-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Apollo

A primer on provenance

Lucian Carata
Sherif Akoush
Nikilesh Balakrishnan
Thomas Bytheway
Ripduman Sohan
Margo Seltzer
Andy Hopper

March 12, 2019

1 Introduction

ASSESSING THE QUALITY or validity of a piece of data is not usually done in
isolation. Instead, we typically examine the context in which data appears, try
to determine its original sources or review the process through which it was
created. However, this is not straightforward when dealing with digital data:
the result of a computation might have been derived from numerous sources
and by applying complex successive transformations, possibly over long periods
of time.

As the quantity of data that contributes to a particular result increases, it
becomes harder to keep track of how different sources and transformations are
related to the final result. This inevitably constrains our ability to answer ques-
tions regarding that result’s history, like: what were the underlying assumptions
on which the result is based? under what conditions does it remain valid? what
other results were derived from the same data sources?

The metadata that needs to be systematically captured in order to answer
those (or similar) questions is called provenance® and refers to a graph describing
the relationships between all the elements (sources, processing steps, contextual
information and dependencies) that contributed to the existence of a piece of
data.

We present, current research done in this field from a practical perspective,
discussing existing systems and the fundamental concepts required to under-
stand how to use them in applications today, but also looking at future chal-
lenges and opportunities.

A number of use cases are representative for understanding how provenance
might be useful in practice:

Where does data come from?

Consider the need to understand the conditions, parameters or assumptions
behind a given result; in other words, being able to point at a piece of data (re-

Lor lineage; we will consider the two terms equivalent in this article.

https://core.ac.uk/display/189162893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

search result, anomaly in a system trace) and ask: where did it come from? This
would be useful for experiments involving digital data (such as ”in silico” exper-
iments in biology, other types of numerical simulations or system evaluations in
computer science).

The provenance for each run of such experiments contains the links between
results and corresponding starting conditions or configuration parameters. This
becomes important especially when considering processing pipelines, where some
early results are used as the basis of further experiments. Manually tracking
all the parameters from a final result through intermediary data and to original
sources is burdensome and error-prone.

Of course, researchers are not the only ones requiring this type of tracking.
The same techniques could be used to help people in the business or financial
sectors, for example in figuring out the set of assumptions behind the statistics
reported to a board of directors, or in determining what mortgages were part
of a traded security.

Who is using this data?

Instead of tracking a result back to its sources, we can capture provenance to
understand where that result has been subsequently used or to find out what
data was further derived from it.

For example, a company might want to identify all the internal uses of a
certain piece of code in order to respect licensing agreements or for keeping
track of code still using deprecated /unsafe functions that need to be removed.

Using similar mechanisms, end users should be able to track what personal
information is used by a mobile application and determine whether it is only
displayed locally or sent over the network to a third party. The same use case
covers the general propagation of erroneous results, when we need to understand
what pieces of data have been invalidated by the discovery of an error.

How was it obtained?

Provenance can also be used to get a better understanding of the actual process
through which different pieces of input data are transformed into outputs. This
is important in situations where computer engineers or system administrators
need to debug the problems arising when running complex software stacks.

In cases where it is possible to differentiate between a correct and an erro-
neous system output, comparing their provenance will point to a list of potential
root causes of the error. In more complex scenarios, the issue might not be di-
rectly linked to particular outputs but to an (undesired) change in behavior.
Detecting system intrusions or explaining why the response tail latency has in-
creased by 20% for a server are good examples. In those cases, grouping outputs
with similar provenance could be used for identifying normal versus abnormal
system behavior and for explaining the differences between the two.

2 Provenance systems

Together, the three use cases provide an overview of the ideal provenance ap-
plication space, but do not describe the technical details involved in making

timeline '91 '98 '02 '05 06 ‘07 '09 moM2 13
cis uncertainty code
& lineage wrappers
LIP Geolineus \
database
Tioga Trio 4

e-science Taverna Kepler ZooM RAMP
(workflows) pegasus VisTrails Lipstick

TREC Chimera ES3 Sprov SPADEv2
systems :

. _PASS PASSv2 Burrito
syscall augmented
interposition language or APIs

Figure 1: A timeline of provenance systems. The ones reviewed in this paper
are in bold

those applications possible. To realize each scenario in practice, one or more
provenance systems need to be integrated into the data processing workflow,
becoming responsible for capturing provenance, propagating it between related
components and making it accessible to user queries.

In many ways, you might already be running a very specialized version of
such a system today: all auditing, tracing frameworks or change tracking solu-
tions will collect some form of provenance, even though they might not identify
it as such. The advantage of thinking about provenance as a standalone concept
is the ability to use this metadata in a principled way, allowing result verifiabil-
ity and complex historic queries irrespective of the underlying mechanisms used
to collect it and across applications/software stacks.

Historically, provenance systems were the focus of research in the database
field, with the aim of understanding how and when materialized views should
be updated in response to changes in the underlying tables [9]. Because of
the well defined relational model, it has proven possible to both derive precise
provenance information from queries [7] and to develop formalisms which allow
its concise representation [13]. This has been further extended in systems such
as Trio [28], allowing records to have an associated uncertainty and being able
to propagate it across multiple queries by using provenance.

In contrast, capturing provenance for applications performing arbitrary com-
putations (with possible side effects and not restricted to a particular set of valid
transformations) has proven more challenging. Research efforts in this area have
focused on the collection of provenance at particular points in the software stack
(by modifying applications, the runtime environment or the kernel).

Figure 1 presents a general timeline of systems and we discuss the charac-
teristics of eight of them, each representative for a larger class of solutions in
the design space:

OS level: Pass [23, 22] and SPADE [12] investigate capturing provenance by
observing application events such as process creation or 10. Those are then used
for inferring dependencies between different pieces of data. Subsequent versions
of those systems have also added the ability to integrate with special user space

libraries in order to obtain more information about application behavior.

Workflows: Vistrails [26] and ZooM [2] are workflow management systems
with the ability to track provenance for the execution of various workflows and
(in case of Vistrails) for the evolution of the workflows themselves.

Application level: Burrito [14] tracks user space events, while also support-
ing additional user-provided annotations. SPROV [16] focuses on the security of
provenance, and provides a thin wrapper around the standard C IO library. A
newer version is capable of using provenance captured by other systems, such
as PASS.

Big data: Lipstick [1] and RAMP [24] both tackle the problem of tracking
provenance in big data scenarios (Map-Reduce jobs).

It is the properties of those systems that are important for understanding what
can be recorded and with what trade-offs, overheads and security implications.

3 Provenance system properties

From the perspective of someone who wants to start using provenance for his/her
own applications and data, there are a number of aspects that are particularly
relevant when looking at a provenance system:

e What can it capture? Understanding what metadata is relevant for a
series of data transformations and how the captured information enables
and limits the type of questions that could be asked later.

e Integration effort: Integrating the system within existing data process-
ing scenarios might involve the need to run on a special OS kernel, make
changes to the runtime environment or link applications with provenance
libraries.

e How to answer queries using provenance? The way one might ex-
plore and ask questions based on the captured metadata is important for
understanding how provenance can be used to satisfy the various use cases.

e Understanding overheads: Given one use case, it is often essential to
grasp whether the overheads imposed by running the provenance system
are acceptable, and to be able to predict how those overheads will scale as
a function of the number of data dependencies and transformation steps
executed.

e Security issues: provenance metadata will often require different access
controls from those of the data itself, and it is important to understand
the security concerns raised by the use of a particular provenance system.

We categorize the properties of the systems we have picked as representative
according to the above features, referring back to the motivating use cases as
required. For an orthogonal view, a per-system summary of properties can be
consulted in Table 1.

3.1 What can it capture?

The metadata captured by provenance systems typically relates the state of
digital entities (files, tables, programs, network connections etc.) at different
stages in their lifetime to historic dependencies on other entities or processes.
In this context, two concepts are fundamental for determining what is captured
and how: granularity and layering.

3.1.1 Granularity

The granularity of capture refers to the size of basic primitives that accumulate
provenance within a system. Consider a scientist who uses a configuration file
storing various experiment parameters as one of the inputs to a simulation
program. Capturing provenance at file granularity will discover the dependency
between the simulation program and the configuration filename. However, the
scientist is interested in understanding the relationships between the simulation
results and individual parameters in the file, which requires capture at sub-file
granularity.

The exact meaning of varying granularity from fine to coarse also depends
on the underlying data model of the application. For example, database prove-
nance systems could store provenance metadata for an entire table, a row within
the table, or for each cell. Provenance capture at the table level is coarse grained
and can answer questions such as ”From which other tables has table X derived
its data?”. Finer granularities would determine the relationships between indi-
vidual rows or cells. Of course, multiple granularities can be considered at the
same time.

Systems such as PASS [6], capture provenance by intercepting system calls
made by applications as they execute. At this level, provenance is fine grained
and can provide a detailed image of an application’s execution and dependencies.

However, the noise levels in the collected data are also elevated, making it
harder to extract useful information: Consider a python script that copies one
file to another. When running the script, the python interpreter will first read
and load any required modules from disk. Thus, beyond the dependency on
the actual input, the final provenance graph will link the output file to all the
python modules used by the interpreter. This extra data can make it difficult
to sift through the provenance graph as an end user, so generally heuristics are
needed to determine which entities are important and which should be ignored.

Workflow systems such as Vistrails [26] avoid the noise problem and can
capture provenance at any granularity because the processing steps and their
dependencies are explicitly declared by the end user. However, such systems are
also inherently limited to only recording data transformations that were part of
the defined workflow.

The n-by-m problem Independent of the system that is chosen, it may not
be possible to accurately determine the dependencies between input and output
data. This is illustrated by the n by m problem, where a program reads N input
files and writes M output files. Even when tracing system calls for individual
reads and writes, it’s not possible to infer which reads affected a particular
write, so the provenance graph has to link each output file to all of the inputs.
A system that is unaware of the semantics of individual data transformations

within a process will always present a number of such false positive relationships.
Both PASS and Vistrails have this problem, as they treat the process or each
workflow step as a black box.

The n by m problem can be solved by capturing provenance at even finer
granularities. This can be done using binary instrumentation techniques [25]
and computing the provenance of the output as a function of the executed code
path and data dependencies. Even if this method requires no modification of the
application, the tradeoff is a significant increase in space and time overheads.
A low-overhead alternative would be to modify the application to explicitly
disclose relevant provenance using an API such as CPL [17], but this requires
additional effort from the developer, as further discussed in section 3.2.

Granularity is not the only aspect a user needs to think about when deter-
mining his/her requirements for a provenance system. It is just as important to
know in which layer the provenance collection takes place.

3.1.2 Layering

Provenance metadata can be captured at multiple layers in the stack i.e. for
the application, middleware (runtime/libraries), operating system and/or in
hardware. Capturing provenance across multiple layers provides users with the
ability to reason about their data and processes at different levels of abstraction,
with each layer providing a different view on the same set of events happening
in the system.

For example, consider copying rows between two tables in a spreadsheet and
saving the result. A system collecting provenance at the OS layer will observe
a number of IO operations to/from the file. However, the notions of ”tables”
and "rows” are only known to the application, and dependencies amongst them
cannot be inferred from the metadata collected by lower layers. If querying for
such relationships is needed, provenance must be captured in the application
layer as well.

Cooperation between layers When requiring provenance capture at multi-
ple layers, a practitioner could choose a different (specialized) provenance system
for each layer in the stack or a single provenance system that was designed to
span capture across multiple layers.

In both cases, multiple provenance-aware components must cooperate by
communicating different pieces of metadata between layers. This can be achieved
either by adhering to a common provenance data model (such as OPM [21] or
PROV-DM |[20]) or by providing an universal APT and allowing each component
to both accept and generate provenance using it. PASSv2 provides a a disclosed
provenance API (DPAPI) that can be used for this purpose.

However, a second issue exists. Merely collecting metadata at different layers
will result in islands of provenance, unrelated to each other. For an actual
mapping of provenance objects between layers, all entities describing the same
event must be grouped, for example by tagging them with an unique identifier.

SPADEV2 for instance uses a multi-source fusion filter (with process id as
a tag) to combine provenance data from multiple sources describing the same
event and working at the same level of abstraction. When provenance is reported
at different levels of abstraction SPADEv2 uses a cross-layer composition filter
that has the same purpose.

Data versioning Provenance collection in a given layer typically involves
capturing the chain of events performed by the application on a given piece of
data. However, this does not necessarily require the system to capture multiple
versions of data as it is being transformed. Assume that a user edits a file using
a text editor on a PASS enabled system. The provenance metadata saved by
PASS can provide information such as the program used to edit, number of
bytes written to the file etc. But it is not possible to revert the file back to a
previous state or know what the actual data changes were. In cases where the
current contents of the file depend on values in previous versions, provenance
systems need to store versions of data besides processing events in order to
assure verifiability. Because of this, provenance systems such as Burrito [14] not
only track system call level events, but are also running on top of a versioning
file system. Other systems such as Lipstick and RAMP do not require versioning
as they run on top of append-only file systems (all versions are implicitly stored)

Versioning can prove expensive when done for certain layers in the stack. For
example, deciding to version data in the hardware layer (versioning the values
or a register) would create large amounts of data, and should be preceded by
an evaluation of actual benefits. In other cases, versioning can actually improve
the collection of provenance. This is the case in application layer, where a user
can undo/redo actions. Most GUI applications provide this functionality by
default and intercepting the undo stack has been shown to be viable method for
automatically inferring provenance [8].

3.2 Integrating provenance into existing workflows

The effort needed for integrating a new piece of technology within an existing
workflow is an important practical criteria when choosing a provenance system.
This measures how much the provenance system will intrude on user’s normal
working practices, and a cost-benefit analysis should be made depending on the
use case.

Some systems impose larger upfront expenses due to how they collect meta-
data. For example, they ask the application to explicitly attest to provenance
information, as is the case with APIs that allow you to supply annotations about
the actions being executed. An example of this is the PASSv2 DPAPI, which
offers augmented read and write calls to which one can pass data indicating the
meaning of the read or write call that is being made. The end result is an in-
crease in the development effort, as code must be updated to call the new API.
All future code changes must also keep the provenance-related code in sync, and
failing to do so will most likely cause invalid metadata to be captured.

Similarly, systems such as ZOOM or Vistrails ask you to declare the entire
workflow in advance and can only track dependencies that run on top of their
execution engines. Subsequent work must be done within the same system if
dependency links need to be maintained. As a group, the literature refers to
those as disclosed provenance systems, and they are recognized for their ability
to offer improved semantic descriptions of provenance. However, the trustwor-
thiness of the provenance captured in this way is a concern when running in
untrusted environments.

Other provenance systems aim to reduce the overhead imposed on the user.
These tend to take a different approach by observing the users’ applications,
recording information about how these applications interact with each other and

the rest of the OS and inferring provenance based on it. They are often referred
to as observed provenance systems. Systems such as PASS that intercept system
calls made by a program or others such as SPADE that can hook into the audit
sub-system in the Linux kernel to observe the program’s actions are examples of
this type of system. They tend to have the lowest intrusiveness. Often once the
system is installed a user can proceed as usual while having provenance captured
for all of the operations they perform. However, observed provenance systems
have their own shortcomings, mostly due to the loss of semantic information
when treating each process as a black box.

3.3 How do I answer questions using provenance?

Using a provenance system is only as useful as the questions that one can answer
based on the collected metadata. However, querying is recognized as a challeng-
ing problem: users often want to query over a broad range of information or
they ask questions that the designers of a provenance system did not anticipate;
depending on the granularity of capture, there might be either insufficient data
to respond to a query, or the system might produce so much data that it is
difficult explore and understand it. From the research performed to date in the
field, two core paradigms of querying have emerged and a smaller number of
systems use some hybrid of both approaches.

Exploratory

The first major paradigm is exploratory query, which takes advantage of the
human ability to spot patterns. This is important when users don’t have an
exact idea of what metadata they might want to retrieve. Exploratory systems
are usually characterized by presenting the user with a visual representation
of the provenance graph and giving them tools to better explore it without
succumbing to information overload. This is a notably hard problem given that
even small provenance graphs can easily contain thousands of nodes. A number
of the approaches taken involve either exploring subgraphs based on contextual
filtering (such as InProv [4]) or intelligent clustering methods. An example of
the latter is the PASS Map Orbiter [18] viewer, which implements an algorithm
for dynamically summarizing nodes allowing you to expand and contract areas
of detail while browsing.

Directed

The second major paradigm is directed query, an approach more closely linked
to the classic field of database query. It requires the user to express questions
about the provenance of data as queries in a language that is often a specialized
extension of SQL or of a path query language.

The approach is effective if the users know precisely what information they
require, but unlike exploratory methods it does not facilitate discovery of new
insights about the provenance graph.

vtPQL [26] is an example of the directed approach used in the Vistrails
system. The language is designed to enable the user to express provenance
queries about three different aspects of the workflow: the execution log, the
abstract workflow representation and the evolution of the workflow in time.

The querying system allows a user to specify restrictions on all three of these
spaces simultaneously. For example restricting the execution logs to a particular
day, highlighting a single workflow module and choosing a particular version of
the workflow. This is helpful as it allows the user to think in terms of orthogonal
querying concerns.

Hybrid

Some systems use a hybrid of the two paradigms. For example the ZOOM
system [2] starts from a user-provided ‘declaration of interest’ to derive a con-
textually appropriate minimal from of the provenance graph. The heart of the
system is an algorithm that summarizes ‘irrelevant’ parts of the graph in ways
that maintains their semantics. The user only needs to provide the list of the
modules in the workflow definition that are of interest, and is then allowed to
browse the provenance graph without being distracted by unimportant pieces
of information.

3.4 Understanding overheads

As with any computational functionality, provenance capture has associated
temporal and spatial costs. Given that provenance support is likely to be an
additional consideration to the primary function of the system, only leveraged
when the lineage properties of the data are required, it is imperative to minimize
the overheads.

General purpose provenance systems typically capture either (disclosed) evo-
lutions of a given workflow or (observed) low-level operations carried out by
executing processes. Broadly speaking, the time and space overheads for cap-
turing the provenance of workflow evolution is proportional to both the number
of changes in the workflow and the number of times a workflow is executed. In
comparison, the provenance overhead of capturing an execution log is propor-
tional to the number of recordable operations executed.

Time overheads In practice the provenance capture cost of workflow systems
(and by extension of other disclosed provenance systems) is minuscule due to
their limited approach to collecting running process information. Both Zoom
and Vistrails, for example, report an approximately 1% increase in execution
time [2, 10].

For systems that record process execution, provenance capture costs are a
function of the cost of intercepting and recording observable operations. While
intuitively it may appear that provenance capture at the operation level is pro-
hibitively expensive from a temporal perspective, reported results show that
this is not the case. Kernel based system call interception mechanisms such as
in PASSv2 have a 1-23% overhead on workloads representative of real-world
applications [23, 22]. Similarly SPADEv2, which utilises kernel auditing infras-
tructure for provenance capture, reports < 10% overhead on Windows, Linux
and OS X for production Apache runs [12].

For T/O heavy workloads, however, provenance capture may impose larger
runtime overheads. PASSv2 for example, reports up to 230% overhead on small
file benchmarks [22], but the absolute increase in execution times remains small.

The interception mechanism can also significantly influence provenance cap-
ture overhead in this regard. SPADEv2 for example, supports operation in-
terception via the kernel auditing mechanisms on OS X while on Windows it
requires a file system filter driver that relays operations to the provenance col-
lector. As a consequence, provenance enabled Apache builds are 50% slower on
Windows but only 5% slower on OS X.

The temporal cost of recording operations may also be of potential concern
where provenance is being recorded at an extremely fine-grained level. In such
situations it is common for the cost of provenance capture to equal or exceed
the cost of the recorded operation, leading to slowdowns of over 100%. For
example, in the Lipstick system it is reported that operator-level provenance
leads to a slowdown of 2-3x [1] while in the RAMP system, where provenance is
collected at the tuple level by propagating tags through a Map-Reduce workflow
it is common to observe temporal overheads of up to 75% [24].

Spatial overheads Similar to temporal overheads, the spatial overheads of
systems recording process execution are a function of the amount of data per
operation and the number of recorded operations. In the set of studied systems
we note that only half (SPROV, BURRITO, Lipstick and RAMP) are capable
of recording data changes.

While the actual overheads of any workload are sensitive to multiple factors,
we provide two reported data points for illustrative purposes: (i) the general pur-
pose PASSv2 system requires, on average approximately 20% additional space
overhead (as compared to the original output size) to log all the operations for
workloads representative of real-world applications [22] and (ii) the BURRITO
system, running on a real user workload, required 800MB for provenance storage
and 2GB for file versions over a two month period [14]. These results lead us to
believe storage overheads should not be prohibitive for most common cases.

Overhead trade-offs Generally speaking, there is a direct relationship be-
tween finer capture granularities and provenance overhead. Some systems lever-
age this relationship to trade-off granularity of capture for provenance informa-
tion. SPADEv2, for example, allows users to capture information at the function
call or an application-defined level at the cost of increased temporal and spatial
capture overhead. Similarly, SPROV allows users to specify modifications in
higher-level semantics (e.g. “new section added to file”) at the cost of reduced
per-operation observability.

In order for users to adopt the most suitable system for their needs it may be
useful for them to predetermine what provenance information will be required
to answer provenance queries and at what granularity this information will be
sufficient, mapping it to the appropriate system.

Most systems also delay provenance construction in order to minimize cap-
ture overheads. PASSv2 for example captures raw operation records, converting
them to their final representation via an asynchronous user-space daemon [22].
SPADEv2 uses separate provenance collection threads to extract, filter and com-
mit operations to the provenance log. Other systems delay provenance collec-
tion to query time in order to avoid wasting resources computing provenance
that will never be accessed. For example, Lipstick only carries out provenance
construction when a query is made [1]. This delayed provenance construction

10

property is present in some workflow systems as well. ZOOM, for example, will
compute some of the provenance at query time, based on the current user view.
Depending on the required cardinality, timeliness, and complexity of provenance
queries, deciding on those trade-offs may considerably improve overheads.

3.5 Security issues

The security of provenance data is another fundamental issue. It is imperative
for provenance data to be secured against unauthorized access and not leak any
information about the data against which it is collected [5]. Fundamentally,
this concern requires provenance data to be managed under separate access
policies than the data it represents. Doing so allows the user flexibility over the
disclosure of provenance information. For example, one might make provenance
inaccessible to people outside an organization, as it would reveal proprietary
workflows or processes. However, the final data result might be freely available
to anyone.

Formally, we define the security aspects of provenance as its confidentiality,
i.e., that only authorized parties can read it and its integrity, i.e., that it can-
not be forged or altered. We consider provenance that has both properties as
essential for performing integrity, validation and consistency checks on data.

Two solutions address the problem of providing secure provenance. The first
leverages the concept of reference monitors: McDaniel discusses a secure system
for end-to-end provenance based on the principle of a host based tamper-proof
provenance monitor that mirrors the well known reference monitor concept for
the enforcement of security policies [19]. The presence of the reference monitor
means that the security of provenance collection doesn’t have to rely on the
integrity of other system components such as the kernel. While this solution is
feasible we have not encountered a practical implementation to-date.

The second is based on provenance chains [11, 16] where processes that gen-
erate provenance must attest to the information added in an encrypted, non-
modifiable and non-repudiable manner. By guaranteeing these three properties
we ensure that all collected provenance has the confidentiality and integrity
properties. In our set of studied systems, SPROV [16] is a practical implemen-
tation of provenance chains. It primarily provides confidentiality and integrity
guarantees for file modifications.

SPROV leverages a number of concepts in cryptography to fulfill the security
requirements: confidentiality is maintained by encrypting the metadata describ-
ing each change, record integrity is maintained by checksumming records and
attestation is supported by signing records with the public key of the creating
user.

In addition to the key concepts of confidentiality and integrity, SPROV pro-
vides a number of useful features that may be of interest to the practitioner
(and a consideration for future secure provenance systems): through the use of
of cryptographic commitments [3], SPROV enables selective exposure of records
to third parties; by employing broadcast encryption [15] SPROV supports se-
lective access control for multiple auditors without requiring a corresponding
proportional increase in the number of keys. Finally, threshold encryption [27]
is supported enabling separation-of-duty scenarios in which the decryption of
records requires participation from at least one auditor in a number of distinct
groups.

11

SPROV has no mechanism for preventing unauthorized reads, relying in-
stead on the fact that records are encrypted to prevent unauthorized access.
However it is the only system in our studied set that provides any provenance
confidentiality and integrity guarantees. While all systems acknowledge that
the security of provenance is a fundamental concern the rest rely on existing
access control mechanisms such as SQL grant privileges and file permissions to
ensure security.

4 Research challenges and opportunities

Contrasting the initial use cases and what can actually be achieved with current
provenance systems, it becomes clear there are a number areas in which future
research is needed:

Querying and visualization: despite the research done so far in terms of
querying, exploring and visualizing provenance, it still is a challenging problem
and it remains to be seen how existing knowledge about graph exploration and
visualizations could be applied, or whether totally different representations are
required.

Computing with provenance: going beyond human queries, provenance
could be made available to applications, allowing automated processes of vali-
dating inputs, limiting error propagation or self-diagnosing changes in output
quality or system behavior.

Distributed systems: there have been attempts of extending provenance
to networked systems, but problems related to heterogeneity in distributed sys-
tems (where not all nodes are provenance-aware), scaling to a large number of
nodes, long-term collection and storage remain to be solved.

Security and privacy: we know that collecting provenance has multiple
implications regarding data security and privacy, but more research is needed
to understand how applications might enable provenance questions like ”who is
using this data?” in untrusted environments.

5 Conclusion

The increasing computing power accessible to computer engineers and scientists
alike has given us the ability to process large quantities of data, possibly using
long chains of complex transformations.

The software design strategy of solving problems using multiple layers of
abstraction limits some of this perceived complexity. However, this also implies
that the computed results might depend on things we know nothing about (leaky
abstractions).

Even ignoring abstraction, a lot of information about a result is lost when we
fail to store provenance, which might mean it’s impossible to asses its quality,
reproduce or improve on it.

Integrating systems that collect provenance within normal processing work-
flows sets the stage for a better understanding of data dependencies, propagation
of errors and trustworthiness. Those issues can only become more important
as computing becomes pervasive, so it is vital to move towards a world where
provenance is considered a first class citizen.

12

References

[1]

[10]

[11]

[12]

[14]

[15]

Y. Amsterdamer et al. “Putting lipstick on pig: enabling database-style
workflow provenance”. In: Proceedings of the VLDB Endowment 5.4 (2011),
pp. 346-357.

O. Biton, S. Cohen-Boulakia, and S. B. Davidson. “Zoom* userviews:
Querying relevant provenance in workflow systems”. In: Proceedings of
the 33rd international conference on Very large data bases. VLDB En-
dowment. 2007, pp. 1366-1369.

M. Blum. “Coin flipping by telephone: A protocol for solving impossible
problems”. In: Advances in Cryptology-A Report on CRYPTO’81 (1982).

M. A. Borkin et al. “Evaluation of Filesystem Provenance Visualization
Tools.” In: IEEE Trans. Vis. Comput. Graph. 19.12 (2013), pp. 2476
2485.

U. Braun, A. Shinnar, and M. Seltzer. “Securing Provenance”. In: The
3rd USENIX Workshop on Hot Topics in Security. USENIX HotSec. San
Jose, CA: USENIX Association, 2008, pp. 1-5.

U. Braun et al. “Issues in automatic provenance collection”. In: In Proc.
IPAW’06, volume 4145 of LNCS. Springer, 2006, pp. 171-183.

P. Buneman, S. Khanna, and W. C. Tan. “Why and Where: A Charac-
terization of Data Provenance.” In: ICDT. Vol. 1973. Lecture Notes in
Computer Science. Springer, Jan. 3, 2002, pp. 316-330.

S. P. Callahan et al. “Towards process provenance for existing applica-
tions”. In: Proceedings of 2nd International Provenance and Annotation

Workshop (IPAW). 2008, pp. 120-127.

Y. Cui, J. Widom, and J. L. Wiener. “Tracing the lineage of view data in
a warehousing environment”. In: ACM Trans. Database Syst. 25.2 (June
2000), pp. 179-227.

J. Freire et al. “Managing rapidly-evolving scientific workflows”. In: Prove-
nance and Annotation of Data. Springer, 2006, pp. 10-18.

C. Gates and M. Bishop. “One of These Records Is Not Like the Others”.
In: Proceedings of the 8rd USENIX Workshop on the Theory and Practice
of Provenance. Berkeley, CA, USA: USENIX Association, 2011.

A. Gehani and D. Tariq. “SPADE: Support for provenance auditing in
distributed environments”. In: Proceedings of the 13th International Mid-
dleware Conference. Springer-Verlag New York, Inc. 2012, pp. 101-120.

T. J. Green, G. Karvounarakis, and V. Tannen. “Provenance semirings”.
In: PODS ’07: Proceedings of the twenty-sizth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. Beijing, China:
ACM, 2007, pp. 31-40.

P. J. Guo and M. Seltzer. “Burrito: wrapping your lab notebook in compu-
tational infrastructure”. In: Proceedings of the 4th USENIX conference on
Theory and Practice of Provenance. USENIX Association. 2012, pp. 7-7.

D. Halevy and A. Shamir. “The LSD broadcast encryption scheme”. In:
Advances in Cryptology—CRYPTO 2002. Springer, 2002, pp. 47-60.

13

[26]

[27]

[28]

R. Hasan, R. Sion, and M. Winslett. “The Case of the Fake Picasso:
Preventing History Forgery with Secure Provenance.” In: FAST. Vol. 9.
2009, pp. 1-14.

P. Macko and M. Seltzer. “A General-purpose Provenance Library”. In:
Proceedings of the Jth USENIX Conference on Theory and Practice of
Provenance. TaPP’12. Boston, MA: USENIX Association, 2012, pp. 6-6.

P. Macko and M. Seltzer. “Provenance map orbiter: Interactive exploration
of large provenance graphs”. In: Proceedings of the 3nd conference on
Theory and practice of provenance. TAPP’11. 2011.

P. McDaniel et al. “Towards a secure and efficient system for end-to-end
provenance”. In: Proceedings of the 2nd conference on Theory and practice
of provenance. TAPP’10. San Jose, California: USENIX Association, 2010,
pp- 22.

L. Moreau and P. Missier. PROV-DM: The PROV Data Model. Technical
Report. World Wide Web Consortium, 2013.

L. Moreau et al. “The Open Provenance Model Core Specification (V1.1)”.
In: Future Gener. Comput. Syst. 27.6 (June 2011), pp. 743-756.

K.-K. Muniswamy-Reddy et al. “Layering in provenance systems”. In:
Proceedings of the 2009 USENIX Annual Technical Conference. 2009.

K.-K. Muniswamy-Reddy et al. “Provenance-aware storage systems”. In:
Proceedings of the 2006 USENIX Annual Technical Conference. 2006,
pp. 43-56.

H. Park, R. Ikeda, and J. Widom. “RAMP: A System for Capturing and
Tracing Provenance in MapReduce Workflows”. In: 37th International
Conference on Very Large Data Bases (VLDB). Stanford InfoLab, 2011.

P. Saxena, R Sekar, and V. Puranik. “Efficient Fine-grained Binary Instru-
mentationwith Applications to Taint-tracking”. In: Proceedings of the Gth
Annual IEEE/ACM International Symposium on Code Generation and
Optimization. CGO ’08. Boston, MA, USA: ACM, 2008, pp. 74-83.

C. Scheidegger et al. “Tackling the Provenance Challenge one layer at a
time”. In: Concurrency and Computation: Practice and Experience 20.5
(2008), pp. 473-483.

A. Shamir. “How to share a secret”. In: Communications of the ACM
22.11 (1979), pp. 612-613.

J. Widom. Trio: A System for Integrated Management of Data, Accuracy,
and Lineage. Technical Report 2004-40. Stanford InfoLab, 2004.

14

	Introduction
	Provenance systems
	Provenance system properties
	What can it capture?
	Granularity
	Layering

	Integrating provenance into existing workflows
	How do I answer questions using provenance?
	Understanding overheads
	Security issues

	Research challenges and opportunities
	Conclusion

