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Abstract

Nuclear magnetic resonance spectroscopy (NMR) is widely used across the physical, chemical
and biological sciences. A core component of NMR studies is multidimensional experiments,
which enable correlation of properties from one or more NMR-active nuclei. In high resolution
biomolecular NMR, common nuclei are 1H, 15N and 13C, and triple resonance experiments using
these three nuclei form the backbone of NMR structural studies. In other fields a range of other
nuclei maybe used. Multi-dimensional NMR experiments provide unparalleled information
content, but this comes at the price of long experiment times required to achieve the necessary
resolution and sensitivity. Non-uniform sampling (NUS) techniques to reduce the required data
sampling have existed for many decades. Recently such techniques have received heightened
interest due to the development of compressed sensing (CS) methods for reconstructing spectra
from such NUS datasets. When applied jointly these methods provide a powerful approach to
dramatically improve the resolution of spectra per time unit and under suitable conditions can
also lead to SNR improvements. In this review we explore the basis of NUS approaches, the
fundamental features of NUS reconstruction using CS and applications based on CS approaches
including the benefits of expanding the repertoire of biomolecular NMR experiments into higher
dimensions. We discuss some of the recent algorithms and software packages and provide

practical tips for recording and processing NUS data by CS.
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Introduction

Nuclear magnetic resonance (NMR) spectroscopy is widely used as an atomic resolution
structural technique across the physical, chemical and biological sciences. Essential to the
information content provided by NMR spectroscopy is multidimensional experiments, which
correlate information from NMR-active nuclei allowing the identification of spin networks that

are connected for example through-bonds (J-coupling) or through space (NOE transfer).

All multidimensional experiments require an ‘indirect’ evolution period where on successive
repetitions of an experiment a delay time is increased by a certain, typically fixed increment,
during which free precession of the spins is monitored. For each additional dimension, an extra
indirect evolution period is required, and thus an N-dimensional NMR experiment will have

N — 1 independent incrementation (evolution) periods, typically known as the indirect
dimensions. It is the requirement to sample the frequencies present in each of these ‘indirect
dimensions’ independently which leads to the often lengthy experiment times required for
multidimensional NMR. In biomolecular NMR, a typical 2D can be expected to take on the order
of hours, 3Ds days and 4Ds weeks, a problem exacerbated by the shift to higher magnetic fields.
The time-consuming requirement to sample the indirect dimensions independently therefore

often results in experiments that have sub-optimal resolution.

Consequently, for almost as long as multidimensional experiments have been employed, efforts
to reduce the experiment times have been devised. The many approaches have focussed on
reducing the number of points recorded in each indirect dimension whilst acquiring the same,
or higher resolution, and this is variously known as sparse sampling, non-uniform sampling or
undersampling of data. As discussed below, the Fourier transform (FT) can no longer be used to
process undersampled data and subsequent efforts have focussed on alternative approaches to
reconstruct the frequency domain. Broadly speaking, these alternative reconstruction
approaches fall into two categories; those which use non-uniform and non-deterministic

sampling of the indirect dimensions, and those which have restrictions on the sampling pattern



i.e. Nyquist sampling (e.g. for Linear Prediction) or use a non-uniform deterministic sampling
scheme e.g. coupled evolution for reduced dimensionality methods (1). Methods which can use
data with non-deterministic sampling are the most general and can typically reconstruct data
from any of the categories (2). The results of such alternative processing methods may either
produce a full multidimensional spectrum, or alternatively the raw data may be analysed to

provide information on signal frequencies e.g. APSY (3), GFT-NMR (4) and PRODECOMP (5).

Recently, compressed sensing (CS)-based reconstructions have joined the family of non-
deterministic techniques which reconstruct a full frequency-domain spectrum. CS was
developed in information theory (6,7), although the underlying concepts have been known for
many decades (8), and has become popular in a wide range of fields including magnetic
resonance imaging (MRI) (9,10) as well as diverse areas from astronomy and astrophysics (11),
to super-resolution microscopy (12) and computerised tomography (13) as well as other
spectroscopies e.g. optical spectroscopy (14). The value of CS-based reconstructions for
undersampled NMR data was demonstrated in 2011 (15,16) and since then a range of
applications, algorithms and software packages has been developed for NMR spectroscopists
(17-26). In this article, we review Fourier transform sampling theory and explain the
modifications used for NUS sampling. We highlight the challenges of reconstructing such NUS
spectra, and explain the basic theory behind CS-based reconstruction approaches. We
demonstrate the benefits of CS reconstructions of NUS data and review a number of commonly
used CS algorithms, discuss suitable sampling strategies, and provide some practical tips for

reconstructing data, as well as highlighting the various data-processing packages available.

Fourier transform and Nyquist theory

An NMR signal results from the precession of magnetization detected as an induced current
oscillating at a given frequency, £}, which can be represented as a complex exponential. The
magnitude of this oscillating signal decays over time, due to relaxation phenomena and the

characteristic lifetime of a spin is typically represented by its decay constant, R,. For a complex



multi-spin system, many signals of variable intensities and frequencies sum to give the overall

appearance of the free induction decay (FID):

N
St) = Z Sk exp(—iQyt) exp(—Ryxt) (0
k=1

where k represents each individual frequency component with amplitude Sy, oscillation

frequency ; and decay rate R,.

The FID is a continuous function, however, NMR data acquisition detects a discrete signal, which
is achieved by sampling the FID at regular intervals. The relationship between sampling rate
and the frequency range that can be correctly represented is given by the Nyquist theorem

which states that the maximum observable frequency is determined by the sampling rate, given
by:

1
SW = —
At (2)

where At represents the time increment between sampled points, otherwise known as the dwell
time. Signals with a frequency higher than the maximum observable frequency, + SW/2, will
appear aliased at a lower frequency. This is illustrated in Figure 1 where it can clearly be seen
that a sinusoid with a higher frequency (orange curve) than the maximum detectable frequency
(based on the sampling rate, red squares) will be indistinguishable from a lower frequency
signal, and will appear aliased in the spectrum. To correctly identify the higher frequency signal,
the sampling rate must be increased (black crosses). Consequently, the Nyquist theorem

determines the sampling rate required for NMR experiments.

In order to observe the contributing spectral frequencies, the Fourier transform is used to
convert time-domain data into the frequency domain. For a complex signal the discrete Fourier

transform is as follows:

N-1

Sk(w) = Z S(nAt) exp(—2wikn/N) 3)
n=0



where At is the sampling interval, S(nAt) are complex numbers representing the time-domain
signal at each time point, S, (w) is a series of complex numbers representing the frequency
domain signal where k € [0, N — 1], and equation (3) is N-periodic in k. Thus in addition to the
requirement to sample at the Nyquist rate as discussed above, equation (3) indicates that
samples must be recorded uniformly i.e. for N — 1 regularly spaced time intervals in order to

preserve the orthogonality of the complex exponentials (27):

N-1

Z exp(2mi(k — k")n/N) = 0,k + k'

n=0

(4)
Consequently, an NMR experiment requires a regularly spaced series of points to be acquired at
the Nyquist sampling rates for each dimension, with all points sampled uniformly up to the
maximum acquisition time. Ignoring the directly acquired dimension, for an N-dimensional
experiment (N — 1 indirect dimensions) with k,, points in the n'" indirect dimension, this

amounts to acquisition of

2Ny Xk Xk X .. XKy, 5)
points in the indirect dimensions, or alternatively repetitions of the experiment. The factor of
2N=1 represents the requirement for frequency discrimination with a pure phase absorptive

line shape, often implemented via quadrature detection, clearly demonstrating the rapid

increase in sampling requirements with additional dimensions.

In addition to the requirements to sample regularly at the Nyquist rate, spectral resolution must
also be considered. Spectral resolution is determined by the maximum acquisition time, which
determines the ability to distinguish closely spaced peaks as shown in Figure 2. For a non-
decaying signal, resolution can theoretically be increased indefinitely by sampling to longer
acquisition times. However, due to the exponential decay term in equation (1), in practice
beyond a certain acquisition time, only noise will be detected. The natural linewidth of peaks, at

half-maximal intensity, is given by:



L=< (6)

Assuming the number of points (N) in the spectrum and time-domain are the same (i.e.

assuming no zerofilling) the spectral resolution (Af) is given by (28):

-1
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and t,,x(= NAt) is the maximum delay time in a given dimension. Equation (7) indicates that

the optimum resolution is achieved when t;,x ~3R5* or 3T,; at this point, the resolution is
determined by the natural linewidth, L. However, it has been shown that signal-to-noise ratio
(SNR) only increases up to ty3x ~1.26T, (28), i.e. collecting additional samples after this point
to improve resolution will degrade the SNR. Consequently, using conventional, uniform
sampling, maximum resolution cannot be achieved without substantially reducing SNR or

conversely increasing the number of scans.

An additional consideration arises from the widespread introduction of high-field NMR
spectrometers. For example, a typical 13Ca dimension covering 20 ppm at 600 MHz,
corresponds to a frequency range of 3000 Hz requiring At = 0.33 ms. In the absence of any Jc_¢
couplings and assuming sampling to 1.26T,, with R, ~50 Hz (T, = 20 ms), the dimension must
be sampled out to t,;x = 25.2 msi.e. ~76 points. To acquire the same spectral width of 20 ppm
at 1 GHz would require a frequency range of 5000 Hz and At = 0.2 ms. Assuming sampling to
the same t;,,¢ (25.2 ms), ~126 points are required i.e. a factor of 10/6 increase in sampling
requirements (Figure 3). A similar effect will be observed for each indirect dimension, leading
to an increase in the number of points by (10/6)¥~! for an N-dimensional experiment in order

to maintain the equivalent resolution at higher fields.

As a result of the challenges described above, the result is that the majority of high dimensional

experiments cannot be sampled appropriately to optimise both SNR and resolution.

Sampling and sensitivity-limited regimes



Two limiting regimes can be identified in NMR experiments, known as “sampling limited” and
“sensitivity-limited” regimes (29). In the former, the experiment time is determined by the need
to sample out to high resolution in multiple indirect dimensions; SNR is assumed to be
sufficient. In the sensitivity-limited regime, the limiting factor is the intrinsic sensitivity of the
experiment or the sample concentration and so experiment time is typically spent acquiring
sufficient scans to ensure appropriate SNR. The most likely scenario, however, is a compromise
between these two regimes, with a trade-off occurring between experiment time, resolution and
SNR. For large proteins, this may result in poor quality spectra with significant overlap
increasing the challenges for assignment and structural studies, and limiting the potential

benefits of multidimensional experiments.

NUS sampling and convolution theorem

In order to circumvent the challenges discussed above, alternative approaches for sampling the
indirect dimensions of multi-dimensional experiments were proposed in the early days of
multidimensional NMR: Barna et al. proposed a randomised exponentially decaying sampling
scheme concentrating most points at early evolution times where SNR is high, and sampling
fewer points at long acquisition times to increase resolution (30). This approach has been
developed by various authors but it was recently shown that randomisation of the sampling
schedule is essential for high quality reconstructions (2), whilst a modification of the
exponential sampling approach which weights the gaps between acquired points according to a

Poisson distribution has recently gained popularity (31).

All such undersampling schedules allow a reduction in the total number of points required and
hence experiment times, while potentially obtaining higher resolution. However, the Fourier
transform can no longer be used to process data (Figure 4). This can be understood by
considering the convolution theorem for Fourier transforms. In the following, t represents the

time domain, w the frequency domain, * indicates a convolution and F is the Fourier transform:



F{s(t) r(t)} = S(@) * R(w) 8)
In words, this indicates that the Fourier transform of the pointwise product of two time domain
functions is the convolution of their Fourier transforms. We can consider an undersampled FID
(with zeros replacing the missing data points) (Figure 4e) to be the product of a fully-sampled
FID (assuming N points regularly spaced according to the Nyquist theorem) (Figure 4a) and a
sampling schedule (Figure 4c) where 1s represent sampled points and 0s skipped points, and
the number of sampled points, M < N. If we consider the equivalent frequency domain
spectrum, using equation (8), the FT of the undersampled FID (Figure 4f, red) is equivalent to
the convolution of the FT of the fully sampled spectrum (Lorentzian lines) (Figure 4b) with the
point spread function (PSF, the Fourier transform of the sampling schedule) (Figure 4d). The
convolution is shown in blue in Figure 4f. The consequence, as indicated in Figure 4 is that every
‘real’ peak in the undersampled spectrum introduces an artefact pattern resulting from the PSF.
Clearly, as the number of ‘real’ peaks increases, the artefact pattern becomes progressively
more complicated. The aim of all non-deterministic reconstruction methods is to separate the
‘real’ peaks from the PSF artefacts, which is often achieved by reducing the PSF artefact level. It
should be noted that this can be further supported by choosing a sampling schedule that
minimises the intensity of artefacts in the PSF as this will also lead to a reduced artefact level in

the final reconstruction.
NUS reconstruction methods

Since the earliest application of non-uniform sampling approaches, a wide range of
reconstruction methods have been proposed to overcome the limitation of the Fourier
transform. The simplest approach, as described above, is to replace the ‘skipped’ data points
with zeros and then use the discrete Fourier transform. This is an example of a non-uniform
Discrete Fourier Transform (nuDFT) and is equivalent to minimising the £,-norm (equation (9))

for the spectrum (Parseval’s theorem) (20).
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A range of subsequent nuDFT algorithms use the predictability of the artefact pattern to remove
artefacts from the most intense peaks and to reveal weaker peaks. Repeated iteratively, this can
effectively clean up an undersampled spectrum. Examples of this approach include the MFT
method (32), FFT-CLEAN, based on earlier work in radio-astronomy (33,34), SCRUB (35) and

the signal separation algorithm (SSA) (36).

Reconstruction using Maximum Entropy (MaxEnt) was introduced into NMR in the 1980s (37)
with early application to undersampled data (30,38) and more recently the value of MaxEnt for
3D data was demonstrated (39). Maximum entropy reconstruction has been reviewed in detail

previously (40) and also in this journal (41).

Another popular approach is multidimensional decomposition (MDD), which is based on fitting
1D vectors to experimental data (42-44), with later developments including recursive MDD

(rMDD) (45) and coupled MDD (Co-MDD) (46).

Another class of methods involves taking projections through a multidimensional dataset via
coupled evolution of the indirect dimensions (radial sampling) and reconstructing either a full
spectrum or peak lists based on this information. These methods include reduced
dimensionality (47), projection reconstruction (48), GFT-NMR (4,49) and APSY (3) amongst
others. Recently it was shown that reconstructing full spectra from radial samples introduces
artefacts specific to the projection sampling, which can be reduced by further randomisation of
the sampling schedule (2). Analysis of such projections is particularly useful for high
dimensionalities. Many other methods have been introduced over the years which are discussed

in other reviews (1,50).

In recent years, an approach to full spectrum reconstruction from undersampled data, has been
proposed based on compressed sensing (CS) theory, developed in information theory (6-8). CS

has become popular in a number of fields, notably in MRI (9). CS reconstructions have

11



similarities to approaches such as CLEAN (34) but are based on a rigorous mathematical theory
and consist of a family of algorithms with varying properties. In what follows, we discuss basic
CS theory, give examples of some of the most promising algorithms available and discuss

practical approaches for successful CS reconstructions of undersampled NMR data.
CS theory

In this section, we provide a brief introduction to the theory underpinning CS reconstructions.

Using matrix notation, NMR data can be represented as a system of linear equations:

Ax=bDb (10)
where x represents the frequency domain, b the time domain and A is the inverse Fourier
transform. For fully-sampled data, A is an M XN matrix, and x and b are vectors of length N and
M respectively, where M = N. Consequently equation (10) has a unique solution. However, for
undersampled data, M < N and thus equation (10) is incompletely determined and has no
unique solution. The challenge for all reconstruction techniques handling undersampled data is
to find the ‘right’ solution when equation (10) is underdetermined. This is typically achieved by

introducing additional assumptions e.g. maximising the entropy, knowledge about regions

with/without peaks etc.

Compressed sensing theory assumes that x can be reconstructed exactly by minimising the £,-

“norm” for X, equivalent to choosing the sparsest solution:

min|[x||, subjectto Ax =b
X

(11

where the £5-“norm” is:
Ixllo = ) Ixl°
- (12)
It can be clearly seen that this is equivalent to counting the number of non-zero elements,
assuming that we define 0° = 0 (7), and thus by minimising this function, we will minimise

artefacts generated by convolution with the PSF. Assuming x is k-sparse, we can reconstruct

12



this from ¢ (k) random points, where k-sparse is defined as having no more than k nonzero
components. However, the solution to equation (11) is typically not computationally tractable
(51) and so is not a practical solution. Nevertheless, CS theory states that by taking slightly more
samples, minimising the #;-norm, which is solvable using readily available algorithms, gives the

same solution:

min||x||; subjectto Ax =Db
X

(13)

where the #;-norm is given by:

Ixlly = ) lxl! "

which is equivalent to the sum of all the points in x. In this case the sampling requirement has

the following relationship (6):

M = CklogN (15)

In equation (15) C is a universal constant, which depends mostly on the reconstruction
algorithm. In general C is difficult to calculate and this is rarely done. Theoretically k-sparsity
assumes recovery of k-non-zero elements. In reality most situations are not truly sparse, but
instead are compressible i.e. k significant coefficients which should be recovered. k thus
represents points rather than peaks. While it is not possible to use equation (15) to predict the
exact number of samples required for a given spectrum, and it should also be noted that
equation (15) represents a lower bound, it can be used to understand the general sampling
requirements. Since equation (15) has a log dependence on the size of the spectrum (x), this
indicates that the primary determinant of the required number of samples, M, is the sparsity of
the spectrum, k, not its final size. We will see the great benefit of this later. [Include box on

norms around here]

NMR spectra cannot be solved exactly using equation (13). Instead, this is typically modified to

take account of noise in the spectrum by relaxing the constraint giving:

13



min||x||; subjecttoAx—b <§
X (16)

where § is an estimate of the noise in the data.

Thus in order to consider CS reconstruction of an undersampled spectrum, the spectrum must
be sparse and sampled with an incoherent sampling scheme i.e. randomised to minimise u. It is
important to keep these two factors in mind when considering M, the appropriate sampling

fraction to record.
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Norms

A norm uses a certain criterion to assign a positive length to a vector (aside from the zero vector).
Different norms use different criteria to define the lengths of vectors. The £,-norm (sometimes
known as the Euclidian norm) is the ‘ordinary distance’ from the origin to a point and is given by a

generalisation of Pythagorus’ theorem. For complex numbers, the complex modulus is used,

|x| = /x;x. The £5-norm is defined as:

(17)

The vectors satisfying a given value of the £,-norm in 2D map out of circle of radius |x| and by

extension an n-sphere for an n-dimensional vector.

The #;-norm is sometimes known as the Taxicab or Manhattan norm and in 2D reflects the distance

from an origin to a point using a rectangular grid. The #;-norm is defined as:

n
Ixlly = )l as)
i=1

The set of vectors satisfying a given constant for the £1-norm map out a square with vertices lying

on the coordinate axes. For a radius of 1, this is defined by |x| + |y| = 1.

The £y-“norm” (7) is not a true norm and requires the definition 0° = 0. Hence, this represents the

number of non-zero entries in a vector.

Finally the £,,-norm is given by:

n Yp
Ixll, = (va’) (19)

i=1
For 0 < p < 1, the p-norm is not a true norm since it no longer satisfies the triangle equality that
the length of the sum of two vectors is less than or equal to the sum of the lengths of the two vectors
ie.p(x+y) < p(u) + p(v). However, we will find this is useful as an approximation to the -

“norm”.




CS Algorithms

A variety of algorithms are available for CS processing of NMR spectra. Broadly speaking, these
can be divided into two groups: those which minimise the £; norm, similar to equation (13), and
those which minimise a reweighted p-norm where p < 1, potentially allowing an approximation
to the £y-“norm”. In the former category are algorithms such as iterative soft thresholding (IST)
and iterative hard thresholding (IHT), while the latter category includes the iteratively
reweighted L1 (IRL1) and least squares (IRLS) implementations. Other target minimisation
functions have also been suggested e.g. Gaussian-smoothened £y-“norm” (52) but these have
not gained widespread use. IST exists in two main flavours in the NMR literature (23,52) either
providing strict accordance with the measured data at each iteration (IST-S) (16,52,53), or
keeping a balance between sparsity and measured data (IST-D) (19,54). The IST algorithm used
by the authors in (18) is similar to the IST-S algorithm, while the IHT algorithm is similar to the
IST-D approach, but with a hard threshold. Subsequent modifications in the Cambridge CS
software (see Data processing section) are a combination of the IST-S and IST-D approaches.
Along with IHT, these algorithms all use a thresholding approach to extract ‘true’ signals and
then an inverse FT step (IFT) to remove the contribution from these components, and the
contributing noise due to the convolution of these signals with the PSF. Repeated iteration leads
to a spectrum with considerably reduced artefacts. Thus these methods give comparable results.
Clearly a key consideration for such iterative algorithms is convergence (53). Various stopping
criteria have been suggested ranging from very simple approaches e.g. a maximum number of
iterations, through to more sophisticated approaches which may aim to detect when the
residual contains only noise or when no new signals are being added to the spectrum. Many of
the available software packages contain automated stopping criteria which typically perform

well, however, reconstruction quality maybe improved in some cases by altering these criteria.

The reweighted approaches reformulate the £; minimisation into a weighted minimisation

(52,55) e.g. for IRL1:
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”Xlll = Z WX (20)

where:

W'n+1 _ 1

P xdn+e (21)
n represents the iteration number and ¢ is used to avoid dividing by zero. In the IRLS approach

(16,23,56) weights are set to:

= |x.|P2
Wl |xl| (22)
Thus, in IRLS, the weighted norm allows the p-norm to be expressed as an £,-norm which can

then be solved as a least squares problem:

Il = > lxl?
; (23)

x5 = > wi il
- (24)

An additional modification (57) allows the p-value to be reduced on successive iterations
enabling an approximation to the £y-“norm”. Although IRLS is more computationally
demanding, and thus typically slower than IST, it has been suggested that it provides better
reconstructions at lower sampling levels (20,58,59). Applications using these two main groups

of algorithms will be discussed further below.

More recently low-rank reconstruction has been proposed as a high-fidelity algorithm suitable
for reconstructing NMR spectra, in particular for low intensity, broad peaks (60,61). The low-
rank approach attempts to reconstruct a spectrum with the fewest peaks, compared to CS which
minimises the number of non-zero values, and is independent of the line widths of the peaks.

Low rank reconstruction solves the following equation:

17
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where y is the undersampled time-domain data, x is the fully-sampled time-domain signal and U
is the undersampling operator, converting a fully sampled FID to an undersampled FID. R
converts X to a Hankel matrix, X = Rx, where X is low-rank. The nuclear norm, ||Rx]|., or sum of
the matrix’s singular values (62), represents the number of frequency oscillations in the FID and
thus quantifies the number of peaks in the spectrum. A balances the data consistency term with
the low rank term. Results suggest that low rank reconstruction provides greater fidelity for
broad, low intensity peaks than CS reconstruction. By assuming sparsity in terms of peaks
rather than values, low-rank reconstruction is very well adapted to NMR spectra, which become
strictly sparse under this assumption (23). However, to date, available implementations of the
low rank method are slower than other CS algorithms and limited to 2D data, although more
recent algorithms have demonstrated extension of this approach to higher-dimensional spectra

>3D (61).

Compressed sensing: examples and its benefits

Early work with applications to a range of 2D and 3D experiments demonstrated the fidelity of
the reconstruction method in terms of peak positions and peak intensity (15,16). In the context
of triple resonance experiments, CS was shown to provide improved reconstruction of weaker
peaks, compared to an existing MaxEnt implementation (15). Subsequently, application to 3D
15N NOESY experiments was demonstrated, which present a particular challenge due to the high
dynamic range and substantial overlap of signals and the requirement to accurately reconstruct
the intensities of the information-rich weaker cross peaks (18,19). A variety of £;-norm
minimisation algorithms were shown to provide fast and accurate reconstructions of NOESY
data across a range of peak intensities, with the required sampling fraction dependent on the

complexity of the spectrum as expected from equation (15). An example reconstruction of a 3D
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1H,15N NOESY-HSQC for the membrane protein sensory rhodopsin II (pSRII) is shown in Figure

5 using the IHT algorithm, demonstrating the fidelity of intensity and peak reconstruction.

A longstanding benefit of NUS techniques is to enable improved resolution by allowing sampling

to considerably higher t; )., values than would otherwise be accessible using an equivalent

uniformly-sampled FT-processed version. This was proposed as a key benefit of NUS
approaches in the early days of NUS methods (38) and has been previously demonstrated in the
context of MaxEnt reconstructions of 3D-NUS triple resonance spectra (39). Nevertheless even
using NUS approaches, triple resonance 3D backbone experiments are still typically recorded
with modest spectral resolution due to time constraints. Recently a detailed comparison (63)
was made to investigate different approaches for extending resolution in multidimensional
experiments focussing on linear prediction or IST-based (53) extrapolation of uniformly
sampled data versus IST reconstruction of NUS data sampling out to high resolution, combined
with further IST based extrapolation (up to maximum 4*T,), demonstrating the benefits of
combined CS-based interpolation and extrapolation. The authors suggest that optimum
sensitivity, resolution and frequency reconstruction are achieved by acquiring data to 0.5*T,
with further improvements to linewidth by extrapolating to 2*T,. Although this study focussed
on the hmsIST processing method it is likely that the recommendations are more general, and
are indicative of resolution improvements that can be accessed with CS-NUS reconstructions.
Figure 6 shows a comparison of two time-equivalent 3D NUS-HNCA semi-constant time
experiments (64) recorded on a 0.5 mM sample of OppA (2H,13C,15N), a 60 kDa protein with a
correlation time of 29 ns at 298 K. Each experiment was recorded for 7 h using NUS to acquire a
combined total of 350* complex points in the 15N and 13C indirect dimensions. Three
reconstructions are shown in Figure 6. A low resolution NUS CS-reconstructed experiment (15N

t1max Of 12.2 ms equivalent to 0.25*T,) (magenta) is further extrapolated to 15N t{,,,x = 24.4 ms
(0.5*T,) (green) using CS-IHT reconstruction leading to a moderate resolution improvement

that partly results from the shift of the apodization function towards the later time points.
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Further reductions in linewidth could be achieved by extrapolation to even longer t;,,x Values.
In this case, however, higher resolution was obtained in a second experiment by altering the
sampling schedule to acquire up to t;,,,x = 60 ms (1.25*T,) in 15N. The improvement in
linewidth in Figure 6a is considerable (cyan) and the benefit is demonstrated in Figure 6b
where peak contributions from different residues are now clearly separated due to the higher
15N resolution, removing the ambiguity in assigning the two residues shown. While the increase
in resolution reduces ambiguities in spectral assignment, sampling to this longer t;,,,, does not
substantially alter the SNR (Figure 6¢), measured as a signal-to-threshold ratio relative to the

contour level at which peaks can be recognised with sufficient confidence (15).

As discussed above, the available CS algorithms can be divided into convex and non-convex
minimisations. IRLS has proved particularly popular from the non-convex minimisation class
with applications including measurement of scalar and residual dipolar couplings (24) as well
as in more traditional undersampled spectra (16,65). It is suggested that use of IRLS may allow
the optimal solution to be found with fewer measurements than for the #;-norm (58) and in
some cases may outperform IST, although IST has lower computational requirements, which
may be an important consideration for large datasets (20). Further improvements in

reconstruction quality may be obtained with the addition of virtual echo reconstruction (22).

More recently a number of authors have suggested reducing the number of quadrature
components acquired per time coordinate by random acquisition of quadrature components.
This is variously known as random phase detection (RPD), random quadrature detection (RQD)
and partial component sampling (66,67) and has also been implemented in the context of CS
reconstructions with extension to gradient-selected experiments (17). This gives further
flexibility in the design of sampling schedules, allowing bias of the sampled points towards time,

rather than quadrature components.

Higher dimensions
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Typical uses of CS reconstructions allow improved resolution and SNR and/or time savings for
existing NMR experiments. Consequently, CS, along with other NUS-based reconstruction
methods facilitates the use of higher dimensional experiments. A range of higher dimensional
experiments (= 4D) has been proposed, including some with dedicated processing methods
(34,35,43,46,68-72). Here we focus on the advantages of 4D experiments over existing 3D
experiments. Although 4D experiments existed before the widespread use of NUS,

undersampling techniques allow their full potential to be achieved by extending t; ., while

still acquiring the experiment in a reasonable amount of time. As shown in equation (15),
sampling requirements scale approximately as k log(N). As described in the section “CS theory”,
k-signals refers to k significant components in the reconstruction domain and thus a single peak
will be described by a number of signals. Since in typical NMR situations the direct dimension is
fully sampled and processed with the Fourier transform, and CS reconstructions are usually
carried out as separate reconstructions of the n — 1 indirect dimensions for each point in the
direct dimension, N is therefore the number points in the indirect dimensions of the
reconstruction (frequency) domain. In addition, this means that the sparsity will be affected by
the distribution of signals across the direct dimension. Although k is difficult to predict in
practical situations and C in equation (15) is not usually known, we nevertheless use the form
klog(N) with hypothetical values for illustrative purposes. Taking the example of a 3D
experiment with k = 1000and N = 128 X 128 = 16384 points, approximately 4200
measurements need to be made across the indirect dimensions, i.e. 25%. Based on practical
experience, we and others observe substantially lower sampling requirements for 4D spectra
(19). This can be explained using equation (15) assuming that on separating the data into a
fourth dimension there is no substantial change in k. This assumption is reasonable as each
peak observed in the 3D experiment will only occupy a small fraction of the additional planes in
the fourth dimension. Therefore taking k = 1000 againand N = 128 x 128 x128 , 2,097,152
points would be required for an FT experiment, but only 6300 measurements required for an

NUS experiment with CS reconstruction i.e. 0.3% sampling. Even accounting for a small increase
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in k, this still brings recording times for 4D experiments into the region of a 3D, while allowing
substantially longer t; .« values for the indirect dimensions compared to time-equivalent fully-
sampled experiments. Importantly, through NUS, 4D experiments can be recorded with good
resolution in a realistic time frame while the fully sampled versions necessitate a substantial

reduction in resolution that limits their usefulness.

The addition of a fourth dimension can provide many opportunities for example, by reducing
ambiguity in assignments due to the addition of an extra frequency axis and reducing strong
overlap e.g. for large proteins. An example of an NUS 4D HCCH NOESY experiment, recorded on
a highly deuterated selectively 13C ILVA-labelled methyl-protonated sample is shown in Figure
7, using 1000 points from 12480 complex points and 40 scans, equivalent to 8% sampling, with
an experiment time of ~4.5 days. This example emphasises that a high-quality 4D NOESY can be
recorded in under 5 days. Although a relatively moderate resolution was chosen in this example,
the resolution could be improved by choosing alternative sampling schedules. 4D 13C NOESY
sequences employ two HMQC/HSQC elements separated by a NOESY mixing period with either -
13C,13C- or -13C15N- variants (71). The inclusion of a 2D heteronuclear correlation sequence
before and after the NOE transfer significantly simplifies assignment as shown in Figure 7
where comparison with a 2D 13C HMQC experiment allows easy assignment of the diagonal and
cross-peaks, in contrast to the equivalent 3D H(C)CH or (H)CCH experiments. Dramatic
improvements in resolution can be achieved by further increasing the evolution periods or by
recording an RQD-NUS experiment. In the latter case detection of only one quadrature
component per complex point in the indirect dimensions allowed the resolution to be
approximately doubled in each indirect dimension in the same experiment time, resulting in the
observed higher resolution (17). This could equivalently be achieved by sampling to higher
resolution in the NUS experiment, using an alternative choice of sampling schedule, although it
has been previously suggested that biasing the sampling schedule towards time- rather than
quadrature-components may have advantages for the reconstruction quality (17). Therefore,

RQD offers additional flexibility in defining a sampling schedule.
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Practical tips

Data acquisition

An essential component of acquiring undersampled NMR data is choosing an appropriate
undersampling scheme. This requires careful selection of both the sampling fraction, which is
related to the sparsity of the spectrum (i.e. number of signals expected), as well as the
distribution of points. Early work in the field proposed exponentially biased schemes allowing
acquisition of more high SNR data points at early time points while maintaining some longer
time points to provide sufficient resolution (30). More recently, sine-weighted Poisson gap
sampling (SPS) has been proposed, which maintains the biased selection of data points, but
minimises variability between different randomly generated sampling schedules (31). Sampling
using a Poisson-disk algorithm has also previously been proposed (73). Using Poisson sampling
is likely to minimise the chance of generating a “bad” schedule for a given set of input criteria.
Poisson gap schedules can be generated using the hmsIST Schedule generator (74) (a version
with more advanced options is available at
http://gwagner.med.harvard.edu/intranet/hmsIST/gensched_old.html (13)) or using
nussampler as part of the MDD software package (75). Some guidelines have been suggested in
the literature for appropriate sampling levels (13,18), which may prove useful as a starting
point. However, two important caveats must be considered. (i) As discussed earlier, equation
(15) shows that the sampling requirement is directly proportional to the sparsity, and
proportional to log N where N is the number of points. Thus a particularly crowded spectrum
will require more samples than a less crowded spectrum. (ii) Percentage sampling factors can
be misleading as they reflect the proportion of the total fully sampled grid which is selected;
thus a very high resolution spectrum could show a very low sampling percentage, but a lower
resolution spectrum of the same protein would need a similar number of samples (based on

equation (15)) giving a much higher percentage.
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The best way to determine a suitable sampling level is to process a comparable fully-sampled
experiment with several different undersampling schemes with different fractional sampling
levels, using the desired reconstruction method, and to assess the spectral quality against the

fully-sampled FT spectrum. This can be done using many of the available software packages.

When selecting a sampling schedule it is important to sample the first time-point in all the
indirect dimensions as this can help with phasing for the direct dimension, and allows the data
collection to be checked as the first point should be equivalent to a fully-sampled experiment. It
is often useful to record a data point at the maximum increment in all indirect dimensions, as
this allows easier identification of the maximum data size. As discussed earlier, randomisation
(i.e. reducing regularity in the sampling schedule) typically reduces artefact levels (2) while
clumps of data points, with large gaps elsewhere in the schedule should also be avoided,
particularly if these occur at the beginning and end of the schedule (largely achieved by
weighted Poisson sampling) (31). Exponential schedules can be generated using the NUS
Schedule Tool, which provides a helpful GUI to visualise schedules, while the MDD-NMR
nussampler provides options for Poisson sampling with matching to J-coupling or exponential
decays (75,76). Note that constant time dimensions do not need any decay and this option can
be selected for appropriate dimensions in the various schedulers available (although the

authors of SPS sampling still recommend a sinusoidal weight of 2).

Data processing

A variety of software packages are available for CS reconstructions. These include:

e  hmsIST

hmsIST comes from the Wagner lab (19) and is available on request. hmsIST functions as part of
the NMRPipe workflow. A useful resource discussing NUS approaches, sampling schedules,
pulse programmes and a tutorial on data processing using nmrPipe and hmIST is available at

http://gwagner.med.harvard.edu/intranet/hmsIST/
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e NMRPipe

NMRPipe includes its own implementation of the IST algorithm similar to IST-D discussed

above. More information is available at https://www.ibbr.umd.edu/nmrpipe/nus.html

e MddNMR

MddNMR is provided by the Swedish NMR Centre (Gothenburg) (16,77) and can be downloaded
from the site http://mddnmr.spektrino.com/, where there is also an instruction manual,
example data and scripts. qMDD provides a graphical user interface to the MddNMR programme
allowing easy editing of scripts. The package allows IST, IRLS, Low rank (for 2D spectra) and

MDD (not covered in this review) reconstructions of NUS data and integrates with NMRPipe.

* NESTA-NMR

NESTA-NMR (52) implements the NESTA algorithm (78) allowing regularisation using ¢4,
reweighted #; (IRL1) and Gaussian smoothed ¢ terms. It integrates with NMRPipe and can be

accessed, along with documentation at http://nestanmr.com/.

* Cambridge CS

Cambridge CS is provided by the authors and is available on request (15,18). It implements a
number of algorithms including #;-based methods (IHT and IST) as well as reweighted methods
(IRL1). The programme uses a GUI to facilitate set-up of processing scripts. Full processing can
be carried out in Cambridge CS but import from and export to the NMRPipe format is also

possible.

*  Bruker TopSpin

TopSpin implements versions of the IST and IRLS algorithms, along with MDD processing.

Many of the packages described above are available on NMRbox (79) enabling easy testing of

the packages without the complexities of installing individual packages. In addition, many other
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packages are available for other NMR data processing methods which are not described in this

review.

Guidelines

While each processing package has its own particular requirements some general guidelines are

presented here.

iy

2)

3)

The general outline for NUS data processing is to process the data in the direct
(acquisition dimension), which is fully sampled using the FFT. This is followed by
reconstruction in the indirect dimension(s).

The direct dimension must be appropriately phased. This can be achieved by FFT in the
direct dimension followed by viewing the data as a 2D cube and phasing the first row.
However, most software allows full spectral processing using the FFT in all dimensions
with zeros replacing the skipped points. This can simplify phase correction in the direct
dimension and also allows the user to check that the appropriate processing options
have been applied in the indirect dimensions. For example, correct settings for
frequency discrimination, phasing for any pre-calculated delays in the indirect
dimensions and if necessary appropriate window functions, should be checked at this
stage before starting CS reconstruction. We recommend this latter approach. The speed
of the FFT, even for large datasets, means this is not a time-consuming approach.

Once correct settings have been identified for the indirect dimensions as described in 2),
the processing method of choice can be applied. For 2D and 3D reconstructions, CS
reconstruction times are on the order of seconds to minutes for a 2D and around 5 to 30
mins for a 3D using standard computer hardware, with multi-threading enabled, e.g.
(13). In all cases reconstruction times can be shortened by limiting the maximum
number of iterations. While this will be detrimental to the reconstruction quality, it can
be used as a preliminary test to check that the reconstruction is proceeding correctly,

before proceeding with full reconstruction. This may be particularly useful for 4D
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spectra where reconstruction times are on the order of hours, perhaps around 0.5-1 day
for larger spectra.

4) Spectra can also be checked by processing during acquisition, although the quality of the
spectral appearance will depend on the number of points acquired. Sampling lists can be
produced in a randomised order: in this case, reconstruction before the experiment has
completed provides a more realistic indication of the resolution, compared to an
ordered list, since a mixture of longer and shorter time-points will have been acquired.
In this case, it is also possible to stop acquisition earlier once the desired quality is
achieved, although this requires an option in the processing software to ignore the

unacquired data points during the reconstruction.

Conclusion

CS reconstruction techniques have become increasingly popular in NMR spectroscopy enabling
spectroscopists to benefit from NUS sampling to carefully balance resolution, sensitivity and
experiment time parameters. These approaches enable dramatic improvements in resolution
compared to FT reconstruction, and allow researchers to access higher dimensional
experiments, with the potential for new experiment types and increasingly rich data.
Furthermore, due to the increased sampling requirements of high field machines, these data
processing techniques will enable the full benefits of such high field spectrometers to be
realised. A variety of different reconstruction algorithms can be used for CS reconstructions,
which are implemented in a range of different readily-available software packages. Many of
these packages enable researchers to artificially generate an undersampled data set from a fully
sampled one enabling testing of algorithms and sampling schedules before applying to ‘real’
samples. CS-NUS reconstruction techniques are now in widespread use in NMR laboratories

around the world and we anticipate many exciting developments in the years to come.
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