBD __________________________________________  37 

1.8.1 CD8 T-cell gene expression signatures are promising prognostic biomarkers in adult 

IBD________________________________________________________________   38 

1.9 Hypothesis and Aims ________________________________________________________ 40 
 

CHAPTER 2. MATERIALS AND METHODS  ________________________________________  41 

2.1 Patient cohorts _____________________________________________________________ 43 

2.2 Clinical information __________________________________________________________ 45 

2.2.1 Severity score ____________________________________________________________ 45 

2.3 Collection of blood samples and purification of CD8 + T cells _________________________ 46 

2.4 Purity assessment via Fluorescence Activated Cell Sorting (FACS) ____________________46 

2.5 RNA and DNA Extraction _____________________________________________________49 

2.6 DNA bisulfite-conversion _____________________________________________________ 49 

2.7 Microarray analysis _________________________________________________________ 49 

2.7.1 Preparation of samples for microarray analysis ________________________________50 



 14 

2.8 Bioinformatic analysis ________________________________________________________50 

2.8.1 Data pre-processing: normalisation, quality control and batch correction ____________51 

2.8.2 Gene filter ____________________________________________________________ 51 

2.8.3 Hierarchical Clustering __________________________________________________ 51 

2.8.4 Consensus Clustering ___________________________________________________ 52 

2.8.5 SigClust Clustering _____________________________________________________ 52 

2.8.6 Differential gene expression analysis and Annotation ___________________________53 

2.8.7 Gene Set Enrichment Analysis (GSEA)______________________________________ 53 

2.8.8 Weighted Gene Co-expression Network Analysis (WGCNA) _____________________ 53 

2.8.9 Survival Analysis _______________________________________________________ 54 
 

CHAPTER 3. Testing the predictive value of an adult prognostic CD8+ T-cell and T-cell 
exhaustion signature on a paediatric patient cohort ________________________________ 55 
 

3.1 Introduction _______________________________________________________________  57 

3.2 Materials and methods _______________________________________________________ 53 

3.3 RESULTS ________________________________________________________________   59 

3.3.1 Testing adult CD8 prognostic signature on paediatric IBD: unsupervised analysis______59 

3.3.2 Testing the adult CD8 prognostic signature on paediatric IBD: WGCNA _____________ 62 

3.3.3 Testing the T-cell exhaustion signature on the paediatric IBD cohort _______________ 65 

3.3.4 Distinct differences in disease behaviour of children diagnosed with IBD compared to adults 

_________________________________________________________________________  69 

3.4 Discussion _____________________________________________________________  70 

CHAPTER 4. Identification of paediatric CD8+ T-cell expression derived prognostic 
signatures __________________________________________________________________  71 

4.1 Introduction _______________________________________________________________  73 

4.2 Materials and methods _______________________________________________________ 73 

4.2.1 Unsupervised clustering analysis __________________________________________  73 

4.2.2 WGCNA _____________________________________________________________  74 

4.3 RESULTS ________________________________________________________________  79 

4.3.1 Analysis of CD8+ T-cell gene expression profiles from the combined paediatric IBD cohort 

_________________________________________________________________________  79 

4.3.2 Analysis of CD8+ T-cell gene expression profiles from the paediatric CD cohort ______ 91 

4.3.3 Analysis of CD8+ T-cell gene expression profiles from the paediatric UC cohort _____  109 



 15 

4.4. Discussion ___________________________________________________________  126 

 
CHAPTER 5. Testing CD8 methylation profiles as potential prognostic biomarkers in 
paediatric CD _______________________________________________________________ 129 

5.1 Introduction ______________________________________________________________  131 

5.2 Materials and methods _____________________________________________________  131 

5.3 RESULTS _______________________________________________________________  137 

5.3.1 WGCNA of CD8+ T-cell methylation data from 66 children with CD _______________ 137 

5.3.2 Analysis of a subset of the CD8 methylation data from 66 children with CD: probes 

correlated with outcomes in the gene expression dataset from the same cohort ___________141 

5.4 Discussion _______________________________________________________________ 147 
 

CHAPTER 6. DISCUSSION ____________________________________________________ 149 

6.1 Summary and conclusion _________________________________________________151 

6.2 Strengths and limitations _________________________________________________ 154 

6.3 Future work ___________________________________________________________ 155 

REFERENCES ______________________________________________________________ 157 

Appendix 1. Definition, measurement units and normal values of the main clinical items collected 
___________________________________________________________________________  174 
 
Appendix 2. Clinical Database used as a .csv file to align clinical data to gene expression data in the 

WGCNA_________________________________________________________________  176 
 

Appendix 3. Protocols for CD8+ T cell separation (including MACS) (A), and preparation of samples 

for purity assessment (FACS) (B) _____________________________________________  200 

Appendix 4. Paediatric Crohn's Disease Activity Index (PCDAI) [34] ________________________ 205 

Appendix 5. Paediatric Ulcerative Colitis Activity Index (PUCAI) [35] ______________________ 207 

Appendix 6. Paris Classification for Paediatric IBD [13] ________________________________ 208 

Appendix 7. Power Calculations __________________________________________________ 209 
  



 16 

 
  



 17 

List of Figures 
 
Figure 1.1 Global map of IBD in established and emerging populations. (Taken from: Cosnes J, et 

al. Gastroenterology 2011 16) _____________________________________________________ 26  

Figure 1.2 Mutations in genes implicated in the pathogenesis of IBD regulate various biological 

functions such as immunomodulation, mucosal barrier integrity and microbial homeostasis. (Taken 

from: Lees CW et al. Gut 2011 44) __________________________________________________ 27 

Figure 1.3 Interaction of various factors contributing to chronic intestinal inflammation in a genetically 

susceptible host. (Taken from: Sartor BR, et al. Nature Clinical Practice Gastroenterology & 

Hepatology 2006 50) ____________________________________________________________ 28 

Figure 1.4 The differentiation of CD8+ T-cells and different CD8+ subsets. (Taken from: 

Golubovskaya V, Wu L. Cancers 2016 68) ___________________________________________ 30 

Figure 1.5 Treatment strategies for paediatric IBD (Taken from: Aloi M, et al. Nat Rev Gastroenterol 

Hepatol 2014 89) ______________________________________________________________   33 

Figure 1.6 Summary of the main findings from studies on adult prognostic IBD signature and T-cell 

exhaustion signature (Taken from: Lee, J.C., et al. The Journal of Clinical Investigation 2011 67 and 

from: McKinney, E.F., et al. Nature 2015 155) _________________________________________ 39 

Figure 2.1 Severity scores for CD and UC ___________________________________________ 45 

Figure 2.2 Flow cytometry (FACS analysis) for an exemplary single patient sample __________ 48 

Figure 3.1 Consensus Clustering plot of a selection of the paediatric data (paediatric IBD cohort, 

n=107) based on the CD8 prognostic signature identified in adult IBD 67 ____________________ 60 

Figure 3.2 Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=95) and 

group 2 (n=12) identified through Consensus Clustering limited to genes in the adult CD8 prognostic 

signature (Lee JC, et al. 67) _______________________________________________________ 61 

Figure 3.3 WGCNA. Module-trait relationships from the adult dataset (Lee JC, et al. 67) (n=67) 

showing modules and clinical variables including “Group” (i.e. different prognostic groups IBD1 

(severe) vs IBD2 (mild) based on number of treatment escalations during the follow-up) ________63 

Figure 3.4 WGCNA. Module-trait relationships in the paediatric dataset (paediatric IBD cohort, 

n=98). Significant prognostic signatures from the adult study 67 (i.e. top modules directly correlated 

to the outcome “number of treatment escalations”) are applied to the paediatric dataset and plotted 

against clinical outcomes ________________________________________________________ 64 

Figure 3.5 WGCNA. Module-trait relationships in the paediatric dataset (paediatric IBD cohort, 

n=98). Significant prognostic signatures from the adult study 67 (i.e. top modules inversely correlated 

to the outcome “number of treatment escalations”) are applied to the paediatric dataset and plotted 

against clinical outcomes ________________________________________________________ 64 



 18 

Figure 3.6 Heatmap showing gene expression profiles of the paediatric IBD cohort (n=107) for a 

selection of probes included in the T-cell exhaustion signature identified in adult autoimmune 

diseases 155 __________________________________________________________________ 66 

Figure 3.7 Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=80) and 

group 2 (n=27) identified in Figure 3.6 _______________________________________________67 

Figure 3.8 Heatmaps showing gene expression profiles of the paediatric CD (n=67) and UC (n=40) 

cohorts for a selection of probes included in the T-cell exhaustion signature identified in adult 

autoimmune diseases 155 ________________________________________________________ 68 

Figure 3.9 Comparison of clinical outcome “number of treatment escalations” between the paediatric 

cohort and the adult data available from the study by Lee JC et al. 67 _______________________64 

Figure 4.1 SigClust analysis of CD8+ gene expression data from the paediatric IBD cohort (n=107) 

____________________________________________________________________________ 74 

Figure 4.2 WGCNA analysis of the paediatric IBD cohort (n=98). Sample dendrogram and trait 

heatmap _____________________________________________________________________ 76 

Figure 4.3 WGCNA. Analysis of network topology in the paediatric IBD cohort (n=98) for various 

soft-thresholding powers ________________________________________________________ 77 

Figure 4.4 Clustering dendrogram of genes, with dissimilarity based on topological overlap, together 

with assigned module colours (paediatric IBD cohort, n=98) _____________________________ 77 

Figure 4.5 A) Hierarchical Clustering of the CD8 gene expression data in the paediatric IBD cohort 

(n=107) B) CDF: Consensus Cumulative Distribution Function C) Delta area plot D) Consensus 

Clustering plot for k=3 __________________________________________________________ 80 

Figure 4.6 Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=99) and 

group 2 (n=8) identified through Consensus Clustering _________________________________ 81 

Figure 4.7 WGCNA. Module-trait associations. Paediatric IBD cohort (n=98) ________________83 

Figure 4.8 WGCNA. Module-trait associations. Paediatric IBD cohort (n=98). Selection of modules 

correlated with clinical outcomes __________________________________________________ 84 

Figure 4.9 Consensus Clustering of a selection of probes included in the WGCNA module light 

yellow (34 probes) correlated with “number of relapses”, “number of treatment escalations” and “use 

of biologics” __________________________________________________________________  86 

Figure 4.10 Kaplan Meier curves comparing the groups identified in 4.9 C (group 1: n=67 and group 

2 (i.e. 2+3): n=31) for the following outcomes: A) first treatment escalation B) second treatment 

escalation C) third treatment escalation D) fourth treatment escalation E) use of biologics F) surgical 

intervention ___________________________________________________________________87 

Figure 4.11 Consensus Clustering of a selection of probes included in the WGCNA module pink 

(175 probes) correlated with “surgical intervention” ____________________________________88 



 19 

Figure 4.12 Kaplan Meier curves comparing the groups identified in 4.11 C (group 1: n=85 and group 

2 (i.e. 2+3): n=13) for the outcome “surgical intervention” _______________________________ 89 

Figure 4.13 In A) Hierarchical Clustering of the CD8 gene expression data in the paediatric CD 

cohort (n=67). In B) CDF: Consensus Cumulative Distribution Function. In C) Delta area plot. In D) 

Consensus Clustering plot for k= 3 _________________________________________________92 

Figure 4.14 Kaplan Meier curves for the paediatric CD cohort (n=67) comparing group 1 (n=54) and 

group 2 (n=13) identified through Consensus Clustering ________________________________93 

Figure 4.15 Main GSEA findings from the paediatric CD cohort (n=67). Groups as identified through 

Consensus Clustering __________________________________________________________ 95 

Figure 4.16 WGCNA. Paediatric CD cohort (n=60). Module-trait associations _______________ 97 

Figure 4.17 Selection of modules correlated with clinical outcomes from Figure 4.16 _________ 98 

Figure 4.18 Consensus Clustering of a selection of 29 probes included in WGCNA module orange, 

correlated with “number of relapses”, “number of treatment escalations” and “severity score” ___100 

Figure 4.19 Kaplan Meier curves comparing the groups identified in 4.18 (group 1: n=52 vs group 2 

(i.e. 2+3): n=8) for the following outcomes: A) first treatment escalation B) second treatment 

escalation C) third treatment escalation D) fourth treatment escalation E) use of biologics F) surgical 

intervention __________________________________________________________________101 

Figure 4.20 Consensus Clustering of a selection of 111 probes included in WGCNA modules orange 

and cyan, correlated with “use of biologics” _________________________________________  102 

Figure 4.21 Kaplan Meier curves comparing the groups identified in 4.20 C (group 1: n=44 vs group 

2: n=16) for the outcome “use of biologics” __________________________________________103 

Figure 4.22 Consensus Clustering of a selection of 34 probes included in WGCNA module dark 

turquoise, correlated to “unplanned inpatient days” ___________________________________ 104 

Figure 4.23 Kaplan Meier curves comparing the groups identified in 4.22 C (group 1: n=36 vs group 

2 (i.e. 2+3): n=24) for the following outcomes: A) first treatment escalation B) second treatment 

escalation C) third treatment escalation D) fourth treatment escalation E) use of biologics F) surgical 

intervention _________________________________________________________________  105 

Figure 4.24 Main GSEA findings from the paediatric CD cohort (n=60) ____________________107 

Figure 4.25 In A) Hierarchical Clustering of the CD8 gene expression data in the paediatric UC 

cohort. (n=40). In B) CDF: Consensus Cumulative Distribution Function. In C) Delta area plot. In D) 

Consensus Clustering plot for k=5 ________________________________________________110 

Figure 4.26 Kaplan Meier curves for the paediatric UC cohort (n=40) comparing group 1 (n=35) and 

group 2 (n=5) identified through Consensus Clustering ________________________________111 

Figure 4.27 Main GSEA findings from the paediatric UC cohort (n=40). Groups as identified through 

Consensus Clustering _________________________________________________________ 113 

Figure 4.28 WGCNA. Paediatric UC cohort (n=38). Module-trait associations ______________ 115 



 20 

Figure 4.29 WGCNA. Paediatric UC cohort (n=38). Module-trait associations. Selection of modules 

correlated with clinical outcomes from Figure 4.28 ____________________________________ 116 

Figure 4.30 Consensus Clustering of a selection of 104 probes included in WGCNA modules dark 

green and steel blue, correlated with “number of unplanned inpatient days” _________________119 

Figure 4.31 Kaplan Meier curves comparing the groups identified in 4.30 (group 1: n=26 vs group 2 

(i.e. 2+3): n=12) for the following outcomes: A) first treatment escalation B) second treatment 

escalation C) third treatment escalation D) fourth treatment escalation E) use of biologics F) surgical 

intervention _________________________________________________________________  120 

Figure 4.32 Consensus Clustering of a selection of 75 probes included in WGCNA modules dark 

green and steel blue, correlated with “use of biologics” ________________________________ 121 

Figure 4.33 Kaplan Meier curves comparing the groups identified in 4.32 (group 1: n=8 vs group 2 

(i.e. 1+2+4): n=30) for “use of biologics”. ___________________________________________ 122 

Figure 4.34 Consensus Clustering of a selection of 345 probes included in WGCNA modules 

correlated with “surgical intervention” ______________________________________________ 123 

Figure 4.35 Kaplan Meier curve comparing the groups identified in 4.34 (group 1: n=22 vs group 2 

(i.e. 2+3+4): n=16) for the outcome “surgical intervention” ______________________________ 124 

Figure 4.36 GSEA of the paediatric UC cohort (n=38). Groups are based on Consensus Clustering 

analysis of the selection of genes in WGCNA modules correlated with the clinical outcome “surgical 

intervention” _________________________________________________________________ 125 

Figure 5.1 In A. Gender prediction of the paediatric methylation data (n=66). MDS plot by gender, 

on a logarithmic scale. In B. Quality control of CD8+ T-cell methylation samples from 66 children 

with CD ____________________________________________________________________ 132 

Figure 5.2 CD8+ T-cell methylation data distribution plots. Density plots of Beta and M values _ 133 

Figure 5.3 CD8+ T-cell methylation data. MDS plots before (A) and after (B) batch correction. MDS 

plot after chromosome removal (C) _______________________________________________ 134 

Figure 5.4 Hierarchical clustering of the methylation data in 66 children with CD. Two main clusters 

and their subgroups are shown __________________________________________________ 137 

Figure 5.5 WGCNA. Methylation data from 66 children with CD. Module-trait associations ____138 

Figure 5.6 WGCNA. Excerpt from Figure 5.5 showing top modules for clinical outcomes ______ 139 

Figure 5.7 WGCNA. Module-trait associations. CD8 methylation data from 66 children with CD: 

probe selection corresponds to top gene expression WGCNA modules from the same cohort ___ 

142 

Figure 5.8 WGCNA. Module-trait associations. Excerpt from Figure 5.7 showing top modules for 

clinical outcomes _____________________________________________________________ 143 

Figure 5.9 Consensus Clustering of 21 probes in WGCNA module cyan, correlated with “use of 

biologics” and “severity score” ___________________________________________________ 144 

  



 21 

Figure 5.10 Kaplan Meier curves comparing the groups identified in Fig. 5.9 C (group 1: n=45 vs 

group 2: n=21) for the following outcomes: A) first treatment escalation B) second treatment 

escalation C) third treatment escalation D) use of biologics E) surgical intervention __________   145 

Figure A7. Power calculations to detect size of validation cohort based on preliminary results from 

the discovery cohort (n=45) _____________________________________________________ 209 

 

List of Tables 
 
Table 2.1. Population flow-chart, demographics and summary of main disease outcomes. ______44  

Table 2.2 Volume of blood collection according to patient age ____________________________ 46 

Table 2.3 Percentage of cell purity for CD8+ T cells across 8 samples subjected to flow cytometry 

____________________________________________________________________________ 47 

Table 4.1 WGCNA of the paediatric IBD cohort (n=98). Module number and their size _________ 78 

Table 4.2 WGCNA. Paediatric IBD cohort (n=98). Main modules correlating with disease outcomes 

____________________________________________________________________________ 85 

Table 4.3 WGCNA. Paediatric CD cohort (n=60). Main modules correlating with disease outcomes 

____________________________________________________________________________ 99 

Table 4.4 WGCNA. Paediatric UC cohort (n=38). Main modules correlating with disease outcomes 

___________________________________________________________________________  117 

Table 5.1 WGCNA of methylation data from the paediatric CD cohort (n=66). Module number and 

their size ___________________________________________________________________  135 

 

  



 22 

List of abbreviations used  
 
5-ASA: 5-aminosalicylates 

5mC: 5-methylcytosine 

6-MP: 6-mercaptopurine 

6-TGN: 6-thioguanine nucleotide 

ADA: adalimumab 

APC: antigen presenting cell 

AZA: azathioprine 

CD: Crohn’s disease 

CH3: methyl group 

CpG: 5’-cytosine-phosphate-guanin-3’ 

CRP: C-reactive protein 

EEN: exclusive entral nutrition 

EIM: extra-intestinal manifestations 

ESR: erythrocyte sedimentation rate 

FBC: full blood count 

LFTs: liver function tests 

IBD: Inflammatory Bowel Disease 

IFX: Infliximab 

MTX: methotrexate 

PCDAI: paediatric Crohn’s disease activity index 

PSC: primary sclerosing cholangitis 

PUCAI: paediatric ulcerative colitis activity index 

RT-PCR: real time polymerase chain reaction 

TDM: therapeutic drug monitoring 

TNF-a: tumor necrosis factor alpha 

UC: ulcerative colitis 

WGCNA: Weighted Gene Co-Expression Network Analysis 

 

 

  



 23 

 

 
 

CHAPTER 1 

____________________________________ 
 

INTRODUCTION 
  



 24 

  



 25 

1.1 Paediatric inflammatory bowel disease (IBD) 
 

The term inflammatory bowel disease (IBD) covers a heterogeneous group of chronic disorders of 

the digestive tract, causing relapsing inflammation of the intestinal mucosa. The two main entities in 

IBD are Crohn’s disease (CD) and ulcerative colitis (UC). While in UC the inflammation is generally 

restricted to the mucosa of the large bowel, CD can spread throughout the entire gastrointestinal 

(GI) tract and affects all layers of the bowel wall (i.e., trans-mural inflammation). A third entity 

describes patients whose diagnostic features do not fully qualify for either CD or UC and are 

therefore diagnosed with IBD-unclassified (IBD-U) 1,2. In IBD, the disease onset can range from early 

childhood to beyond the sixth decade of life, and over the past few decades there has been a 

significant increase in the incidence of this condition 1. This increase has been particularly noticeable 

in children and young adults, who currently constitute almost 30% of all patients diagnosed with IBD 
3-6. In the absence of any curative treatment, patients are faced with a lifelong, often severely 

disabling condition.  

Managing IBD in children is particularly challenging for several reasons such as body growth, puberty 

and the need to attend school during a crucial phase of their lives. Growth failure and impaired 

nutritional status are seen in 65-85% of children and adolescents diagnosed with CD, and 15-40% 

of these patients continue to suffer from growth deficiency throughout the course of their disease 7,8. 

Delayed growth may precede any clinical evidence of bowel disease, and can severely affect the 

quality of life of children and adolescents with CD 9-12. Because of its relevance to the care of children 

with IBD of developmental age, growth assessment was included in the Paris classification of 

paediatric CD, which replaced the previous Montreal classification 13.  

 

1.2 Epidemiology of IBD 
 

The incidence of IBD is increasing worldwide, and over the past few decades, advances have been 

made in understanding its evolving epidemiology. This rising pattern may be due to improvement in 

disease detection and recognition, as well as environmental alterations and exposure that impact 

the disease onset. IBD was once considered to be a “Western” disease, principally affecting patients 

in North America and Western Europe, but it is now clear that the incidence and prevalence of this 

condition are both rapidly rising in other parts of the world, with dramatic increases noted in India, 

Japan, China, and the Middle East 14. IBD is, in fact, emerging in previously low-prevalence areas 

such as the developing world, as well as among migrant populations moving to industrialised 

westernised countries 14-16. (Figure 1.1) 
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Figure 1.1 Global map of IBD in established and emerging populations. (Taken from: Cosnes J, et al. 
Gastroenterology 2011 16) 

 

The changing epidemiology of IBD across time and geographies (north-south and west-east 

gradients) suggests that environmental factors play a major role in modifying disease expression, 

and its rising incidence in developing societies seems to be linked to industrialisation and the 

Western lifestyle 14-19. Individual, familial, community-, regional- and country- based environmental 

risk factors could, in isolation or in association, contribute to IBD’s pathogenesis. Urbanisation in 

developing countries, diet changes, antibiotics, hygiene status, microbial exposure and pollution 

have all been implicated as potential environmental risk factors for IBD 20,21. 

The geographical variability in IBD incidence and prevalence may, in turn, reflect a variety of 

underlying genetic patterns in different populations 20. The current mean prevalence of IBD in the 

general population of Western countries is estimated at 1/ 1,000 inhabitants 22,23. IBD primarily affects 

the Western world and the highest incidence rates are observed in North America and Europe 17, 24-

26. Recent studies in the UK indicate that the incidence of paediatric IBD is 5.2 per 100,000, where 

3.1 of those cases are CD, 1.4 are UC and 0.6 are IBD-U 27. Although there is limited epidemiology 

data available regarding developing countries, the incidence and prevalence of this disease have 

both been increasing over the past 50 years in practically all regions of the world, indicating its 

emergence as a global disease 14,28. The trend appears to have stabilised in the adult population but 

not in children, especially in central and southern Europe where it still appears to be rising 17,18. 

Incidence and prevalence of childhood-onset IBD has almost doubled over the last decade, and 

children currently constitute almost 30% of all patients diagnosed with IBD 14,28. Patients can be 

diagnosed with IBD at any age, but peak incidences are observed in childhood (between 10-15 years 

of age) and early adulthood (i.e., the second to third decades of life) 17,18,29,30. Estimates of the 

incidence of paediatric-onset IBD reported around the world vary considerably 31 as do its patterns 

and distributions in the various age brackets of the paediatric population 32,33.  
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The disease distribution by gender shows a slight male preponderance (1.5:1) in CD patients before 

puberty, whereas a female preponderance is reported in adults 34-36. While initially relatively low, CD 

incidence has gradually risen to levels that are similar to those of UC 16. CD incidence rates seem to 

have been stable in most industrialised countries since the 1980s, whereas an increase in childhood-

onset IBD continues to be observed 37-39. 

Accordingly, this disease represents an increasing burden upon global health, which is likely to 

continue to grow in the future. 
 

1.3 Current models of IBD pathogenesis 

 

The molecular patho-physiology of IBD remains largely obscure. Experimental studies and genetic 

evidence suggest that chronic intestinal inflammation is triggered by various environmental factors 

in genetically susceptible individuals. During the last decade, several genome-wide linkage and 

association studies have revealed over 200 genetic polymorphisms associated with an increased 

susceptibility to CD and UC 40-45. (Figure 1.2) 

 

 
Figure 1.2 Mutations in genes implicated in the pathogenesis of IBD regulate various biological functions such 

as immunomodulation, mucosal barrier integrity and microbial homeostasis. (Taken from: Lees CW et al. Gut 

2011. 44) 

 

Major efforts have focused on investigating the role of genetic factors in IBD pathogenesis. A number 

of disease-predisposing genetic variants (i.e., Single Nucleotide Polymorphisms (SNPs)) have been 

identified, but these can, at best, explain up to 30% of IBD cases 46,47, which suggests that other 

factors make a substantial contribution to IBD pathogenesis. 

Genes that are implicated in the pathogenesis of IBD regulate various biological functions such as 

immunomodulation, mucosal barrier integrity and microbial homeostasis 48,49.  
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However, despite extensive research in the field of adult and paediatric IBD using increasingly 

sophisticated tools, our understanding of disease pathogenesis remains incomplete for the majority 

of cases. Hence, the most widely accepted general hypothesis to explain the development of IBD 

continues to include three main factors: genetic predisposition, environmental influences and the 

homeostasis between the intestinal microbiome and host immunity 50 (Figure 1.3). The complex 

interaction of these factors is ultimately considered to cause chronic relapsing inflammation of the 

intestinal mucosal lining and the well-described phenotypes.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Interaction of various factors contributing to chronic intestinal inflammation in a genetically 

susceptible host. (Taken from: Sartor BR, et al. Nature Clinical Practice Gastroenterology & Hepatology 

2006.50) 

 

In the absence of a major genetic factor, the environment has moved back into the focus of 

researchers as the possible main causative factor. Epigenetics can be defined as heritable changes 

to phenotype (e.g., gene expression) that are due to mechanisms other than changes to the 

underlying DNA sequence. These mechanisms operate at the interface between environmental 

stimuli and long-lasting molecular, cellular and even behavioural phenotypes that are acquired during 

periods of developmental plasticity 51,52. The study of epigenetic mechanisms in IBD aims to address 

questions currently unanswered about the processes mediating the effects of environmental factors 

on the intestinal mucosa. Unlike our genetic code, which remains stable throughout life, epigenetic 

profiles are influenced by exposure to environmental factors (e.g. smoke), diet or even behaviour. 

Nevertheless, as such environmentally induced epigenetic changes are passed on during cell 

division, they can ultimately determine a newly acquired phenotype in offspring 53,54.  
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Epigenetics could therefore provide the missing link in explaining clearly heritable complex, but non-

Mendelian, diseases such as IBD. To date, DNA methylation is amongst the best-studied of all 

epigenetic mechanisms and describes the enzymatic addition of a methyl group (CH3) to the fifth 

position of cytosine, forming 5-methylcytosine (5mC) 55. DNA methylation plays a role in regulating 

gene expression; in particular, it is thought to target regulation sites and make them inaccessible in 

direct or indirect ways 56. In mammals, cytosine methylation is not equally distributed across the 

genome but occurs mainly at CpG dinucleotides. The abbreviation CpG, standing for 5’-cytosine-

phosphate-guanin-3’, describes the linear sequence of a cytosine base followed by a guanine base, 

bound together by a phosphodiester bond. Overall, CpG dinucleotides are rare in the human genome 

but they are known to cluster together in so called CpG islands. CpG islands are often found in close 

proximity to the promoter region and the transcription start site of a gene and are mostly 

unmethylated 57,58. 

Aberrant DNA methylation patterns have been associated with numerous pathologies, including 

autoimmune, metabolic, and neurological disorders, as well as cancer 59-63. 

In support of the role played by epigenetic mechanisms, and DNA methylation in particular, in 

paediatric IBD, recent work has identified alterations in the DNA methylation profile of intestinal 

epithelial cells purified from children that are newly diagnosed with IBD, compared to those of control 

cells 64. Moreover, disease specific changes in DNA methylation and transcription patterns of the 

intestinal epithelial cells have been described in patients with CD and UC. These changes appear to 

be stable over time and correlate with disease outcome parameters 65. 

In conclusion, within a plausible model for disease pathogenesis in IBD, epigenetics may represent 

one of the major underlying mechanisms that mediate the effect of genetic predisposition, 

environmental triggers and the intestinal microbiome.  

 

1.4 T-cell subsets and their role in IBD pathogenesis 
 

T-cells play a central role in cell-mediated immunity. They are produced in the thymus where they 

mature from thymocytes. T-cells are distinguished from other lymphocytes by the presence of a T-

cell receptor (TCR) on their surface.  

Effector T-cells promote an active immediate response to a stimulus. The response involves helper 

T-cells, killer T-cells, and regulatory T-cells. At the opposite end of the spectrum, memory T-cells are 

longer lived to target future infections as necessary. 

Memory CD8+ T-cells that circulate in the blood and are present in lymphoid organs embody features 

of both naïve and effector cells (Figure 1.4). It is still debated whether memory T-cells develop from 

effector cells through a process of dedifferentiation or directly from naive cells 66. 

Previous studies show that when memory T-cells are generated after antigen exposure, the more 

activated T-cells become in response to an antigen (reflected in the “clonal burst” size), the more 
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memory T-cells are subsequently formed 67.  

Helper T-cells (CD4+) assist other processes, including differentiation of B-cells into plasma cells 

and activation of cytotoxic T-cells and macrophages. Helper T-cells are activated through 

presentation of a peptide antigen by MCH class II molecules, expressed on the surface of antigen-

presenting cells (APCs). Once activated, they secrete cytokines that mediate the active immune 

response.  

Cytotoxic T-cells (CD8+) destroy virus-infected cells and tumor cells, and are also implicated in 

transplant rejection. These cells operate by binding to antigens presented by MCH class I molecules. 

Memory T-cells include central memory T-cells (CD45+, CCR7+ and CD62L+), commonly found in 

the lymph-nodes and in the peripheral circulation, and effector memory T-cells (CD45+, CD44+, 

CCr7- and CD62L-) that lack of lymph node-homing receptors and are mainly found in the peripheral 

circulation and tissues. 

Regulatory T-cells are crucial for the maintenance of immunological tolerance, by terminating the T-

cell immune response toward the end of an immune reaction. They comprise two major classes, 

FOXP3+ and FOXP3-. 

Natural killer T-cells link the adaptive immune response to the innate immune system through 

recognition of antigens presented by CD1d and activation of functions related to both helper T-cells 

and cytotoxic T-cells. 

 

 
 
Figure 1.4 The differentiation of CD8+ T-cells and different CD8+ subsets. TN, naive T-cells; T SCM, stem 

cell memory T-cells; T CM, central memory T-cells; T EFF, effector T-cells; T EM, effector memory T-cells. 

(Taken from: Golubovskaya V, Wu L. Cancers 2016. 68) 
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Both CD4+ and CD8+ are known to play a role in the pathogenesis of IBD 69,70.  

Immune responses in the intestine are regulated in a way that allows protective immunity against 

pathogens, while limiting responses to dietary antigens and commensal gut flora 71. The gut-

associated lymphoid tissue acts as a “mucosal firewall” by preventing systemic dissemination of 

pathogens. Dendritic cells drive regulatory T-cell differentiation in response to dietary antigens and 

commensal bacteria. Although this process can be beneficial during homeostasis, recent evidence 

from animal studies suggests that tolerance to commensal-derived antigens may be lost during 

pathogen-induced epithelial damage and subsequent transient exposure to commensals, causing 

deranged responses to commensals and promoting inflammatory conditions, such as IBD 71. 

In addition to activated effector CD8+ T-cells being detectable in the mucosa of patients with IBD, 

several animal models 72,73 have identified in the destruction of intestinal epithelial cells by CD8+ T-

cells the primary event leading to the loss of barrier function and exposure to microbial antigens. 

Based on this evidence, it has been speculated that CD8+ T-cells may play an early role in triggering 

IBD whilst CD4+ T-cells would play a secondary role in the disease pathogenesis. 67 

Recently, using transcriptional signatures from CD8+ T-cells separated from patients with 

autoimmune conditions including systemic lupus erythematosus (SLE), vasculitis (AAV) and IBD, 

researchers were able to separate patients into different prognostic groups 67,74. These groups 

differed in gene expression within the IL-7 and TCR signaling pathways, including CD28 co-

stimulation and IL-2 signaling. These pathways are implicated in T-cell activation and the subsequent 

development of antigen-specific T-cell memory. Moreover, IL-7 signaling facilitates the survival and 

differentiation of effector cells into long-lived antigen-specific memory cells (through Bcl2 family-

mediated inhibition of the pro-apoptotic effects of Bim22) 67,74. 

This data stands in support of a role for CD8+ T-cells in determining the disease course of IBD. 
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1.5 Clinical presentation and diagnostic work-up 

 

The clinical presentation of childhood IBD is highly variable and symptoms can be subtle. However, 

there are a number of classical symptoms and, most importantly, some red flags that may indicate 

the presence of IBD in children and warrant further investigations.  

Symptoms of CD commonly include chronic diarrhoea (i.e. longer than 6 weeks), abdominal pain 

and/or weight loss. Unexplained anaemia and growth failure in children are red flags and therefore 

should be investigated further. Similarly, blood and/or mucus in the stool may be seen in up to 40-

50% of patients with CD and always requires further investigations 20. Perianal fistulas are present 

in 10% of patients at the time of diagnosis, and may be the presenting sign of CD 20.  

Extra-intestinal manifestations (EIMs) are seen in 10-20% of CD patients, and may even be present 

prior to the onset of gastrointestinal symptoms. Abnormalities of the musculoskeletal system, such 

as sacro-ileitis, ankylosing spondylitis, peripheral arthritis are the most frequent EIMs in CD. 

Classical symptoms of UC are bloody diarrhoea, tenesmus and abdominal pain 75,76. Nocturnal 

defaecation is also frequently reported. Systemic symptoms of malaise, anorexia, or fever are 

features of a severe presentation 22. EIMs in UC include arthropathy, episcleritis and erythema 

nodosum and may accompany the presentation in about 10% of cases 20. Another important EIM in 

patients with UC is primary sclerosing cholangitis (PSC). Hence, elevated liver enzymes combined 

with GI symptoms are highly indicative of UC and PSC 22.  

As outlined in the ESPGHAN revised Porto criteria 2, diagnosing IBD in children and adolescents 

now requires a combination of clinical evaluation and endoscopic, histological, radiological, and/or 

biochemical investigations 2,34,35,76-81. Upper and lower gastrointestinal endoscopies and histological 

examination are essential to assess the extent and activity of IBD 82. 

 

1.6 Treatment 

 

In the absence of a curative treatment, the overall aim of managing childhood IBD is to reduce 

symptoms, to optimise growth, and to maintain or improve quality of life, whilst minimising toxicity 

related to drugs over both the short and long term.  

Treating active inflammation in IBD involves two phases, i.e. induction and maintenance of 

remission. Current treatments available encompass three main areas: nutrition, medical options, and 

surgery. Exclusive enteral nutrition (EEN) with polymeric formulas is used as induction treatment, 

but drugs for IBD are considered as either induction therapy or maintenance treatment, with some 

drugs being used for both. Surgery is required to either manage complications or as a last resort in 

case of treatment-resistant inflammation.  
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As reliable predictors of response to treatment are currently lacking in clinical practice, two 

therapeutic approaches (i.e. “step-up” versus “top-down”) are being used, mainly based on disease 

presentation at diagnosis. However, response to treatments still remains unpredictable, hence there 

is a need to escalate or de-escalate therapies according to the disease activity and behaviour of 

individual patients. A “step-up” therapeutic approach consists of escalating initially with 

corticosteroids, then with immunomodulators, and finally with biological therapies only if a treatment-

refractory course evolves 74,75. (Figure 1.5) An alternative “top-down” strategy (i.e. starting with a 

combination of biologics and immunosuppressants and “de-escalating” if possible) aims to achieve 

higher remission rates, restore “mucosal healing”, and decrease the rate of surgeries and 

hospitalizations in children with particularly severe disease onset by preventing mucosal and 

transmural damage to the intestinal wall 76-85.  

Nowadays, an individualised approach according to the peculiarities of each patient’s disease 

behaviour remains the best way to optimise the treatment strategies available. In fact, although early 

aggressive therapy is supported by clinical trials, it needs to be balanced with safety concerns 

regarding the indiscriminate use of potent immunosuppressants 67. Over-treating patients destined 

to develop an indolent disease course might expose them to rare but potentially life-threatening side 

effects of such drugs, including opportunistic infections 86, demyelination 87, and malignancy 88. In 

addition, indiscriminate use of biologics upfront is extremely expensive 67. 

 

 

 
Figure 1.5 Treatment strategies for paediatric IBD. 5-ASA: 5-Aminosalicylates; 6-MP: 6-mercaptopurine. 

(Taken from: Aloi M, et al. Nat Rev Gastroenterol Hepatol 2014 89) 

 

With regards to paediatric CD, the most recent NICE guidelines suggest that a course of a 

conventional gluco-corticosteroid (e.g. oral prednisolone, i.v. methylprednisolone or hydrocortisone) 

should be offered as a first line treatment to induce remission in patients with a first presentation or 

a single inflammatory exacerbation of CD in a 12-month period 27.  

STEP-UP    
vs 

TOP-DOWN ¯ 
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EEN with polymeric formulas represents an equally effective alternative to conventional gluco-

corticosteroids for the induction of remission in children for whom there is concern about growth or 

side effects 90,91. EEN offers the advantage of improving the patient nutritional status as well as 

enabling the mucosa to heal at much the same rate as is achievable with corticosteroids 92-96. 

5-aminosalicylates (5-ASA) are used for induction treatment of mild to moderate UC and for 

maintenance of UC at any disease severity 75, whereas the role of these medications is currently 

unsupported for children with CD 27. Mesalazine and sulfasalazine are the 5-ASAs of choice.  

 

The main drugs currently used for maintenance treatment of paediatric IBD are thiopurines (i.e. 

azathioprine or mercaptopurine), 5-ASAs and biologics. Additionally, methotrexate, cyclosporine and 

tacrolimus are alternative options when first line treatment fails.  

Thiopurines are purine analogues used for the maintenance of disease remission in patients with 

CD and UC; they include the prodrug azathioprine (AZA) and the antimetabolite 6-mercaptopurine 

(6-MP) 97,98. These drugs are steroid sparing agents and are able to block the rapid proliferation of T 

and B lymphocytes involved in inflammatory processes, which results in immunosuppression 98,99. 

Thiopurines are also used effectively to maintain surgically-induced remission in CD 99. The use of 

thiopurines is limited by an extensive spectrum of adverse events in up to almost half of patients, 

particularly within the first 12 months of treatment. Adverse effects include myelotoxicity, 

hepatotoxicity and pancreatitis 40,98,100.  

Methotrexate (MTX), a dihydrofolate reductase inhibitor, has become one of the principal alternatives 

to thiopurines as a maintenance treatment 101,102 and is a first-line treatment option in patients who 

have concomitant inflammatory arthritis. Adverse events associated with MTX include flu-like 

symptoms, nausea and vomiting, transaminitis and, less frequently, myelosuppression, which may 

require an adjustment in dosage or drug withdrawal 103.  

Biologics are a relatively new class of drugs 104-106. The most frequently used for children are 

antibodies against TNF-alpha such as infliximab (IFX) or adalimumab (ADA). While IFX is licensed 

for use in children from 6 to 17 years of age, ADA is only approved for paediatric CD and is still off-

label for paediatric UC 34,75,107.  

One-year response and remission rates for IFX in luminal disease are reported as up to 90% and 

55%-60%, respectively 108-110. Repeated administration of IFX can lead to immunogenicity in some 

patients, with possible loss of efficacy and delayed-type hypersensitivity 111,112. A low proportion of 

children with CD (10%-25%) are primary anti-TNF non-responders, i.e. they fail to respond after a 

six-weeks induction course. More commonly, however, the formation of antibodies against the drug 

over time can result in a secondary loss of response. Concomitant treatment with either thiopurines 

or MTX has been shown to hinder this process 111. In anti-TNF antibody naive children, the one-year 

remission rate for ADA is 45%, and its efficacy has been documented in nearly two-thirds of patients 

for whom IFX was unsuccessful 113. 
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Anti-TNF agents are also used as a primary induction option for children with active perianal 

fistulising disease, in combination with targeted antibiotic and surgical intervention. 

With regards to the use of biologics for maintenance of remission in children with UC, IFX (approved 

by the Food and Drug Administration for children ≥ 6 years of age with moderately-to-severely active 

UC) should be considered for treatment of cases with persistently active, or steroid-dependent UC, 

uncontrolled by 5-ASA and thiopurines. IFX should also be considered for steroid-refractory (whether 

oral or intravenous) disease 75,114.  
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1.6.1 Surgical treatment 
 

The role of surgery in the management of paediatric IBD lies in treating complications as well as 

complementing the management of cases resistant to medical treatment.  

Overall, approximately 50-80% of patients with CD will undergo surgery during the course of their 

disease 34. The most common interventions include treatment of strictures causing symptoms of 

obstruction, or other complications such as fistula formation, perforation or failure of medical therapy. 

In patients with localised ileo-caecal CD, ileo-caecal resection is frequently performed as a useful 

surgical option to treat the isolated inflammation of this area.  

For patients with severe, treatment-resistant UC, colectomy (and formation of ileostomy) is still a last 

resort 75. Resecting the colon in patients with severe UC that is non-responsive to medical options 

represents a cure, as, by definition, UC only involves the large bowel. The main down side is the 

formation of an ileostomy which generally remains unreversed until adulthood. At this stage, ileo-

anal pouch or ileal pouch-anal anastomosis are the preferred methods of choice for re-joint and 

reversal of ileostomy. Due to the major advances in the field, a laparoscopic surgical approach can 

be used safely in children with low complication rates and superior cosmetic results 75. 

 

1.7 Natural history of paediatric IBD 

 
The natural history of paediatric IBD is characteristically unpredictable, but data available so far 

shows that 25–33% of IBD patients with a non-complicated form of the disease transition to a 

stricturing or internal and perianal penetrating disease after 5 years, i.e. one third of patients, if 

undertreated, will transition from a non-complicated to a complicated disease state if followed up for 

a sufficient time 115 – 122. 

In particular, a number of studies so far suggest a more severe disease phenotype and course in 

childhood onset IBD compared to adult patients. Vernier-Massouille G et al. described the 

complicated behaviour of CD in 29% of children at diagnosis and in 59% during the follow-up 123. 

Intestinal surgery is required in as many as 80% of children with CD, with more than 10% of them 

having permanent stoma formation 115-117. Post-surgical relapses occur in 50% of children with CD 

compared to 20-30% of adult patients after 5 years, with variability depending on disease location 
124-127. 

In UC, the cumulative rate of colectomy in children is 8% at 1 year, 15% at 3 years, and 20% at 5 

years following diagnosis 128. 

Whilst patients with CD have higher mortality rates with respect to the general population, this has 

not been observed for UC patients 128-131. 
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1.8 Disease prognostic biomarkers in IBD 
 

The behaviour of IBD varies unpredictably among patients 67 and increasing evidence suggests that 

early, risk-stratified treatment (i.e. specific to those who will develop a severe disease phenotype) is 

likely to improve long-term disease outcomes 132,133. 

The development of a reliable prognostic biomarker would enable the stratification of patients based 

on their predicted risk for a poor or benign prognosis, which would lead to personalised treatment. 

Patients destined to experience an aggressive form of the disease could receive appropriately robust 

intervention from the point of diagnosis, while those who will experience a more indolent disease 

course could be treated with more conservative therapeutic approaches with a lower risk of toxicity, 

as appropriate 67,134,135. 

 

Although the biomarker concept is old, so far very few useful parameters have been identified in IBD 
136-138. Whilst a number of candidate biomarkers for IBD have been explored, ranging from genetic 

predictors (SNP-based risk scoring system) 45,115,139-141, and biochemical tests (in isolation or 

combination) 142-148, to endoscopic, histological 138,147 and clinical parameters 83,148-153, none have 

made it into routine clinical practice due to limitations in sensitivity, specificity or practical feasibility. 

 

Recent paediatric literature has shown convincing results of a correlation between PUCAI score at 

3 months over diagnosis and long-term outcomes (including risk for colectomy) in children with UC 
148-150. Although the use of this predictor is recommended in clinical practice, it is only applicable to 

UC and it is not accessible at diagnosis as it is based on response to treatment after 3 months. 

However, it might be of limited help to severe children in whom progression to severe pancolitis 

requiring colectomy could be already irreversible at that stage. 

Faecal calprotectin is an example of a helpful tool for monitoring disease activity during the follow-

up, as it enables the early prediction of relapses and prompt treatment escalation. However, it does 

not provide an overall prediction of disease severity and cannot be used to stratify patients based 

on risk at the time of diagnosis 154.  

 

In summary, the main limitations in developing prognostic biomarkers so far have included failure to 

fulfil the classic traits of an ideal biomarker test (i.e. simple, accurate, easy to perform, minimally 

invasive, cheap, rapid and reproducible), low sensitivity, specificity and/or prognostic predictive 

values, lack of validation in independent cohorts, or inconsistent results when validation has been 

attempted. As a result, we are currently not in the position to advise children and parents at the point 

of diagnosis on disease outcomes, and hence are unable to propose a tailored, potentially more 

individualised treatment strategy. There is therefore a great need for prognostic biomarkers for the 

prediction of clinical outcomes and therapeutic effects in IBD.   
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1.8.1 CD8 T-cell gene expression signatures are promising prognostic biomarkers in adult 

IBD 

 
Recent progress in the field of prognostic biomarkers in autoimmune diseases has been made by 

McKinney et al. 74 They identified a common CD8 T-cell transcriptional signature in two unrelated, 

autoimmune diseases: systemic lupus erythematosus (SLE) and ANCA-associated vasculitis (AAV). 

This signature predicted disease prognosis in both conditions 74.  

Leading on from these findings, the group tested the potential value of CD8+ T-cell gene expression 

as a prognostic biomarker in adult onset IBD. Indeed, based on analyses of a large, prospectively 

recruited patient cohort, unsupervised clustering of IBD patient-derived CD8+ T-cell gene expression 

profiles separated patients into two distinct groups. Importantly, these groups differed significantly in 

their disease outcome as evaluated by the number of treatment escalations required 67. Furthermore, 

the specific signature, i.e. set of genes that are differentially expressed between the two groups, was 

found to overlap with genes forming the prognostic signature in SLE and AAV (Figure 1.6 A-C). 

Together, these findings suggest the presence of a common CD8+ T-cell gene expression signature, 

which can be used to predict disease outcome in SLE, AAV and adult-onset IBD. 

With the aim of identifying the potential underlying biological mechanisms at play, the group went on 

to demonstrate that CD8+ T-cell exhaustion strongly correlates with a better prognosis in these 

conditions. These findings were supported by demonstrating a major overlap of the disease 

prognostic CD8+ T-cell expression signatures with an “exhaustion signature” as well as the ability of 

the latter to divide patients according to the disease outcome. In addition, a more recent publication 

by McKinney et al. focused on the process of T-cell exhaustion during chronic infection, a mechanism 

that inhibits the immune response and facilitates viral persistence 155 (Figure 1.6 D-F). 
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Figure 1.6 Summary of the main findings from studies on adult prognostic IBD signature and T-cell exhaustion 

signature (A., B. and C. are taken from Lee, J.C., et al. The Journal of Clinical Investigation 2011 67. D. E. and 

F. are taken from McKinney, E.F., et al. Nature 2015 155). A. shows CD8+ gene expression Consensus 

Clustering plots of adult CD and UC patients showing detection of subgroups IBD1 and IBD2. B. gives a Venn 

diagram illustrating the overlap between the gene signatures that distinguish the respective subgroups in CD, 

UC, and SLE/AAV. The statistical significance of each overlap was determined using a hypergeometric test. 

In C. survival analysis shows that the groups identified (IBD 1 and IBD2) have significantly different disease 

courses. In D., a heatmap shows hierarchical clustering of CD8+ T cell that are “exhausted” (blue) and “non-

exhausted” (red) in IBD patient subgroups defined from the primary division of the cluster dendrogram. In E., 

Kaplan-Meier curves show censored flare-free survival for the adult IBD cohort. In F. scatterplots show 

normalised flare-rate against duration of follow-up for IBD patient subgroups. 
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1.9 Hypothesis and aims 
 
We hypothesise that CD8+ T-cell gene expression can predict disease outcome in children that are 

newly diagnosed with IBD. Furthermore, we speculate that CD8+ T-cell DNA methylation may 

provide the epigenetic underpinning of prognostic gene expression signatures. 

 

The specific aims of our study are:  

 

- To apply the prognostic CD8+ T-cell signature and the T-cell exhaustion signature identified in adult 

patients to a cohort of children that are newly diagnosed with IBD and test their ability to 

differentiate patients based on the disease outcome; 

- To investigate the existence of paediatric-specific prognostic CD8+ T-cell expression signatures; 

- To investigate the use of CD8+ T-cell DNA methylation as an alternative prognostic biomarker, 

and/or elucidate a potential epigenetic signature that underlies variations in gene expression.  
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2.1 Patient cohorts 
 
This study was undertaken at Cambridge University Hospitals – NHS Foundation Trust in the 

Department of Paediatric Gastroenterology, Hepatology and Nutrition. 112 treatment-naïve, 

Caucasian patients aged between 5 and 16 were recruited prospectively at the point of IBD diagnosis 

between March 2013 and March 2016. Diagnosis was made according to current guidelines 

(ESPGHAN Porto criteria 2) and included upper and lower gastrointestinal endoscopies and 

histological examination. A sample of peripheral blood for the purification of CD8 + T lymphocytes 

was taken on the day of diagnosis, i.e. before any treatments were started. Exclusion criteria 

included any patient with gastrointestinal and/or extra-intestinal diseases other than IBD, and any 

controls. 

Patients were recruited for this project under an encompassing study (Genomics and Epigenetics in 

Paediatric Gastrointestinal and Immune Mediated Disease – GEPaedGI) which received ethics 

approval from the Central Cambridge Research Ethics Committee (REC 12/EE/0482) in November 

2012 for the prospective enrolment of paediatric patients undergoing endoscopic investigation at 

Addenbrooke’s Hospital, Cambridge, to support a clinical diagnosis. All investigations were carried 

out according to the Declaration of Helsinki and Good Clinical Practice Guidelines. 

The final number of patients (samples) analysed was established through data pre-processing 

(bioinformatic analysis). Following the removal of samples that failed quality control, 107 samples 

remained and were included in the study (67 CD and 40 UC). 

Table 2.1 illustrates the patient population demographics as well as the number of samples analysed 

at each step. Information on clinical outcomes including the number of treatment escalations, the 

use of biologics and the number of surgical interventions in the paediatric cohorts analysed is also 

included.  
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Paediatric 
population 

recruited (CD8+ 
T lymphocytes 

purified) 

Gender Diagnosis Age at 
diagnosis 

(years) 

Main clinical 
outcomes 

n (%) 

Number of patients 
removed from the 

analysis 

Initial population  
n=112 

M 71 
F 41 

CD and 
IBD-U CD-

like 71 
 

UC and 
IBD-U UC-

like 41 

Average 
12.4 ±   
SD 2.4 

 
Range 5-16 

 
 

  

Unsupervised 
analysis n=107 

 
 
 

M 67 
F 40 

CD and 
IBD-U CD-

like 67 
 

UC and 
IBD-U UC-

like 40 

Average 
12.41 ±   
SD 2.44 

 
Range 5-16 
 

0 treat escal 
25 (23%) 

1 treat escal 
34 (32%) 

2 treat escal  
20 (19%) 

3 treat escal 
20 (19%) 

4 treat escal  
8 (7%) 

Biologics 
39 (36%) 
Surgery 
6 (5.6%) 

Outliers as per QC 
report: n=4 

 
Incomplete clinical 

information as 
patient lost in follow-

up: n=1 

WGCNA analysis 
n=98 

 
 

M 60 
F 38 

CD and 
IBD-U CD-

like 60 
 

UC and 
IBD-U UC-

like 38 

Average 
12.33 ±   

SD 2.511 
 

Range 5-15 
 

0 treat escal 
23 (24%) 

1 treat escal 
32 (33%) 

2 treat escal  
18 (18%) 

3 treat escal  
18 (18%) 

4 treat escal  
7 (7%) 

Biologics 
30 (31%) 
Surgery 
3 (3%) 

Patients treated with 
biologics at time 0, 
i.e. within 8 weeks 
from diagnosis: n=9 

 
Table 2.1. Population flow-chart, demographics and summary of the main disease outcomes. CD: Crohn’s 

disease; SD: standard deviation; UC: ulcerative colitis; F: female; IBD-U: IBD unclassified; M: male; QC: quality 

control; treat escal: number of treatment escalations during follow-up; WGCNA: weighted gene co-expression 

network analysis. 
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2.2 Clinical information 
 

All patients were followed for 1.5 years in our unit as part of their routine clinical care, and extensive 

clinical data including parameters at diagnosis (e.g. presence of diarrhoea, rectal bleeding, weight 

loss, EIMs, perianal disease, disease activity scores) and information on disease course and 

outcomes (e.g. number of treatment escalations, use of biologics, number of unplanned inpatient 

days, IBD related surgical intervention) was collected by the same researcher from the hospital 

patient electronic database (EPIC).  

Appendix 1 on page 174 summarises the definitions, measurement units and normal values of each 

clinical item collected; Appendix 2 on page 165 shows the complete clinical database that was 

collected and used. 

Appendices 3 (page 200) and 4 (page 205) show the IBD activity scores at diagnosis: Paediatric 

Crohn's Disease Activity Index (PCDAI) and Paediatric Ulcerative Colitis Activity Index (PUCAI) 34-

35.  

Appendix 5 on page 207 outlines the classification of IBD by disease location according to the Paris 

classification 13. 

 

2.2.1 Severity score 
 

In order to take into account that a severe disease course is reflected in a number of individual 

disease outcome measures, a specific disease severity score was developed by considering the key 

parameters that are strong indicators of disease outcome (Figure 2.1). This summary score was 

used as an additional outcome measure to correlate with CD8+ T-cell specific molecular signatures. 

 

 
 

Figure 2.1 Severity scores for CD and UC used to provide an overall estimate of disease course severity and 

to identify predicting modules (signatures) through WGCNA analysis. IFX: Infliximab. 
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2.3 Collection of blood samples and purification of CD8 + T-cells 
 

Blood samples were obtained at diagnosis from all patients during the endoscopic procedure while 

under general anaesthetic (Table 2.2). Whole blood samples were collected in Falcon tubes with 4% 

sodium citrate. Samples were immediately sent to the lab for processing as per cell separation 

protocol 156 (Appendix 3 on page 200). 

 

Age of the 
patient 

Volume of blood 
(ml) 

Volume of 4% sodium citrate (1ml/10ml of blood) 

5-10 years 10 1 

10-16 years 25 2.5 

 
Table 2.2 Volume of blood collected according to patient age.  
 
Samples were diluted in a 1:2 ratio with MACS rinsing buffer. Peripheral blood mononuclear cells 

(PBMCs) and neutrophils were isolated by centrifugation over Ficoll (Histopaque 1077) (density 

gradient separation). Following the removal of the plasma, the PBMC interface was transferred to a 

fresh Falcon tube and after several wash and centrifugation steps, CD8+ and CD8- T lymphocytes 

were separated through anti CD8 microbeads and magnetic sorting (auto-MACS). CD8+ T 

lymphocyte samples were stored at -80°C until required for further processing. 

See Appendix 3 on page 200 for further details on the CD8+ T-cell separation protocol. 

 

2.4 Purity assessment via Fluorescence Activated Cell Sorting (FACS)  
 

Flow cytometry was performed on selected samples following CD8+ T cell isolation using BD 

Fortessa to determine the level of purity. The CD3-PE and CD8-APC antibodies were used (BD 

Pharmingen), along with the Zombie Aqua Fixable Viability Kit (Biolegend). 

A total of 8 randomly selected samples were subjected to flow cytometry analysis, and the average 

cell purity for CD8+ T-cells was 84% (Table 2.3). 

Figure 2.2 demonstrates the process of flow cytometry in one example patient sample through a 

series of plots. In A., analysis was conducted on the PBMC sample (pre-purification protocol) to 

visualise the data and set gates, with each dot on the plot representing a cell. In B. and C., the same 

gates were applied to the positive and negative fractions of T-cells, respectively. The plots were 

further gated to analyse single cells and avoid doublets and debris etc. Cells were also stained with 

Aqua Zombie to distinguish between the live and dead cells. The final image within Figures A. B. 

and C. displays the live single cells only and the gate surrounds those samples that are dual stained 

for CD3 and CD8+ T-cells.  
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For this particular sample, out of a total of 10,000 events, the CD8+ T-cell sample purity came out 

as 93.3% within the gated region of all dual stained (CD3 and CD8) live single cells, or 82.1% when 

taking into account the total cell population. The series of plots in Figure C. for the negative fraction 

(CD8-) confirms that the CD8+ T-cells have been eluted in the positive fraction, as very few appear 

in the negative plots.  

Together, this data confirms the successful isolation of CD8+ T-cells and a level of purity that was in 

the region of that reported in previous work published on adult IBD patients (Lee et al, 2011 67). 

 
Sample number % cell purity (CD8+ T-cells) 

1 75.7 

2 86.3 

3 89.3 

4 90.9 

5 93.8 

6 80.5 

7 80.7 

8 72.5 

Average cell purity 84% 

 
Table 2.3 Percentage of cell purity for CD8+ T cells across 8 samples subjected to flow cytometry. 
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A.                                                                B. 

           
C. 

 

 
 
Figure 2.2 Flow cytometry (FACS analysis) for a single patient sample. A. shows the plots for PBMC (pre-

purification protocol). B. and C. demonstrate the analysis of the positive and negative CD8 fractions 

respectively. 
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2.5 RNA and DNA Extraction 
 
DNA and RNA were extracted simultaneously from the CD8+ samples using AllPrep DNA/RNA 

MiniKit (Qiagen, UK). Quantification and purity of RNA and DNA was evaluated using a Nanodrop 

1000 spectrophotometer (Thermo Scientific, UK) and a Qubit. A ratio absorbance at 260nm/280nm 

of 1.8 for DNA was considered to be pure. 

The RNA yield was in the region of 1-4 μg and hence was sufficient for genome-wide downstream 

analysis.  

 

2.6 DNA bisulfite-conversion 
 
Prior to genome-wide DNA methylation profiling, DNA samples were bisulfite-converted using Zymo 

DNA methylation Gold kit (Zymo Research).  

DNA bisulfite-conversion consists in treating DNA with sodium bisulfite, so that unmethylated 

cytosine is converted to uracil by deamination, whereas methylated cytosine remains unchanged. 

Uracil is then amplified as thymidine. One limitation of this technic is that 5’ hydroxymethylation 

cannot be distinguished from 5’ methylation. 

The conversion reagent supplied was added to the DNA samples (500 ng). Subsequently, the 

samples were heated following 4 main steps as per manufacturer’s protocol (98^C for 10 min; 53^C 

for 30 min; 53^C for 6 min; 37^C for 30 min; steps 3 and 4 were repeated 8 times). Following, the 

samples were cooled down and stored at 4^C. Finally, the converted DNA was purified from the mix 

as per kit protocol, it was diluted in water and stored at -20^C. 

 

2.7 Microarray analysis 

Microarray analysis in this study was used to generate genome-wide transcriptional and methylation 

profiles. 

Gene expression was analysed using Affymetrix Human Gene ST 2.0 Array (Affymetrix UK Ltd, High 

Wycombe, UK), which covers 53,617 probes. 

Genome-wide DNA methylation was profiled using bisulfite-converted DNA on the EPIC BeadChip 

platforms (Illumina, Cambridge, UK). EPIC methylation array provides a quantitative measure for 

DNA methylation at > 850,000 single CpG sites across the genome. 
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2.7.1 Preparation of samples for microarray analysis 

As a first preparation step for gene expression microarray analysis, RNA samples were bioanalysed 

using Agilent 2100 Bioanalyser System. The kit contains RNA chips with an interconnected set of 

microchannels that is used for separation of nucleic acid fragments based on their size as they are 

driven through it electrophoretically. 

Next, the samples were prepared for hybridization onto Affymetrix Human Gene ST 2.0 microarrays 

by using the Ambion WT Expression Kit, according to the manufacturer’s instructions.  

In brief, first-strand and second-strand of cDNA were synthetized. Antisense cRNA was then 

produced by in-vitro transcription of the second strand cDNA template using T7RNA polymerase. 

Subsequently, the cRNA was then stabilized by purification aimed to remove the enzymes, salts, 

inorganic phosphates and unincorporated nucleotides. Sense-strand cDNA was then synthesized 

by reverse transcription of cRNA, using random primers, followed by hydrolysis using RNase H which 

degrades the cRNA template leaving single-stranded cDNA. 

Finally, the second-strand cDNA was purified to prepare for fragmentation and labeling. 

2.8 Bioinformatic analysis 

Bioinformatic analyses were performed by importing raw data into the statistical software “R”, 

followed by data analysis using BioConductor packages. 

 

Patients were initially analysed altogether (i.e. all IBD, n=107) and subsequently grouped by type of 

IBD (i.e. CD (n=67) and UC (n=40)). 

 

The following sub-sections provide information on the methods used for bioinformatic data analysis 

in this project. 
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2.8.1 Data pre-processing: normalisation, quality control and batch correction 
 
Quantile normalisation was performed using BioConductor package “affy” (“rma” function). Package 

“arrayQualityMetrics” was then applied to assess the quality of the normalised gene expression 

dataset, to identify outliers and proceed to their removal prior to subsequent data analysis. 

As the presence of a batch effect was noted, batch correction was performed through the “Combat” 

function (“sva” package). An adjustment for gender and type of diagnosis (i.e. CD vs UC) was also 

performed alongside batch correction, by adding these variables as co-variates. 

2.8.2 Gene filter  

The “genefilter” package was used to subset 50% of the probes (genes) with more variation in gene 

expression (var.cut-off: 0.5) from the microarray expression dataset.  

A selection of 20% of the probes (genes) with more variation in methylation (var.cut-off: 0.8) was 

used for the array methylation dataset. 

2.8.3 Hierarchical Clustering 
 
This methodology (BioConductor function “hclust”) was used to determine whether the data was 

organised in clusters, i.e. whether a substructure could be detected. In the context of this study, 

clusters are groups of samples with similar gene expression profiles. The main limitation of this 

method is that it doesn’t provide with a measure of the strength of the clustering (i.e. there is no p-

value associated to the clusters detected). 
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2.8.4 Consensus Clustering 
 

Consensus Clustering is a clustering method that indicates whether stable and reproducible clusters 

(i.e. groups) are present across a dataset 157. This analysis was performed through BioConductor 

package “ConsensusClusterPlus”. 

 

This method clusters fractions of the data and provides a consensus output, indicating whether 

stable/reproducible subgroups are present. K indicates the specified cluster counts, i.e. the number 

and membership of possible clusters within a dataset. 

The consensus matrix is summarized in several graphical displays that enable a user to decide upon 

a reasonable cluster number and membership (one example on Fig. 3.1, page 60). The graphics 

provided are heatmaps of the consensus matrices for the selected k (e.g. 2, 3, 4, 5, 6 etc.). The 

consensus matrices have items values range from 0 (never clustered together) to 1 (always clustered 

together) marked by white to dark blue.  

The consensus CDF plot shows the cumulative distribution functions of the consensus matrix for 

each k. This allows a user to determine at what number of clusters, k, the CDF reaches an 

approximate maximum, thus consensus and cluster confidence is at a maximum at this k (one 

example on Fig. 3.1, page 60). 

The Delta area graphic shows the relative change in area under the CDF curve comparing k and k-

1 (one example on Fig. 3.1, page 60). This plot allows a user to determine the relative increase in 

consensus and determine k at which there is no appreciable increase. 

Although superior to hierarchical clustering in detecting the best clustering option, Consensus 

Clustering also does not provide with a p-value expressing the strength of the clustering detected. 

Hence, we also resorted to the SigClust method described below in order to assess the significance 

of the clusters identified. 

2.8.5 SigClust Clustering 

This method tests the reliability of the clusters identified through the above methods, by using the 2-

means (k = 2) clustering index as a statistic. It assesses the significance of clustering by simulation 

from a single null Gaussian distribution. Null Gaussian parameters are estimated from the data 158.  

The null hypothesis of SigClust is that the data are from a single Gaussian distribution. The SigClust 

method uses a test statistic called the cluster index (CI) which is defined to be the sum of within-

class sums of squares about the mean divided by the total sum of squares about the overall mean.  
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SigClust is superior to the alternative clustering methods described above as it assesses the 

significance of a given clustering by calculating an appropriate p-value. 

2.8.6 Differential Gene Expression Analysis and Annotation 

 
Differential gene expression analysis (DGEA) was used to identify genes that were differentially 

expressed between groups of patients identified through Consensus Clustering. The Bioconductor 

package “Limma” was used. The threshold for the Bonferroni Correction was set at a p-value of 0.05. 

Annotation of differentially expressed genes was performed through packages “Annotate” and 

“hugene20sttranscriptcluster”. 

 
2.8.7 Gene Set Enrichment Analysis  
 
In our experiment, mRNA expression profiles were generated for thousands of genes from a 

collection of samples, which were then categorised into two groups, based on unsupervised 

clustering (Consensus Clustering).  

Gene Set Enrichment Analysis (GSEA) was used to detect whether significant differentially 

expressed genes between groups identified through Consensus Clustering were coordinately found 

within specific cellular pathways, which could elucidate aspects of the underlying biology.  

 
2.8.8 Weighted Gene Co-expression Network Analysis (WGCNA) 
 
This analysis investigates correlations between gene expression profiles and clinical information, 

including disease outcomes 159,160. BioConductor package “WGCNA” was used. 

Clinical information was collected as a “.csv” file, as shown in Appendix 2 on page 176.  

The general concept of WGCNA is the clustering of data points into modules to reduce the 

dimensions of the dataset. In the context of this study, modules are groups of genes with similar 

gene expression or similar methylation profile. Using modules relieves the necessity of multiple 

testing as the number of tests performed is not based on the size of the dataset, but rather on the 

number of modules and the clinical parameters.  

By using WGCNA, the data is clustered in modules that are then matched with clinical variables (as 

opposed to identifying clusters of samples/patients and comparing these groups for specific clinical 

outcomes with survival analysis).  

Significant correlations (positive or negative) between modules and clinical outcomes, allow for the 

identification of potential prognostic signatures of interest for those specific outcomes. 
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2.8.9 Survival Analysis 

Censored Kaplan-Meier survival curves for events including treatment escalations, use of biologics 

and surgery were created using the function “survfit” from CRAN package “survival”, based on a 

tabulation of the number at risk and the number of events as recorded in our clinical database.  

The significance of any split observed in the Kaplan Meier plots was checked through the “coxph” 

function, which uses a Cox proportional hazards regression model. The function “summary.coxph” 

returns a summary of a fitted coxph model, displaying p-values based on a likelihood ratio, Wald test 

and score (logrank) test. 
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CHAPTER 3 
_________________________________ 

Testing the predictive value of an adult prognostic  

CD8+ T-cell and T-cell exhaustion signature  

on a paediatric patient cohort 
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3.1 Introduction 

 

Prognostic CD8 T-cell transcriptional signatures have been identified in adult autoimmune diseases 

including systemic lupus erythematosus (SLE), ANCA-associated vasculitis (AAV) and IBD by 

researchers from the Cambridge Department of Medicine 74. In particular, they identified a specific 

gene expression signature in CD8+ T-cells isolated from adult patients with IBD, which is able to 

cluster them in subgroups with different disease course and outcomes 67. In addition, a more recent 

publication from their research group focused on the process of T-cell exhaustion during chronic 

infection, a mechanism that associates with poor clearance of chronic viral infection, but conversely 

predicts better prognosis in multiple autoimmune diseases 155.  

In the first part of this thesis, we aimed to test whether the CD8 signature and the T-cell exhaustion 

signature identified as prognostic in previous studies on adult patients with IBD (Lee JC et al. 67 and 

McKinney E et al. 155) would also be able to distinguish paediatric IBD patients based on their disease 

severity. 

Our first goal was therefore to test the prognostic power of signatures available from previous studies 

in adult patients with IBD, on a prospective paediatric cohort, for the first time. 

 

3.2 Materials and methods 

 

Two alternative and complementary methods were used to address the question above: 

unsupervised clustering analysis and WGCNA. 

In the first instance, annotated gene lists corresponding to the adult prognostic signatures were used 

to filter out the matching probes from the paediatric dataset. BioConductor function “subset” was 

applied and subsetting was based on gene “entrezID”. This provided a submatrix of the paediatric 

data, only including probes related to the adult signatures of interest, and their expression levels 

across the paediatric cohort. 

Unsupervised clustering analysis (Consensus Clustering) allowed identification of reliable subgroups 

of patients, based on the gene expression profiles of this selection of probes across the dataset. 

Survival analysis (Kaplan-Meier) was then performed to compare the groups above for main disease 

prognostic outcomes including number of treatment escalations, treatment with biologics and 

surgical intervention. 

As a second step, WGCNA was performed to identify modules (i.e. groups of gene with similar gene 

expression levels) correlating with disease outcomes of interest.  



 58 

The adult study 67 was published in 2011 and findings were mainly based on unsupervised clustering 

analysis and GSEA. WGCNA was not applied to the data in that study. We resorted to WGCNA in 

our paediatric study as an improved methodology compared to clustering analysis.  

In order to compare the paediatric and the adult data, we first ran WGCNA in the adult dataset to 

identify the modules corresponding to the adult prognostic signature, i.e. modules correlating to 

prognostic groups 1 (severe) and 2 (mild) based on number of treatment escalations. 

We then applied these modules to the paediatric data to test whether they would still show a 

correlation with disease outcomes in the paediatric cohort. More specifically, probes in the modules 

corresponding to disease severity in the adult population were first subset from the paediatric data. 

Subsequently, WGCNA was run for this selection of the paediatric data and correlations between 

modules and specific outcomes (number of treatment escalations, use of biologics, surgical 

intervention and severity score) were investigated. 

Children who were treated with biologics right at diagnosis (e.g. because of perianal disease) were 

removed from WGCNA; in fact, outcomes like “treatment with biologics” and “number of treatment 

escalations” would not have been comparable with the majority of children who received a strict step-

up treatment (i.e. escalation to biologics only after failing conventional immune-suppressants). 

Therefore, as shown in Table 2.1 (page 44), the number of patients included in the WGCNA analysis 

was 98 (60 CD and 38 UC). 

The same protocol was used to analyse all of the paediatric samples together (i.e. paediatric IBD 

cohort) as well as subgroups by type of IBD diagnosis (i.e. paediatric CD cohort and paediatric UC 

cohort). 
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3.3 RESULTS 

3.3.1 Testing the adult CD8 prognostic signature on paediatric IBD: unsupervised analysis 

In the first instance, we tested whether the adult prognostic signature identified in the study by Lee 

JC at al. 67 could also be applied to the paediatric data and whether it would identify groups of children 

with different disease course and severity. 

First, we filtered out of the paediatric data the probes corresponding to the adult prognostic signature, 

and ran Consensus Clustering analysis. Clusters based on gene expression profiles of this selection 

of the paediatric data (i.e. adult prognostic signature applied to the paediatric IBD cohort (n=107)) 

were identified as shown in Figure 3.1.  

At this stage, we focused on whether the groups identified through Consensus Clustering (Figure 

3.1C k5: group 1 (n=95) vs groups 2+3+4+5 (n=12), renamed as group 2) would differ in respect to 

their disease course and outcomes. 

Survival analysis did not identify a significant split between the groups in terms of treatment 

escalations, use of biologics and surgical intervention during a follow-up of 1.5 years (Kaplan Meier 

curves on Figure 3.2). 

In summary, applying the adult signature to the paediatric data did not generate any significant split 

in clinical outcomes.  
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Figure 3.1 Consensus Clustering plots of a selection of the paediatric data (paediatric IBD cohort, n=107) 

based on the CD8 prognostic signature identified in adult IBD 67. In A. Consensus Cumulative Distribution 

Function (CDF) shows at what number of clusters (k) consensus and cluster confidence reach a maximum. In 

B. Delta area plot shows the relative change in area under the CDF curve, i.e. at which k there is no further 

appreciable increase. K5 is identified as the strongest clustering split. In C. clusters are shown as dendrogram 

(top), colour bar, and gene expression heatmap. 
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A.                                                                         B. 

 
C.                                                                                   D. 

   
E.                                                                                   F. 

    
 

Figure 3.2. Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=95) and group 2 

(n=12) identified through Consensus Clustering limited to genes in the adult CD8 prognostic signature (Lee 

JC et al. 67) (Figure 3.1C). Patients in the two groups are compared for the following outcomes: A) first 

treatment escalation; B) second treatment escalation; C) third treatment escalation; D) fourth treatment 

escalation; E) use of biologics; F) surgical intervention. 
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3.3.2 Testing the adult CD8 prognostic signature on paediatric IBD: WGCNA 

 

In order to address whether the adult CD8 prognostic signature would identify groups of children with 

different disease outcome, we first ran WGCNA on the adult data 67 and identified modules that 

correlated strongly with disease severity in the adult cohort, i.e. adult group IBD1 (severe) vs adult 

group IBD2 (mild) based on number of treatment escalations (More details on this step are provided 

in the Materials and Methods part on page 53). 

Module-trait relationships from WGCNA analysis of the adult data is shown in Figure 3.3, where a 

selection of modules strongly correlated with the clinical variable “Group” (i.e. adult prognostic 

groups IBD1 (severe) vs IBD2 (mild)) is highlighted. 

At this stage, the top modules identified above were applied to the paediatric data. Probes included 

in these modules were filtered out of the paediatric dataset and modules were matched against 

clinical outcomes including use of biologics, surgical intervention, number of relapses, number of 

unplanned inpatient days and severity score. 

As shown in Figure 3.4 (top positively correlated modules in the adult dataset), and in Figure 3.5 (top 

negatively correlated modules in the adult dataset), there was no significant correlation (i.e. 

correlation index < 0.3) between modules and clinical outcomes in the paediatric dataset. 

Together, these results suggest that the prognostic CD8+ T-cell gene expression signatures derived 

from an adult cohort of IBD patients are unable to differentiate children suffering from IBD at the 

point of diagnosis when applied to their CD8+ T-cells. 
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Figure 3.3 WGCNA. Module-trait relationships in the adult dataset (Lee JC et al. 67) (n=67) showing modules 

(colour bars on the y axis) and clinical variables (x axis) including “Group” (i.e. different prognostic groups IBD1 

(severe) vs IBD2 (mild) based on number of treatment escalations during the follow-up). The figures in the plot 

refer to correlation index and p-value (in brackets). A selection of the modules highlighted correlates 

significantly with “Group” either directly (in red) or inversely (in blue). 
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Figure 3.4 WGCNA. Module-trait relationships in the paediatric dataset (paediatric IBD cohort, n=98). 

Significant prognostic signatures from the adult study 67 (i.e. top modules directly correlated to the outcome 

“number of treatment escalations”) were applied to the paediatric dataset and plotted against clinical outcomes. 

The plot shows modules (colour bars on the y axis) and clinical variables (x axis) including number of relapses, 

use of biologics, surgical intervention and severity score. The figures in the plot refer to correlation index and 

p-value (in brackets).  

 
Figure 3.5 WGCNA. Module-trait relationships in the paediatric dataset (paediatric IBD cohort, n=98). 

Significant prognostic signatures from the adult study  67 (i.e. top modules inversely correlated with the outcome 

“number of treatment escalations”) were applied to the paediatric dataset and plotted against clinical outcomes. 

The plot shows modules (colour bars on the y axis) and clinical variables (x axis) including number of relapses, 

use of biologics, surgical intervention and severity score. The figures in the plot refer to correlation index and 

p-value (in brackets).  
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3.3.3 Testing the T-cell exhaustion signature on the paediatric IBD cohort 

 

We investigated whether the T-cell exhaustion signature, identified in adults as predictive towards a 

severe course of autoimmune diseases (including IBD) 155, would also play a role in paediatric IBD 

and whether it may serve as a prognostic biomarker. 

Genes (probes) related to the T-cell exhaustion signature were filtered out from the paediatric IBD 

dataset (n=107) in order to look for presence of clusters based on the gene expression profiles in 

this selection (Figure 3.6). The heatmap on figure 3.6 identifies two groups of patients (dendrogram 

on top), although no clear difference was detected in their gene expression profiles. 

We performed survival analysis to test whether the groups identified by applying the T-cell 

exhaustion signature to the paediatric data (Figure 3.6) would differ in respect to their disease course 

and outcomes (Kaplan Meier curves shown in Figure 3.7). The survival analysis did not identify any 

significant split between these groups with regard to treatment escalations, use of biologics and 

surgical intervention (Figure 3.7). 
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Figure 3.6 Heatmap showing gene expression profiles of the paediatric IBD cohort (n=107) for a selection of 

probes included in the T-cell exhaustion signature identified in adult autoimmune diseases 155. On the y axis, 

the exhaustion signature is represented as a dendrogram (left) and it is colour coded for up-regulated and 

down-regulated exhaustion genes as a list. On the x axes the paediatric patients (paediatric IBD cohort, n=107) 

are shown as a dendrogram tree (top). Colour bars on the top of the chart display gender and type of diagnosis 

(i.e. CD vs UC) for each patient, as well as the unsupervised Consensus Clustering groups. 
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A)                                                                    B)             

                
C)                                                                               D) 

                    
E)                                                                                 F)       

                

 

Figure 3.7 Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=80) and group 2 

(n=27) identified in Figure 3.6. Patients in the two groups are compared for the following outcomes: A) first 

treatment escalation; B) second treatment escalation; C) third treatment escalation; D) fourth treatment 

escalation; E) use of biologics; F) surgical intervention. 
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At this stage, we moved on to split our paediatric cohort (n=107) by type of diagnosis, in order to 

analyse CD (n=67) and UC (n=40) separately, in consideration of the fact that clinical outcomes and 

indications to treatments including use of biologics and surgical intervention may differ according to 

the specific type of IBD. Nevertheless, separate analyses of CD and UC paediatric cohorts produced 

similar findings. No split in disease outcomes including number of treatment escalations, use of 

biologics and surgery was observed by applying the adult CD8 prognostic signature 67 or the T-cell 

exhaustion signature 155. (Figure 3.8). 

 

 

 
 

Figure 3.8 Heatmaps showing gene expression profiles of the paediatric CD (n=67) and UC (n=40) cohorts 

for a selection of probes included in the T-cell exhaustion signature identified in adult autoimmune diseases 
155. On the y axis, the exhaustion signature is represented as a dendrogram (left) and it is colour coded for up-

regulated and down-regulated exhaustion genes as a list. On the x axes the paediatric patients are shown as 

a dendrogram tree (top). Colour bars on the top of the chart display gender and type of diagnosis for each 

patient, as well as the unsupervised Consensus Clustering groups. 
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3.3.4 Distinct differences in disease behaviour of children diagnosed with IBD compared to 

adults. 

In light of our findings so far, we speculated whether the inability of an adult derived expression 

signature to predict disease outcome in children could be related to differences in phenotype 

between adult and paediatric onset IBD. We therefore compared the two cohorts based on 

overlapping clinical outcome parameters that were available for both patient groups (i.e. number of 

treatment escalations). 

Indeed, as shown in Figure 3.9 (and reported in Table 2.1, on page 44), in the paediatric cohort the 

number of treatment escalations was significantly higher than in the adult population, suggesting that 

children suffer an overall worse disease outcome and hence could display a “severe” CD8+ 

expression signature. 

 

 
 

Figure 3.9 Comparison of clinical outcome “number of treatment escalations” between the paediatric cohort 

(box plot on the right) and the adult data available from the study by Lee JC et al. 67; Ad_IBD1: Adult poor 

prognosis group (n=25), Ad_IBD2: Adult good prognosis group (n=42); Paed_IBD: Paediatric cohort altogether 

(n=107). 
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3.4 Discussion 

 

In this chapter, we show that the adult CD8 and T-cell exhaustion signatures identified as predictive 

for disease severity in adult IBD patients do not generate a similar split when applied to our paediatric 

IBD cohort. 

The use of two complementary approaches (i.e. unsupervised analysis and WGCNA) showing no 

significant differences in outcome between the groups identified, and no correlation between 

modules and specific outcomes respectively, negates any prognostic power of these adult signatures 

in our paediatric cohort.  

The analysis was conducted on the joint paediatric IBD cohort as well as on the paediatric CD and 

UC cohorts separately, within an attempt of removing any confounders related to different indications 

to treatments and disease outcomes in the two types of IBD. Nevertheless, results were consistently 

negative across the three datasets analysed. This may suggest that in paediatric onset IBD, T-cells 

are not exhausted, therefore paediatric patients are predisposed to a more severe disease 

phenotype and course compared to adults, as they would lack of the protective role of T-cell 

exhaustion.  

This would also explain the absence of a significant split in clinical outcomes between the groups 

identified, as all of the children would fall into the “severe prognosis group”. 

The comparison between children and adults in terms of number of treatment escalations during the 

follow-up shown in Figure 3.9 would also stand in support of this hypothesis. 

At this stage, in the absence of a prognostic role of adult CD8 and T-cell exhaustion signatures in 

our paediatric cohorts, we went on to address the question of whether “paediatric specific” CD8 

signatures further able to differentiate patients according to disease outcome exist. 
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CHAPTER 4 

____________________________________ 

Identification of paediatric CD8+ T-cell expression derived 

prognostic signatures 
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4.1 Introduction 

As demonstrated in previous chapters, applying a prognostic T-cell expression signature derived 

from an adult IBD patient cohort to our paediatric data, did not yield any significant separation of 

patients according to disease outcome. Furthermore, T-cell exhaustion did not seem to differ in CD8+ 

T-cells derived from paediatric IBD patients, leading us to speculate whether a paediatric specific 

disease prognostic expression profile could be identified. 

Hence, we next went on to identify such a signature by analysing the paediatric cohort in isolation 

using the same analyses as previously described (i.e. unsupervised clustering methods and 

WGCNA). 

 

4.2 Materials and methods 

 
Samples were first analysed altogether (paediatric IBD cohort, n=107), and then split by type of IBD 

diagnosis (CD (n=67) and UC (n=40)). 

Normalisation, removal of outliers and batch correction were performed in the joint IBD dataset 

(n=107). Samples were then split by type of IBD diagnosis (i.e. CD and UC).  

 

4.2.1 Unsupervised clustering analysis 
 
Unsupervised clustering analysis included Hierarchical Clustering and Consensus Clustering. 

Hierarchical Clustering (BioConductor function “hclust”) was used to test whether datasets had a 

substructure, i.e. whether clusters and subclusters could be identified, based on the patients’ gene 

expression profiles. 

Consensus Clustering was utilised as a more accurate clustering methodology to identify presence 

of stable groups across the dataset, and to choose the strongest clustering option. Top clustering 

option is shown by the Consensus Distribution Function (CDF) plot; it consists in the recommended 

number of clusters amongst various output options displayed and indicated with letter “k” followed 

by progressive numbering. Prior to running Consensus Clustering, the data was filtered by using the 

R package “genefilter” and half of the genes (var. cutoff: 0.5) with more variation in gene expression 

across this dataset were selected. The strength of clusters across the data was also tested by using 

R package “SigClust”, a method that measures the reliability of clusters by using the 2-means (k = 

2) clustering index as a statistic (Figure 4.1). 
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Figure 4.1 SigClust analysis of CD8+ T-cell gene expression data from the paediatric IBD cohort (n=107). In 

A., SigClust analysis assesses the significance of clustering by simulation from a single null Gaussian 

distribution. The null hypothesis of SigClust is that the data is from a single Gaussian distribution. In B., the 

SigClust method uses a test statistic called the cluster index (CI) which is defined to be the within-class sums 

of squares about the mean divided by the total sum of squares about the overall mean. 

 

When significant differences in disease outcomes were observed between groups identified through 

Consensus Clustering, GSEA was also performed to compare the groups identified and to detect 

whether they would differ in molecular pathways of biological relevance. 

 

4.2.2 WGCNA 
 

WGCNA was performed on 98 IBD patients (i.e. 60 CD and 38 UC) due to the removal of those 

treated with biologics from the time of diagnosis. In fact, in terms of disease course and clinical 

outcomes these patients would not be comparable with the remainder of the children receiving a 

strict step-up treatment approach. 

As a first step, WGCNA aligns the gene expression data with clinical information collected on a “.csv” 

spreadsheet (Figure 4.2; the “.csv” file used is shown in table format in Appendix 2, on page 176). 

The next step of WGCNA consists in the choice of a soft thresholding power 159,160 based on the 

criterion of scale-free topology (Figure 4.3).  
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This number represents the stage where the network (based on gene expression similarity in this 

context) stabilises, and corresponds to the point where the curves for scale independence and mean 

connectivity reach a plateau. 

At this stage, it is possible to compute and display the number of modules identified in each dataset. 

We set up minimal module size at 20 probes/module. An example plot of module detection in the 

joint IBD cohort (n=98), based on clustering dendrogram of genes and on their dissimilarity according 

to topological overlap, is shown in Figure 4.4. Moreover, Table 4.1 shows the corresponding list of 

modules identified and their size.  

Final step of WGCNA is testing the correlation between modules and measured clinical traits. The 

summary profile (eigengene) for each module is used for correlation with clinical variables imported 

from the “.csv” file (and aligned with the data in the initial step of WGCNA). Correlation index and p-

value are provided for each match between modules and clinical variables, which in this context 

allowed the identification of modules (signatures) more significantly correlated with disease 

outcomes. 

In order to test further the prognostic role of the relevant modules (signatures) identified, probes in 

these modules of interest were subset from the paediatric dataset. Consensus Clustering was then 

run on this selection and the patient groups identified were compared for the specific outcomes 

through survival analysis. In case of a significant split, GSEA was also performed to detect whether 

the groups identified would differ in molecular pathways of biological relevance. 
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Figure 4.2 WGCNA analysis of the paediatric IBD cohort (n=98). Sample dendrogram and trait heatmap.  

The dendrogram on top displays the samples in this cohort based on hierarchical clustering of their CD8 gene 

expression data. The heatmap below aligns all clinical information available for each patient / sample 

presented as colour coded for each variable. For dichotomous variables (e.g. presence of symptoms): white = 

no, red = yes; for continuous variables (e.g. blood test results): white = minimum, red = maximum, shades of 

red for values in between. 
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Figure 4.3 WGCNA. Analysis of network topology in the paediatric IBD cohort (n=98) for various soft-

thresholding powers. The left panel shows the scale-free topology index (y axis) as a function of the soft-

thresholding power (x axis). The right panel displays the mean connectivity (degree, y axis) as a function of 

the soft-thresholding power (x axis). Soft thresholding power chosen: 12. 

 

 
 

Figure 4.4 Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with 

assigned module colours (paediatric IBD cohort, n=98). 
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Module Number Genes in each 

module 

Module Number Genes in each 

module 

0  24396 12 71 

1 837 13 71 

2 664 14 52 

3 588 15 47 

4 583 16 44 

5 502 17 41 

6 411 18 34 

7 249 19 34 

8 175 20 30 

9 169 21 30 

10 118 22 29 

11 96 23 27 
 

Table 4.1 WGCNA of the paediatric IBD cohort (n=98). Module numbers and their size. The label 0 is reserved 

for genes outside of all modules, so it is not a module per se. 
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4.3 RESULTS  
 

4.3.1 Analysis of CD8+ T-cell gene expression profiles from the combined paediatric IBD 

cohort 
 

In the first instance, we performed unsupervised clustering analyses on the combined paediatric IBD 

cohort (i.e. samples from children with CD and UC). 

We started with Hierarchical Clustering to investigate whether the CD8+ gene expression data in 

this cohort had a substructure, i.e. whether clusters of samples with similar gene expression levels 

could be detected. As shown in Figure 4.5 A, the data clustered into two main groups, with an 

approximate size of 2/3 and 1/3 respectively. Each group was clustered into further subgroups. 

We then performed Consensus Clustering as an alternative clustering methodology to identify 

presence of reliable stable clusters within the dataset. The consensus output identified three more 

solid groups of patients across this dataset. Figure 4.5 D shows the Consensus Clustering plot for 

k=3, which provides the strongest clustering: the three groups differ in size, with a larger group 

including approximately 90% of the patients and two smaller groups accounting in total for 10% of 

the patients. 

As a further step, we addressed the question of whether the groups identified through Consensus 

Clustering (Figure 4.5 D: group 1 (n=99) vs groups 2+3 (n=8), renamed as group 2) would differ in 

respect to their disease course and outcomes, i.e. whether groups identified in this cohort based on 

the paediatric CD8 gene expression profiles would be different in their disease outcomes. 

Survival analysis did not identify significant differences between these groups in terms of use of 

biologics, treatment escalations and surgical intervention (Kaplan Meier curves on Figure 4.6). 

Although children in group 2 were milder in their disease course, the difference in the groups’ size 

affected the power of the survival analysis which didn’t reach significance except for the outcome 

“first treatment escalation” (Figure 4.6 A). 
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Figure 4.5. In A. Hierarchical Clustering of the CD8 gene expression data in the paediatric IBD cohort (n=107). 

In B. CDF: Consensus Cumulative Distribution Function showing at what number of clusters, k, consensus 

and cluster confidence reach a maximum. In C. Delta area plot showing the relative change in area under the 

CDF curve, with no further appreciable increase at k=3. k3 is identified as the strongest clustering option. In 

D. Consensus Clustering plot (for k=3) of gene expression data from the paediatric IBD cohort (n=107): clusters 

are shown as dendrogram (top), colour bar, and gene expression heatmap. 
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A.                                                                         B. 

     
  C.                                                                          D. 

         
E.                                                                           F.        

   
 

Figure 4.6 Kaplan Meier curves for the paediatric IBD cohort (n=107) comparing group 1 (n=99) and group 2 

(n=8) identified through Consensus Clustering (Figure 4.5 D). Patients in the two groups are compared for the 

following outcomes: A) first treatment escalation; B) second treatment escalation; C) third treatment escalation; 

D) fourth treatment escalation; E) use of biologics; F) surgical intervention. 
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Next, in order to address the same question, i.e. whether a paediatric CD8 signature to be able to 

predict disease severity exists, we also performed WGCNA of CD8+ T-cell gene expression profiles 

from the combined paediatric IBD cohort. More specifically, WGCNA aimed to explore whether the 

gene expression data would be organised in groups of genes with similar expression (modules) and 

whether any of these modules would correlate with specific disease outcomes reflecting severity of 

disease course. The ultimate aim of WGCNA was to detect specific signatures for clinical variables 

reflecting disease severity (i.e. outcomes). 
 

First, as shown in Table 4.1 on page 78, 22 modules were detected in this cohort.  

As a next step, correlations between modules and measured clinical traits were tested. Figure 4.7 

displays correlations between each module and all clinical variables recorded, while in Figure 4.8 

only the modules of relevance to disease outcomes are shown.  

As recapped in Table 4.2., module lightyellow [5] and module pink [11] showed the strongest 

correlation with disease outcomes, though correlation indexes only ranged between ± 0.18 and ± 

0.24. Module light yellow was correlated with several clinical outcomes, i.e. number of relapses, 

number of treatment escalations and use of biologics.  
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Figure 4.7 WGCNA. Module-trait associations. Paediatric IBD cohort (n=98). Each row corresponds to a 

module eigengene, column to a trait. Each cell contains the corresponding correlation index and p-value 

(colour-coded, numbers not displayed in this plot, but available separately). The table is colour-coded by 

correlation according to the colour legend (i.e. 1 = highest direct correlation, red; -1 = highest inverse 

correlation, blue). Red frames highlight modules that correlate with outcomes more than they do with clinical 

parameters at diagnosis. The green frame highlights clinical outcome measures (e.g. number of treatment 

escalations, surgery, use of biologics etc.) 
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Figure 4.8 WGCNA. Module-trait associations. Paediatric IBD cohort (n=98). Selection of modules correlated 

with clinical outcomes from Figure 4.7. On the x axis are variables related to the disease at diagnosis (e.g. 

gender, abdominal pain at diagnosis, diarrhoea and disease activity score at diagnosis (e.g. PCDAI, PUCAI)) 

followed by variables describing disease outcomes (e.g. use of biologics, surgery). On the y axis, selected 

modules are listed (indicated by colour names). The plot shows how these modules correlate more strongly 

(directly or inversely) with disease outcomes than they do with parameters describing disease at diagnosis. 
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CLINICAL OUTCOMES CORRELATION INDEX P-VALUE 

BIOLOGICS 

ME lightyellow [5] 0.24 0.02 

TREATMENT ESCALATIONS 
ME lightyellow [5] 0.18 0.07 

6 MONTHS STEROID FREE REMISSION 

ME lightyellow [5] - 0.24 0.02 

ME blue [13] - 0.21 0.03 

ME yellow [14] - 0.24 0.02 

ME midnightblue [16] 0.2 0.05 

RELAPSES 

ME lightyellow [5] 0.18 0.07 

SURGERY 

ME pink [11] - 0.22 0.03 

 
Table 4.2 WGCNA. Paediatric IBD cohort (n=98). Main modules correlating with disease outcomes. 

 

Finally, in order to test the prognostic power of the modules (signatures) identified, we subset their 

corresponding probes from this dataset (i.e. paediatric IBD cohort, n=98) and performed Consensus 

Clustering of this selection. We then compared the groups identified for the specific outcomes 

correlated with those modules. 

We first tested module light yellow (34 probes), correlated with number of relapses, treatment 

escalations and use of biologics. Groups based on this module were identified through Consensus 

Clustering, as shown in Figure 4.9 C (k3: group 1 (n=67) vs groups 2+3 (n=31), renamed as group 

2). The survival analysis performed to compare these groups for clinical outcomes (Figure 4.10) did 

not show significant differences. 

We then tested module pink (175 probes), correlated with surgical intervention. Groups identified 

through Consensus Clustering (Figure 4.11 C k3: group 1 (n=85) vs groups 2+3 (n=13), renamed as 

group 2) did not show a significant split on the Kaplan Meier analysis for surgical intervention. 

Nevertheless, whilst none of the patients in group 2 had surgery, 3 patients in group 1 required 

surgical intervention.  
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Figure 4.9 Consensus Clustering of a selection of probes included in the WGCNA module light yellow (34 

probes), correlated with “number of relapses”, “number of treatment escalations” and “use of biologics”. In A. 

CDF: Consensus Cumulative Distribution Function showing at what number of clusters, k, the consensus and 

cluster confidence reach a maximum. In B. Delta area plot showing the relative change in area under the CDF 

curve, with no further appreciable increase at k=3. k3 is identified as the strongest clustering option. In C. 
Consensus Clustering plot for k=3.  
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A)                                                                     B) 

              
C)                                                                             D) 

            
E)                                                                             F 

                 
 
Figure 4.10 Kaplan Meier curves comparing the groups identified in 4.9 C (group 1: n=67 and group 2 (i.e. 

2+3): n=31) for the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third 

treatment escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention. 
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Figure 4.11 Consensus Clustering of a selection of probes included in the WGCNA module pink (175 probes), 

correlated to “surgical intervention”. In A. Consensus Cumulative Distribution Function (CDF) showing at what 

number of clusters, k, the consensus and cluster confidence reach a maximum. In B. Delta area plot showing 

the relative change in area under the CDF curve, with no further appreciable increase at k=3. k3 is identified 

as the strongest clustering option. In C. Consensus Clustering plot for k=3.  
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Figure 4.12 Kaplan Meier curves comparing the groups identified in 4.11 C (group1: n=85 and group2 (i.e. 

2+3): n=13) for the event “surgical intervention”. 

 

In summary, in the joint paediatric IBD cohort we could not identify strong correlations between gene 

expression profiles (i.e. signatures, modules) and prognostic outcomes, neither by using 

unsupervised clustering analyses nor by applying WGCNA.  
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4.3.2 Analysis of CD8+ T-cell gene expression profiles from the paediatric CD cohort 
 

In this section, we applied the same methods utilised above (i.e. unsupervised clustering analyses 

and WGCNA) to analyse our paediatric CD cohort separately (n=67) and identify whether signatures 

specific to paediatric CD able to differentiate children for their disease severity exist. 

First, we performed Hierarchical Clustering to investigate whether the CD8+ gene expression data 

in this cohort had a substructure. Similarly to what identified in the combined IBD cohort, this dataset 

also clustered into two main groups, with an approximate size of 3/4 and 1/4 respectively (Figure 

4.13 A). Each group was clustered into further subgroups. 

Consensus Clustering analysis identified three more solid groups of patients throughout the dataset. 

Figure 4.13 C shows the top Consensus Clustering plot, where k=3 provides the strongest clustering: 

one bigger and two smaller clusters were identified, with an approximate size of 3/4 and 1/4 for group 

1 and for groups 2+3, respectively. 

Next, we tested whether the groups identified through Consensus Clustering (Figure 4.13 D k3: 

group 1 (n=54) vs groups 2+3 (n=13), renamed as group 2) would split for disease outcomes, i.e. 

whether groups identified in this cohort based on CD8 gene expression profiles would differ in terms 

of disease severity over time. Survival analysis identified a significant difference between the groups 

in respect to treatment with biologics, as well as differences (though not reaching significance) in 

number of treatment escalations (Kaplan Meier curves on Figure 4.14). In particular, group 2 

included milder patients who never had a fourth treatment escalation and only one child in this group 

was treated with biologics, as opposed to 60% of the children in group 1.  

As previously shown for the paediatric IBD dataset, the difference in size between group 1 and 2 

affected the power of the survival analysis performed (Figure 4.14). 
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Figure 4.13. In A. Hierarchical Clustering of the CD8 gene expression data in the paediatric CD cohort (n=67). 

In B. CDF: Consensus Cumulative Distribution Function showing at what number of clusters, k, the consensus 

and cluster confidence reach a maximum. In C. Delta area plot showing the relative change in area under the 

CDF curve, with no further appreciable increase at k=3. k3 is identified as the strongest clustering option. In 

D. Consensus Clustering plot (for k=3) of the gene expression data from the paediatric CD cohort (n=67). 
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A) B) 

                    
C)                                                                        D) 

                 
E)                                                                          F)                         

 
Figure 4.14 Kaplan Meier curves for the paediatric CD cohort (n=67) comparing group 1 (n=54) and group 2 

(n=13) identified through Consensus Clustering (Figure 4.13 D). Patients in the two groups are compared for 

the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third treatment 

escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention. 
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We went on to perform differential gene expression analysis (DGEA) in order to investigate 

significant differentially expressed genes between the groups of patients identified through 

Consensus Clustering (k3). As summarised in Figure 4.15, 12461 differentially expressed genes 

were identified in this cohort between Consensus Clustering group 1 (n=54) and group 2 (n=13); 

6342 of these were annotatable.  

We also performed GSEA to detect whether genes differentially expressed between groups 1 and 2 

identified through Consensus Clustering were organized in molecular pathways of biological 

relevance. 

 

4562 gene sets had positive enrichment score (i.e. they correlated with group 1); 68 were 

significantly enriched at nominal p-value < 1% and 397 were significantly enriched at nominal p-

value < 5%. None of them was significant at FDR < 25%. Genes in the core enrichment included IL6 

receptor, IL12 receptor, IL18 receptor, IFN induced proteins, chemokine receptor 2, chemokine 

ligands, TNF-alpha induced proteins, toll-like receptors. 

310 gene sets had negative enrichment score (i.e. they correlated with group 2); of these, only 2 

were significantly enriched at nominal p-value < 5%, and none at nominal p-value < 1%. None was 

significant at FDR < 25%. Genes in the core enrichment included IL15 receptor, IL22 receptor, IL25, 

TNF ligands, IFN alpha and chemokine ligands. 
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Figure 4.15 Main GSEA findings from the paediatric CD cohort (n=67). Groups as identified through Consensus 

Clustering. In A. Heatmap of the top 50 features for each phenotype (Consensus Clustering groups 1 vs 2). In 

B. Plot showing correlation between the ranked genes and the groups 1 and 2. In C. Butterfly plot showing the 

top 100 positive and negative correlations between gene rank and the ranking metric score (i.e. first and last 

100 genes in the ranked list). Observed correlation and permuted (1%, 5%, 50%) positive and negative 

correlations are shown for the top genes. This plot describes the extent to which dataset permutations change 

the correlation between gene rank and the ranking metric score. 
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At this stage, in order to address the same question, i.e. whether a paediatric CD8 signature able to 

predict disease severity in this cohort exists, we also performed WGCNA. WGCNA was run on 60 

paediatric CD samples, as patients with perianal disease who were treated with biologics from the 

time of diagnosis were removed from this step.  

 

The 27 modules identified in this cohort were tested for correlations with measured clinical traits, as 

shown in Figure 4.16. In Figure 4.17 only the modules of relevance to disease outcomes are shown.  

As recapped in Table 4.3, the positive and negative correlation indexes for the top modules ranged 

between +0.25 and +0.33, and between –0.28 and -0.37, respectively. Module orange was correlated 

with several clinical outcomes, including number of relapses, number of treatment escalations and 

severity score.  
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Figure 4.16 WGCNA. Paediatric CD cohort (n=60). Module-trait associations. Each row corresponds to a 

module eigengene, column to a trait. Each cell contains the corresponding correlation index and p-value 

(colour-coded, numbers not displayed on this plot). The table is colour-coded by correlation according to the 

colour legend (i.e. 1 = highest direct correlation, -1 = highest inverse correlation). Red frames highlight modules 

that correlate with outcomes more than they do with clinical parameters at diagnosis. The green frame 

highlights clinical outcome measures (i.e. number of treatment escalations, surgery, use of biologics, severity 

score). 
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Figure 4.17 Selection of modules correlated with clinical outcomes from Figure 4.16. On the x axis are variables 

related to the disease at diagnosis (i.e. gender, abdominal pain at diagnosis, diarrhoea and disease activity 

score at diagnosis (i.e. PCDAI)) followed by variables describing disease outcomes (including use of biologics, 

surgery, steroid resistance, severity score). On the y axis, selected modules are listed (indicated by numbers 

and colour names). The plot shows how these modules correlate more strongly (directly or inversely) with 

disease outcomes than they do with parameters describing disease at diagnosis. 
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CLINICAL OUTCOMES CORRELATION INDEX P-VALUE 

BIOLOGICS 

ME orange [14] 0.29 0.03 

ME cyan [24] 0.33 0.01 

TREATMENT ESCALATIONS 

ME orange [14] 0.3 0.02 

6 MONTHS STEROID FREE REMISSION 

ME orange [14] - 0.37 0.004 

RELAPSES 

ME orange [14] 0.33 0.009 

INPATIENT DAYS 
ME darkturquoise [28] 0.25 0.05 

SEVERITY SCORE 

ME orange [14] 0.29 0.02 

ME darkgrey [20] -0.28 0.03 

 
Table 4.3 WGCNA. Paediatric CD cohort (n=60). Main modules correlating with disease outcomes. 

 

In order to test the prognostic role of these modules further, we filtered out of this dataset the probes 

corresponding to modules of interest for specific outcomes. We then performed Consensus 

Clustering of this selection to test whether the groups of patients identified would differ in respect to 

those outcomes. 

 

First, we tested module orange (29 probes), correlated to number of relapses, treatment escalations 

and severity score. Groups based on this module were identified through Consensus Clustering, as 

shown in Figure 4.18 C (k3: group 1 (n=52) vs groups 2+3 (n=8), renamed as group 2). The survival 

analysis performed to compare these groups for clinical outcomes (Figure 4.19) showed significant 

differences in first and second treatment escalations. Children in group 2 were overall milder than 

group 1, with only one patient in group 2 receiving biologics as opposed to 60% of those in group 1.  

 

We then tested modules orange and cyan (111 probes), correlated to treatment with biologics. 

Groups identified through Consensus Clustering (Figure 4.20 C k2: group 1 (n=44) vs groups 2 

(n=16)) did not differ significantly in respect to use of biologics (Kaplan Meier curve in Figure 4.21).  

 

Finally, we looked at the signature in module dark turquoise (34 probes) correlated to the clinical 

outcome “unplanned inpatient days”. As shown in Figure 4.23, survival analysis of the groups 

identified through Consensus Clustering (Figure 4.22 C, k3: group 1 (n=36) vs groups 2+3 (n=24), 

renamed as group 2) showed significant splits between the groups for number of treatment 

escalations and use of biologics. 
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Figure 4.18 Consensus Clustering of a selection of probes included in the WGCNA module orange (29 probes), 

correlated to “number of relapses”, “number of treatment escalations” and “severity score”. In A. CDF: 

Consensus Cumulative Distribution Function, showing at what number of clusters, k, the consensus and cluster 

confidence reach a maximum. In B. Delta area plot, showing the relative change in area under the CDF curve, 

with no further increase appreciable at k=3. k3 is identified as the strongest clustering option. In C. Consensus 

Clustering plot for k=3.  
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A)                                                                          B) 

                     
C)                                                                          D)  

                         
E)                                                                           F) 

                           
 
Figure 4.19 Kaplan Meier curves comparing the groups identified in 4.18 C (group 1: n=52 vs group 2 (i.e. 

2+3): n=8) for the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third 

treatment escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention. 
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Figure 4.20 Consensus Clustering of a selection of probes included in the WGCNA modules orange and cyan 

(111 probes), correlated to “use of biologics”. In A. CDF: Consensus Cumulative Distribution Function, showing 

at what number of clusters, k, the consensus and cluster confidence reach a maximum. In B. Delta area plot, 

showing the relative change in area under the CDF curve, with no further appreciable increase at k=2. k2 is 

identified as the strongest clustering option. In C. Consensus Clustering plot for k=3.  
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Figure 4.21 Kaplan Meier curves comparing the groups identified in 4.20 C (group 1: n=44 vs groups 2: n=16) 

for the outcome “use of biologics”. 
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Figure 4.22 Consensus Clustering of a selection of probes included in the WGCNA module dark turquoise (34 

probes), correlated to “unplanned inpatient days”. In A. CDF: Consensus Cumulative Distribution Function, 

showing at what number of clusters, k, the consensus and cluster confidence reach a maximum. In B. Delta 

area plot showing the relative change in area under the CDF curve, with no further appreciable increase at 

k=3. k3 is identified as the strongest clustering option. In C. Consensus Clustering plot for k3.  
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A)                                                                       B) 

                              
C)                                                                              D) 

                     
E)                                                                               F) 

              
 
Figure 4.23 Kaplan Meier curves comparing the groups identified in 4.22 C (group 1: n=36 vs group 2 (i.e. 

2+3): n=24) for the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third 

treatment escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention. 
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Given the significant differences in outcomes identified between the Consensus Clustering groups 

related to module dark turquoise, we also performed GSEA in order to detect whether such groups 

would differ in molecular pathways of biological relevance. 

 

As summarised in Figure 4.24, 2647 gene sets had positive enrichment score (i.e. they showed 

enrichment at the top of the ranked list and correlated with group 1); 6 of these were significantly 

enriched at nominal p-value < 1% and 23 were significantly enriched at nominal p-value < 5%. None 

of them was significant at FDR < 25%. 

Genes in core enrichment included NKT recognition sequences, GABA receptors, chemokine 

ligands, TNF receptors, TNF receptor associated factors, TNF and IFN induced proteins, IL15 and 

toll-like receptor 3.  

2225 gene sets had negative enrichment score (i.e. they showed enrichment at the bottom of the 

ranked list and correlated with group 2); of these, 8 were significantly enriched at nominal p-value < 

1% and 42 were significantly enriched at nominal p-value < 5%. None was significant at FDR < 25%. 

Genes in core enrichment included TNF receptors, IFN alpha, chemokine receptors, GABA 

receptors, VIP receptor 1. 
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Figure 4.24 Main GSEA findings from the paediatric CD cohort (n=60). Groups as identified through Consensus 

Clustering (module dark turquoise correlated to “number of unplanned inpatient days”). In A. Heatmap of the 

top 50 features for each phenotype (Consensus Clustering groups 1 vs 2). In B. Plot showing correlation 

between the ranked genes and the groups 1 and 2. In C. Butterfly plot showing the top 100 positive and 

negative correlation between gene rank and the ranking metric score (i.e. first and last 100 genes in the ranked 

list). Observed correlation and permuted (1%, 5%, 50%) positive and negative correlations are shown for the 

top genes. This plot describes the extent to which dataset permutations change the correlation between gene 

rank and the ranking metric score. 
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In summary, the paediatric signatures identified from WGCNA of the paediatric CD cohort (i.e. 

module orange correlated with “number of relapses”, “number of treatment escalations” and “severity 

score”, and module dark turquoise correlated with “number of unplanned inpatient days”) did identify 

groups of children with significant differences in disease outcomes (Kaplan Meier curves from the 

survival analysis), although with correlation indexes within a range of only 0.25-0.37.  
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4.3.3 Analysis of CD8+ T-cell gene expression profiles from the paediatric UC cohort 
 

In this section, we briefly summarise the main results obtained by applying the same analyses shown 

above (i.e. unsupervised clustering analyses and WGCNA) to our cohort of children with UC (n=40). 

First, we performed Hierarchical Clustering which demonstrated the presence of a substructure, with 

two groups including 1/3 and 2/3 of the patients approximately (Figure 4.25 A). 

Consensus Clustering of this dataset identified five more solid groups of patients throughout the 

gene expression data as shown in Figure 4.25 B and C, where k=5 provides the strongest clustering. 

As previously observed in the paediatric CD cohort, the clusters of patients identified in this dataset 

also differ in size, with one group including 90% of patients, and the remaining 10% of them clustering 

out. 

As a next step, we tested whether the groups identified through Consensus Clustering (Figure 4.25 

D, k5: group 2 (n=35, renamed as group 1) vs groups 1+3+4+5 (n=5, renamed as group 2)) would 

differ in respect to their disease course and outcomes, i.e. whether groups identified in this cohort 

based on their CD8 gene expression profiles would have different disease severity over time. 

Survival analysis identified differences, although not reaching significance, between these two 

groups in respect to number of treatment escalations, use of biologics and surgical intervention 

(Kaplan Meier curves on Figure 4.26). In particular, group 2 in the survival analysis (i.e. Consensus 

Clustering groups 1,3,4,5 combined) included milder patients who never had more than two 

treatment escalations, and who were never treated with biologics, as opposed to 20% of the children 

in group 1. Also, children in group 2 never had surgical intervention as opposed to 2 children in group 

1 who required colectomy.  
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Figure 4.25. In A. Hierarchical Clustering of the CD8 gene expression data in the paediatric UC cohort (n=40). 

In B. CDF: Consensus Cumulative Distribution Function showing at what number of clusters, k, the consensus 

and cluster confidence reach a maximum. In C. Delta area plot showing the relative change in area under the 

CDF curve, with no further appreciable increase at k=5. k5 is identified as the strongest clustering option. In 

D. Consensus Clustering plot (for k=5) of gene expression data from the paediatric UC cohort (n=40). 
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A) B) 

                               
C)                                                                   D) 

                    
E)                                                                   F) 

                         
             
Figure 4.26 Kaplan Meier curves for the paediatric UC cohort (n=40) comparing group 1 (n=35) and group 2 

(n=5) identified through Consensus Clustering (Figure 4.25 D). Patients in the two groups are compared for 

the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third treatment 

escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention. 
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At this stage, we went on to perform differential gene expression analysis (DGEA) using R package 

“limma” in order to investigate significantly differentially expressed genes between the groups of 

patients identified through Consensus Clustering (k5). In this cohort, 3549 differentially expressed 

genes were identified between Consensus Clustering group 1 (n=35) and group 2 (n=5); 1312 of 

these were annotatable. We also performed GSEA to detect whether genes differentially expressed 

between groups 1 and 2 identified through Consensus Clustering were organised into molecular 

pathways of biological relevance. As summarised in Figure 4.27, 4290 gene sets had positive 

enrichment score (i.e. they showed enrichment at the top of the ranked list and correlated with group 

1); 111 of these were significantly enriched at nominal p-value < 1% and 603 were significantly 

enriched at nominal p-value < 5%. 1165 were significant at FDR < 25%. Genes in core enrichment 

included chemokine ligands, VIP receptor 1, IL2, IL22 receptor, IL25 and GABA receptor. 

582 gene sets had negative enrichment score (i.e. they showed enrichment at the bottom of the 

ranked list and correlated with group 2); of these, only 1 was significantly enriched at nominal p-

value < 1% and 6 were significantly enriched at nominal p-value < 5%. None was significant at FDR 

< 25%. Genes in core enrichment included IL1 receptor associated proteins, integrins, IL18 receptor, 

bromodomains and IL11 receptors. 
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Figure 4.27 Main GSEA findings from the paediatric UC cohort (n=40). Groups as identified through Consensus 

Clustering. In A. Heatmap of the top 50 features for each phenotype (Consensus Clustering groups 1 vs 2).  

In B. Plot showing correlation between the ranked genes and groups 1 and 2. In C. Butterfly plot showing the 

top 100 positive and negative correlations between gene rank and the ranking metric score (i.e. first and last 

100 genes in the ranked list). Observed correlations and permuted (1%, 5%, 50%) positive and negative 

correlations are shown for the top genes. This plot describes the extent to which dataset permutations change 

the correlation between gene rank and the ranking metric score. 
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As a next step, we performed WGCNA as an alternative and complementary method to investigate 

the existence of paediatric specific prognostic signatures in our UC cohort. WGCNA was performed 

on 38 patients as 2 of them with acute severe onset who needed biologic treatments from the time 

of diagnosis were excluded from this analysis.  

Forty modules were identified in this dataset. Their correlation with the clinical data collected is 

shown on Figure 4.28 while Figure 4.29 shows an excerpt from Figure 4.28 where only the modules 

of relevance to disease outcomes are shown.  

As shown in Table 4.4, modules yellowgreen [18] and steelblue [36] correlate with multiple outcomes, 

i.e. treatment with biologics, number of relapses, surgical intervention (colectomy) and severity 

score. 

Moreover, modules yellowgreen and steelblue showed high inverse correlation (< -0.5) with clinical 

outcome “surgical intervention”. Overall, positive and negative correlation indexes ranged between 

+0.31 and +0.38, and between -0.29 and -0.59, respectively. 
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Figure 4.28 WGCNA. Paediatric UC cohort (n=38). Module-trait associations. Each row corresponds to a 

module eigengene, column to a trait. Each cell contains the corresponding correlation and p-value (colour-

coded, numbers not displayed on this plot). The table is colour-coded by correlation according to the colour 

legend (i.e. 1 = highest direct correlation, -1 = highest inverse correlation). Red frames highlight modules that 

correlate with outcomes more than they do with clinical parameters at diagnosis. The green frame highlights 

clinical outcome measures (i.e. number of treatment escalations, surgery, use of biologics etc.) 
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Figure 4.29 WGCNA. Paediatric UC cohort (n=38). Excerpt from Fig. 4.28 displaying modules correlated with 

clinical outcomes. On the x axis are variables related to the disease at diagnosis (i.e. gender, abdominal pain 

at diagnosis, diarrhoea and disease activity score at diagnosis (i.e. PUCAI)) followed by variables describing 

disease outcomes (use of biologics, surgery, steroid resistance, severity score etc.). On the y axis, selected 

modules are listed (indicated by colour names). The plot shows how these modules correlate more strongly 

(directly or inversely) with disease outcomes than they do with parameters describing disease at diagnosis. 
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CLINICAL OUTCOMES CORRELATION INDEX P-VALUE 

BIOLOGICS 

ME yellowgreen [18] -0.36 0.03 

ME steelblue [36] -0.4 0.01 

RELAPSES 

ME yellowgreen [18] -0.31 0.06 

6 MONTHS STEROID FREE REMISSION 

ME darkgreen [8] 0.34 0.04 

INPATIENT DAYS 

ME darkgreen [8] -0.35 0.03 

ME steelblue [36] -0.39 0.01 

SEVERITY SCORE 

ME skyblue [6] 0.31 0.06 

ME yellowgreen [18] -0.29 0.08 

ME steelblue [36] -0.29 0.08 

SURGERY 

ME darkgreen [8] -0.36 0.03 

ME orangered4 [16] 0.38 0.02 

ME sienna3 [17] 0.35 0.03 

ME yellowgreen [18] -0.51 9e-04 

ME orange [26] -0.32 0.05 

ME grey60 [32] -0.4 0.01 

ME steelblue [36] -0.59 9e-05 

ME lightyellow [39] -0.44 0.005 

 
Table 4.4 WGCNA. Paediatric UC cohort (n=38). Main modules correlating with disease outcomes.  

 

Next, as previously shown in the joint paediatric IBD cohort and in the paediatric CD cohort, we 

tested the modules identified in this dataset to correlate with disease outcome parameters by 

subsetting them and by running Consensus Clustering of this selection. Subsequently, we performed 

survival analysis to compare the groups of patients identified for specific outcomes. 

In summary, the signature for “number of unplanned inpatient days” (modules darkgreen and steel 

blue, 104 probes in total) generated Consensus Clustering groups (Figure 4.30 C) with non-

significant differences in disease outcomes, although children in group 2 had fewer treatment 

escalations and surgical interventions (Kaplan Meier curves in Figure 4.31).  

The signature for “use of biologics” (modules yellowgreen and steelblue, 75 probes in total) also 

generated a non-significant split (Figure 4.32 C shows the Consensus Clustering plots while in Figure 

4.33 the Kaplan Meier curve is displayed). 
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Distinctively, the signature for “surgical intervention” (modules darkgreen, yellowgreen, orange, 

grey60, steelblue, lightyellow, 345 probes in total), did generate a significant split in outcome 

between the groups identified, as shown in Figure 4.34 C (Consensus Clustering plots) and in Figure 

4.35 (Kaplan Meier curve).  

For this specific signature, in view of the significant difference in outcome identified, we also 

performed GSEA to detect whether these groups would differ in molecular pathways of biological 

relevance. 

As summarised in Figure 4.36, 1700 gene sets had positive enrichment score (i.e. they showed 

enrichment at the top of the ranked list and correlated with group 1); only 1 of these was significantly 

enriched at nominal p-value < 1% and 24 were significantly enriched at nominal p-value < 5%. None 

was significant at FDR < 25%. Genes in the core enrichment included IL23 receptor, chemokine 

receptors, IL1 receptor, IL2 receptor, IL11 receptor, IL12 receptor, IL32, GABA receptor and TNF 

receptor. 

3172 gene sets had negative enrichment score (i.e. they showed enrichment at the bottom of the 

ranked list and correlated with group 2); of these, 58 were significantly enriched at nominal p-value 

< 1% and 158 were significantly enriched at nominal p-value < 5%. None was significant at FDR < 

25%. Genes in the core enrichment included IL6 signal transducer, IL6 receptor and integrins. 
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Figure 4.30. Consensus Clustering of a selection of probes included in the WGCNA modules darkgreen and 

steelblue (104 probes), correlated with “unplanned inpatient days”. In A. CDF: Consensus Cumulative 

Distribution Function, showing at what number of clusters, k, the consensus and cluster confidence reach a 

maximum. In B. Delta area plot showing the relative change in area under the CDF curve, with no appreciable 

further increase at k=3. k3 is identified as the strongest clustering option. In C. Consensus Clustering plot for 

k3: groups 1+3 (n=8, renamed as group 1) vs group 2 (n=30).  
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A)    B) 

                                    
C)                                                                                    D) 

                                      
E)                                                                                      F) 

                              
 

Figure 4.31. Kaplan Meier curves comparing the groups identified in 4.30 C (group 1: n=36 vs group 2 (i.e. 

2+3): n=24) for the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third 

treatment escalation; D) fourth treatment escalation; E) use of biologics; F) surgical intervention. 

 

 



 121 

 

 
 

 

Figure 4.32 Consensus Clustering of a selection of probes included in the WGCNA modules yellowgreen and 

steelblue (75 probes), correlated with “use of biologics”. In A. CDF: Consensus Cumulative Distribution 

Function, showing at what number of clusters, k, the consensus and cluster confidence reach a maximum. In 

B. Delta area plot, showing the relative change in area under the CDF curve, with no further appreciable 

increase at k=3. k3 is identified as the strongest clustering option. k4 was chosen as second-best clustering 

option, as by choosing k3 only one patient would cluster away from the remainder. In C. Consensus Clustering 

plot for k4: group 3 (n=8, renamed as group 1) vs groups 1,2 and 4 (n=30, renamed as group 2).  
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Figure 4.33 Kaplan Meier curves comparing the groups identified in 4.32 C (group 1: n=8 vs group 2 (i.e. 

1+2+4): n=30) for the clinical outcome “use of biologics”.  
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Figure 4.34 Consensus Clustering of a selection of probes included in the WGCNA modules correlated with 

the clinical variable “surgical intervention” (345 probes). In A. CDF: Consensus Cumulative Distribution 

Function, showing at what number of cluster, k, the consensus and cluster confidence reach a maximum. In 

B. Delta area plot, showing the relative change in the area under the CDF curve, with no further increase at 

k=3. K3 is identified as the strongest clustering option. K4 was chosen as second-best clustering option 

because k3 would only separate 1 patient out of the remainder.  In C. Consensus Clustering plot for k4: group 

1 (n=22) vs groups 2+3+4 (n=16, renamed as group 2). 
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Figure 4.35. Kaplan Meier curves comparing the groups identified in 4.34 C (group 1: n=22 vs group 2 (i.e. 

2+3+4): n=16) for the outcome “surgical intervention”. 
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Figure 4.36. GSEA of the paediatric UC cohort (n=38). Groups are based on Consensus Clustering analysis 

of the selection of genes in WGCNA modules correlated to “surgical intervention”. In A. Heatmap of the top 50 

features for each phenotype (Consensus Clustering groups 1 vs 2). In B. Plot showing correlation between the 

ranked genes and groups 1 and 2. In C. Butterfly plot showing the top 100 positive and negative correlations 

between gene rank and the ranking metric score (i.e. first and last 100 genes in the ranked list). Observed 

correlations and permuted (1%, 5%, 50%) positive and negative correlations are shown for the top genes. This 

plot describes the extent to which dataset permutations change the correlation between gene rank and the 

ranking metric score. 
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In summary, whilst in this cohort we did not validate any reliable prognostic power of the signatures 

identified in adult patients 67, the paediatric signatures that emerged from WGCNA (i.e. modules 

correlated to the event “surgical intervention”) did generate groups with significantly different 

outcomes. Moreover, WGCNA correlation indices of < -0.5 suggest significant strength in the 

predictive power of these specific signatures. 

 

4.4 Discussion 
 
This chapter aimed to investigate the existence of CD8 “paediatric specific” prognostic signatures, 

in light of the fact that the adult CD8 prognostic signature and T-cell exhaustion signature did not 

generate any significant split in outcome in our paediatric cohort, as shown in chapter 3. 

In order to identify paediatric specific prognostic signatures, we resorted to the two alternative and 

complementary methods (i.e. unsupervised clustering analyses and WGCNA) used in the previous 

chapter. 

When analysing CD and UC jointly, neither method showed any significant split in outcomes between 

the groups of patients identified. Clustering analyses produced a very uneven split between patient 

groups (90%: 10%), which limited the statistical power of the survival analysis (Kaplan Meier curves) 

as the milder group only included a limited number of patients (< 10) compared with the remainder 

clustering together and showing a more severe disease course. 

WGCNA of the joint cohort only identified two modules of interest for specific outcomes, both with 

low correlation indices (< 0.25, > -0.25). In order to further test the prognostic potential of these 

modules, the corresponding probes were subset from the IBD cohort dataset and Consensus 

Clustering was performed to identify groups. These groups were then compared for specific 

outcomes through survival analysis, which failed to show a significant split. This questioned even 

further the strength of the modules identified. However, it should be pointed out that when testing 

the module correlated with “surgical intervention” in the joint cohort, the absence of a significant split 

was likely due to the limited number of events across the cohort. Although all three patients who 

underwent IBD related surgery did fall in the same Consensus Clustering group, the split in the 

survival analysis failed to reach significance. 

We considered whether the lack of strong correlations could, at least partly, be explained by the fact 

that CD and UC patients were analysed jointly, given that the two types of IBD are significantly 

different in terms of indications to specific treatments and in outcome measures, so a separate 

analysis should be preferred. We therefore went on to investigate the existence of paediatric specific 

prognostic signatures, in the CD and UC cohorts separately. 

Neater results were obtained when looking for CD8 prognostic signatures in the CD and in the UC 

datasets, with a significant split in some specific outcomes, using both unsupervised clustering (e.g. 

use of biologics in the paediatric CD cohort) and when applying WGCNA (e.g. surgical intervention 
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in the paediatric UC cohort). Groups with different outcomes identified by applying WGCNA modules 

of interest were also compared with GSEA. Top gene sets identified corresponded to those obtained 

from GSEA of the joint cohort. However, GSEA performed in the split cohort did not always reach 

FDR < 0.25. 

Overall, this part of the analysis failed to identify strong CD8 paediatric specific signatures, although 

potential modules (signatures) were identified for specific outcomes in the CD and UC cohorts. We 

speculate that the limitation in the strength of such signatures is likely due to the majority of children 

developing a severe disease phenotype, with only an extreme minority of patients presenting with 

mild indolent disease. This hypothesis would be in consistent with the findings discussed in Chapter 

3. 
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CHAPTER 5 

____________________________________ 

Testing CD8 DNA methylation profiles as potential 

prognostic biomarkers in paediatric CD 
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5.1 Introduction 
 
DNA methylation is one of the main epigenetic marks that are known to play a key role in regulating 

gene expression and cellular function in all mammals 55,56. Its role in regulating cellular function 161 

combined with high stability makes DNA methylation signatures an attractive read out for the 

development of clinical biomarkers 162-165. 

In this part of the project we aimed to test the use of genome wide CD8+ T-cell DNA methylation 

profiles as disease prognostic biomarkers in paediatric IBD.  

 

5.2 Materials and methods 
 

DNA extracted from CD8+ T-cells of 66 children with CD, who were all part of the CD cohort analysed 

for gene expression (n=67, see section 4.3.2 on page 91), was processed through Epic methylation 

array. WGCNA was performed to test whether changes in DNA methylation in CD8+ T-cells can be 

used for outcome prediction.  

BioConductor packages used were DMRcate, Minfi, 

IlluminaHumanMethylationEPICanno.ilm10b2.hg19, IlluminaHumanMethylationEPICmanifest and 

WGCNA. 

Given that methylation data is gender related, the first step of the analysis consisted in checking the 

dataset for gender prediction using the “getSex” function. As shown in Figure 5.1 A, gender was 

predicted correctly in this dataset so no further adjustment was required. All samples passed quality 

control (BioConductor function: getQC) (Figure 5.1 B). 

As our dataset was based on one tissue (i.e. blood samples only), the data was normalised by using 

quantile normalisation (preprocessQuantile function). Removal of SNPs at either the CpG 

interrogation sites or at the single nucleotide extension was then performed using the functions 

“dropLociWithSNPs” and “rmSNPandCH’. Data distribution post normalisation is displayed as M and 

beta values in Figure 5.2. 

At this stage, batch correction (ComBat function) and chromosome removal were performed (Figure 

5.3). 

As a next step prior to performing WGCNA, we filtered out of the total probes (i.e. > 100,000, 

corresponding to CpGs) the 20% that were most differently methylayed by using the function 

“genefilter”, as explained above (paragraph 2.8.2 on page 51). 

At this stage, we went on to perform WGCNA on this methylation dataset. Methods related to 

WGCNA correspond to what summarised in Chapter 4.2.2 on page 74, other than modules being 

groups of CpG with similar methylation density. Another expected difference in WGCNA of the 

methylation data compared to gene expression is a gender related effect, despite chromosome 
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removal. In particular, the presence of a strong correlation between one (or more) module(s) and the 

variable “gender” is expected. 

Set-up parameters were a soft thresholding power of 18 and minimum module size of 20. 

Number and size of the modules identified through WGCNA of 66 children with CD are shown in 

Table 5.1. 

Finally, WGCNA was also performed in a selection of this dataset, where probes corresponding to 

gene expression signatures of interest identified in the same cohort (Chapter 4.3.2 on page 91) were 

subset. 

 

  
 
Figure 5.1 In A. Gender prediction of the paediatric methylation data (n=66). MDS plot by gender, on a 

logarithmic scale. F: female; M: male; x axis and y axis represent X and Y chromosomes. In B. Quality 

control of CD8 T-cell methylation samples from 66 children with CD. 
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A)                                                                B) 

                        
C)                                                                         D) 

             
                        
Figure 5.2 CD8+ T-cell methylation data distribution plots. Beta values in A. and B. M values in C. and D. A. 

and C. are density plots. B. and D. are density bean plots.  
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A)                                                                  B) 
 

                                                        
C) 

 

 
Figure 5.3 CD8+ T-cell methylation data. MDS plots before (A.) and after (B.) batch correction. MDS plot after 

chromosome removal (C.). 
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Module Number Genes in each 

modules 

0  16648 

1 34043 

2 7362 

3 6974 

4 6250 

5 3020 

6 284 

7 69 

8 49 

 
Table 5.1 WGCNA of methylation data from the paediatric CD cohort (n=66). Module numbers and their size. 

The label 0 is reserved for genes outside of all modules, so it is not a module per se. 
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5.3 RESULTS 
 

5.3.1 WGCNA of CD8+ T-cell methylation data from 66 children with CD 
 

First, hierarchical clustering of this dataset was performed to investigate the data distribution and its 

substructure in groups and subgroups. We noted a relevant split in two main data groups of equal 

size, which was driven by differences in gender (Fig. 5.4). We then went on with WGCNA to identify 

7 modules, which were tested for their correlation with the measured clinical traits. 

As shown in Fig. 5.5 (showing correlations between modules and all clinical variables recorded for 

this patient cohort) and in Fig. 5.6 (an excerpt from Figure 5.5 where only outcome parameters are 

shown), there was no significant correlation between modules and disease outcomes. Of note, one 

module (module pink in this dataset) correlated with gender (Figure 5. 5), as expected in methylation 

datasets. 

 

 

 

 

 
 
Figure 5.4. Hierarchical clustering of the methylation data in 66 children with CD. Two main clusters and their 

subgroups are shown. 
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Figure 5.5 WGCNA. Methylation data from 66 children with CD. Module-trait associations. Each row 

corresponds to a module eigengene, column to a trait. Each cell contains correlation index and p-value (colour-

coded, numbers not displayed on this plot). The table is colour-coded by correlation according to the colour 

legend (i.e. 1 = highest direct correlation, -1 = highest inverse correlation).  
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Figure 5.6 WGCNA. Methylation data from 66 children with CD. Excerpt from Figure 5.5 showing the top 

modules for clinical outcomes. On the x axis are variables related to disease outcomes. On the y axis are 

selected modules (indicated by colour bars). Each cell contains a correlation index and a p-value (in brackets). 
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5.3.2 Analysis of a subset of the CD8 methylation data from 66 children with CD: probes 

correlated with outcomes in the gene expression dataset from the same cohort. 
 

Given the absence of significant correlations from the analysis above, we next resorted to a more 

supervised approach by subsetting from the methylation dataset those probes corresponding to 

modules that were significantly correlated with outcomes in the gene expression dataset (from the 

same patient cohort). This selection included 388,270 probes (across 66 samples). The top 20% of 

these probes that were most differentially methylated across this cohort were then selected, to obtain 

a final subset of 77,654 probes / 66 samples. 

Fifteen modules were identified and their correlation with measured clinical variables is shown in 

Figure 5.7 while Figure 5. 8 shows an excerpt from Figure 5.7 where only the modules of relevance 

to disease outcomes are shown. Correlations for use of biologics (module cyan), surgical intervention 

(modules salmon and midnightblue) and severity score (modules cyan and midnightblue) were 

identified, though correlation indexes only ranged between + 0.24 and + 0. 26 for positive 

correlations, and between – 0.28 and -0.3 for negative correlations. 
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Figure 5.7 WGCNA. Module-trait associations. CD8 methylation data from 66 children with CD: probe selection 

corresponds to top gene expression WGCNA modules from the same cohort. Each row shows a module 

eigengene, columns correspond to clinical traits. Each cell contains a correlation index and a p-value (colour-

coded, numbers not displayed on this plot). The table is colour-coded by correlation according to the colour 

legend (i.e. 1 = highest direct correlation, -1 = highest inverse correlation).  
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Figure 5.8 WGCNA. Module-trait associations. Selection of modules correlated with clinical outcomes from 

Figure 5.7. On the x axis are variables related to the disease at diagnosis (i.e. gender, age at diagnosis, 

abdominal pain at diagnosis, diarrhoea and disease activity score at diagnosis (i.e. PCDAI)) followed by 

variables describing disease outcomes (use of biologics, surgery, steroid resistance etc.). On the y axis are 

modules of interest (indicated by numbers and colour names). The plot shows how these modules correlate 

more strongly (directly or inversely) with disease outcomes than they do with parameters describing disease 

at diagnosis. 

 

At this stage, in order to test further the prognostic power of the modules identified above, the probes 

corresponding to each module of interest were subset from this dataset and Consensus Clustering 

of this selection was performed. Subsequently, survival analysis was performed to compare the 

groups identified for the specific outcomes of interest. 

First, we tested module cyan (21 CpG) correlated to the clinical variables “use of biologics” and 

“severity score”. Groups identified through Consensus Clustering are shown in Fig. 5.9. Survival 

analysis showed no significant differences between children in group 1 and 2, in respect to number 

of treatment escalations, use of biologics and surgical intervention (Fig. 5.10). 
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Figure 5.9. Consensus Clustering of a selection of probes included in the WGCNA module cyan (21 CpG) 

correlated with the clinical variables “use of biologics” and “severity score”. In A. CDF: Consensus Cumulative 

Distribution Function, showing at what number of clusters, k, the consensus and cluster confidence reach a 

maximum. In B. Delta area plot, showing the relative change in the area under the CDF curve, with no further 

appreciable increase at k=3. k3 is identified as the strongest clustering option. In C. Consensus Clustering plot 

for k3: group 1: n=45 vs groups 2 (i.e. 2+3): n=21. 
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A)                                                               B) 

                  
C)                                                                       D) 

                   
E)                                                                                            

              
 
Figure 5.10 Kaplan Meier curves comparing the groups identified in 5.9 C (group 1: n=45 vs groups 2 (i.e. 

2+3): n=21) for the following outcomes: A) first treatment escalation; B) second treatment escalation; C) third 

treatment escalation; D) use of biologics; E) surgical intervention.  
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We then performed a similar analysis subsetting probes from WGCNA modules salmon and 

midnightblue, correlated with surgery. Survival analysis failed to identify significant splits between 

the groups identified through Consensus Clustering. 

 

As a last step, we analysed male and female patients separately, aiming to correct for gender effect. 

Nevertheless, this did not increase the correlation indexes of the modules identified. 
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5.4 Discussion 
 

Testing DNA methylation profiles in CD8+ T-cells from our cohort was relevant to this project in view 

of existing evidence on the role of methylation in regulating gene expression 56 and on changes in 

methylation described in diseases including IBD 59-65. 

We aimed to explore the potential of CD8+ specific DNA methylation profiles in predicting outcome 

for children with IBD as an alternative parameter endowed with higher stability compared to gene 

expression 66, 161-164. The presence of relevant correlations with outcome would also have allowed 

us to investigate whether different DNA methylation profiles underpin specific changes in gene 

expression relevant to outcome prediction.  

The data analysis shown in this chapter failed to identify significant correlations with disease 

outcome in our paediatric cohort. Nevertheless, the analysis is still at a preliminary stage and a 

number of possible limitations must be taken into account when interpreting these results. First, the 

patient population tested only included 66 children with CD, both males and females. Data 

breakdown by gender limited the population size even further. Second, so far, we have only applied 

WGCNA to our methylation data by adjusting the protocol used for gene expression to this specific 

dataset. The different nature of the methylation dataset may not fit the WGCNA approach 

extrapolated from the gene expression protocol. There are further analyses that should be 

undertaken, in particular, supervised differential methylation analysis between groups of children 

with different disease outcome. Moreover, although WGCNA has been applied to methylation 

datasets in previous studies 65,165, the use of other computational tools to test for possible correlation 

between genome wide methylation data and disease outcome should be investigated. 

Current plans are to expand our cohort and sample size, adding more patients, including those with 

UC, and to refine and complete data analysis as discussed above on this larger cohort. Furthermore, 

as a similar project is being undertaken by our colleague adult gastroenterologists, a combined 

analysis of CD8+ methylation data from paediatric and adult patients will be available.  
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6.1 Summary and conclusion 

 
The hunt for prognostic biomarkers is one of the most challenging and exciting topics in the study of 

paediatric and adult autoimmune diseases (including IBD) at present. 

Huge progress has been achieved in areas such as oncology, where bench-work has generated 

reliable genetic and histological predictors that have changed the way in which patients are treated 

by personalising their care, but a similar approach is still a “work in progress” in complex immune-

mediated conditions such as IBD 166. 

IBD is a chronic condition for which no cure has yet been developed, so there is no doubt that the 

discovery of a reliable prognostic biomarker would improve the care of children affected by the 

disease. However, whether such a discovery would really improve patients’ lives is determined by 

treatment availability. The treatments that are currently available target the immune system on 

different levels, and aim to achieve remission of the inflammatory status. However, particularly for 

patients of paediatric age, clinical and endoscopic remission is generally temporary, as children tend 

to relapse and therefore require accelerated treatment escalation 23,26,124,128. The majority of children 

with IBD have shown suboptimal response to treatment, while also being exposed to potentially 

severe side effects such as infections and malignancy 86-88,111,167. 

Increasing evidence suggests that the early, stratified treatment of patients in high-risk groups (i.e. 

those patients with the severe disease phenotype) is likely to improve the long-term disease outcome 
132. A reliable prognostic biomarker would enable us to advise children and their parents about the 

likely disease outcome at the point of diagnosis, and hence to propose a tailored, potentially more 

individualised treatment strategy and/or patient monitoring scheme. Importantly, treatment 

stratification according to likely disease outcome would avoid the unnecessary exposure of “mild” 

disease cases to potentially harmful treatment, while still providing sufficiently effective treatment to 

patients in high-risk groups.   

However, treatment availability is currently limited, particularly for paediatric IBD. As shown in Fig. 

1.5 on page 33 89, only a few drugs and/or treatment options (i.e. EEN/steroids, thiopurines, biologics 

and surgery) are available while dealing with lack or loss of response to treatments.  

The use of a “step-up approach” as opposed to a “top down strategy” has been debated for the past 

two decades. Current data show that, even in countries where a step-up approach is favoured in 

order to save the more powerful treatment options for a later stage, the majority of children will 

eventually end up needing second line immunosuppressants and nearly half of them will end up on 

biologic treatments in the long run. Based on the number of children failing to respond to treatment, 

it is becoming more and more questionable whether we are indeed able to modify the natural history 

of IBD 125,127. 
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It is therefore clear that the search for prognostic biomarkers has to proceed alongside the 

development of new drugs in order to have enough options available once patients have been 

stratified for risk at the point of diagnosis. 

One of the most promising predictors reported to date has come from work by the group of Prof. Ken 

Smith (Cambridge Department of Medicine). This group has identified a specific gene expression 

signature in CD8+ T-cells isolated from peripheral blood that correlates with disease outcome in 

adult patients with autoimmune diseases (i.e. systemic lupus erythematosus (SLE) and ANCA 

associate vasculitis (AAV)) as well as adult IBD 67. E. McKinney from the same group also identified 

a T-cell related exhaustion signature that is protective towards the development of a severe disease 

course in adult patients with auto-immune conditions, including IBD 155. 

In 2014, we set out to test, for the first time, the use of CD8+ T-cell gene expression profiles as 

disease prognostic biomarkers in children diagnosed with IBD. Our data from 107 prospectively 

recruited children did not prove a predictive role of CD8 adult signatures, which may suggest that 

there are intrinsic differences between children and adults. Moreover, unsupervised clustering 

analysis of the paediatric data consistently showed a major difference in size between groups of 

patients identified in our paediatric cohort: when the outcomes for such groups were compared, the 

fraction of patients in the mild group was approximately 10%, whereas the severe prognostic group 

made up 80–90% of the sample. This uneven split limited the power of our survival analyses and 

differed to the 40/60 split identified in the previous study on adult patients.  

IBD is a complex condition with a wide phenotypic spectrum, so age-related differences in gene 

expression profiles are likely, and previous studies have shown that children tend to develop a 

severe disease phenotype more often (and earlier) than adult patients. A common theme throughout 

our findings is that IBD in the paediatric population is less heterogeneous than that in the adult 

population: the majority of paediatric patients appear to suffer from moderate or severe forms of the 

disease and therefore fall into the same prognostic group.  

By comparing the clinical data collected to the information available from the adult study, we were 

able to provide evidence that paediatric IBD is a disease subgroup where the vast majority of patients 

fall into the moderate/severe group (Fig. 3.9 on page 69). 

Of particular interest are our findings related to the investigation of T-cell exhaustion in children. 

Exhaustion genes expressed in adults were mostly down-regulated in our paediatric cohort and vice 

versa. This may suggest that children go on to develop a severe disease course because their T-

cells are not exhausted. 

Because it was not possible to apply the prognostic power of adult signatures to the paediatric 

population, the second part of our work was based on testing for the existence of paediatric-specific 

signatures that could serve as prognostic biomarkers in children with IBD. Significant correlations 

were obtained by analysing CD and UC separately: signatures from specific WGCNA modules 
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generated noteworthy differences in use of biologics in CD and in surgical intervention in UC between 

the groups identified. 

GSEA based on the groups identified using the above signatures highlighted the presence of 

pathways including IL7, TNF-alpha and interferon, amongst others which are less known to play a 

role in IBD. However, the reliability of the paediatric signatures identified is such that further validation 

is required, as the correlation indexes ranged between ± 0.2 and ± 0.4 for most of the clinical 

outcomes investigated. 

Interestingly, the findings emerging from our study suggest that a smaller focus should be placed on 

the use of prognostic biomarkers in paediatric IBD. In fact, as the majority of children seem to fall in 

the severe prognostic group, one should recommend a top-down approach to enable prompt 

effective treatment in anticipation of further complications. Our results may question the worth of a 

biomarker for predicting the overall disease course in paediatric IBD, but the focus should remain on 

developing predictors of response to treatments, particularly in view of the development of new drugs 

on the horizon. A major interest in predicting the response to IBD treatment has recently arisen, and 

promising data is emerging 168.  

In summary, this prospective study performed on a large cohort and over an adequate follow-up 

time, has increased our understanding of paediatric (and adult) IBD by confirming that patients of 

paediatric age follow a more severe disease course, which makes the identification and validation of 

prognostic biomarkers particularly challenging. Paediatric IBD appears to be a unique entity with a 

more severe phenotype. 

Importantly, our findings pave the way to further investigation on the process of T-cell exhaustion in 

children. Exploring mechanisms that induce exhaustion of T lymphocytes might provide future 

preventative therapeutic options for paediatric patients diagnosed with IBD. 
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6.2 Strengths and limitations  
 
The main strength of this work is the prospective recruitment of a large cohort of treatment-naïve 

paediatric patients and the thorough collection of detailed clinical information from the same operator 

over a 1.5-year follow-up period.  

The consistent results found by using two complementary bioinformatics analyses, i.e. unsupervised 

clustering and WGCNA, are also an element of strength in supporting our findings and conclusion. 

The single-centre setting of the work is arguably a limitation, as it allowed a reliable, consistent, 

single-operator-based collection of detailed clinical data, which was fundamental for the aim of this 

specific study. 

Another limitation in this study was that the comparison between the paediatric and the adult gene 

expression data was managed by keeping the two cohorts separate. In fact, merging data from 

different versions of the gene expression array (Affymetrix Human Gene 1.0 and 2.0 ST, respectively) 

was not achievable. Nevertheless, we are planning to use whole blood samples collected in PAX 

tubes from a group of children from the same paediatric cohort to test the adult prognostic signature 

through a RT-PCR essay. This approach will allow us to bypass the issue of the different arrays and 

will be used as a validation step of our findings.  

In respect to limitations, this 4-year project acts as an example of the huge amount of translational 

work that is required for the development and/or testing of prognostic biomarkers. The availability of 

patients and samples, the prospective collection of clinical data including strict patient monitoring 

during follow-up (as shown in Appendix 2 on page 176), laboratory techniques (e.g. cell separation, 

extraction of nucleic acids, microarray), and the availability of bioinformatics skills for appropriate up-

to-date analyses all made this experience complex and challenging. 

One relevant hurdle in collecting clinical information was the identification of which parameters would 

reflect disease severity in a paediatric population. In fact, using the number of treatment escalations 

as in the adult study would be limiting in paediatric patients who mostly have more than two 

escalations. We therefore collected information on the use of biologics, IBD-related surgical 

intervention and IBD-related inpatient admissions in order to expand the outcome range and 

increase the chance of identifying a split between the more severe patients and the milder ones. In 

the absence of a summary score for disease severity in the paediatric literature to date, we also 

created scores for the purpose of this study, although they could not be weighted or validated 

(chapter 2.2.1 on page 45). 

In summary, the complexity mentioned above must be taken into account when setting up 

translational research studies aimed to develop disease biomarkers. We foresee that in the near 

future, more advanced and automated electronic clinical databases will alleviate the need for manual 

data collection. Moreover, new computational tools are likely to be implemented to match high 

throughput data with corresponding clinical information. 
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6.3 Future work 
 
We are currently using whole blood samples collected in PAX tubes from a group of 79 children 

enrolled in this study to test the adult prognostic signature through a RT-PCR assay, as a validation 

step of the work presented in this thesis. We aim to verify whether the majority of these children 

would correspond to the adult severe prognostic group, as expected from the findings of this study. 

If this were to be the case, the limited role of CD8+ gene expression signatures as disease prognostic 

biomarkers in paediatric patients would be corroborated. 

Additionally, we aim to complete and improve the preliminary work on CD8+ DNA methylation 

showed in chapter 5. Relevant findings have recently been published on the role of DNA methylation 

profiles in intestinal epithelial cells as diagnostic biomarkers for paediatric IBD, with specific changes 

in methylation reflecting the type of IBD diagnosis and its distribution 64,65.  

No data on DNA methylation profiles in CD8+ T-cell has been shown so far, to our knowledge. CD8+ 

methylation samples from a larger cohort are now available in our laboratory, hence we aim to 

conduct further bioinformatics analysis aimed to test this parameter as a potential prognostic 

biomarker in children with IBD. 

Future investigation should focus on T-cell exhaustion signatures. Findings from this study suggest 

that CD8+ T-cells in children might be not exhausted which may therefore predispose the patients 

to a more severe disease course. If such a theory were to be proved by further experiments, this 

would potentially pave the way towards preventative therapeutic options based on inducing T-cell 

exhaustion in paediatric-onset IBD. 

Finally, throughout the course of this project we have collected blood samples at different time points 

during the patients’ follow-up, i.e. when patients were being treated and were either achieving 

remission or going through a relapse of their IBD. Analysis of gene expression (and methylation) 

profiles from these samples and correlation with clinical data has the potential to measure the 

stability of these profiles over time and their correlation with disease activity and/or response to 

treatments.  
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Appendix 1. Definition, measurement units and normal values of the main clinical 
items collected 
 
• IBD diagnosis: The sub-classification of the IBD-U as CD-like or UC-like was based on the 

combination of disease localisation (e.g. the involvement of any tract of the small bowel would be 

more consistent with CD, with the exception of backwash ilieitis in patients with UC) and of the 

histological findings 2; 

• Diarrhoea at diagnosis: defined by the World Health Organisation as having three or more loose 

or liquid stools per day; diarrhoea is defined as chronic when symptoms last more than 14 days; 

• Stool consistency at diagnosis: scores 1 to 7, as defined by the Bristol Stool Scale; 

• Moderate-severe abdominal pain, defined as > 5 on VAS Scale; 

• Weight loss at diagnosis: defined as an involuntary loss ≥ 10% of the weight reported before the 

symptom onset; 

• Fever at diagnosis: defined as T> 37.5 ^C with no detection of infections; 

• Iron deficiency anaemia at diagnosis: definition based on the combination of clinical signs and 

symptoms, RBC count, haematocrit, haemoglobin, MCV, reticulocytes, ferritin levels. 

Haemoglobin thresholds as defined by World Health Organisation: 11 g/dL for children < 5 years 

of age, 11.5 g/dL for children aging 5-10 years, 12 g/dL for children aging 12 – 15 years; 

• Perianal disease at diagnosis (fissures, fistulae, abscesses) defined on the basis of clinical 

assessment ± pelvis MRI); 

• Extraintestinal manifestations (EIMs) at diagnosis: joint pain, hepato-biliary disorders (diagnostic 

work-up based on clinical evidence of liver enlargment and/or jaundice, liver function tests, 

serology, imaging ± ERCP), pancreatitis (diagnostic work-up based on clinical assessment, 

measurement of pancreatic enzymes, imaging), skin manifestations (erythema nodosum, 

pyoderma gangrenosum), eye manifestation (uveitis, epi-scleritis); 

• Mouth ulcers: considered when detected at diagnosis or during the recent months prior to 

diagnosis; 

• Scores of IBD activity at diagnosis and at follow-up: Paediatric Crohn's Disease Activity Index 

(PCDAI) and Paediatric Ulcerative Colitis Activity Index (PUCAI) 34-35; 

• Disease localisation at diagnosis and at follow-up: defined according to the Paris classification for 

IBD 13 (Appendix 6 on page 1208), on the basis of endoscopy, histology and small bowel MRI 

results; 

• White Blood Cells (WBC) at diagnosis and at follow-up (x 10^3/mm3, n.v. ages 5 to 12 years: 

males 4.5-10.5, females 4.7-10.3; ages 12 to 16 years: males 4.5-10, females 4.8-10.1); 

• Haemoglobin (Hb) at diagnosis and at follow-up (g/dL, n.v. ages 5 to 12 years: males 11-13.3, 

females 10.9-13.3; ages 12 to 16 years: males 11.5-14.8, females 11.2-13.6); 
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• Mean Corpuscolar Volume (MCV) at diagnosis and at follow-up (fL, n.v. boys: 78 – 98, girls: 78 – 

102); 

• Haematocrit (Htc) at diagnosis and at follow-up (%. n.v. ages 5-12 years: males 32.7-39.3, 

females 33-39.6; ages 12-18 years: males 34.8-43.9, females 34-40.7); 

• Platelet count at diagnosis and at follow-up (x 10^3/mm3, n.v. ages 5 to 12 years: males 194-364, 

females 183-369; ages 12 to 18 years: males 165-332, females 185-335); 

• C-reactive protein (CRP) at diagnosis and at follow-up (mg/L, n.v. < 6); 

• Erythrocyte sedimentation rate (ESR) at diagnosis and at follow-up (mm/h, n.v. < 8 mm/h); 

• Albumin at diagnosis and at follow-up (g/L, n.v. ages 5 to 6 years: 35-52; ages 7 to 9 years: 37-

56; ages 9 to 19 years: 37-56); 

• Faecal calprotectin at diagnosis and at follow-up (mcg/g, threshold for significance 300). 
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Appendix 2. Clinical Database used as a .csv file to align clinical data to gene 
expression data in the WGCNA. 
 

Case 
Number Gender Diagnosis 

Age at 
diagnosis 

Family 
history of 

IBD 

Z score for 
Weight at 
diagnosis 

6.CEL 1 0 12 0 -0.817 

10.CEL 1 1 15 0 -2.469 

13.CEL 1 1 13 0 -0.441 

16.CEL 0 0 13 1 -0.364 

19.CEL 1 1 10 0 -1.255 

21.CEL 0 0 14 0 -0.824 

24.CEL 0 0 14 0 1.795 

26.CEL 1 1 13 0 -1.71 

28.CEL 0 0 14 0 1.208 

30.CEL 1 0 12 0 0.7 

34.CEL 0 1 13 0 0.729 

40.CEL 1 0 14 1 -0.872 

44.CEL 1 1 13 0 -1.254 

46.CEL 0 0 11 0 1.367 

47.CEL 1 0 13 0 -0.491 

49.CEL 1 1 10 0 -0.239 

50.CEL 1 1 8 1 0.45 

51.CEL 1 1 13 0 -1.13 

53.CEL 0 0 7 1 -0.372 

57.CEL 1 0 12 0 0.066 

58.CEL 0 1 13 0 0.935 

59.CEL 0 1 8 0 -1.437 

61.CEL 1 1 15 0 0.848 

70.CEL 1 1 13 1 -0.029 

72.CEL 1 1 7 0 -0.981 

74.CEL 1 0 14 1 -0.757 

76.CEL 1 1 14 0 0.328 

77.CEL 0 1 14 0 -0.381 

78.CEL 1 1 14 0 -0.53 

80.CEL 0 0 14 0 -0.316 

82.CEL 1 1 14 1 -0.427 

83.CEL 1 0 13 1 0.779 

84.CEL 1 1 17 0 -0.28 
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89.CEL 0 0 10 0 -0.234 

90.CEL 1 1 9 1 -0.633 

91.CEL 0 0 6 1 2.16 

92.CEL 0 0 9 0 0.674 

93.CEL 1 0 9 0 -0.16 

95.CEL 1 1 6 0 -0.12 

96.CEL 0 0 15 0 0.175 

97.CEL 1 1 13 0 -1.91 

98.CEL 0 1 15 0 -0.98 

102.CEL 0 1 11 0 -0.37 

104.CEL 1 1 15 0 -1.65 

105.CEL 1 1 13 0 -2.09 

106.CEL 1 1 11 0 -0.02 

112.CEL 1 1 13 0 0.95 

116.CEL 1 0 8 0 1 

173.CEL 1 1 13 1 0.76 

174.CEL 1 0 14 0 -0.56 

193.CEL 1 1 14 1 0.4 

199.CEL 1 1 13 0 -2.03 

205.CEL 1 1 14 1 0.64 

206.CEL 0 0 15 0 1.65 

208.CEL 1 0 12 0 -0.27 

209.CEL 0 1 13 1 -1 

217.CEL 1 1 14 0 0.73 

219.CEL 1 1 11 0 1.52 

227.CEL 1 1 13 0 -2.33 

232.CEL 0 1 15 0 -2.65 

236.CEL 0 0 11 1 -0.21 

246.CEL 1 1 13 1 -0.43 

249.CEL 1 1 13 1 -1.49 

251.CEL 0 0 11 0 1 

270.CEL 1 1 12 0 -0.68 

272.CEL 1 1 15 1 -1.66 

273.CEL 0 1 9 0 2.27 

277.CEL 1 1 11 1 -0.07 

279.CEL 1 1 12 0 1.38 

280.CEL 0 1 15 1 1.69 

282.CEL 0 1 12 0 -0.76 

289.CEL 1 1 10 0 0.39 
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290.CEL 0 1 15 0 -2.75 

301.CEL 1 1 7 0 1.08 

307.CEL 0 1 15 0 -0.26 

310.CEL 1 0 11 0 0.88 

318.CEL 0 1 10 0 -1.04 

319.CEL 0 1 9 0 -1.12 

320.CEL 1 1 11 0 -0.429 

321.CEL 0 0 13 0 -0.69 

323.CEL 1 0 15 1 -0.67 

324.CEL 1 0 11 1 1.12 

330.CEL 0 1 15 1 -0.85 

335.CEL 0 1 14 1 -1.04 

340.CEL 1 0 15 0 -0.73 

344.CEL 1 0 15 0 0.69 

348.CEL 0 1 11 0 -1.4 

352.CEL 0 1 15 0 -0.24 

354.CEL 1 1 15 0 -2.21 

358.CEL 1 1 13 0 -1.79 

359.CEL 1 1 13 0 -0.5 

360.CEL 0 0 8 0 -1.36 

366.CEL 1 0 12 1 1.03 

370.CEL 0 0 14 1 -1.209 

376.CEL 0 0 15 0 1.03 

385.CEL 1 0 5 0 -3.08 

387.CEL 1 0 14 0 2.01 

392.CEL 0 0 15 0 0.68 
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Z score for 
Height at 
diagnosis 

Abdominal 
pain at 

diagnosis 
Diarrhoea at 

diagnosis 

Mucus in 
stools at 

diagnosis 

Per rectal 
bleeding at 
diagnosis 

Weight loss 
at 

diagnosis 

-1.155 1 1 0 0 1 

0.988 1 1 0 0 1 

1.368 1 1 0 1 1 

0.26 0 1 1 1 1 

-0.111 1 1 1 1 1 

0.317 1 1 0 0 0 

0.779 1 1 0 1 0 

-1.572 0 1 0 1 1 

0.316 1 1 1 1 0 

0.7 1 1 1 1 0 

0.617 1 1 0 1 0 

0.357 1 0 0 1 1 

-1.164 1 1 0 0 0 

-0.437 1 0 0 1 0 

0.465 1 1 0 1 0 

1.234 1 1 0 0 1 

0.3 1 0 0 1 0 

-0.27 1 0 0 1 1 

-0.864 1 1 0 1 0 

0.615 1 1 0 1 0 

1.464 0 1 0 1 0 

-1.838 1 1 0 0 0 

1.159 1 1 0 0 1 

1.83 1 1 1 1 1 

-1.485 0 0 0 0 1 

-0.412 0 1 0 1 0 

-0.334 1 0 0 1 0 

0.351 1 1 1 0 0 

0.646 1 1 1 1 0 

-0.854 0 0 0 1 0 

1.728 1 1 0 1 0 

-1.141 0 1 0 1 0 

0.381 1 0 0 1 1 

-0.451 1 1 0 0 0 

-1.726 1 1 0 1 0 

2.306 1 1 1 1 0 
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1.009 1 1 1 1 0 

-1.987 1 1 0 1 0 

0.723 0 1 0 0 1 

-0.369 1 1 0 1 1 

-0.77 1 0 0 0 1 

0.07 1 1 0 1 1 

0.58 1 1 0 1 0 

-0.2 1 1 0 1 1 

-1.6 1 1 0 0 1 

0.79 1 1 0 0 0 

-0.82 1 0 0 1 0 

1.56 1 1 0 1 0 

0.25 1 0 0 0 0 

-0.85 1 1 0 1 1 

-0.15 1 1 0 1 0 

-0.73 1 1 1 0 1 

1.36 0 0 0 0 0 

-0.17 0 1 0 1 0 

-0.99 0 0 0 1 0 

-0.77 1 1 0 1 0 

1.07 1 1 0 1 1 

1.32 1 1 1 0 0 

-1.8 1 0 0 0 0 

-0.75 0 1 1 1 1 

-0.14 1 1 1 1 0 

-0.03 1 1 1 1 0 

0.13 1 1 1 1 1 

0.48 1 1 0 1 0 

0.18 1 1 0 0 0 

-1.03 1 1 0 1 1 

0.93 1 0 0 1 0 

0.31 1 1 0 0 0 

0.83 0 1 0 1 0 

1.5 1 1 1 0 1 

0.25 1 0 0 0 1 

1.41 1 0 0 0 1 

-2.24 1 1 1 0 1 

-0.02 1 1 0 1 0 

-0.02 1 1 0 0 1 
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1.43 1 1 0 1 0 

0.49 1 1 0 1 1 

0.2 1 0 0 0 1 

0.568 1 1 0 0 1 

-0.86 1 1 0 1 0 

-0.03 1 1 0 1 0 

0.93 1 1 1 1 0 

0.36 1 0 0 1 1 

-0.75 1 1 0 1 1 

-0.1 0 1 0 1 0 

0.69 1 1 1 1 0 

-0.88 1 0 0 0 0 

-0.14 1 0 1 1 0 

-0.85 1 1 0 1 1 

-0.81 1 1 0 1 1 

-0.45 0 1 1 1 0 

0.04 1 1 0 1 0 

0.14 0 1 0 1 1 

-0.168 1 1 0 1 0 

1.28 1 0 0 1 1 

-1.49 0 0 0 1 1 

0.91 0 1 0 1 0 

0.23 1 1 1 1 1 
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Nocturnal 
symptoms 

at 
diagnosis 

Nausea / 
vomiting at 
diagnosis 

Urgency / 
tenesmus 

at 
diagnosis 

Lethargy at 
diagnosis 

Iron 
deficiency 
anaemia at 
diagnosis 

Mouth 
ulcers at 

diagnosis 

0 0 1 1 0 0 

0 0 0 1 1 1 

0 0 0 0 0 1 

0 0 0 0 1 0 

0 0 0 0 1 0 

1 0 0 0 0 0 

1 0 0 0 0 1 

0 0 0 0 0 1 

0 0 0 0 0 0 

1 1 1 0 0 0 

0 0 1 0 1 1 

1 0 1 0 0 0 

1 0 1 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 1 0 0 

0 1 0 0 0 1 

0 0 0 0 0 0 

1 0 1 0 0 0 

0 0 0 0 0 0 

0 1 1 1 0 1 

0 1 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

1 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 1 1 1 

1 0 0 1 0 0 

0 0 0 0 0 0 
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0 0 1 0 0 0 

0 0 0 0 0 0 

1 0 0 0 0 0 

1 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 0 0 

0 0 1 1 0 0 

0 0 0 0 0 0 

0 0 0 0 1 0 

1 0 0 0 1 0 

1 1 0 0 0 0 

0 0 0 0 0 0 

0 0 0 1 0 0 

0 1 0 0 0 0 

0 1 1 0 0 0 

0 0 0 1 1 0 

0 0 0 0 0 0 

0 1 0 1 0 0 

0 0 0 0 0 0 

0 0 1 1 0 0 

0 1 0 1 0 0 

0 1 1 1 0 1 

0 0 0 1 0 0 

0 0 0 1 1 0 

1 0 1 0 0 0 

0 0 1 0 1 0 

0 0 0 1 0 1 

1 0 0 1 1 0 

0 0 0 0 0 1 

1 1 0 1 0 0 

0 0 0 1 0 1 

0 1 0 0 0 0 

1 0 0 1 0 0 

0 0 0 1 0 0 

1 1 1 1 1 0 

1 0 1 0 0 0 
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0 0 0 0 0 0 

0 1 0 0 0 0 

0 0 0 0 0 0 

0 1 0 1 1 0 

0 0 0 1 1 0 

0 0 0 0 0 0 

0 0 1 0 0 0 

1 0 1 0 0 0 

0 1 1 0 1 0 

0 1 0 1 0 0 

1 0 1 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 1 1 0 

0 1 0 1 1 0 

1 0 0 1 1 0 

0 0 0 0 0 0 

0 0 0 1 1 0 

1 0 1 0 0 0 

0 0 1 0 0 0 

0 0 0 0 0 0 

0 0 1 0 1 0 

0 0 1 0 0 0 

0 0 0 0 1 0 
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Joint pain at 
diagnosis 

Fever at 
diagnosis 

Time onset 
to 

diagnosis  
Perianal disease 

at diagnosis 

Liver 
involvement 
at diagnosis 

EIM at 
diagnosis 

0 0 3 0 0 0 

0 0 1 1 0 0 

1 1 2 0 0 0 

0 0 2 0 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

0 0 2 1 0 0 

1 0 2 0 0 0 

0 0 1 0 0 0 

0 0 3 0 0 0 

0 0 1 0 0 0 

0 0 3 0 1 1 

0 0 3 0 0 0 

0 0 3 0 0 1 

0 0 3 0 1 0 

0 0 3 0 0 0 

1 0 2 0 0 1 

0 0 3 0 0 0 

0 0 1 0 0 0 

0 0 3 0 0 0 

1 1 1 0 0 1 

0 0 3 0 0 0 

0 0 1 0 0 0 

0 0 3 1 0 0 

0 0 3 1 0 0 

0 0 2 0 0 0 

0 0 1 0 0 1 

1 0 3 0 0 1 

0 0 3 0 0 0 

0 0 2 0 0 1 

0 0 1 0 0 0 

0 0 3 1 0 0 

0 1 2 0 1 0 

0 0 3 0 0 0 
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0 0 3 0 0 0 

0 0 2 0 0 0 

0 0 1 0 0 0 

0 0 1 1 1 0 

0 0 2 0 0 0 

0 0 2 0 0 1 

0 0 1 1 1 0 

1 0 1 0 0 0 

0 0 3 0 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

1 0 2 0 0 1 

0 0 2 0 1 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

0 0 3 1 0 0 

0 0 1 0 0 0 

1 0 3 0 0 1 

0 0 2 0 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

0 0 2 0 0 0 

0 0 3 0 0 1 

1 0 1 0 0 1 

0 0 2 0 0 0 

0 0 1 0 0 0 

0 0 2 0 0 0 

0 0 3 0 0 0 

1 0 1 0 0 0 

0 0 1 0 0 0 

0 0 2 0 0 0 

1 0 1 1 0 1 

0 0 2 0 1 0 

0 0 2 0 0 0 

0 0 2 0 0 0 

0 0 2 0 0 0 

0 0 2 0 0 0 

0 0 3 0 0 0 
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0 0 2 0 0 0 

0 1 1 0 0 0 

0 0 3 0 1 0 

0 0 2 0 0 0 

0 0 1 0 0 0 

0 0 3 0 0 0 

0 0 3 0 0 0 

0 0 1 0 0 0 

0 1 3 0 0 0 

0 0 3 1 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

0 0 3 0 0 1 

1 0 1 1 0 1 

0 0 1 0 0 0 

0 0 2 0 0 0 

0 0 3 0 0 0 

0 0 2 0 0 0 

0 0 2 0 0 0 

0 0 2 0 1 0 

0 0 3 0 0 0 

0 0 2 0 0 0 

0 0 1 0 0 0 

0 0 1 0 0 0 

 

  



 188 

Growth 
deficiency at 

diagnosis 

White Cell 
Count at 

diagnosis 
(x 10^3 / 

mm3) 

Haematocrit 
at 

diagnosis 
(%) 

Platelets at 
diagnosis (x 
10^3 / mm3) 

Ferritin at 
diagnosis (ug 

/ L) 

ESR at 
diagnosis 
(mm / h) 

0 8.6 30.9 460 15 38 

0 12.3 36.8 579 12.4 25 

0 5.5 41.7 366 39.2 30 

0 7.3 32.6 341 33.4 8 

1 12.3 24.7 796 1.8 47 

0 7.7 36.2 633 2.5 17 

0 7.2 34.7 226 16.7 19 

0 9.8 36.6 538 40.2 25 

0 9.3 38 277 23.7 11 

0 10.6 37.5 397 4.6 9 

0 5.7 32.2 304 21.3 8 

0 7.2 39.5 280 3.6 16 

0 7.9 26.8 538 20 49 

0 7.4 34.1 273 14 7 

0 8.8 34.6 376 13.7 18 

0 10.8 39.9 303 15 18 

0 8.7 39 309 66.2 6 

1 6.7 35.6 328 99.5 13 

0 11.3 33.6 427 15 9 

0 6.9 35.6 409 21 16 

0 5.9 37.6 259 15 15 

1 22.3 26.3 613 156.8 35 

0 8.2 37.5 464 10 16 

0 10.5 33.4 442 11.9 13 

1 12.8 37.7 400 39 8 

0 9 39 251 6.1 4 

0 6.8 36.1 350 10.3 33 

0 8.7 29.2 483 6.5 32 

0 9 37.3 187 7.7 11 

0 6.7 37.3 309 3.6 14 

0 9.3 38.1 490 269.8 79 

0 7.7 41.6 186 27.9 4 

1 6 33.9 421 10 30 

0 21.2 31.2 574 7 65 
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0 7.4 37 340 10 6 

0 8.6 33 330 6.5 12 

0 8.1 41.1 256 36.5 5 

0 14.8 20.8 348 2.5 54 

1 13.2 33.2 475 5.1 19 

0 8.7 34.2 289 12.5 18 

0 14.5 35.2 692 8.8 25 

0 6 30 371 28.7 10 

0 8.5 29 336 1 6 

0 8 35.2 380 15 10 

0 12.6 37.8 541 155.8 5 

0 8.4 36.6 463 10.4 10 

0 8.1 37.8 342 17.6 16 

0 8.1 39.5 369 14.6 29 

0 16.5 31.5 693 118.6 29 

0 9.2 29 267 14.6 10 

0 10.1 37.3 334 132.6 33 

0 11.6 37.2 710 66 17 

0 5.3 45 296 17 4 

0 9.4 36.5 394 4.6 10 

0 8.2 34.8 273 6 7 

0 7.5 32.3 548 14 34 

0 6 31.2 610 22 47 

0 10.9 38.4 322 34.9 13 

0 7.3 30.3 356 31.4 35 

0 3.6 40.3 304 95 42 

0 8.1 37 299 12.3 5 

0 8 35.4 367 15 12 

1 8.2 36.3 503 56.5 10 

0 11.8 34 576 6.7 44 

0 8.4 40.3 266 6.2 5 

0 12.6 34.2 364 146.1 17 

0 6.6 36.4 374 15 22 

0 9.1 35.7 482 96 19 

0 5.8 31.4 386 5.7 54 

0 6.2 36.8 228 15 6 

0 7.1 38.8 494 42.4 39 

1 12.8 37.5 537 86 43 

1 13.4 37 82 10.8 82 
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0 8.2 41 547 15 9 

0 7.8 39.5 373 62.1 7 

0 6.3 42.5 656 15 9 

0 8.1 41.2 420 10.7 1 

0 9.1 33 523 30.7 39 

0 6.5 38.7 279 12.9 26 

0 6.8 33.1 359 11.3 16 

0 6.8 37.5 373 5.7 5 

0 10.5 34 503 5.9 16 

0 5.5 31.8 359 26.6 33 

0 5.1 35.1 527 9.6 19 

0 5.2 43.6 325 9 15 

0 6.1 44.4 220 84.5 5 

0 7.8 40.2 243 27.6 10 

1 11.8 34.6 290 18 25 

0 7.4 34.1 476 73.4 30 

1 12.3 36 645 72.9 42 

0 8 34.2 366 19 16 

0 8.6 27.6 721 15 32 

0 13 35 307 4.6 9 

0 4.7 34.4 339 23.6 32 

0 5.5 29.9 283 3.1 28 

0 6.8 32 409 15 29 

0 4.7 42.5 245 20.4 4 

0 9 24.5 532 19.5 44 
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CRP at 
diagnosis 

(mg/L) 

Albumin at 
diagnosis 

(g/L) 

ALT  at 
diagnosis 

(U/L) 
GGT at 

diagnosis (U/L) 

Disease 
activity at 
diagnosis 

(PCDAI/PUCAI) 

Number of 
treatment 

escalations 

1 39 27 24 22.5 1 

71 27 14 60 42.5 1 

3 36 46 21 30 0 

1 33 19 20 30 3 

22 21 15 26 55 3 

6 33 17 21 40 0 

7 41 41 58 45 1 

31 30 17 16 35 3 

2 41 18 21 35 3 

30 31 18 31 55 1 

30 28 24 14 37.7 2 

4 34 16 21 45 2 

64 25 25 60 50 5 

2 40 21 25 35 3 

3 43 40 29 30 3 

3 41 257 147 25 0 

4 41 19 11 20 2 

56 19 10 23 40 3 

5 36 23 18 35 1 

1 37 15 19 45 0 

1 44 10 10 12.5 0 

101 27 16 11 47.5 4 

49 30 27 40 30 0 

23 27 12 7 37.5 1 

1 31 12 7 17.5 0 

1 45 15 18 22.5 2 

18 37 11 9 20 1 

41 26 9 14 42.5 2 

12 36 13 9 25 0 

1 40 9 7 17.5 0 

150 35 10 13 27.5 0 

4 39 15 20 20 1 

53 29 16 13 40 0 

128 30 28 24 52.5 3 

1 30 12 6 30 4 
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3 38 21 14 45 1 

4 46 19 14 30 1 

1 35 8 9 45 1 

5 34 27 197 35 3 

8 38 9 9 30 3 

14 29 10 10 27.5 2 

20 27 15 10 37.5 3 

4 41 15 27 32.5 3 

34 41 15 10 30 3 

48 32 8 11 35 2 

21 36 10 11 25 0 

19 31 18 7 25 1 

4 35 54 28 50 1 

40 40 8 42 15 2 

4 37 10 8 20 0 

23 36 19 54 25 3 

23 32 11 10 25 0 

2 39 15 15 15 1 

4 39 18 15 30 1 

4 38 15 7 20 2 

33 27 9 10 40 1 

30 35 9 13 35 1 

20 34 20 30 35 2 

79 26 8 14 30 1 

84 26 5 11 32.5 1 

4 43 21 12 15 1 

7 41 13 12 30 3 

12 29 11 34 45 4 

4 32 11 9 25 1 

17 39 14 8 27.5 1 

101 24 8 16 37.5 3 

15 38 17 10 17.5 0 

8 30 24 18 35 4 

4 37 66 129 45 0 

4 46 15 17 25 1 

37 39 11 12 35 2 

22 33 10 8 32.5 2 

74 38 17 15 35 1 

4 38 31 20 15 0 
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4 42 12 18 25 0 

4 35 12 10 55 3 

4 35 14 16 55 2 

29 27 10 36 32.5 3 

11 30 16 15 35 1 

6 39 10 12 50 0 

8 34 13 12 40 0 

6 37 17 7 60 4 

4 35 11 12 35 3 

18 19 8 8 37.5 4 

12 45 18 17 50 0 

4 44 22 34 50 2 

4 39 17 12 15 0 

8 32 42 26 22.5 2 

28 30 40 48 35 2 

74 31 8 17 35 1 

10 36 11 14 20 2 

10 37 15 11 45 1 

4 38 19 10 50 0 

4 39 19 31 45 1 

4 38 15 7 40 1 

5 36 13 8 45 1 

4 43 26 12 40 0 

3 37 9 18 65 1 
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Use of 
biologics 

Surgical 
intervention 

Steroid 
resistance / 
dependency 

6 months 
steroid free 
remission 

Number of 
relapses 

Number of 
endoscopies 

0 0 0 0 1 1 

0 0 0 0 2 2 

0 0 0 0 0 1 

0 0 0 1 3 2 

1 0 0 0 3 2 

0 0 0 1 1 1 

0 0 0 0 2 2 

1 0 0 1 4 2 

0 0 1 0 3 1 

0 0 0 1 2 1 

0 0 0 0 3 1 

0 0 0 1 2 1 

1 0 0 0 4 3 

0 0 1 0 4 4 

0 0 1 1 3 3 

0 0 0 1 0 1 

0 0 0 1 1 3 

1 0 1 1 3 2 

0 0 0 1 1 1 

0 0 0 1 0 1 

0 0 0 1 0 2 

1 0 1 0 4 3 

0 0 0 1 0 1 

0 0 0 0 1 2 

0 0 0 1 0 1 

0 0 0 1 2 2 

0 0 0 1 1 2 

1 0 0 0 2 2 

0 0 0 0 0 1 

0 0 0 1 0 1 

0 0 0 1 0 1 

0 0 0 1 2 2 

0 0 0 1 1 1 

1 1 0 0 4 2 

1 0 1 0 4 4 

0 0 0 1 1 1 
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0 0 0 0 1 1 

0 0 0 0 1 2 

1 0 1 1 3 3 

1 0 1 0 3 2 

1 0 1 0 2 2 

1 0 0 0 2 2 

1 0 0 0 3 2 

1 0 1 0 4 4 

1 0 1 0 2 2 

0 0 0 1 0 1 

1 0 1 1 1 3 

0 0 0 0 1 2 

0 1 0 1 1 2 

0 0 0 1 0 1 

1 0 1 0 3 2 

0 0 0 1 0 1 

0 0 0 0 1 1 

0 0 0 1 1 2 

0 0 0 0 2 3 

0 0 0 1 1 2 

0 0 0 1 1 1 

0 0 0 0 3 3 

0 0 0 0 1 1 

1 0 0 0 1 2 

0 0 0 1 1 2 

1 0 1 0 3 2 

1 0 1 0 4 3 

0 0 0 1 0 1 

0 0 0 1 0 1 

1 0 1 0 4 2 

0 0 0 1 0 1 

1 0 1 1 3 2 

0 0 0 1 0 1 

0 0 0 1 0 1 

1 0 1 0 2 2 

0 0 0 0 3 2 

0 0 0 1 1 3 

0 0 0 1 0 1 

0 0 0 1 0 1 
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1 1 1 0 4 2 

1 0 1 0 3 3 

1 0 1 0 3 2 

0 0 0 1 1 1 

0 0 0 1 0 1 

0 0 0 1 0 1 

1 0 0 0 4 1 

1 0 1 0 4 3 

1 0 1 0 4 2 

0 0 0 1 0 1 

0 0 1 1 2 1 

0 0 0 1 0 1 

0 0 0 0 2 1 

0 0 0 0 2 1 

1 0 0 0 1 2 

0 0 0 0 1 2 

0 0 0 0 1 1 

0 0 0 1 0 1 

0 0 0 1 1 1 

0 0 0 0 1 1 

0 0 0 0 1 1 

0 0 0 1 0 1 

0 0 0 0 1 1 
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Number of 
unplanned 
inpatient 

days 

Num of 
outpatient 

days 
Severity 

Score 
School 

attendance 
Psychological 

support 

0 11 2 1 1 

0 13 1 1 1 

0 9 0 1 0 

5 15 4 1 1 

10 15 6 0 1 

0 9 0 1 1 

0 16 2 1 1 

0 23 5 1 1 

0 11 4 0 0 

0 17 1 1 0 

0 13 1 1 0 

0 6 3 1 0 

7 24 6 0 1 

0 22 4 0 1 

0 15 2 1 0 

0 10 0 1 0 

0 17 1 0 0 

3 15 5 0 1 

0 5 0 1 0 

0 7 0 1 0 

0 9 0 1 0 

12 24 6 0 0 

0 13 0 1 0 

0 18 0 1 0 

0 12 1 1 0 

1 7 1 1 0 

1 9 0 1 0 

0 13 3 1 0 

0 6 0 1 0 

0 4 0 1 0 

0 5 0 1 0 

0 6 0 1 0 

0 6 1 1 0 

8 15 10 0 1 

 6 5 1 0 
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0 5 2 1 0 

0 8 2 1 0 

0 9 2 0 0 

0 18 5 1 0 

0 11 6 1 1 

0 17 3 1 0 

2 18 5 0 1 

5 8 6 1 0 

20 21 6 1 0 

0 15 3 0 0 

0 8 0 1 0 

0 10 2 0 1 

0 8 2 0 0 

18 12 5 0 1 

0 5 0 1 0 

6 11 7 1 1 

0 9 0 1 0 

0 10 0 1 0 

0 11 0 1 0 

0 12 3 1 0 

0 10 0 1 1 

0 8 0 1 0 

10 13 3 1 0 

0 18 0 1 0 

0 13 2 1 0 

0 13 0 1 1 

0 18 4 1 0 

12 17 6 0 1 

5 9 2 0 1 

0 11 0 1 0 

10 21 6 0 0 

0 6 0 0 0 

0 13 5 0 0 

0 9 0 1 0 

0 8 0 1 0 

0 17 3 0 1 

0 13 1 1 0 

4 14 1 0 0 

0 7 0 0 1 
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0 5 0 1 0 

17 15 10 0 1 

11 18 5 0 1 

7 16 6 1 0 

0 13 0 0 1 

0 13 0 1 1 

0 12 0 1 0 

5 11 8 0 1 

2 19 4 0 1 

0 15 5 1 0 

0 8 0 1 0 

0 11 1 1 0 

0 4 0 1 0 

0 9 3 0 1 

3 8 2 0 0 

2 18 3 0 1 

0 12 1 1 1 

4 11 3 1 0 

0 8 0 1 1 

0 9 0 1 0 

3 12 2 1 1 

0 8 1 1 0 

0 8 0 1 1 

7 6 4 0 0 

 

Appendix 2 Legend: 0= event never happened; 1= event has happened; Gender: 0=female, 1=male; 

Diagnosis: 0=UC, 1=CD; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; time onset-diagnosis: 

1= < 3 months, 2= 3-6 months, 3= > 6 months. 
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Appendix 3. Protocols for CD8+ T cell separation (including MACS) (A), and 
preparation of samples for purity assessment (FACS) (B) 
 
Recipes 

 
1.  MACs Running Buffer (1 X PBS, 2mM EDTA, 0.5% BSA) 

4ml 0.5M EDTA 

50ml 10% BSA Stock 

Make up to 1 litre with 1xPBS. Filter Sterilise.  

 

2.  MACs Rinsing buffer (1xPBS 2mM EDTA) 

996ml  1xPBS 

4ml      0.5M EDTA 

Filter Sterilise. 

 

3.  MACs Cleaning Solution (70% Ethanol) 

 700ml absolute ethanol 

 300ml MilliQ water 

 

4.  Red Blood Cell Lysis Buffer 

0.155M  NH4Cl   [8.29g]  

12mM    NaHCO3  [1.0g] 

0.1M 0.5M EDTA    [200μl] 

Make up to 1 litre with distilled water (Store at 4ºC) 

 

5. 4% Sodium Citrate Solution 

40g of sodium citrate made up to 1l with sterile MilliQ water. 

 

6. FACs Fixative solution (only use when don’t have access to FACs) 

12.5ml 40% formaldehyde 

10g glucose 

5ml 2% Azide 

Make up to 500ml with sterile PBS. Filter sterilise and store at room temperature. 

 
A) CD8+ T cell separation from samples of peripheral blood 

 
1. Set up ficoll gradient tubes (as indicated below): Pipette 15ml of Histopaque 1077 into the falcon tubes 
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2. Collect appropriate volume of whole blood into 1x 50 ml Falcon tubes containing 4% sodium citrate 

solution and mix well by inversion. 

 

Age of the patient Volume of Blood (ml) 
 

Volume of 4% sodium citrate 
(1ml/10ml of blood) 

5-10 years 10 1 

10-16 25 2.5 

 

3. Aliquot 500ul of whole blood for DNA extraction. Put on ice. Store at -80C at the end of the protocol.  

 

4. Transfer the rest of the blood to T25 flask. Add appropriate volume of rinsing buffer at room 

temperature (RT) and mix well. 

Age of the patient Volume of Blood (ml) 
 

Volume of rinsing 
buffer(ml) 

5-10 years 10 5 

10-16 25 12.5 

 

5. Pipette diluted blood into syringe sitting in ficoll gradient tube with 19 gauge (yellow) needle with 

bevelled edge positioned as in diagram above. Ensure each tube has the same volume.  Layer no 

more than 35ml diluted blood over the histopaque. 

 

6. Centrifuge at 1900 rpm for 20 minutes at RT with the brake off. 

 

Age of the patient No. of falcon 
tube with Ficoll 

5-10 years 1 

10-16 2 

19 gauge needle 
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Blood cell separation 

 

 

7. Using a 5ml pipette transfer the plasma (top layer) from tube into a 15ml Falcon tube (maximum 

3ml/tube), taking care not to disturb PBMC interface. Store at - 80ºC.  

8. Using a plastic Pasteur pipette remove the PBMC interface and transfer to a fresh 50 ml tube sitting 

on ice. Collect most of the Ficoll and the plasma layer. Make the volume up to 50 ml with rinsing buffer 

chilled to 4°C and mix by inversion. 

9. Centrifuge at 2000 rpm for 10 minutes at 4ºC with the brake on. 

10. Whilst PBMC tubes are spinning: using a pastette carefully remove any remaining ficoll layer from red 

blood cell pellet; dispose of the ficoll in the jar of virkon. Add 25 ml chilled red cell lysis buffer to the 

pellet. Mix well by inversion and incubate on ice for 30 minutes. 

11. Proceed to CD8+ T cell isolation and granulocyte separation protocol. 

 

CD8+ T cell (from PBMC) isolation 
 
12. Decant the supernatant from the PBMC tube into Virkon jar and disperse the cell pellets by flicking 

the tubes. 

13. Re-suspend each cell pellet in 25 ml rinsing buffer chilled to 4°C.   

14. Pool two tubes into one 50 ml Falcon tube 

15. Centrifuge 1000-1250rpm for 7-10 minutes at 4ºC with the brake on (soft spin which leaves the 

platelets in suspension). 

16. Decant the supernatant, disperse the cell pellets by flicking and re-suspend in 25 ml rinsing buffer 

chilled to 4°C.  

17. Centrifuge 1000-1250rpm for 7-10 minutes at 4ºC with the brake on. 

18. Decant the supernatant, disperse the cell pellet by flicking and re-suspend in a final volume of 10 ml 

chilled running buffer.  

19. Remove a 5 ul aliquot of cells for PBMC count and dilute 20 fold with 95 ul trypan blue in a 0.5 ml 

eppendorf. Use haemocytometer for counting the number of live cells (white). 

 
 
Plasma 
 
 
 
PBMC (peripheral blood mononuclear 
cells) 
 
 
Ficoll/histopaque 1077 
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Total cell number:  

Number counted x Dilution factor x 104 x Total volume of the cell suspension 

20. Aliquot 20 ul for FACS analysis into 0.5 ml eppendorf labelled with 8p (unstained), 8p (CD8-APC), 8p 

(CD3-PE) and 8p (double stained) and keep on ice. 

21. Centrifuge the PBMC at 1250 rpm for 7 minutes at 4ºC.  

22. Decant supernatant and resuspend the pellet in 80 µl running buffer per 107 cells. [total no. cells / 107 

= ___ x 80 ul = ___ ul running buffer].  

23. Add 20 µl of CD8 microbeads per 107 cells. [volume running buffer/4 = ul microbeads].  

24. Incubate in the fridge for 20-30 minutes.  

25. After incubation add up to 5 ml of running buffer. 

26. Centrifuge 1250 rpm for 7 minutes at 4ºC.  

27. Decant supernatant and re-suspend the cell pellet in 600 µl running buffer.  

28. Place CD8+ labelled cells on the autoMACS and place clean 15 ml Falcon tubes under the positive 

[CD8+ tube] and negative [CD8- tube] outlet ports.  

29. Select cell separation programme. Positive fraction eluted will be CD8+ T cells and the negative fraction 

eluted is the CD8- unlabelled flow through. 

30. Run quickRINSE programme to clean autoMACS prior to next purification. 

31. Remove a 5 ul aliquot of CD8- cells and dilute 20 fold with 95ul trypan blue in a 0.5 ml eppendorf and 

count the live cells using the haemocytometer. 
32. Take 5 ul of positive fraction and dilute 2 fold with trypan blue, then count the live cells. 

33. Optional: Remove 20ul aliquot of both the positive and negative fraction (8+, 8-) and keep on ice until 

the end of this protocol for FACS. 

34. Centrifuge the cell suspension at 1250 rpm for 7mins at 4ºC.  

35. Proceed to RNA preparation. 

Granulocyte Separation 

36. After 30 mins on ice, centrifuge the tube of lysed red blood cells at 1250 rpm for 7 mins at 4ºC, with 

brake.  

37. Decant supernatant into virkon jar and disperse the pellet by flicking. 

38. Add 25 ml chilled red cell lysis buffer to each tube and mix well by inversion. 

39. Centrifuge 1250 rpm for 7 minutes at 4ºC. 

40. Decant the supernatant into virkon jar and disperse the cell pellet.  

41. Re-suspend each pellet in 25 ml chilled rinsing buffer. (Pool contents of both tubes). 

42. Centrifuge 1250 rpm for 7 minutes at 4ºC. 

43. Decant the supernatant into virkon jar and disperse the cell pellet by flicking. 

44. Re-suspend the pellet in 10 ml chilled running buffer. 

45. Remove a 5 ul aliquot of cells for granulocyte count and dilute 20 fold with 95 ul trypan blue in a 0.5 

ml eppendorf: use haemocytometer for counting the number of live cells (white). 
Total cell number:  

Number counted x Dilution factor x 104 x Total volume of the cell suspension 
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46. Collect 20 ul aliquot for FACS analysis in tubes labelled with: Granulocytes (unstained), 

Granulocytes (CD15-FITC), Granulocytes (CD16-PE), Granulocytes (double stained). 

47. Centrifuge granulocytes at 1250 rpm for 7 mins at 4ºC. 

48. Proceed to RNA preparation. 

49. Decant supernatant and disperse the cell pellet in appropriate volume of RLT Plus buffer to each 

sample: 

Note: Add 10ul of β–ME per 1ml of RLT Plus; make fresh each time 

300  μl  <5x106 cells  

600 μl – 5x106 – 1x107 cells  

50. Pipette thoroughly to mix and load samples onto Qiagen QIAshredder spin columns (maximum 700 

μl). Centrifuge for 2 minutes at 14800 rpm. 

51. Discard the column and store the flow-through at -80ºC for RNA/DNA extraction. 

B) Sample Preparation for FACS 

52. Add 200 ul of running buffer to each cell fraction and transfer to appropriately labelled FACS tubes. 

53. Centrifuge the samples at 1250 rpm for 7mins at 4ºC.  

54. Decant supernatant, disperse the cell pellet by dragging tubes along hedgehog holder and add the 

appropriate antibody cocktail to each tube (see table below). [Antibodies stored @ 4°, in dark.  Keep 

on ice whilst using.] 

 

Tube Cells Antibodies (20 μl of each) 

1 Unstained 8p -                             -      

2 CD8p (CD8-APC) - CD8-APC       

3 CD8p (CD3-PE) CD3-PE - 

4 CD8p(double stained CD3-PE CD8-APC       

5 CD8 +ve CD3-PE CD8-APC       

6 CD8 -ve CD3-PE CD8-APC       

7 Unstained  granulocytes - - 

8 Granulocytes(CD15-FITC), CD15-FITC - 

9 Granulocytes (CD16-PE) - CD16-PE        

10 Granulocytes (double stained) CD15-FITC CD16-PE        

 

[One antibody is a selection marker specific for the cell type, the second antibody is used to check the 

purity of selected cells, i.e. it is non-specific and reacts with other cell types] 

 

55. Incubate for 20 minutes at 4ºC. 

56. Add 1 ml running buffer to each tube and centrifuge at 1250 rpm for 7mins at 4ºC. [Washes off excess 

antibody] 

57. Decant the supernatant, disperse the cell pellet and add 300µl of FACs fixing buffer to each tube, 

cover with para-film and store in the fridge until ready to use. 
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Appendix 4. Paediatric Crohn's Disease Activity Index (PCDAI) 34 

 
ITEM POINTS 

Abdominal pain 

None 0 

Mild (brief episodes, not interfering with activities) 5 

Moderate/severe (frequent or persistent, affecting with activities) 10 

Stools  

0-1 liquid stools, no blood 0 

2-5 liquid or up to 2 semi-formed with small blood 5 

Gross bleeding, >6 liquid stools or nocturnal diarrhoea  10 

Patient functioning, general well-being (Recall, 1 week)  

No limitation of activities, well 0 

Occasional difficulties in maintaining age appropriate activities, below par 5 

Frequent limitation of activities, very poor 10 

EXAMINATION 

Weight  

Weight gain or voluntary weight loss 0 

Involuntary weight loss 1-9% 5 

Weight loss >10% 10 

Height  

< 1 channel decrease (or height velocity > -SD) 0 

> 1<2 channel decrease (or height velocity < -1SD> -2SD) 5 

> 2 channel decrease (or height velocity < -2SD) 10 

Abdomen  

No tenderness, no mass 0 

Tenderness, or mass without tenderness 5 

Tenderness, involuntary guarding, definite mass 10 
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Peri-rectal disease  

None, asymptomatic tags 0  

1-2 indolent fistula, scant drainage, tenderness of abscess 5 

Active fistula, drainage, tenderness or abscess 10 

Extra-intestinal manifestations  

Fever > 38.5 x 3 days in week, arthritis, uveitis, erythema nodosum, or pyoderma gangrenosum 

None 0 

One 5 

Two 10 

LABORATORY 

Hct (%) 

< 10yrs: > 33 0; 28-33 5; < 28 10 

11-14 (male): > 35 0; 30-34 5; < 30 10 

15-19 (male): > 37 0; 32-36 5; < 32 10 

11-19 (female): > 37 0; 32-36 5; < 32 10 

ESR (mm/hr)  

< 20 0 

20-50 2.5 

> 50 5 

Albumin (g/L)  

>35 0 

31-34 5 

<30 10 

 

Appendix 4. Legend 

Disease severity is defined by the following scores: 

• severe: 40 or above 
• moderate: 30-39 
• mild: 10-29 
• remission (disease not active): below 10 
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Appendix 5. Paediatric Ulcerative Colitis Activity Index (PUCAI) 35 

Item Category/Points 

Abdominal pain 

No pain = 0 

Pain can be ignored = 5 

Pain cannot be ignored = 10 

Rectal bleeding 

None = 0 

Small amount only, in less than 50% of stools = 10 

Small amount with most stools =20 

Large amount (50% of the stool content) = 30 

Stool consistency of most stools 

Formed = 0 

Partially formed = 5 

Completely unformed = 10 

Number of stools per 24 hours 

0-2 = 0 points 

3-5 = 5 points 

6-8 = 10 points 

>8 = 15 points 

Nocturnal stools (any episode 
causing wakening) 

no = 0 points 

yes = 10 points 

Activity Level 

No limitation of activity = 0 

Occasional limitation of activity = 5 

Severe restricted activity = 10 

 Sum of PUCAI (0-85) 
 

Appendix 5. Legend 

Disease severity is defined by the following scores: 

• severe: 65 or above; 
• moderate: 35-64; 
• mild: 10-34; 
• remission (disease not active): below 10. 
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Appendix 6. Paris Classification for Paediatric IBD 13 

 
Crohn's Disease 

Age A1 
• A1a <10 years; 

• A1b >10 <17 years. 

Location (macroscopic only) 

• L1 distal 1/3 ileum, ileum +cecum 

• L2 colon 

• L3 ileocolon 

• L4a upper disease proximal to Treitz, L4b distal to Treitz  

Behaviour 

• B1 non stricturing non-penetrating 

• B2 stricturing 

• B3 penetrating 

• B2,3 both stricturing and penetrating 

Growth 

• G0 no evidence of growth delay 

• G1 growth delay 

Ulcerative Colitis 

Location (macroscopic only) 

• E1 Proctitis 

• E2 Left sided 

• E3 Extensive 

• E4 Pancolitis  

Disease activity 
• S0 Never Severe 
• S1 Severe at any time (PUCAI ≥ 65) 

 

Appendix 6. Legend 

PUCAI: Paediatric Ulcerative Colitis Activity Index (see Appendix 4) 
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Appendix 7. Power Calculations 
 

Patients were recruited in two consecutive phases, so the data was initially collected and analysed from a first 

group of 45 children (discovery cohort) and subsequently from a second group of 67 (validation).  

The group size of our validation cohort exceeded the 50 cases recommended as per power calculations 

performed on the preliminary data obtained by the discovery cohort. 

 

 
Figure A7. Power calculations to detect size of validation cohort based on preliminary results from the discovery 

cohort (n=45) 

 

Power calculations were performed using the package "pwr" on R bioconductor. 

The definition of power is the probability of detecting a specified effect at a specified significance level 169.  

“Specified effect” refers to the effect size which can be the result of an experimental manipulation or the 

strength of a relationship between 2 variables. This effect size is ‘specified’ because prior to the power analysis 

we should set the size of the effect we expect to see. The ‘probability of detecting’ it refers to the ability of a 

test to detect an effect of a specified size. The recommended power is generally 0.8 which means we have an 

80% chance of detecting an effect if one genuinely exists 169.  

The main output of a power analysis is the estimation of a sufficient sample size.  

For this study, we based on preliminary results from WGCNA in our discovery cohort (n=43). As explained 

above, WGCNA provides a measure of the correlation between modules (groups of genes with similar gene 

expression level) and clinical outcomes. Preliminary results from the WGCNA in our discovery cohort of 43 

children with IBD showed top correlation index between modules and outcomes around 0.5. Aiming to reach 

an ideal correlation index of 0.8 in a larger cohort, we used a delta of 0.3 (30%) in our settings. Power was 0.8 

and p-value < 0.05. 

As shown in Figure, the sample size estimated for our validation cohort was around 50 samples. 

 


