Toward the total synthesis of patellazole B: Synthesis of an advanced C1-C25 fragment corresponding to the macrocyclic skeleton

Andrew W. Phillips, Matthew J. Anketell, Tudor Balan, Nelson Y. S. Lam, Simon Williams and Ian Paterson*

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
*ip100@cam.ac.uk

Table of Contents

1. General experimental details 2
2. Experimental Procedures 4
2.1. Preparation of the C1-C12 vinyl iodide 4
2.2. Preparation of the C13-C19 vinyl iodide 16
2.3. Preparation of the C2O-C25 alkene 26
2.4. Fragment assembly 33
3. References 38
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds 38

1. General experimental details

All reagents, obtained from Acros, Aldrich, Alfa Aesar, Fluka, Fluorochem and Lancaster fine chemicals suppliers, were used directly as supplied or purified by the methods described by Armarego and Chai ${ }^{1}$ except where otherwise noted in the experimental text. All non-aqueous reactions were performed in oven-dried apparatus under argon or nitrogen atmospheres, using distilled anhydrous solvents, at room temperature (rt) unless otherwise indicated. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetonitrile and methanol were distilled from calcium hydride and stored under an argon atmosphere. Tetrahydrofuran (THF) was distilled from potassium wire/benzophenone ketyl radical under an argon atmosphere. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) was distilled from sodium wire/benzophenone ketyl radical under an argon atmosphere.

2,6-lutidine, trimethylamine ($\mathrm{Et}_{3} \mathrm{~N}$), diisopropylamine (DIPA) and diisopropylethylamine (DIPEA) were distilled from calcium hydride or calcium chloride and stored under an argon atmosphere. Dimethyl sulfoxide (DMSO) and N, N^{\prime}-dimethylformamide (DMF) were distilled from MgSO_{4} and stored over 4Å molecular sieves (MS). 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was recrystallised from chloroform and Proton Sponge ${ }^{\circledR}$ recrystallised from EtOH. Oxalyl chloride was distilled. All solvents used in extraction and chromatography were distilled. The use of ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$, sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$, sodium thiosulfate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$, brine (NaCl) and sodium/potassium (Na / K) tartrate refers to saturated aqueous solutions unless otherwise stated. $4 \AA \mathrm{MS}$ were activated by heating under high vacuum or in a microwave. $\mathrm{Ba}(\mathrm{OH})_{2}$ was prepared by heating $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ at $150^{\circ} \mathrm{C}$ overnight under high vacuum before being stored in a glove box.

Flash column chromatography was performed according to the method described by Still, Kahn and Mitra, ${ }^{2}$ using a positive solvent pressure, with silica gel obtained from Merck Kieselgel 60 (230-400 mesh).

Reactions were monitored by TLC using pre-coated glass-backed plates (Merck Kieselgel 60 with fluorescent indicator UV254). Spots were visualised by quenching of UV fluorescence and staining with potassium permanganate or phosphomolybdic acid $/ \mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, ninhydrin, anisaldehyde or vanillin dips.

NMR spectra were recorded using an internal deuterium lock for the residual protons in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26 \mathrm{ppm}\right.$) at ambient probe temperatures on the following instruments: Bruker AVANCE BB 500, AVANCE TCI cryoprobe (500 MHz) or AVANCE DRX $400(400 \mathrm{MHz})$. Proton data are presented in the following way: chemical shift (in ppm on a δ-scale relative to $\delta_{T M S}=0 \mathrm{ppm}$), integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{br}=\mathrm{broad}, \mathrm{app}=\mathrm{apparent})$, coupling constants $(\mathrm{J} / \mathrm{Hz})$ and assignment. Assignments were determined either on the basis of unambiguous chemical shift or coupling patterns, 2D NMR experiments, or by analogy to fully interpreted spectra for structurally related compounds. Protons of OH groups are missing in some spectra due to proton exchange. ${ }^{13} \mathrm{C}$ spectra were recorded by broadband proton spin decoupling, at ambient probe temperatures on the following instruments: Bruker AVANCE BB 500 and AVANCE TCI 500 (125.7 MHz), using an internal deuterium lock for $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}} 77.0\right)$. Chemical shifts are given in ppm on a δ-scale relative to $\delta_{\text {TMS }}=0$.

Signals are assigned according to the numbering scheme for patellazole B (Figure SI-1), unless otherwise indicated. Signals for non-patellazole related compounds are denoted by a prime, e.g. H-1'. Optical rotations were recorded on a Perkin Elmer 241 polarimeter at the sodium D-line (589 nm) using a 10 cm path length cell and are reported as follows: $[a]_{D}^{20}$ concentration (c in $\mathrm{g} / 100 \mathrm{~mL}$) and solvent.

High and low resolution mass spectra were recorded by the EPSRC Mass Spectrometry facility (Swansea, UK), using chemical ionisation (CI), electron impact (EI) or electron spray ionisation (ESI) techniques. The parent ion $[\mathrm{M}]^{+},[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}-\mathrm{H}]^{+},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$or $[\mathrm{M}+\mathrm{Na}]^{+}$is quoted. HPLC analysis was carried out on an Agilent 1200 series running in normal phase under UV detection using a ZORBAX RX-SIL ($150 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ ID) as the analytical column. Chiral analysis was carried out using a DAICEL CHIRALPAK-IA, IB, IC ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ ID). Fourier transform IR spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer with the sample being prepared as a thin film on a universal ATR sampling accessory. Wavelengths of maximum absorbance ($v_{\text {max }}$) are quoted in cm^{-1}.

Gas chromatography (GC) analysis was performed using a 6890N Network GC system (Agilent Technologies Inc., Palo Alto, CA, USA), equipped with a Varian CP7502, CHIRASIL DEX CB ($25.0 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~L}$ nominal) capilliary column. The GC analyses were carried out in split mode (ratio 50:1) using helium as a carrier gas at a flow rate of $134 \mathrm{~mL} \mathrm{~min}^{-1} 25.00 \mathrm{psi}$. The injection port temperature was $250^{\circ} \mathrm{C}$, using H_{2} flow at $40.00 \mathrm{~mL} \mathrm{~min}^{-1}$, air at $450 \mathrm{~mL} \mathrm{~min}^{-1}$ and helium makeup flow at $45.0 \mathrm{~mL} \mathrm{~min}^{-1}$.

Figure SI-1. Numbering convention for patellazole B

2. Experimental Procedures

2.1. Preparation of the C1-C12 vinyl iodide

Diester 17

To a stirred solution of 3-methylglutaric acid ($19.0 \mathrm{~g}, 13.0 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(250 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added acetyl chloride ($37.1 \mathrm{~mL}, 52.0 \mathrm{mmol}, 4.0$ equiv.) dropwise. The reaction mixture was heated to reflux for 3 h . The solvent was removed in vacuo and the residue redissolved in $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ to neutralise. Once gas evolution had ceased, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 80 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give diester 17 as a yellow oil ($20.2 \mathrm{~g}, 89 \%$), which was used without further purification.
$\mathbf{R}_{\mathrm{f}} 0.61$ (2:1 PE/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 3.68\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 2.52-2.42 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), $2.40(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=15.0,6.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-6 \mathrm{a}), 2.25(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.0,7.3, \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}, \mathrm{H}-6 \mathrm{~b}), 1.03$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{Me}-5$); HRMS (ES+): calc. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 175.0965$, found 175.0962.

Data in agreement with literature values. ${ }^{3}$

Acid 17a

A solution of diester 17 (10.0 g , $57.1 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}\left(44.5 \mathrm{~mL}\right.$) and pH 7 buffer $\left(\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}\right.$, $0.1 \mathrm{M}, 220 \mathrm{~mL}$) was cooled to $-10^{\circ} \mathrm{C}$ and pig liver esterase ($550 \mathrm{mg}, 9900 \mathrm{U}$) added. A solution of $\mathrm{NaOH}(1.0 \mathrm{M}$ aq., $57.1 \mathrm{~mL}, 57.1 \mathrm{mmol}, 1.0$ equiv.) was added dropwise over 54 h , at such a rate as to maintain a pH between 6.5 and 8.0. After the addition was completed, the light brown suspension was filtered through Celite ${ }^{\circledR}$ and the residue rinsed with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$. The pH of the combined filtrates was adjusted to 3 with $\mathrm{HCl}(3 \mathrm{M}$ aq.) and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(8 \times 250 \mathrm{~mL})$. Combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the enantioenriched acid ($8.92 \mathrm{~g}, 55.3 \mathrm{mmol}, 97 \%$) as a colourless liquid.

Enantioenriched acid was dissolved in acetone (180 mL) and cinchonidine ($16.8 \mathrm{~g} 57.1 \mathrm{mmol}, 1.0$ equiv.) added. The white suspension was heated to $40^{\circ} \mathrm{C}$ and stirred rapidly. $\mathrm{H}_{2} \mathrm{O}(23 \mathrm{~mL})$ was added dropwise until a pale-
yellow solution formed. The solution was cooled to rt and then left to stand at $-5^{\circ} \mathrm{C}$ for 16 h to give off-white, needle like crystals. The solid was collected by filtration, washed with ice-cold acetone (35 mL) and dried in vacuo. The mother liquor was recooled to $-10^{\circ} \mathrm{C}$, left to stand for 16 h , filtered and the solids washed (acetone, 20 mL) and collected, to isolate a second crop of the crystals. Combined collected solids were dissolved in HCl $(2 \mathrm{M}, 120 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 150 \mathrm{~mL})$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give acid 17a as a colourless oil ($5.53 \mathrm{~g}, 34.3 \mathrm{mmol}, 62 \%, 96 \% \mathrm{ee}$).
$\mathbf{R}_{\mathrm{f}} 0.24$ (1:1 PE/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC} \underline{H}_{3}\right)$, 2.53-2.42 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}$), 2.352.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}, \mathrm{H}-6 \mathrm{~b}$), 1.08 ($3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{Me}-5$); HRMS (ES+): calc. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{-} 159.0663$, found 159.0665. $\mathbf{R}_{\mathbf{T}}$ (GC, CHIRASIL DEX CB, $134 \mathrm{~mL} \mathrm{~min}^{-1}, 25.00 \mathrm{psi}$, total run time 240 min) 165.6 min (major), 172.0 \min (minor).

Data in agreement with literature values. ${ }^{4}$

TBS ether 18

To a stirred solution of carboxylic acid 17 ($2.00 \mathrm{~g}, 12.5 \mathrm{mmol}, 10.0$ equiv.) In THF (200 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3} \cdot \mathrm{DMS}\left(6.8 \mathrm{~mL}, 13.75 \mathrm{mmol}, 1.1\right.$ equiv.) dropwise. The reaction mixture stirred for 1 h . $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ was then added and the layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and combined organic extracts dried over MgSO_{4} before the solvent was carefully removed in vacuo. The crude material was used directly in the following reaction without further purification.

To a stirred solution of crude alcohol ($1.82 \mathrm{~g}, 12.5 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (125 mL) was added imidazole ($1.02 \mathrm{~g}, 15 \mathrm{mmol}, 1.2$ equiv.), then $\operatorname{TBSCl}(2.07 \mathrm{~g}, 13.75 \mathrm{mmol}, 1.2$ equiv.) The reaction mixture was stirred for 90 min before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with further $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. Combined organic extracts were dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (9:1 PE/EtOAc) to give TBS ether 18 as a colourless oil ($2.98 \mathrm{~g}, 92 \%$ over two steps).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 3.69-3.61(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.9,5.0 \mathrm{~Hz}, \mathrm{H}-6), 2.17-$ $2.04(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-5), 1.60-1.52(1 \mathrm{H}, \mathrm{m}$,$) 1.46-1.38(1H, m), 0.96(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{Me}-5), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 0.04 (9H, s, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ES+): calc. for $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$275.2037, found 275.2038.

Data in agreement with literature values ${ }^{5}$

Aldehyde 13

To a stirred solution of ester 18 ($2.0 \mathrm{~g}, 7.69 \mathrm{mmol}, 1.0$ equiv.) in (80 mL) at $-78^{\circ} \mathrm{C}$ was added DIBAL (1 M in hexanes, $8.08 \mathrm{~mL}, 8.08 \mathrm{mmol}, 1.05$ equiv.) dropwise. The reaction mixture was maintained at this temperature for 1 h , before being quenched with Na / K tartrate $(60 \mathrm{~mL})$ and stirred for 1 h whilst warming to rt . The layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. Combined organic extracts were dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (19:1 PE/EtOAc) to give aldehyde 13 as a colourless oil ($1.63 \mathrm{~g}, 92 \%$).
$\mathbf{R}_{\mathrm{f}} 0.37$ (9:1 PE/EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 1727, 1256, 1095, $913,836,774,743 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{H}} 9.75(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, \mathrm{H}-7), 3.67(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4,2.6 \mathrm{~Hz}, \mathrm{H}-3), 2.46(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.4,8.6,2.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.26$ (1H, ddd, J = 10.4, 7.8, 2.3 Hz, H-6b), 1.61-1.43 (3H, m, H-5, H-4), $0.99(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{Me}-5), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $)_{3}$) $\delta_{\mathrm{C}} 202.8,60.7,50.9,39.5,25.9,25.1,20.0,18.3,-$ 5.4; HRMS (ES+): calc. for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 231.1775$, found 231.1776.

Data in agreement with literature values. ${ }^{6}$

Diol 19

$\mathrm{Cy}_{2} \mathrm{BCl}$ ($6.86 \mathrm{~mL}, 31.7 \mathrm{mmol}, 1.9$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(4.88 \mathrm{~mL}, 35.1 \mathrm{mmol}, 2.1$ equiv.) were sequentially added to $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ before stirring for 10 min . A solution of ketone 11^{7} ($7.57 \mathrm{~g}, 33.5 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was then added via cannula and the reaction mixture stirred for 90 min before cooling to $-78^{\circ} \mathrm{C}$. A solution of aldehyde $13\left(3.85 \mathrm{~g}, 16.7 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was then added via cannula and the reaction mixture stirred at this temperature for a further 4 h before allowed to warm to $-20^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then re-cooled to $-78^{\circ} \mathrm{C}$ before the dropwise addition of LiBH_{4} (4 M in THF, $16.7 \mathrm{~mL}, 66.8$ $\mathrm{mmol}, 4.0$ equiv.). After 2.5 h , the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ and warmed to rt . The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. Combined organic extracts were dried over MgSO_{4} and the solvent removed in vacuo. The crude boronate was purified by flash column chromatography (9:1 \rightarrow 4:1 PE/EtOAc) to remove excess reduced ketone before being redissolved in $\mathrm{MeOH}(75 \mathrm{~mL}) . \mathrm{NaOH}(10 \%$
$\mathrm{aq}, 45 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{aq}, 22.5 \mathrm{~mL})$ were sequentially added and the solution stirred for 1 h before the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and $\mathrm{EtOAc}(50 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude diol was then purified by flash column chromatography (9:1 \rightarrow 4:1 PE/EtOAc) to give diol 19 as a colourless oil ($6.73 \mathrm{~g}, 86 \%,>20: 1 \mathrm{dr}$).
$\mathbf{R}_{\mathrm{f}} 0.23$ (4:1 PE/EtOAc); $[\alpha]_{D}^{20}-16.7$ (c 1.55, CHCl_{3}); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): $3425,1612,1513,1463,1248,1090$, $1038,980,835,775 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar})$, $4.48\left(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{OC} \underline{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Ar}\right), 4.45\left(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{Ar}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOCH}_{3}\right), 3.78(1 \mathrm{H}, \mathrm{dd}, J=$ $10.3,1.8 \mathrm{~Hz}, \mathrm{H}-7), 3.67(1 \mathrm{H}, \mathrm{dd}, J=6.5,1.4 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=6.5,1.9 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}), 3.61-3.58(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 2), $3.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,6.2 \mathrm{~Hz}, \mathrm{H}-9), 2.09-1.98(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-10), 1.52-1.30(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6), 0.90(3 \mathrm{H}, \mathrm{d}$, $J=6.8 \mathrm{~Hz}, \mathrm{Me}-10), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.80(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{Me}-8), 0.76(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Me}-5), 0.05(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 159.3,130.0,129.3,113.9,79.175 .4,74.0,73.2,61.6,55.3,42.1,41.6$, 40.9, 35.1, 26.2, 26.0, 19.4, 18.4, 12.9, 9.4, -5.3; HRMS (ES-): calc. for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}-\mathrm{H}]^{-}$467.3187, found 467.3183.

TBS ether 19a

To a solution of aldol adduct $19\left(4.6 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added 2,6 -lutidine ($1.4 \mathrm{~mL}, 12.1 \mathrm{mmol}, 1.2$ equiv.) and TBSOTf ($2.46 \mathrm{~mL}, 10.6 \mathrm{mmol}, 1.05$ equiv.) and stirred for 3 h before quenching with $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30$ mL). Combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. The crude product was purified by flash column chromatography ($9: 1 \mathrm{PE} / E t O A c$) to give TBS ether 19a as a colourless oil ($4.93 \mathrm{~g}, 88 \%$).
$\mathbf{R}_{\mathrm{f}} 0.24$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}-17.4$ (c 1.25, CHCl_{3}); $\mathbf{I R}$ (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 3691, 1514, 1463, 1250, 1088, 835, 773 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H} ;} 7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 4.47(1 \mathrm{H}, \mathrm{d}, J=$ $\left.11.7 \mathrm{~Hz}, \mathrm{OCH}_{\underline{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Ar}\right), 4.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.7 \mathrm{~Hz}, \mathrm{OCH}_{\mathrm{a}} \underline{H}_{b} \mathrm{Ar}\right), 4.10(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=9.7,4.1,2.4 \mathrm{~Hz}, \mathrm{H}-7), 3.80(3 \mathrm{H}, \mathrm{s}$, ArOCH ${ }_{3}$), 3.67-3.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-3 \mathrm{~b}$), $3.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,2.5 \mathrm{~Hz}, \mathrm{H}-9), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,4.4 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}$), $3.51(1 \mathrm{H}, \mathrm{dd}, J=9.0,5.1 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}), 2.71(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{O}-\underline{\mathrm{H}}), 1.87-1.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.80-1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$, H-5), 1.56-1.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$), 1.43-1.34 (2H, m, H-6a, H-4b), 1.10 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.9,10.6,2.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), $0.93(3 \mathrm{H}$, $\mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Me}-10), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-8), 0.75(3 \mathrm{H}, \mathrm{d}, J=$ $7.0 \mathrm{~Hz}, \mathrm{Me}-5), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right), 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}\right.\right.$ NMR $(125 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{C}} 159.2,130.3,129.2,113.8,75.3,75.2,73.1,70.5,61.5,55.3,41.8,41.4,39.1,34.9,26.0,26.0,25.7$, 19.1, 18.4, 18.1, 10.3, 9.1,-4.2,-4.5,-5.3; HRMS (ES +): calc. for $\mathrm{C}_{32} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 583.4209$, found 583.4195 .

PMP acetal 20

To a slurry of DDQ ($754 \mathrm{mg}, 3.31 \mathrm{mmol}, 1.1$ equiv.) and $4 \AA \mathrm{MS}(525 \mathrm{mg})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of PMB ether 19a ($1.75 \mathrm{~g}, 3.01 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred for 1 h before being filtered through Celite ${ }^{\circledR}$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The filtrate was washed with NaHCO_{3} $(2 \times 20 \mathrm{~mL})$ and back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (15:1 \rightarrow 9:1 PE/EtOAc) to give PMP acetal 20 as a colourless oil ($1.40 \mathrm{~g}, 80 \%$, inconsequential mix of diastereomers).
$\mathbf{R}_{\mathrm{f}} 0.38$ (6:1 PE/EtOAc); $[\alpha]_{D}^{20}-21.6\left(c 0.31, \mathrm{CHCl}_{3}\right.$); $\mathbf{I R}\left(\right.$ thin film, $\mathbf{v}_{\max } / \mathrm{cm}^{-1}$): 1618, 1518, 1463, 1388, 1249, 1103, 833,$773 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.37(1 \mathrm{H}, \mathrm{s}$, CHAr), $4.19(1 \mathrm{H}, \mathrm{ddd}, J=10.13 .1,1.7 \mathrm{~Hz}, \mathrm{H}-7), 4.05(1 \mathrm{H}, \mathrm{dd}, J=11.1,2.2 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 4.01(1 \mathrm{H}, \mathrm{dd}, J=11.1,1.1$ $\mathrm{Hz}, \mathrm{H}-11 \mathrm{~b}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.65-3.61(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,2.1 \mathrm{~Hz}, \mathrm{H}-9), 1.95(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J}=$ $10.7,7.0,3.1 \mathrm{~Hz}, \mathrm{H}-8$), 1.71 ($1 \mathrm{H}, \mathrm{qddd}, \mathrm{J}=6.8,2.2,2.1,1.1 \mathrm{~Hz}, \mathrm{H}-10$), 1.6-1.26 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4-6$), $1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8$ $\mathrm{Hz}, \mathrm{Me}-5), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Me}-8), 0.76(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, Me-10), $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{C} 159.7,131.7,127.1,113.4,101.2,81.2,74.1,68.6,61.5,55.3,41.4,40.4,38.3,29.9,26.0,26.0,25.9,19.0$, 18.4, 18.1, 10.9, 7.9, -4.2, -4.6, -5.3, -5.3; HRMS (ES+): calc. for $\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 581.4052$, found 581.4044.

Alcohol 20a

To a solution of silyl ether 20 ($3.70 \mathrm{~g}, 6.38 \mathrm{mmol}, 1.0$ equiv.) in THF (100 mL) at rt was added TBAF (1 M in THF, $6.4 \mathrm{~mL}, 6.38 \mathrm{mmol}, 1.0$ equiv.) dropwise. The reaction mixture was stirred for 1 h before the addition of an extra 0.5 equiv. of TBAF. After a further h, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (6:1 PE/EtOAc) to give alcohol 20a as a colourless oil ($2.52 \mathrm{~g}, 85 \%$, inconsequential mix of diastereomers, 96% brsm).
$\mathbf{R}_{\mathrm{f}} 0.16$ (6:1 PE/EtOAc); $[\alpha]_{D}^{20}-22.2\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3363, 1380, 1086, 1045, 880, 772; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.38(1 \mathrm{H}, \mathrm{s}, \mathrm{CHAr}), 4.19(1 \mathrm{H}$, ddd, $J=10.2,3.6,1.8 \mathrm{~Hz}, \mathrm{H}-7), 4.06(1 \mathrm{H}, \mathrm{dd}, J=11.0,2.3 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 4.02(1 \mathrm{H}, \mathrm{dd}, J=11.1,1.3 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}), 3.81$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC} \underline{H}_{3}\right), 3.71-3.64(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.58(1 \mathrm{H}, \mathrm{dd}, J=10.6,2.1 \mathrm{~Hz}, \mathrm{H}-9), 1.97(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J}=10.6,7.0,3.6 \mathrm{~Hz}, \mathrm{H}-$ 8), $1.70(1 \mathrm{H}, \mathrm{qddd}, J=6.8,2.3,2.1,1.3 \mathrm{~Hz}, \mathrm{H}-10), 1.61-1.47(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-4 \mathrm{a}), 1.43(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.8,10.2,2.6$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{a}), 1.28-1.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}), 1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{Me}-5), 1.05$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=12.8,10.2,1.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 0.89$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.80(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me}-10), 0.79(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-8), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.03$ (3H, s, Si $\left.\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 159.7,131.6,127.1,113.4,101.2,81.2,74.1,68.9,61.2$, $55.3,41.0,40.4,37.8,29.9,26.0,25.9,19.6,18.1,10.9,7.9,-4.2,-4.6$; HRMS (ES +): calc. for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 467.3187, found 467.3184.

Tosylate 20b

To a solution of alcohol 20a ($420 \mathrm{mg}, 0.91 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine ($1: 1,10 \mathrm{~mL}$), was added tosyl chloride ($516 \mathrm{mg}, 2.72 \mathrm{mmol} 3.0$ equiv.) and stirred for 6 h . The reaction was then quenched with $\mathrm{NaHCO}_{3}(12$ mL) and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$, combined organic layers dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (15:1 PE/EtOAc) to give tosylate 20b as a colourless oil ($510 \mathrm{mg}, 91 \%$, inconsequential mix of diastereomers).

Major diastereomer:
$\mathbf{R}_{\mathrm{f}} 0.28$ (6:1 PE/EtOAc); $[\alpha]_{D}^{20}-7.0\left(c \quad 0.1, \mathrm{CHCl}_{3}\right)$; IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 2927, 2339, 2012, 1613, 1360, 1249, $1177,1073,942,828,773 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-$ Ar), $7.32(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.35(1 \mathrm{H}, \mathrm{CHAr}), 4.14$ (1 H , ddd, $J=9.8,3.4,1.8 \mathrm{~Hz}$, $\mathrm{H}-7)$, 4.09-4.02 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-11, \mathrm{H}-3$), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,2.1 \mathrm{~Hz}, \mathrm{H}-9), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$, 1.98-1.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.69-1.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.60-1.24 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4-6$), $1.14(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}-8), 0.86(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.76(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Me}-10), 0.71(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{Me}-5), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right),-0.01$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 159.7,144.6,133.3,131.6,129.8,127.9,127.0,113.4$, 101.2, 81.2, 74.1, 69.0, 68.4, 55.3, 40.3, 37.7, 36.9, 29.8, 25.9, 25.8, 21.6, 18.7, 18.1, 10.9, 7.9, -4.2, -4.7; HRMS (ES+): calc. for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{O}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 621.3281$, found 621.3269.

Minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.79(2 \mathrm{H}, \mathrm{d}, 8.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-$ Ar), $6.87(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.99(1 \mathrm{H}, \mathrm{s}, \mathrm{CHAr}), 4.27(1 \mathrm{H}, \mathrm{dt}, J=11.4,2.7 \mathrm{~Hz}, \mathrm{H}-7), 4.09-4.02(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$,
$4.01\left(1 \mathrm{H}, \mathrm{dd}, J=11.1,1,2 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}, 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.62(1 \mathrm{H}, \mathrm{dd}, J=11.1,2.4 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}), 3.40(1 \mathrm{H}, \mathrm{dd}, J=\right.$ 10.6, $2.2 \mathrm{~Hz}, \mathrm{H}-9$), $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.98-1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.69-1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.60-1.24(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4-6)$, $1.16(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Me}-8), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.95(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{Me}-5), 0.66(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Me}-$ 10), $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $\left.)_{3}\right): \delta_{\mathrm{C}} 159.4,144.6,133.3$, $131.6,130.2,128.2,127.9,113.8,96.5,81.1,72.3,68.1,67.1,55.3,40.9,37.1,36.7,30.7,25.9,25.7,21.6,18.5$, 18.1, 10.9, 8.1, - 4.1, - 4.6.

lodide 21

To a stirred solution of tosylate $\mathbf{2 0 b}(500 \mathrm{mg}, 0.808 \mathrm{mmol}, 1.0$ equiv.) in MeCN (20 mL) was added Lil (650 mg , $4.84 \mathrm{mmol}, 6.0$ equiv.) and heated to $60^{\circ} \mathrm{C}$ for 4 h . Upon completion, the reaction mixture was cooled to rt and diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography ($10: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give iodide 21 as a colourless oil ($425 \mathrm{mg}, 91 \%$, inconsequential mix of diastereomers).

Major diastereomer:
$\mathbf{R}_{\mathrm{f}} 0.48$ (6:1 PE/EtOAc); $[\alpha]_{D}^{20}-22.8\left(c 0.82, \mathrm{CHCl}_{3}\right.$); $\mathbf{I R}\left(\right.$ thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 1616, 1518, 1463, 1380, 1249, 1164, 1036, 834, 774; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.37$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \underline{\mathrm{HAr}}), 4.18(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.1,3.2,1.6 \mathrm{~Hz}, \mathrm{H}-7), 4.07-4.00(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 3.81\left(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOCH}_{3}\right), 3.56(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=10.7,2.0 \mathrm{~Hz}, \mathrm{H}-9), 3.27-3.14(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.00-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.89-1.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.74-1.26(5 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6), 1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{Me}-5), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Me}-10), 0.76(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{Me}-8), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NRR(125 MHz, CDCl $\left.)_{3}\right): \delta_{\mathrm{C}} 159.7$, $131.6,127.1,113.5,101.2,81.2,74.1,68.5,55.3,42.3,40.4,37.4,30.4,29.9,26.0,18.3,18.1,10.9,7.9,4.9,-$ 4.2, - 4.5; HRMS (ES+): calc. for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{IO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 577.2205$, found 577.2196 .

Minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.35(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.01(1 \mathrm{H}, \mathrm{s}, \mathrm{CHAr}), 4.31$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.5,2.8,2.0 \mathrm{~Hz}, \mathrm{H}-7), 4.07-4.00(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,2.3 \mathrm{~Hz}$, $\mathrm{H}-9), 3.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,2.4 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}), 3.27-3.14(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.00-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.89-1.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 8), 1.74-1.26 (5H, m, H-4, H-5, H-6), 1.17 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{Me}-5$), $1.00(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{Me}-8), 0.88(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.71(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Me}-10), 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 159.4,130.3,128.3$, $113.8,96.5,72.3,68.1,67.1,55.3,42.5,41.0,36.3,30.7,30.3,26.0,22.6,20.5,18.2,17.9,11.5,-4.0$

Alkene 22

A solution of iodide 21 ($400 \mathrm{mg}, 0.69 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and t-BuLi (1.7 M in pentane, $1.6 \mathrm{~mL}, 2.78 \mathrm{mmol}, 4.0$ equiv.) added in a single portion. The reaction mixture was stirred for 3 min before the addition of B-Methoxy-9-BBN (1 M in hexanes, $4.27 \mathrm{~mL}, 4.27 \mathrm{mmol}, 6.0$ equiv.). After a further 5 min , the THF (7 mL) was added and the resulting solution slowly warmed to r t and stirred for a further $h . \mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}$, $0.7 \mathrm{~mL}, 2.01 \mathrm{mmol}, 3.0$ equiv.), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(51 \mathrm{mg}, 0.069 \mathrm{mmol}, 0.1$ equiv.) and $\mathrm{DMF}(7 \mathrm{~mL})$ were then added, followed by 2-bromopropene ($0.18 \mathrm{~mL}, 2.07 \mathrm{mmol}, 3.0$ equiv.) The resulting solution was stirred for 16 h before being quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15$ mL). Combined organic layers were washed with brine (10 mL), dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (1:0 $\rightarrow 20: 1 \mathrm{PE} / \mathrm{EtOAc})$ to give alkene $\mathbf{2 2}$ as pale-yellow oil ($231 \mathrm{mg}, 67 \%$, inconsequential mix of diastereomers) in an inseparable $3: 1$ mixture with the alkane arising from protonation of the lithiated intermediate.

Major diastereomer:
$\mathbf{R}_{\mathrm{f}} 0.58$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}-41.6$ (c 0.37, CHCl_{3}); $\mathbf{I R}\left(\right.$ thin film, $\mathbf{v}_{\max } / \mathrm{cm}^{-1}$): 2336, 1616, 1518, 1463, 1249, 1072, 833,$773 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.37(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.36(1 \mathrm{H}, \mathrm{s}$, CHAr), 4.66-4.63 (2H, m, H-2), $4.17(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.1,3.2,1.7 \mathrm{~Hz}, \mathrm{H}-7), 4.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,2.4 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 4.00$ (1H, dd, J = 11.2, 1.2 Hz, H-11b), 3.79 (3H, s, ArOCH 3), $3.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.8,2.0 \mathrm{~Hz}, \mathrm{H}-9), 1.96-1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8)$, 1.84-1.78 (1H, m, H-10), 1.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2$), 1.64-1.25 (7H, m, H-3, H-4, H-5, H-6), 1.13 (3H, d, J=6.9 Hz, Me-5), $0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.78(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Me}-8), 0.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{Me}-10), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right)$, $0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 159.7,146.5,131.7,127.1,113.4,109.5,101.2,81.2$, 74.1, 68.7, 55.3, 40.5, 38.0, 36.4, 35.4, 29.9, 28.7, 25.9, 22.5, 19.1, 18.1, 10.9, 7.9, -4.2, -4.7; HRMS (ES+): calc. for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$491.3551, found 491.3542.

Minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.35(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CHAr}), 4.67-$ $4.65(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 4.30(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.6,2.7,2.1 \mathrm{~Hz}, \mathrm{H}-7), 4.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,1.2 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 3.81(3 \mathrm{H}, \mathrm{s}$, ArOCH_{3}), 3.61 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,2.2 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}$), $3.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,2.5 \mathrm{~Hz}, \mathrm{H}-9), 1.96-1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.84-$ 1.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2$), 1.64-1.25 ($7 \mathrm{H}, \mathrm{m}, \mathrm{H} 3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$), 1.16 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{Me}-5$), 1.00 $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}-10), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Me}-8), 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.08$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right)$.

To a solution of alkene $\mathbf{2 2}$ ($50 \mathrm{mg}, 0.102 \mathrm{mmol}, 1.0$ equiv.) (as a $3: 1$ mixture with the alkane arising from the protonation of lithiated 21), in $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,1 \mathrm{~mL})$, were added $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.74 \mathrm{mg}, 2 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$), (DHQ) ${ }_{2} \mathrm{AQN}(2.3 \mathrm{mg}, 3 \mu \mathrm{~mol}, 3.0 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}\left(42.5 \mathrm{mg}, 0.306 \mathrm{mmol}, 3.0\right.$ equiv.) and $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(101 \mathrm{mg}, 0.306$ $\mathrm{mg}, 3.0$ equiv.) and stirred for 16 h . The reaction was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ before the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 3 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by flash column chromatography ($3: 1 \mathrm{PE} / E t O A c$) to give diol 22a as a viscous colourless oil ($25 \mathrm{mg}, 63 \%,>95: 5 \mathrm{dr}$). The alkane arising from the protonation of the lithiated intermediate from $\mathbf{2 1}$ could be separated here (12 mg).

Major diastereomer:
$\mathbf{R}_{\mathrm{f}} 0.18$ (3:1 PE/EtOAc); $[\alpha]_{D}^{20}-33.2\left(c 1.80, \mathrm{CHCl}_{3}\right.$); $\mathbf{I R}\left(\right.$ thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): $3466,3416,1517,1463,1379,1249$, $1166,1038,834,774 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar})$, $5.37(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \underline{H} A r), 4.20(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.0,3.1,1.5 \mathrm{~Hz}, \mathrm{H}-7), 4.04-4.01(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.58$ ($1 \mathrm{H}, \mathrm{dd}, J=10.3,2.0 \mathrm{~Hz}, \mathrm{H}-9$), $3.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 2.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{O}-\mathrm{H})$, 2.00-1.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), $1.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{O}-\mathrm{H}), 1.61-1.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.55-1.22(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-3-6), 1.16(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, \mathrm{Me}-8), 1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79(3 \mathrm{H}, \mathrm{d} J=6.4 \mathrm{~Hz}, \mathrm{Me}-5), 0.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Me}-$ 10), $0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 159.7,131.6,127.1$, $113.5,101.2,81.3,74.1,73.0,69.9,68.7,55.3,40.5,37.7,36.2,32.1,29.9,29.4,25.9,23.3,19.2,18.1,10.9,7.9,-$ 4.2, - 4.6; HRMS (ES+): calc. for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 525.3611$, found 525.3612.

Minor diastereomer:
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.02(1 \mathrm{H}, \mathrm{s}, \mathrm{CHAr}), 4.32$ ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=11.5,2.1 \mathrm{~Hz}, \mathrm{H}-7$), 4.04-4.01 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.63(1 \mathrm{H}, \mathrm{dd}, J=11.3,2.1 \mathrm{~Hz}, \mathrm{H}-9$), $3.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 2.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{O}-\underline{H}), 2.00-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.88$ (1H, br s, O-H), $1.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Me}-8), 1.55-1.22(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-3-6), 1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.71(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Me}-10), 0.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 159.3,130.3,128.3,113.9,96.6,81.2,72.4,68.2,67.1,65.9,55.3,41.1,37.8,36.1,32.4,30.7,30.3$, 23.3, 18.9, 18.2, 15.3, 10.9, 8.1, -4.1, -4.6.

To a solution of diol 22a ($22 \mathrm{mg}, 0.038 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~mL}\right.$) at $-78^{\circ} \mathrm{C}$ were added 2,6 -lutidine ($49 \mu \mathrm{~L}, 0.478 \mathrm{mmol}, 12.5$ equiv.) and TESOTf ($53 \mu \mathrm{~L}, 0.288 \mathrm{mmol}, 7.5$ equiv.) and stirred for 1 h before being warmed up to rt. After stirring for a further 30 min , the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 1 \mathrm{~mL})$, combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (PE \rightarrow 10:1 PE/EtOAc) to give TES ether 22b as a colourless oil ($31 \mathrm{mg}, 99 \%$, inconsequential mix of diastereomers).
$\mathbf{R}_{\mathrm{f}} 0.61$ (3:1 PE/EtOAc); $[\alpha]_{D}^{20}-12.7\left(c 0.85, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\right.$ thin film, $\left.\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)$: 1517, 1461, 1249, 1166, 1106, 1014, 833,$740 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.39(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.38(1 \mathrm{H}, \mathrm{s}$, CHAr), $4.17(1 \mathrm{H}, \mathrm{br} d, J=9.8 \mathrm{~Hz}, \mathrm{H}-7), 4.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.3,2.2, \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 4.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.3,1.1 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b})$, $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J=10.5,2.0 \mathrm{~Hz}, \mathrm{H}-9), 3.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.30(1 \mathrm{H}, \mathrm{dd}, J=9.4,2.0$ $\mathrm{Hz}, \mathrm{H}-1 \mathrm{~b}), 1.95$ (1 H , qddd, $\mathrm{J}=7.0,2.2,2.0,1.1 \mathrm{~Hz}, \mathrm{H}-10$), 1.61-1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.50-1.19 ($7 \mathrm{H}, \mathrm{m}, \mathrm{H}-3-6$), 1.15 $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}-8), 1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2), 0.95\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$, $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.79(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-10), 0.75(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{Me}-5), 0.58(6 \mathrm{H}, \mathrm{q}, J=7.9 \mathrm{~Hz}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.56\left(6 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta_{\mathrm{C}} 159.7,131.7,127.1,113.4,101.2,81.2,75.9,74.1,69.9,68.7,55.3,40.4,38.1,37.1$, 31.9, 29.9, 29.5, 25.9, 25.3, 22.6, 19.3, 18.1, 10.9, 7.8, 7.2, 6.8, 4.4, -4.2,-4.7; HRMS (ES+): calc. for $\mathrm{C}_{41} \mathrm{H}_{81} \mathrm{O}_{6} \mathrm{Si}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 753.5341$, found 753.5349 .

Alcohol 23

To a stirred solution of PMP acetal 22b ($87 \mathrm{mg}, 0.116 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.2 \mathrm{~mL}\right.$) at $-30^{\circ} \mathrm{C}$ was added DIBAL (1 M in hexanes, $0.58 \mathrm{~mL}, 0.58 \mathrm{mmol}, 5.0$ equiv.) over 10 min . The reaction mixture was maintained at this temperature for 3 h before being quenched with Na / K tartrate $(3 \mathrm{~mL})$ and stirred for 1 h . The layers were then separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (9:1 $\mathrm{PE} / \mathrm{EtOAc}$) to give alcohol 23 as a colourless oil, ($48 \mathrm{mg} 58 \%$).
$\mathbf{R}_{\mathrm{f}} 0.18$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}-28.7$ (c 1.30, CHCl_{3}); IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3443, 1614, 1514, 1461, 1248, 1087, 1038, 822, 741; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 4.53$ $(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CH} \operatorname{HaHbAr}), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CHaHb} \mathrm{H}), 4.17(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{H}-7), 3.80(3 \mathrm{H}, \mathrm{s}$, ArOCH_{3}), 3.66-3.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), $3.421 \mathrm{H}, \mathrm{dd}, J=10.1,2.2 \mathrm{~Hz}, \mathrm{H}-9$), $3.40(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.31(1 \mathrm{H}, \mathrm{dd}$, $J=9.5,2.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 2.04-1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.94-1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.60(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{H}), 1.53-1.19(7 \mathrm{H}$, m, H-3, H-4, H-5, H-6), $1.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2), 0.96\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.94\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$, $0.89(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-10), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.85(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{Me}-5), 0.82(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-$ 8), $0.59\left(6 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.57\left(6 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.02(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 158.9,131.2,128.6,113.7,80.7,75.9,73.5,69.9,69.6,66.2$, $55.3,42.6,38.4,37.8,37.1,31.9,29.4,25.9,25.3,19.4,18.1,15.3,10.2,9.9,7.2,6.8,4.4,-4.2,-4.7 ;$ HRMS (ES+): calc. for $\mathrm{C}_{41} \mathrm{H}_{80} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 777.5317$, found 777.5315 .

Vinyl iodide 5

To a solution of alcohol 23 ($32 \mathrm{mg}, 0.042 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added Dess-Martin Periodinane ($36 \mathrm{mg}, 0.085,2.0$ equiv.) and $\mathrm{NaHCO}_{3}(10.6 \mathrm{mg}, 0.126 \mathrm{mmol}, 3.0$ equiv.) and stirred for 20 min . Upon completion, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.5 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$ were added and stirred for a further 10 min , before the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude aldehyde ($31 \mathrm{mg}, 97 \%$) was used directly in the following reaction without further purification.

To a stirred suspension of (iodomethyl)triphenylphosphonium iodide ($89 \mathrm{mg}, 0.170 \mathrm{mmol}, 4.0$ equiv.) in THF (0.3 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaHMDS}(1 \mathrm{M}$ in THF, $0.14 \mathrm{~mL}, 0.144 \mathrm{mmol}, 3.5$ equiv.) and stirred for 30 min . The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$ and a solution of the crude aldehyde ($31 \mathrm{mg}, 0.041 \mathrm{mmol}, 1.0$ equiv.) in THF $(0.3 \mathrm{~mL})$ added via cannula, before stirring for 1 h . The reaction was then quenched by addition of PE and filtered through a short plug of Celite ${ }^{\circledR}$, before being concentrated in vacuo. The crude material was purified by flash column chromatography (19:1 PE/EtOAc) to give vinyl iodide 5 as a colourless oil ($29 \mathrm{mg}, 82 \%$).
$\mathbf{R}_{\mathrm{f}} 0.17$ (19:1 PE/EtOAc); $[\alpha]_{D}^{20}+14.5^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}$ (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 1514, 1462, 1248, 1065, 836, 771; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.23(1 \mathrm{H}, \mathrm{dd}, J=8.8,7.2$ $\mathrm{Hz}, \mathrm{H}-11), 6.16(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H}-12), 4.47(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CH}$ aHbAr), $4.42(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CHaHbAr})$, $4.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-7), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.40(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.31(1 \mathrm{H}, \mathrm{d}, J=9,4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b})$, 3.26 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,2.6 \mathrm{~Hz}, \mathrm{H}-9$), 2.76-2.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.99-1.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.55-1.26 ($7 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-$ 5, H-6), $1.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2), 0.96\left(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.94\left(9 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.92(3 \mathrm{H}, \mathrm{d}, J$ $7.2 \mathrm{~Hz}, \mathrm{Me}-8), 0.82(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{Me}-5), 0.59\left(6 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.57\left(6 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right)_{3}\right), 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.02\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 158.9,145.5,131.2,128.4$, $113.6,83.3,80.8,75.9,74.0,69.9,69.5,55.3,42.8,41.8,38.6,37.1,32.0,29.4,25.9,25.3,22.6,19.4,18.1,12.2$, 10.3, $7.2,6.8,4.4,-4.1,-4.6$; HRMS (ES +): calc. for $\mathrm{C}_{42} \mathrm{H}_{81} \mathrm{IO}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 899.4334$, found 899.4336

2.2. Preparation of the C13-C19 vinyl iodide

TBS ether 12

To a stirred solution of methyl ketone $24^{8}(1.00 \mathrm{~g}, 4.08 \mathrm{mmol}, 1.0$ equiv. $)$ in THF (13 mL) at $-78^{\circ} \mathrm{C}$ was added LDA (1 M in THF, $5.70 \mathrm{~mL}, 5.70 \mathrm{mmol}, 1.4$ equiv.) via cannula. After 1 h at this temperature, $\mathrm{TMSCl}(0.9 \mathrm{~mL}, 6.53$ mmol, 1.6 equiv.) was added and the solution stirred for another 1 h at this temperature before being allowed to warm to rt over the following h . The reaction mixture was then concentrated in vacuo and pentane (10 mL) added. The precipitate formed was filtered through Celite ${ }^{\circledR}$ and the filtrate concentrated in vacuo. The crude silyl enol ether was then redissolved in $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}\left(1: 1: 1,20 \mathrm{~mL}\right.$) and $\mathrm{OsO}_{4}\left(4 \mathrm{wt} \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 1.4 \mathrm{~mL}, 0.22$ mmol, 0.05 equiv.) and NMO ($50 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 2.13 \mathrm{~mL}, 9.10 \mathrm{mmol}, 2.2$ equiv.) added. The reaction mixture was left to stir for 16 h before being quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. The crude material was filtered over silica and the crude alcohol was used in the next step without further purification.

To a solution of crude alcohol (ca. 256 mg , ca. $0.59 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) were added imidazole ($60.5 \mathrm{mg}, 0.89 \mathrm{mmol}, 1.5$ equiv.) and $\operatorname{TBSCl}(107 \mathrm{mg}, 0.71 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was stirred for 1 h before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$ and combined organic layers dried over MgSO_{4} before being concentrated in vacuo. The crude material was purified by flash column chromatography ($9: 1 \rightarrow 5: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give TBS ether $\mathbf{1 2}$ as a colourless oil ($321 \mathrm{mg}, 72 \%$ over three steps).
$\mathbf{R}_{\mathrm{f}} 0.49$ (3:1 PE/EtOAc); $[\alpha]_{D}^{20}-11.8\left(c 1.00, \mathrm{CHCl}_{3}\right.$); IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 2930, 1732, 1613, 1587, 1513, 1463, $1361,1302,1246,1172,1093,1033,939,836,779,668 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-$ Ar), $6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 4.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{CHaHbAr}), 4.37(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{CHaHbAr}), 4.33(1 \mathrm{H}$, $\mathrm{d}, J=19.2 \mathrm{~Hz}, \mathrm{H}-16 \mathrm{a}), 4.26(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}, \mathrm{H}-16 \mathrm{~b}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.58(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 3.43$ (1H, dd, J = 8.5, 5.4 Hz, H-13b), 3.07-2.99 (1H, m, H-14), 1.06 (3H, d, J = 7.1 Hz, Me-14), $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 211.8,159.2,130.1,129.2$, 113.7, $72.9,71.8,69.5,55.2,41.9,25.6,18.3,13.2,-3.6,-5.6$; HRMS (ES +) calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 375.1968 , found 375.2008 .

Acid 14a

To a suspension of NaH (60% in mineral oil, $2.23 \mathrm{~g}, 55.5 \mathrm{mmol}, 1.2$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ (70 mL) was added diethylmethylmalonate ($8.0 \mathrm{~mL}, 46.4 \mathrm{mmol}, 1.0$ equiv.) slowly and then heated to reflux for 2 h . Iodoform (18.3 $\mathrm{g}, 46.4 \mathrm{mmol}, 1.0$ equiv.) was then added and the reaction mixture refluxed for a further 15 h , before cooling to $0^{\circ} \mathrm{C} \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{HCl}(3 \mathrm{M}, 75 \mathrm{~mL})$ were then added and the solution stirred for 10 min before the layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The product was concentrated in vacuo before being redissolved in $\mathrm{EtOH}(35 \mathrm{~mL})$ and $\mathrm{KOH}(4 \mathrm{M}, 35 \mathrm{~mL}, 140 \mathrm{mmol}, 3.0$ equiv.). The solution was then heated to reflux for 16 h before being cooled to rt and concentrated in vacuo. The residue was redissolved in $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \% a q, 100 \mathrm{~mL})$ and the precipitate filtered, washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The filtrate was acidified to pH 1 with conc. HCl and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \times 40 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude acid 14a was isolated as a yellow-brown solid ($6.4 \mathrm{~g}, 65 \%$) and used without further purification.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 2.05(3 \mathrm{H}, \mathrm{Me}-18)$. Data in agreement with literature values ${ }^{9}$

Alcohol 14b

To a solution of carboxylic acid 14a ($300 \mathrm{mg}, 1.42 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(62$ $\mathrm{mg}, 1.62 \mathrm{mmol}, 1.15$ equiv.) in 4 portions. The reaction mixture was slowly warmed to rt and stirred for 2 h before being quenched with $\mathrm{Na}_{2} \mathrm{SO}_{4}(4 \mathrm{~mL})$ and then $\mathrm{H}_{2} \mathrm{SO}_{4}(1.5 \mathrm{M} \mathrm{aq}, 4 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. Combined organic layers were washed with $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \% a q, 10$ mL), dried over MgSO_{4}, and concentrated in vacuo. The crude material was purified by flash column chromatography (4:1 PE/EtOAc) to give alcohol 14b as a colourless liquid ($269 \mathrm{mg}, 96 \%$).

IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3292, 1619, 1377, 1276, 1068, 1011, 774; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.29(1 \mathrm{H}$, sextet, $J=1.3 \mathrm{~Hz}, \mathrm{H}-19), 4.13(2 \mathrm{H}, \mathrm{brd}, J=3.7 \mathrm{~Hz}, \mathrm{H}-17), 1.85(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.3 \mathrm{~Hz}, \mathrm{Me}-18), 1.6(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{OH})$; HRMS (ES +) calc. for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{IO}[\mathrm{M}-\mathrm{H}]^{-}$196.9458, found 196.9458 .

Data in agreement with literature values. ${ }^{10}$

Aldol adduct 25

To a solution of allylic alcohol $\mathbf{1 4 b}$ (1.7 g , $8.58 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(7.47 \mathrm{~g}, 85.8$ $\mathrm{mmol}, 10$ equiv.) and stirred for 16 h . The reaction mixture was then filtered through Celite ${ }^{\circledR}$, which was washed with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The filtrate was concentrated carefully in vacuo and the aldehyde (14) dried over $4 \AA \AA \mathrm{MS}$ before being used directly in the following reaction, without further purification.

To a solution of $\mathrm{Cy}_{2} \mathrm{BCl}\left(1.01 \mathrm{~mL}, 5.48 \mathrm{mmol}, 1.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.86 \mathrm{~mL}, 6.21$ $\mathrm{mmol}, 1.7$ equiv.) and stirred for 10 min before the addition of a solution of ketone $\mathbf{1 2}(1.25 \mathrm{~g}, 3.65 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$. The reaction mixture was stirred for a further 75 min before cooling to $-78^{\circ} \mathrm{C}$. A solution of aldehyde $\mathbf{1 4}\left(2.5 \mathrm{~g}, 14.6 \mathrm{mmol}, 3.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was then added via cannula and the reaction mixture allowed to stir at this temperature for 5 h before quenching with $\mathrm{MeOH}(4 \mathrm{~mL}), \mathrm{pH} 7$ buffer (4 mL) and $\mathrm{H}_{2} \mathrm{O}_{2}(30$ $\mathrm{wt} \% \mathrm{aq}, 2.5 \mathrm{~mL}$) and warming to rt , stirring for a further 30 min . The layers were then separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 8 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (9:1 PE/EtOAc) to give aldol adduct $\mathbf{2 5}$ as a pale-yellow oil ($1.61 \mathrm{~g}, 82 \%,>20: 1 \mathrm{dr}$).
$\mathbf{R}_{\mathrm{f}} 0.26$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+51.3$ (c 2.49, CHCl_{3}); IR (thin film, $\mathbf{v}_{\text {max }} / \mathrm{cm}^{-1}$): $3409,1719,1613,1513,1249,1075$, 838,$778 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 19), $4.43(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{OCHaHbAr}), 4.37(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{OCHaHbAr}), 4.29(1 \mathrm{H}, \mathrm{dd}, J=7.8,4.9 \mathrm{~Hz}, \mathrm{H}-17)$, $3.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-16), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{O}-\underline{\mathrm{H}}), 3.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,8.1 \mathrm{~Hz}, \mathrm{H}-$ 13a), 4.49-4.41 (1H, m, H-14), $3.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1,4.2 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 1.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}$, Me-14), $0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right),-0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 213.3,159.6,145.3,129.7,128.6,114.0,81.4,79.9,77.1,73.3,73.2,55.3,40.0,30.1,25.7,23.7,19.4$, 17.9, 14.6, -4.8, - 5.1; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{IO}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 571.1353$, found 571.1365.

To a solution of aldol adduct 25 ($1.60 \mathrm{~g}, 2.97 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added trimethyloxonium tetrafluoroborate ($3.52 \mathrm{~g}, 23.8 \mathrm{mmol}, 8.0$ equiv.) and Proton Sponge ${ }^{\circledR}$ ($6.36 \mathrm{~g}, 29.7 \mathrm{mmol}, 10.0$ equiv.) and stirred for 16 h before being quenched with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. Combined organic layers were then washed with citric acid ($10 \% \mathrm{aq}, 3 \times 10$ mL) to remove excess Proton Sponge ${ }^{\circledR}$, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (9:1 PE/EtOAc) to give methyl ether 25a as a colourless oil (1.32 g , $82 \%)$.
$\mathbf{R}_{\mathrm{f}} 0.37$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+11.8\left(c 0.51, \mathrm{CHCl}_{3}\right.$); $\mathbf{I R}$ (thin film, $\mathbf{v}_{\text {max }} / \mathrm{cm}^{-1}$): 2360, 1723, 1613, 1513, 1462, 1248, 1109, 839; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.28(1 \mathrm{H}, \mathrm{br}$ s, H-19), $4.43(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{OCHaHbAr}), 4.39(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{OCHaHb} A r), 4.11(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-17)$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOC} \underline{H}_{3}\right), 3.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-16), 3.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.7,6.8, \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 3.37-3.29(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{~b}$, $\mathrm{H}-14), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC} \underline{H}_{3}\right), 1.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}, \mathrm{Me}-18), 1.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{Me}-14), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-$ $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right),-0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $\left.)_{3}\right) \delta_{\mathrm{C}} 212.9,159.2,144.6$, 130.1, 129.4, 113.8, 87.2, 82.6, 77.8, 72.9, 72.4, 56.4, 55.3, 42.6, 25.7, 18.9, 18.0, 14.1, - 4.8, - 5.1; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{NSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 580.1950$, found 580.1940.

Alcohol 26

A solution of ketone $\mathbf{2 5 a}$ ($930 \mathrm{mg}, 1.68 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and $\operatorname{DIBAL}(1 \mathrm{M}$ in hexanes, $8.40 \mathrm{~mL}, 8.42 \mathrm{mmol}, 5.0$ equiv.) added. The reaction mixture was stirred for 2 h before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and Na / K tartrate (15 mL) and stirred for a further 2 h . The layers were then separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (8:1 PE/EtOAc) to give alcohol 26 as a colourless oil ($838 \mathrm{mg}, 90 \%,>20: 1 \mathrm{dr}$).
$\mathbf{R}_{\mathrm{f}} 0.29$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+2.3\left(c 0.40, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3230, 1613, 1513, 1462, 1248, 1109, $839 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.27(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19)$, $4.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{OCHaHbAr}), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{OCHaHbAr}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOCH}_{3}\right), 3.81-3.75(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-17, \mathrm{H}-13 \mathrm{a}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 3.49(1 \mathrm{H}, \mathrm{ddd}, J=9.2,8.6,1.8 \mathrm{~Hz}, \mathrm{H}-15), 3.40(1 \mathrm{H}, \mathrm{dd}, J=9.2$, $6.6 \mathrm{~Hz}, \mathrm{H}-16), 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC} \underline{H}_{3}\right), 2.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{O}-\underline{\mathrm{H}}), 1.94-1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 1.76(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.97$ $(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me}-14), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}(\mathrm{CHa} 3)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 159.0,145.2,130.8,129.1,113.7,86.8,82.3,73.8,73.1,72.8,72.1,56.5,55.3,36.2$, 26.1, 19.7, 18.3, 14.8, - 3.7, -4.1; HRMS (ES +) calc. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{IO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 565.1841$, found 565.1832.

Confirmation of C15 stereochemistry: Acetonide Ac-26

To a solution of silyl ether ent-26 ($10 \mathrm{mg}, 0.018 \mathrm{mmol}, 1.0$ equiv.) in THF (0.5 mL) was added TBAF ($1.0 \mathrm{M}, 27$ $\mu \mathrm{L}, 0.027 \mathrm{mmol}, 1.5$ equiv.) and stirred for 3 h . The reaction was then quenched with $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The residue was redissolved in $\mathrm{PE} / \mathrm{EtOAc}(3: 1)$ and filtered through a short plug of silica, before being used directly in the following reaction. To a solution of the crude diol ($7 \mathrm{mg}, 0.016$ $\mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.4 mL) were added 2,2-methoxypropane ($0.3 \mathrm{~mL}, 2.44 \mathrm{mmol}, 150$ equiv.) and PPTS (1 crystal). The reaction mixture was stirred for 2 h before being concentrated in vacuo. The crude material was purified by flash column chromatography (4:1 PE/EtOAc) to give acetonide Ac-26 as a colourless oil ($6.5 \mathrm{mg}, \mathbf{7 5 \%}$ over 2 steps).
$\mathbf{R}_{\mathrm{f}} 0.57$ (4:1 PE/EtOAc); IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 1613, 1513, 1463, 1368, 1247, 1095, 1038, 821; ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.22(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 4.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ar}\right)$, $4.01(1 \mathrm{H}, \mathrm{dd}, J=6.8,6.0 \mathrm{~Hz}, \mathrm{H}-16), 3.88(1 \mathrm{H}, \mathrm{appt}, J=6.0 \mathrm{~Hz}, \mathrm{H}-17), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\mathrm{H}-15), 3.61(1 \mathrm{H}, \mathrm{dd}, J=9.3,5.2 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 3.36(1 \mathrm{H}, \mathrm{dd}, J=9.3,6.7 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 3.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{3}\right), 2.05(1 \mathrm{H}, \mathrm{qdd}$, $J=7.0,6.7,5.2 \mathrm{~Hz}, \mathrm{H}-14), 1.81(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{Me}-18), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2^{\prime}\right), 1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-1^{\prime}\right), 1.00(3 \mathrm{H}, \mathrm{d}, J=$ $7.0 \mathrm{~Hz}, \mathrm{Me}-14$); HRMS (ES+) calc. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{INO}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]+508.1554$, found 508.1543 .

[^0]Analysis of a series of 1D NOEs was carried out to determine the acetonide stereochemistry (Figure SI-2). We hypothesised that in the anti-acetonide case (desired diastereomer), $\mathrm{H}-15$ and $\mathrm{H}-16$ would exhibit asymmetric NOEs with respect to the two geminal methyl groups. A strong NOE was observed between $\mathrm{H}-15$ and $\mathrm{Me}-\mathrm{I}^{\prime}$ (combined with a weak NOE to Me-2'), whereas the opposite was true for $\mathrm{H}-16$. In the syn-acetonide case (undesired diastereomer), it was expected that both protons should observe similarly strong NOEs to one methyl group and correspondingly weak ones to the other. Thus, the observed asymmetric NOE correlations to the acetonide Me protons is diagnostic for our stereochemical assignment. To corroborate our observations, a conformational search and optimisation of the lowest energy conformers with density functional theory (DFT) (B3LYP/LACVP**) was conducted for Ac-26. ${ }^{\dagger}$ The optimised structure obtained Figure SI-3 (coordinates shown in Table SI-1) confirmed the NOEs observed.

Figure SI-2. ${ }^{1} \mathrm{H}$ NMR spectra and 1D NOE correlations observed for acetonide Ac-26, with irradiated signals denoted in orange and diagnostic NOE correlations denoted in grey. The signals for $\mathrm{Me}-1^{\prime}$ and $\mathrm{Me}-2^{\prime}$ are marked by the box.

[^1]

Strong NOE not observed for $\mathrm{H}-15$ and $\mathrm{H}-16$ to $\mathrm{Me}-1$ '

Desired diastereomer

Undesired diastereomer

Figure SI-3. Key NOE interactions observed for acetonide Ac-26 in support of the relative configuration

Table SI-1 Cartesian coordinates for the minimum energy conformer calculated for Ac-26

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
C1	-0.8357	2.2887	-2.0665
C2	-2.1881	1.5719	-1.8317
O3	-2.9191	2.4638	-0.9840
C4	-2.0865	3.5689	-0.6110
O5	-0.7600	3.1887	-0.9559
C6	-2.5197	4.8187	-1.3826
C7	-2.152	3.7513	0.9005
C8	-3.0201	1.3006	-3.1028
C9	-2.5457	0.0496	-3.8534
C10	-1.9836	0.2043	-5.0528
111	-1.2582	-1.3675	-6.2921
C12	-2.7566	-1.2606	-3.1432
O13	-3.0265	2.4708	-3.9042
C14	-4.2206	2.6603	-4.6473
C15	0.4486	1.4414	-2.1125
C16	0.7149	0.6344	-0.8366
C17	1.6520	2.3521	-2.4163
O18	-0.1302	-0.5110	-0.8043
C19	0.0335	-1.2994	0.3735
C20	-0.8577	-2.5083	0.2677
C21	-2.1529	-2.5005	0.7871
C22	-3.0157	-3.5869	0.6177
C23	-2.5748	-4.7104	-0.0907
C24	-1.2716	-4.7379	-0.6102

C25	-0.4317	-3.6483	-0.4319
026	-3.3265	-5.8233	-0.3297
C27	-4.6719	-5.8363	0.1191
H28	-0.8949	2.8610	-3.0016
H29	-2.0380	0.6293	-1.2999
H30	-2.4761	4.6278	-2.4570
H31	-3.5505	5.0801	-1.1244
H32	-1.8698	5.6640	-1.1363
H33	-1.8386	2.8279	1.3936
H34	-1.4923	4.5649	1.2158
H35	-3.1740	3.9885	1.2086
H36	-4.0431	1.0968	-2.7462
H37	-1.8405	1.1754	-5.5066
H38	-1.9204	-1.4727	-2.4671
H39	-2.8371	-2.0897	-3.8498
H40	-3.6667	-1.2354	-2.5336
H41	-4.0950	3.5823	-5.2205
H42	-4.4070	1.8313	-5.3431
H43	-5.0892	2.7696	-3.9824
H44	0.3330	0.7254	-2.9361
H45	0.5461	1.2670	0.0481
H46	1.7690	0.3112	-0.8184
H47	1.8159	3.0661	-1.6030
H48	2.5668	1.7660	-2.5510
H49	1.4839	2.9272	-3.3327
H50	-0.2196	-0.7030	1.2648
H51	1.0890	-1.6028	0.4704
H52	-2.5058	-1.6275	1.3313
H53	-4.0153	-3.5456	1.0343
H54	-0.9481	-5.6205	-1.1529
H55	0.5720	-3.6745	-0.8494
H56	-5.0869	-6.7938	-0.2007
H57	-4.7370	-5.7628	1.2125
H58	-5.2559	-5.0221	-0.3295

To a solution of alcohol 26 ($646 \mathrm{mg}, 1.17 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ were added TBSOTf (0.32 $\mathrm{mL}, 1.40 \mathrm{mmol}, 1.2$ equiv.) and 2,6-lutidine ($0.20 \mathrm{~mL}, 1.75 \mathrm{mmol}, 1.5$ equiv.) and stirred for 1 h before the addition of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. Upon warming to rt , the layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (19:1 PE/EtOAc) to give TBS ether 26a as a pale-yellow oil ($746 \mathrm{mg}, 96 \%$).
$\mathbf{R}_{\mathrm{f}} 0.23$ (19:1 PE/EtOAc); $[\alpha]_{D}^{20}-9.8$ (c 1.90, CHCl_{3}); IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): $1611,1512,1462,1248,1107,837$, $775 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.19(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19)$, $4.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{OCHaHbAr}), 4.39(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{OCHaHbAr}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.74(1 \mathrm{H}, \mathrm{app} \mathrm{t}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, \mathrm{H}-17), 3.72(1 \mathrm{H}, \mathrm{dd}, J=7.7,2.3 \mathrm{~Hz}, \mathrm{H}-16), 3.68(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, \mathrm{H}-15), 3.56(1 \mathrm{H}, \mathrm{dd}, J=9.1,3.4$ Hz, H-13a), $3.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.1,8.0 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.06(1 \mathrm{H}, \mathrm{dqdd}, J=8.0,6.8,3.4,2.3 \mathrm{~Hz}, \mathrm{H}-14)$, $1.74(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 1.02(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Me}-14), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta_{\mathrm{C}} 159.0,146.4,131.0,129.1,113.7,85.5,82.0,75.2,73.9,72.9,72.6,55.6,55.3,35.8,26.1$, $26.0,19.4,18.4,18.3,16.1,-3.6,-3.7,-4.1,-4.4$; HRMS (ES +) calc. for $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{IO}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 679.2705$, found 679.2698

Alcohol 6

To a solution of PMB ether 26a ($720 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{pH} 7$ buffer ($9: 1,10 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$ was added DDQ ($515 \mathrm{mg}, 2.27 \mathrm{mmol}, 2.1$ equiv.) and stirred for 1 h . The reaction was then quenched with NaHCO_{3} $(10 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$ and combined organic layers dried over MgSO_{4} before being concentrated in vacuo. The crude material was then subjected to Pinnick oxidation conditions to separate the product from the anisaldehyde by-product. The crude mixture was redissolved in t - $\mathrm{BuOH}\left(5 \mathrm{~mL}\right.$) and a solution of $\mathrm{NaClO}_{2}\left(360 \mathrm{mg}, 4.0 \mathrm{mmol}, 3.7\right.$ equiv.) and $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{PO}_{4}(620 \mathrm{mg}, 4.0$
mmol, 3.7 equiv.) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ added, followed by 2-methyl-but-2-ene (0.4 mL). The reaction mixture was stirred for 1 h , before being quenched with $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography ($9: 1 \rightarrow 4: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give alcohol 6 as a colourless oil ($542 \mathrm{mg}, 90 \%$).
$\mathbf{R}_{\mathrm{f}} 0.34$ (6:1 PE/EtOAc); $[\alpha]_{D}^{20}+26.1\left(c 0.15, \mathrm{CHCl}_{3}\right)$; $\mathbf{R}\left(\right.$ thin film, $\left.\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right)$: $3448,1472,1361,1254,1094,834$, $774 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 3.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-17), 3.73(1 \mathrm{H}, \mathrm{dd}, J=6.2,3.1 \mathrm{~Hz}$, $\mathrm{H}-15), 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1,3.1 \mathrm{~Hz}, \mathrm{H}-16), 3.61(1 \mathrm{H}, \mathrm{ddd}, J=11.0,7.1,3.8 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 3.52(1 \mathrm{H}, \mathrm{ddd}, J=11.0,8.2$, $4.2 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 3.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \underline{H}_{3}\right), 2.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{O}-\underline{H}), 2.14-2.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 1.74(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.96(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Me}-14), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.11(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 145.9$, 86.2, $82.3,73.6,66.6,60.4,55.6,36.0,26.0,25.9,19.4,18.2,18.1,16.7,-3.5,-3.9,-4.5,-4.6$; HRMS (ES+) calc. for $\mathrm{C}_{22} \mathrm{H}_{48} \mathrm{IO}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 559.2130$, found 559.2123.

2.3. Preparation of the C20-C25 alkene

TBS ether 28

To activated powdered $3 \AA$ MS (1.50 g), were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, L-(+)-diisopropyltartrate ($0.13 \mathrm{~mL}, 0.60$ $\mathrm{mmol}, 0.06$ equiv.) and methallyl alcohol ($0.84 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv.) at $-20^{\circ} \mathrm{C}$. After stirring for 5 min , $\mathrm{Ti}(\mathrm{OiPr})_{4}(0.15 \mathrm{~mL}, 0.50 \mathrm{mmol}, 0.05$ equiv.) was added and the reaction mixture stirred for a further 30 min . Cumene hydroperoxide ($80 \%, 3.60 \mathrm{~mL}, 20.0 \mathrm{mmol}, 2.0$ equiv.) was then added and the reaction flask placed in a freezer at $-20^{\circ} \mathrm{C}$ for 16 h . The excess peroxide was quenched with the dropwise addition of $\mathrm{P}(\mathrm{OEt})_{3}(2.56 \mathrm{~mL}$, $15.0 \mathrm{mmol}, 1.5$ equiv.) at $-20^{\circ} \mathrm{C}$ over 1 h , before $\mathrm{Et}_{3} \mathrm{~N}(2.14 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.5$ equiv.), DMAP ($60.5 \mathrm{mg}, 0.50$ $\mathrm{mmol}, 0.05$ equiv.) and TBSCl ($2.26 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.5$ equiv.) were added and the reaction stirred for a further h at $0^{\circ} \mathrm{C}$. Upon completion, the reaction mixture was filtered through Celite ${ }^{\oplus}$. The filtrate was then washed with tartaric acid ($10 \% \mathrm{aq}, 20 \mathrm{~mL}$). The layers were separated and the organic layer further washed with $\mathrm{NaHCO}_{3}(2 \mathrm{x}$ 10 mL) and brine ($2 \times 10 \mathrm{~mL}$), before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($20: 1 \mathrm{PE}_{30-40} / \mathrm{Et}_{2} \mathrm{O}$) to give TBS ether $\mathbf{2 8}$ as a colourless oil ($1.42 \mathrm{~g}, 70 \%$).

The enantiomeric excess for the asymmetric epoxidation was determined via chiral HPLC by synthesising the analogous benzoate ester from methallyl alcohol ($0.42 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.) using the analogous procedure, substituting benzoyl chloride ($0.87 \mathrm{~mL}, 7.50 \mathrm{mmol}, 1.5$ equiv.) for TBSCl to afford the benzoate ester ($710 \mathrm{mg}, 74 \%$ yield, 95% ee).
$\mathbf{R}_{\mathrm{f}} 0.25$ (9:1 PE/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 3.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}), 3.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{H}-$ 25b), 2.77 ($1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{a}$), $2.62(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{~b}), 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 66.4,57.0,51.4,25.7$, $18.2,17.9,-5.5 . \mathbf{R}_{\mathbf{T}}$ (Benzoate ester, CHIRALPAK IA, $14 \mathrm{~mL} / \mathrm{min}, 0.5 \% \mathrm{IPA} / \mathrm{hexanes}$) 9.30 min (major), 10.06 min (minor).

Data in agreement with literature values. ${ }^{11}$

Thioether 28a

To a stirred solution of epoxide $\mathbf{2 8}(2.5 \mathrm{~g}, 12.38 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(70 \mathrm{~mL})$ was added thiophenol (2.52 $\mathrm{mL}, 24.8 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(5.17 \mathrm{~mL}, 37.1 \mathrm{mmol}, 3.0$ equiv.). The reaction mixture was stirred for 75 mins before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (9:1 PE/EtOAc) to yield thioether 28a as a colourless oil ($3.48 \mathrm{~g}, 90 \%$).
$\mathbf{R}_{\mathrm{f}} 0.28$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}-3.9\left(c 1.00, \mathrm{CHCl}_{3}\right) ; \mathbf{R}\left(\right.$ (thin film, $\left.\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 3506,1472,1253,1090,837,777,738$, $690 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.37-7.09(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 3.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}), 3.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4$ $\mathrm{Hz}, \mathrm{H}-25 \mathrm{~b}), 3.17$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{a}$), 3.11 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{~b}$), 1.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24$), 0.88 ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.03\left(3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 137.3,129.3,128.9$, 126.0, 72.9, 68.6, 42.6, 25.9, 23.2, 18.3, -5.5 ; HRMS (ES+) calc. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+} 335.1471$, found 335.1470

TES ether 29

A solution of alcohol 28a ($1.08 \mathrm{~g}, 3.46 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(33 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and 2,6 -lutidine ($0.60 \mathrm{~mL}, 5.19 \mathrm{mmol}, 1.5$ equiv.) and TESOTf ($0.94 \mathrm{~mL}, 4.15 \mathrm{mmol}, 1.2$ equiv.) added. The reaction mixture was stirred for 15 min , before being stirred for a further h whilst gradually warming to rt . The reaction was then quenched with $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ $\mathrm{mL})$, combined organic layers dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude material was purified by flash column chromatography ($15: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give TES ether 29 as a colourless oil ($1.40 \mathrm{~g}, 96 \%$).
$\mathbf{R}_{\mathrm{f}} 0.44$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+4.9\left(c 1.00, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\right.$ thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 1492, 1478, 1100, 1032, 838, 777, 735, 663 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.37-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.25-7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 3.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-$ 25a), 3.41 ($1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}$), 3.17 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{a}$), 3.11 ($1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{~b}$), 1.29 ($3 \mathrm{H}, \mathrm{s}$, Me-24), $0.94\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}, 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.58\left(6 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.43(3 \mathrm{H}\right.$, $\left.\mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CH}_{\mathrm{b}}\right)\right), 0.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 138.6,128.7,128.6,125.2,76.2$, 69.1, 43.7, 25.9, 18.3, 7.1, 6.7, -5.4, -5.5; HRMS (ES+) calc. for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{SSi}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 449.2336$, found 449.2330.

Sulfoxide 29a

To a stirred solution of thioether $29\left(500 \mathrm{mg}, 1.17 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$ was added $m \mathrm{CPBA}$ (technical grade $<77 \%, 263 \mathrm{mg}, 1.17 \mathrm{mmol}, 1.0$ equiv.) in 5 portions. The reaction mixture was left to stir for 2 h before being quenched with $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography ($3: 1 \mathrm{PE} / E t O A c$) to give the diastereomeric sulfoxides 29a as a colourless oil ($451 \mathrm{mg}, 88 \%, 95 \%$ brsm).
$\mathbf{R}_{\mathrm{f}} 0.30$ (2:1 PE/EtOAc); IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 1472, 1253, 1190, 1096, 1048, 837, 778, 745; ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{H}} 7.64-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 3.81(0.45 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.90 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}), 3.69(0.45 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.90 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}), 3.54$ ($0.55 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}^{*}$), 3.42 ($0.55 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}^{*}$), 3.05-2.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-23$), 1.50 ($1.65 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 24^{*}), 1.37 ($1.35 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24$), 1.02-0.94 ($\left.\left.9 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.91\left(4 \mathrm{H}, \mathrm{s}, \mathrm{Si}{ }^{*} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86(5 \mathrm{H}, \mathrm{s}$, $\left.\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)\right), 0.71-0.59\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.11\left(1.3 \mathrm{H}, \mathrm{m}, \mathrm{Si}{ }^{*}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.10\left(1.3 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.03$ $\left(3.4 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 146.1,146.0^{*}, 130.5^{*}, 130.3,129.1,129.1^{*}, 123.9,123.9^{*}, 75.3^{*}$, 75.1, 71.0, 70.7*, 69.6*, 69.1, 25.9, 25.9*, 18.3, 18.3*, 7.1, 7.1*, 6.8, 6.7* $,-5.3^{*},-5.4,-5.4^{*},-5.5$; HRMS (ES+) calc. for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{SSi}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+465.291$, found 465.2298 .

* refers to the major diastereomer.

Hemithioacetal 30

To a stirred solution of sulfoxide $\mathbf{2 9 a}$ ($2.67 \mathrm{~g}, 6.04 \mathrm{mmol}, 1.0$ equiv.) in acetic anhydride (30 mL) was added $\mathrm{NaOAc}(2.97 \mathrm{~g}, 36.2 \mathrm{mmol}, 6.0$ equiv.) and the reaction mixture heated to reflux for 16 h . After cooling to rt , the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $\mathrm{NaOH}(1 \mathrm{M}, \mathrm{aq}, 100 \mathrm{~mL})$ added slowly. After stirring for a further 30 min , the layers were separated and the aqueous layer extracted with further $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL}$). Combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo. The crude material was purified by flash column chromatography (PE $\rightarrow 5: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give the diastereomeric hemithioacetal $\mathbf{3 0}$ as a colourless oil ($2.26 \mathrm{~g}, 79 \%, 1.6: 1 \mathrm{dr}$).
$\mathbf{R}_{\mathbf{f}} 0.41$ (10:1 PE/EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 1753, 1369, 1222, 1104, 1018, 838, 776, $742 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.55-7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.31-7.22(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 6.46(0.5 \mathrm{H}, \mathrm{s}, \mathrm{H} 23), 6.29\left(0.5 \mathrm{H}, \mathrm{s}, \mathrm{H} 23^{*}\right), 3.92$ ($0.5 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}$), $3.66\left(0.5 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}^{*}\right), 3.58\left(0.5 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}^{*}\right), 3.43(0.5 \mathrm{H}, \mathrm{d}, J=$ $9.6 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}), 2.05\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}{ }^{*}\right), 2.03\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.39\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24^{*}\right), 1.32(1.5 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24), 1.01$ $\left(9 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.91\left(4.5 \mathrm{H}, \mathrm{s}, \mathrm{Si}{ }^{*} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.90\left(4.5 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.70-0.63\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$, $0.07\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{*}\left(\mathrm{CHa}_{3}\right)_{2}\right), 0.06\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{*}\left(\mathrm{CHb}_{3}\right)_{2}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3$): \delta_{\mathrm{C}} 169.7$, $169.3^{*}, 134.5,133.9^{*}, 132.5^{*}, 132.0,128.8^{*}, 128.7,127.5^{*}, 127.2,87.3,86.3^{*}, 78.6^{*}, 78.4,68.9,68.0^{*}, 25.9^{*}$, $25.8,21.1^{*}, 21.018 .3^{*}, 18.2,7.1^{*}, 7.0,6.7,6.7^{*},-5.4,-5.4^{*},-5.5,-5.5^{*}$; HRMS (ES+) calc. for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{SSi}_{2} \mathrm{Na}^{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}$507.2397, found 507.2456.

* refers to the major diastereomer.

Aldehyde (S)-16

To a solution of thioacetal $30\left(2.3 \mathrm{~g}, 4.85 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL (1 M in hexanes, $7.30 \mathrm{~mL}, 1.5$ equiv.) dropwise and the reaction mixture stirred for 90 min at this temperature. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(30 \mathrm{~mL})$ and Na / K tartrate $(30 \mathrm{~mL})$ were then added and the mixture left to stir for 30 min while warming to rt . The layers were then separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (19:1 PE/EtOAc) to give aldehyde (S)-16 as a colourless oil (1.47 g, 92\%).
$\mathbf{R}_{\mathbf{f}} 0.21$ (19:1 PE/EtOAc); $[\alpha]_{D}^{20}+8.1$ (c 1.00, CHCl_{3}); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 1739, 1463, 1253, 1156, 1107, 1006; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 9.60(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-23), 3.65(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}), 3.59(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b})$, $1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24), 0.96\left(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.62\left(6 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$, $0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 204.3,80.4,68.5,25.8,20.0,18.3,6.9,6.4,-5.5,-5.6$; HRMS (ES+) calc. for $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+333.2276$, found 333.2283 .

Aldol adduct 32

Oxazoline 31^{12} ($211 \mathrm{mg}, 0.90 \mathrm{mmol}, 2.0$ equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{TiCl}_{4}(105 \mu \mathrm{~L}$, $0.95 \mathrm{mmol}, 2.1$ equiv.) was then added and the reaction mixture stirred for 65 mins with additions of DIPEA (173 $\mu \mathrm{L}, 1.00 \mathrm{mmol}, 2.2$ equiv.) and NMP ($87 \mu \mathrm{~L}, 0.90 \mathrm{mmol}, 2.0$ equiv.) after 15 mins and 55 mins respectively. At this point, the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $(S)-16(150 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ added via cannula. After stirring at this temperature for 2 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$ and combined organic layers dried over MgSO_{4}, with the solvent removed in vacuo. The crude product was purified by flash column chromatography (6:1 PE/EtOAc) to give aldol adduct $\mathbf{3 2}$ as a colourless oil ($198 \mathrm{mg}, 78 \%$, 92:8dr).
$\mathbf{R}_{\mathrm{f}} 0.33$ (6:1 PE/EtOAc); $[\alpha]_{D}^{20}=+15.5$ (c 1.00, CHCl_{3}); IR: (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 3500(br), 1783, 1692, 1451, 1208, 1008, 838, 743; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.35-7.21(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 4.66\left(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}=\mathrm{Hz}, \mathrm{H}-2^{\prime}\right), 4.16-4.10(3 \mathrm{H}$, m, H-1', H-22), $3.95(1 \mathrm{H}, \mathrm{dd}, J=10.0,5.6 \mathrm{~Hz}, \mathrm{H}-23), 3.79(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}), 3.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b})$, $3.30\left(1 \mathrm{H}, \mathrm{dd}, J=13.3,3.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Ar}\right), 3.02(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{O}-\underline{\mathrm{H}}), 2.74\left(1 \mathrm{H}, 13.3,9.8 \mathrm{~Hz}, \mathrm{CH}_{a} \underline{H}_{b} \mathrm{Ar}\right), 1.38(3 \mathrm{H}$, s, Me-24), $1.29(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Me}-22), 0.94\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.59(6 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $\left.=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3} \mathrm{CHb}_{3}\right)\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3} \mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $\left.)_{3}\right): \delta_{\mathrm{C}} 176.0$, 153.1, 135.5 , 129.5, 128.9, 127.3, 75.0, 68.9, 65.9, 55.6, 39.2, 37.8, 25.8, 23.2, 18.2, 12.9, 7.0, 6.7, -5.6, -5.6; HRMS (ES+) calc. for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{NO}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+588.3153$, found 588.3158 .

A solution of aldol adduct 32 (217 mg , $0.38 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and imidazole ($47.0 \mathrm{mg}, 0.69 \mathrm{mmol}, 1.8$ equiv.) and TMSCI ($65 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.3$ equiv.) added. The reaction mixture was left to stir for 1 h before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$ and combined organic layers were dried over MgSO_{4}, before the solvent was removed in vacuo. The crude material was purified by flash column chromatography ($9: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give TMS ether 32a as a colourless oil ($217 \mathrm{mg}, 89 \%$).
$\mathbf{R}_{\mathrm{f}} 0.35$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+9.6\left(c 0.97, \mathrm{CHCl}_{3}\right)$; \mathbf{R} (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 1788, 1701, 1458, 1387, 1209, 1107, 1009, 838, 741; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.37-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 4.71-4.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right), 4.24-4.16(4 \mathrm{H}, \mathrm{m}$, H-1', H-22, H-23), $3.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}), 3.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=13.4,3.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Ar}\right), 2.75\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,9.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Ar}\right), 1.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24), 1.20(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}-22), 0.94(9 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.63-0.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Si}\left(\mathrm{CHa}_{3} \mathrm{CHb}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3} \mathrm{CHb}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 176.6,152.9,135.8,129.4,128.9,127.2$, 79.3, $74.7,69.1,65.8,55.7,38.4,38.1,26.0,20.8,18.4,14.1,7.1,6.7,0.59,-5.3,-5.5$; HRMS (ES+) calc. for $\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{NO}_{6} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 638.3723$, found 638.3722 .

Alcohol 33

To a stirred solution of imide 32a ($210 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.0$ equiv.) in THF (3.5 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiBH}_{4}(4 \mathrm{M}$ in THF, $0.21 \mathrm{~mL}, 0.83 \mathrm{mmol}, 2.5$ equiv.) and MeOH ($54 \mu \mathrm{~L}, 1.23 \mathrm{mmol}, 4.0$ equiv.) The reaction mixture was stirred for 100 min before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The crude material was purified by column chromatography ($9: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give alcohol 33 as a colourless oil ($129 \mathrm{mg}, 85 \%$).
$\mathbf{R}_{\mathbf{f}} 0.33$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+14.7$ (c 1.00, CHCl_{3}); $\mathbf{I R}$ (thin film, $\mathbf{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3494, 1413, 1251, 1089, 1036, 884, $837,775,743,668 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 3.65(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{H}-23), 3.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a})$, 3.52-3.38 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-21$), $3.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}), 2.17-2.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 1.81(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{O}-\underline{H})$, $1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24), 0.94\left(9 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Me}-22), 0.62$ $\left.\left(6 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.11\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}(\mathrm{CHa})_{3}\right)\left(\mathrm{CHb}_{3}\right)\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 79.7,77.9,67.3,36.8,25.9,23.6,18.4,12.9,11.4,7.0,6.6,6.5,0.60,0.56,-5.5,-5.6$; HRMS (ES+) calc. for $\mathrm{C}_{22} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 487.3066$, found 487.3059.

Alkene 27

To a solution of alcohol 33 (125 mg , $0.27 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added Dess-Martin Periodinane ($232 \mathrm{mg}, 0.54 \mathrm{mmol}, 2.0$ equiv.) and anhydrous $\mathrm{NaHCO}_{3}(68.0 \mathrm{mg}, 0.81 \mathrm{mmol}, 3.0$ equiv.) and stirred for 20 min before being quenched with $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$ and stirred for a further 10 min . The layers were then separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4} and the solvent removed in vacuo to give the crude aldehyde as a colourless oil ($120 \mathrm{mg}, 96 \%$), which was then used directly in the following reaction without further purification.

To a stirred solution of (bromomethyl)triphenylphosphonium bromide ($326 \mathrm{mg}, 0.91 \mathrm{mmol}, 3.5$ equiv.) in THF (1.5 mL) at $0^{\circ} \mathrm{C}$ was added n-BuLi (1.6 M in hexanes, $0.49 \mathrm{~mL}, 0.78 \mathrm{mmol}, 3.0$ equiv.) After 20 min , a solution of the crude aldehyde ($115 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ equiv.) in THF (1.5 mL) was added and the reaction mixture left to stir for a further hour before being quenched with PE. The precipitate was filtered through Celite ${ }^{\circledR}$ and the solvent removed in vacuo. The crude material was purified by flash column chromatography (PE \rightarrow 20:1 PE/EtOAc) to give alkene 27 as a colourless oil ($100 \mathrm{mg}, 87 \%$).
$\mathbf{R}_{\mathbf{f}} 0.36$ (20:1 PE/EtOAc); $[\alpha]_{D}^{20}+19.7\left(c 1.00, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\right.$ thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 1461, 1364, 1250, 1216, 1091, 885, 836,$742 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 5.84(1 \mathrm{H}, \mathrm{ddd}, J=17.3,10.4,7.0, \mathrm{H}-21), 4.94(1 \mathrm{H}, \mathrm{dt}, J=17.3,1.6 \mathrm{~Hz}, \mathrm{H}-$ 20a), 4.92 ($1 \mathrm{H}, \mathrm{ddd}, J=10.4,1.6,1.3 \mathrm{~Hz}, \mathrm{H}-20 \mathrm{~b}), 3.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}), 3.49(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}-23), 3.46$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}$), 2.70-2.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22$), $1.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24), 0.96-0.92\left(12 \mathrm{H}, \mathrm{m}, \mathrm{Me}-22, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$, $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.64-0.56\left(6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.09\left(9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{Si}(\mathrm{CHa} 3)\left(\mathrm{CHb}_{3}\right)\right), 0.05(3 \mathrm{H}$, $\mathrm{Si}\left(\mathrm{CHa}_{3}\right)\left(\mathrm{CHb}_{3}\right)$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 145.3,112.3,81.0,79.7,67.6,37.5,26.0,23.7,18.5,14.4,7.1$, 6.8, 0.7, - 5.4, - 5.4; HRMS (ES+) calc. for $\mathrm{C}_{23} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 483.3116$, found 483.3113 .

2.4. Fragment assembly

Diene 34

To a solution of alkene $\mathbf{2 7}$ ($55 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv.) and vinyl iodide $\mathbf{6 (1 0 0 . 5 \mathrm { mg } , 0 . 1 8 \mathrm { mmol } , 1 . 5 \text { equiv.) in }}$ DMF (1.0 mL) were added $\mathrm{Pd}(\mathrm{OAc})_{2}\left(5.38 \mathrm{mg}, 0.024 \mathrm{mmol}, 0.2\right.$ equiv.) and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(48.4 \mathrm{mg}, 0.144 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 16 h . After cooling to $\mathrm{rt}, \mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added and the suspension filtered through a plug of Celite ${ }^{\circledR}$, washing with further $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was then washed with brine ($2 \times 3 \mathrm{~mL}$) and dried over MgSO_{4}, before being concentrated in vacuo. The crude material was purified by flash column chromatography ($\mathrm{PE} \rightarrow 12: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give diene 34 as a colourless oil ($65.9 \mathrm{mg}, 65 \%$).
$\mathbf{R}_{\mathrm{f}} 0.42$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+16.3\left(c 0.84, \mathrm{CHCl}_{3}\right.$); $\mathbf{I R}\left(\right.$ thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): $3471,1470,1463,1361,1251,1091$, 834,$774 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.18(1 \mathrm{H}, \mathrm{dd}, J=15.0,10.9 \mathrm{~Hz}, \mathrm{H}-20), 5.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}, \mathrm{H}-19), 5.68$ (1H, dd, J = 15.0, 7.9 Hz, H-21), 3.76 (1H, dd, J = 6.2, $2.8 \mathrm{~Hz}, \mathrm{H}-15$), 3.70 (1H, dd, J = 8.1, $2.8 \mathrm{~Hz}, \mathrm{H}-16), 3.65-3.59$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}, \mathrm{H}-17$), $3.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}$), $3.55(1 \mathrm{H}, \mathrm{dd}, J=8.4,4.0 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}), 3.49(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}$, $\mathrm{H}-23), 3.43(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}), 3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC} \underline{H}_{3}\right), 2.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{O}-\underline{\mathrm{H}}), 2.77(1 \mathrm{H}, \mathrm{dqd}, J=7.9,6.8,1.7 \mathrm{~Hz}$, H-22), 2.17-2.10 (1H, m, H-14), 1.65 (3H, s, Me-18), 1.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24$), 0.98 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}-22$), 0.97-0.82 $\left(39 \mathrm{H}, \mathrm{m}, \mathrm{Me}-14,3 \times \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.62-0.57\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.14-0.05\left(27 \mathrm{H}, 3 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 141.4$ (C-21), 132.2 (C-18), 131.4 (C-19), 123.9 (C-20), 87.3, 80.7, 79.6, 78.8, 73.4, $67.6,66.6,54.9,36.8,25.9,25.8,25.8,25.7,25.6,23.7,18.1,18.0,14.8,11.7,7.1,6.7,0.6,-3.7,-4.0,-4.7,-4.7,-$ 5.4, -5.5; HRMS (ES+) calc. for $\mathrm{C}_{48} \mathrm{H}_{108} \mathrm{NO}_{7} \mathrm{Si}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 950.6966$, found 950.6967 .

To a stirred solution of alcohol $34\left(25.0 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Py}(1: 1,0.5 \mathrm{~mL})$ was added tosyl chloride ($16.9 \mathrm{mg}, 0.089 \mathrm{mmol}, 3.0$ equiv.). After 4 h the reaction was quenched with $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$, combined organic layers dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (19:1 $\mathrm{PE} / \mathrm{EtOAc}$) to give tosylate 34a as a colourless oil ($22 \mathrm{mg}, 75 \%$).
$\mathbf{R}_{\mathrm{f}} 0.36$ (19:1 PE/EtOAc); $[\alpha]_{D}^{20}+19.2\left(c 0.54, \mathrm{CHCl}_{3}\right) ; \mathbf{R}\left(\right.$ thin film, $\left.\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right): 2927,2339,2012,1470,1463,1361$, $1251,1091,834,774 ;{ }^{1}{ }^{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar})$, $6.16(1 \mathrm{H}, \mathrm{dd}, J=15.0,10.3 \mathrm{~Hz}, \mathrm{H}-20), 5.91(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{H}-19), 5.68(1 \mathrm{H}, \mathrm{dd}, J=15.0,7.8 \mathrm{~Hz}, \mathrm{H}-21), 4.18$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,3.3 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}$), 3.85 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{~b}$), 3.66-3.62 (3H, m, H-15, H-17, H-25a), 3.49 ($1 \mathrm{H}, \mathrm{d}$, $J=H z, H-23), 3.47(1 H, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-16), 3.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}), 3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.78-2.72(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-22$), $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.19-2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 1.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24), 0.99-0.78(42 \mathrm{H}, \mathrm{m}$, Me-14, Me-22, $\left.\left.3 \times \operatorname{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.62-0.57\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.08-0.09\left(27 \mathrm{H}, 3 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Si}\left(\mathrm{CH}_{3}-\right.\right.$ $\left.)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 144.5,142.2,141.6,133.2,132.4,131.6,129.7,124.0,86.6,80.8,79.6,74.2$, $74.1,67.7,62.4,54.9,37.0,35.2,29.7,26.0,25.9,25.9,23.7,18.5,18.3,18.2,14.9,14.1,11.7,7.1,6.8,0.7,-3.7,-$ 3.9, $-4.2,-4.6,-5.3,-5.4$; HRMS (ES +) calc. for $\mathrm{C}_{52} \mathrm{H}_{108} \mathrm{NO}_{9} \mathrm{SSi}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1062.6586, found 1062.6587.

lodide 35

To a stirred solution of tosylate 34a (6.0 mg , $5.7 \mu \mathrm{~mol}$, 1.0 equiv.) in MeCN (0.15 mL) was added Lil (9.2 mg , 69 $\mu \mathrm{mol}, 12$ equiv.) and heated to $60^{\circ} \mathrm{C}$. After 3 h a further 12 equivalents of Lil was added and the temperature raised to $70^{\circ} \mathrm{C}$ before stirring for a further 2.5 h . Upon completion, the reaction mixture was cooled to rt and quenched with $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$. The layers were separated and the aqueous layer
extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 1.5 \mathrm{~mL})$ before combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (PE) to give iodide $\mathbf{3 5}$ as colourless oil (4.8 mg, 84\%).
$\mathbf{R}_{\mathbf{f}} 0.35$ (19:1 PE/EtOAc); $[\alpha]_{D}^{20}+8.9$ ($c 1.00, \mathrm{CHCl}_{3}$); $\mathbf{I R}$ (thin film, $\mathbf{v}_{\text {max }} / \mathrm{cm}^{-1}$): 2956, 2369, 2162, 1420, 1251, 1102, 836,$774 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.18(1 \mathrm{H}, \mathrm{dd}, J=15.1,10.8 \mathrm{~Hz}, \mathrm{H}-20), 5.95(1 \mathrm{H}, \mathrm{d} J=10.8 \mathrm{~Hz}, \mathrm{H}-19), 5.68$ (1H, dd, J=15.1, 7.9 Hz, H-21), 3.77 (1H, dd, J=7.5, 2.1 Hz, H-13a), 3.63 ($1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{a}$), 3.61-3.57 (2 H , m, H-13b, H-17), $3.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{H}-23), 3.47(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, \mathrm{H}-16), 3.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b})$, $3.24(1 \mathrm{H}, \mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}, \mathrm{H}-15), 3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \underline{H}_{3}\right), 2.75(1 \mathrm{H}$, app quint, $J=7.9 \mathrm{~Hz}, \mathrm{H}-22), 1.74-1.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 14), $\left.1.66(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 1.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24), 1.03-0.83\left(42 \mathrm{H}, \mathrm{m}, \mathrm{Me}-14, \mathrm{Me}-22,3 \times \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.62-$ $0.57\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.14--0.03\left(27 \mathrm{H}, 3 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 141.5,132.8$, $131.6,124.1,86.8,80.9,79.7,76.8,74.8,67.7,55.2,41.4,37.0,26.1,26.0,26.0,23.8,22.6,18.5,18.5,18.3,14.9$, $14.3,12.0,7.2,6.8,0.7,-3.6,-3.8,-3.9,-4.3,-5.3,-5.4$; HRMS (ES +) calc. for $\mathrm{C}_{45} \mathrm{H}_{97} \mathrm{IO}_{6} \mathrm{Si}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1023.5068$, found 1023.5069.

Protected C1-C25 fragment 36

A solution of iodide 35 ($20.0 \mathrm{mg}, 0.021 \mathrm{mmol}, 1.25$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ was stirred over crushed CaH_{2} for 30 min. After cooling to $-78^{\circ} \mathrm{C}$, t-BuLi (1.7 M in pentane, $74 \mu \mathrm{~L}, 0.127 \mathrm{mmol}, 7.5$ equiv.) was then added and the reaction mixture stirred for 3 min . B-Methoxy-9-BBN (1 M in hexanes, $0.21 \mathrm{~mL}, 0.212 \mathrm{mmol}, 12.5$ equiv.) was then added, followed by THF (0.3 mL). The reaction mixture was then stirred for 5 min at $-78^{\circ} \mathrm{C}$ before being warmed to rt and stirred for $1 \mathrm{~h} . \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\left(1.7 \mathrm{mg}, 16.8 \mu \mathrm{~mol}, 0.1\right.$ equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}$ aq, $17 \mu \mathrm{~L}, 0.050 \mathrm{mmol}$, 3.0 equiv.), vinyl iodide 5 ($14.7 \mathrm{mg}, 0.017 \mathrm{mmol}, 1.0$ equiv.) and degassed DMF (0.3 mL) were then added. The reaction mixture was then stirred for 3 h and quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 1 \mathrm{~mL})$. The combined organic layers were washed with brine (2 mL), dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography (40:1 $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$) to give the protected C1-C25 fragment 36 as a pale-yellow oil ($15.1 \mathrm{mg}, 54 \%$).
$\mathbf{R}_{\mathbf{f}} 0.69$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+7.5$ (c 0.72, CHCl_{3}); IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3459, 2952, 2343, 1520, 1445, 1370, 1097, 834; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.19(1 \mathrm{H}, \mathrm{dd}$, $J=15.0,10.8 \mathrm{~Hz}, \mathrm{H}-20), 5.95(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{H}-19), 5.68(1 \mathrm{H}, \mathrm{dd}, J=15.0,7.9 \mathrm{~Hz}, \mathrm{H}-21), 5.55(1 \mathrm{H}, \mathrm{t}, J=10.5$ $\mathrm{Hz}, \mathrm{H}-11), 5.30(1 \mathrm{H}, \mathrm{dt}, J=10.5,7.1 \mathrm{~Hz}, \mathrm{H}-12), 4.56(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{OCHaHbAr}), 4.43(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}$, OCHaHbAr), $4.13(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{H}-7), 3.80\left(3 \mathrm{H}, \mathrm{s} \mathrm{ArOCH}_{3}\right), 3.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-17), 3.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8$ $\mathrm{Hz}, \mathrm{H}-25 \mathrm{a}), 3.61(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-15), 3.57(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-16), 3.50(1 \mathrm{H}, \mathrm{d}, J=1.50 \mathrm{~Hz}, \mathrm{H}-23), 3.42(1 \mathrm{H}$, $\mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H}-25 \mathrm{~b}), 3.39(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 3.31(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 3.12-3.08\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-9, \mathrm{OCH}_{3}\right)$, $2.76(1 \mathrm{H}, \mathrm{dqd}, J=7.9,7.1,1.5 \mathrm{~Hz}, \mathrm{H}-22), 2.71-2.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.46(1 \mathrm{H}, \mathrm{dd}, J=13.5,7.1 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 1.96-1.90$ (1H, m, H-8), 1.84-1.79 (1H, m, H-13b), 1.65 (3H, s, Me-18), 1.50-1.20 (8H, m, H-3, H-4, H-5, H-6, H-14), 1.16 (3H, $\left.\mathrm{s}, \mathrm{Me}-24), 1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-2), 1.04-0.80\left(78 \mathrm{H}, \mathrm{Me}-5, \mathrm{Me}-8, \mathrm{Me}-10, \mathrm{Me}-14, \mathrm{Me}-22,4 \times \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 3 \times \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right)$, $0.63-0.55\left(18 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.12-0.01\left(33 \mathrm{H}, 4 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 158.7$, $141.2,135.2,132.9,131.6,131.3,128.4,127.6,124.2,113.6,86.6,84.6,80.9,79.7,76.8,75.9,74.0,69.9,69.5$, $67.7,65.9,55.3,55.2,42.9,41.4,38.8,37.3,37.0,36.4,36.0,33.9,33.7,32.0,31.3,29.0,27.7,26.2,26.0,25.9$, $25.3,23.8,22.6,20.4,19.4,18.8,18.5,18.1,14.3,11.9,11.4,10.3,7.2,6.8,4.4,0.7,-3.7,-3.8,-4.1,-4.1,-4.6,-$ 4.6, $-5.3,-5.4$; HRMS (ES+) calc. for $\mathrm{C}_{87} \mathrm{H}_{178} \mathrm{O}_{11} \mathrm{Si}_{8} \mathrm{~N}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$1642.1884, found 1642.1881.

C1,C23 Diol 37

PPTS (one crystal) was added to a stirred solution of the protected C1-C25 fragment 36 ($4 \mathrm{mg}, 2.43 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(50 \mu \mathrm{~L}, 15: 1)$ at $0^{\circ} \mathrm{C}$. MeOH was added (one drop per hour) to the stirred reaction mixture at 0 ${ }^{\circ} \mathrm{C}$ until the reaction was judged to be complete by TLC analysis (ca. 6 h). The reaction was diluted with EtOAc and quenched with NaHCO_{3}. The layers were separated and the aqueous layer was extracted with EtOAc (3 x 0.5 mL). The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by flash column chromatography ($40: 1 \mathrm{PE} / \mathrm{EtOAc}$) to give the $\mathrm{C} 1, \mathrm{C} 23$ diol 37 as a colourless oil (2.3 $\mathrm{mg}, 1.6 \mu \mathrm{~mol}, 66 \%)$.
$\mathbf{R}_{\mathrm{f}} 0.34$ (9:1 PE/EtOAc); $[\alpha]_{D}^{20}+2.6\left(c 0.04, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\right.$ thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3675, 2957, 2927, 2653, 1465, 1261, 1094, 1017, 801; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.25(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.22$ $(1 \mathrm{H}, \mathrm{dd}, J=15.2,11.0 \mathrm{~Hz}, \mathrm{H}-20), 5.96(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-19), 5.77(1 \mathrm{H}, \mathrm{dd}, J=15.3,8.6 \mathrm{~Hz}, \mathrm{H}-21), 5.55(1 \mathrm{H}, \mathrm{t}, J$ $=10.4 \mathrm{~Hz}, \mathrm{H}-11), 5.30(1 \mathrm{H}, \mathrm{dt}, J=10.4,6.8 \mathrm{~Hz}, \mathrm{H}-12), 4.57(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{OCH}$ HbAr $), 4.41(1 \mathrm{H}, \mathrm{d}, J=10.7$ $\mathrm{Hz}, \mathrm{OCHaHbAr}), 4.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-7), 3.81\left(3 \mathrm{H}, \mathrm{s} \mathrm{ArOCH}_{3}\right), 3.74-3.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-17, \mathrm{H}-25 \mathrm{a}), 3.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, \mathrm{H}-15), 3.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-16), 3.45(1 \mathrm{H}, \mathrm{dd}, J=9.1,4.2 \mathrm{~Hz}, \mathrm{H}-23), 3.38(1 \mathrm{H}, \mathrm{dd}, J=10.5,6.7 \mathrm{~Hz}, \mathrm{H}-$ 1a), 3.33-3.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}, \mathrm{H}-25 \mathrm{~b}$), 3.12-3.08 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-9, \mathrm{OCH}_{3}$), $2.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{OH}-$ 23), $2.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 2.46(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}-1), 1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 14), 1.73 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{~b}$), 1.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$), 1.50-1.28 ($7 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$), 1.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-24$), $1.25(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-2$), $1.10(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{Me}-22), 0.99-0.80\left(66 \mathrm{H}, \mathrm{Me}-5, \mathrm{Me}-8, \mathrm{Me}-10, \mathrm{Me}-14, \mathrm{Me}-22,4 \times \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, 2 \times\right.$ $\left.\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.63-0.55\left(12 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right), 0.12-0.01\left(24 \mathrm{H}, 4 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ_{C} $158.8,139.8,135.2,131.6,131.5,131.2,128.3,127.7,124.3,113.6,86.5,84.6,78.2,77.2,77.1,76.4,74.0,69.9$, $69.4,68.8,68.2,55.3,55.3,42.9,42.8,38.6,38.3,37.6,36.0,33.9,33.4,32.8,31.3,29.7,26.3,26.0,25.9,25.9$, $24.3,22.9,19.3,18.6,18.5,18.2,18.1,15.7,13.6,10.3,10.2,7.1,6.8,1.0,-3.6,-3.6,-4.1,-4.1,-4.6,-4.6,-5.4,-$ 5.5; HRMS (ES+) calc. for $\mathrm{C}_{78} \mathrm{H}_{160} \mathrm{O}_{11} \mathrm{Si}_{6} \mathrm{~N}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 1455.0601$, found 1455.0576 .

3. References

(1) Armarego, W.; Chai, C. Purification of Laboratory Chemicals; 2012.
(2) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43 (14), 2923-2925.
(3) Lam, L. K. P.; Hui, R. A. H. F.; Jones, J. B. J. Org. Chem. 1986, 51 (11), 2047-2050.
(4) Lehr, K.; Mariz, R.; Leseurre, L.; Gabor, B.; Fürstner, A. Angew. Chem. Int. Ed. 2011, 50 (48), 1137311377.
(5) Herold, P.; Mohr, P.; Tamm, C. Helv. Chim. Acta 1983, 66 (3), 744-754.
(6) Lee, E.; Lee, Y. R.; Moon, B.; Kwon, O.; Shim, M. S.; Yun, J. S. J. Org. Chem. 1994, 59 (6), 1444-1456.
(7) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P.; Sereinig, N. J. Am. Chem. Soc. 2001, 123 (39), 95359544.
(8) Paterson, I.; Anderson, E. A.; Dalby, S. M.; Lim, J. H.; Maltas, P.; Loiseleur, O.; Genovino, J.; Moessner, C. Org. Biomol. Chem. 2012, 10 (30), 5861-5872.
(9) Baker, R.; Castro, J. L. J. Chem. Soc. Perkin Trans. 1 1990, 0 (1), 47.
(10) Koukal, P.; Ulč, J.; Nečas, D.; Kotora, M. Eur. J. Org. Chem. 2016, 2016 (12), 2110-2114.
(11) Savle, P. S.; Medhekar, R. A.; Kelley, E. L.; May, J. G.; Watkins, S. F.; Fronczek, F. R.; Quinn, D. M.; Gandour, R. D. Chem. Res. Toxicol. 1998, 11 (1), 19-25.
(12) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103 (8), 2127-2129.
(13) MacroModel, Version 9.9, Schrodinger LLC; New York, 2012.
(14) Chang, G.; Guida, W. C.; Still, W. C. J. Am. Chem. Soc. 1989, 111 (12), 4379-4386.
(15) Kolossváry, I.; Guida, W. C. J. Am. Chem. Soc. 1996, 118 (21), 5011-5019.
(16) Halgren, T. A. J. Comput. Chem. 1996, 17 (5-6), 490-519.
(17) Maestro, version 9.3, Schrodinger LLC,; New York, 2012.
(18) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648-5652.
(19) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98 (45), 11623-11627.
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds

19
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

19
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

20
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

armand

20
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

20a
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

20b
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

21
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

22
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

22a
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

5
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

5
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

| 1.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | ppr |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

12
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

25
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

PhS $\overbrace{\mathrm{OH}}^{23} \mathrm{OTBS}$

28a
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

$$
\text { PhS } \overbrace{\text { OTES }}^{23}
$$

29
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

29
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

29a (Major)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

29a (Minor)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

PhS $\overbrace{\text { OTBS }}^{\mathrm{O}^{23}}$
отеS
29a

30
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

30
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

OTBS
(S)-16
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 500 \mathrm{MHz}\right)$

(
(S)-16
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

32a
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

32a
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

33
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$
whe

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

33
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

34
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

\qquad nd_duland

34
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

34a
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

36
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

37
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

[^0]: * Exploratory studies on the C13-C19 fragment commenced with the enantiomeric series from (S)-Roche ester due to the greater availability of (S)-Roche ester in our laboratory.

[^1]: ${ }^{\dagger}$ Structure optimisation was conducted as follows: A conformational search was carried out in MacroModel ${ }^{13}$ using a hybrid of Monte Carlo multiple-minimum (MCMM) ${ }^{14}$ / low-mode sampling ${ }^{15}$ with the Merck Molecular Force Field (MMFF), ${ }^{16}$ interfaced with Maestro 9.3. ${ }^{17}$ The searches were carried out with a sufficient number of steps to find all conformers within $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of the global minimum. Calculations were carried out in gas phase. All conformers within $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of the global minimum were then further subjected to quantum mechanical calculations. Single point energies were evaluated at the B3LYP ${ }^{18,19} /$ LACVP** level of theory, implemented with Jaguar 7.9

