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ABSTRACT
We present new results in the theory of asynchronous conver-
gence for the Distributed Bellman-Ford (DBF) family of rout-
ing protocols which includes distance-vector protocols (e.g.
RIP) and path-vector protocols (e.g. BGP). We take the “in-
creasing” conditions of Sobrinho and make three main new
contributions.

First, we show that the conditions are sufficient to guar-
antee that the protocols will converge to a unique solution
from any state. This eliminates the possibility of BGP wed-
gies. Second, unlike previous work, we decouple the com-
putation from the asynchronous context in which it occurs,
allowing us to reason about a more relaxed model of asyn-
chronous computation in which routing messages can be lost,
reordered, and duplicated. Third, our theory and results have
been fully formalised in the Agda theorem prover and the re-
sulting library is publicly available for others to use and ex-
tend. We feel this is in line with the increased emphasis on
formal verification of software for critical infrastructure.

1 WHAT IS POLICY-RICH ROUTING?
This paper investigates the theory of asynchronous conver-
gence for routing protocols in the Distributed Bellman-Ford
(DBF) family. This includes distance-vector (RIP-like) and
path-vector (BGP-like) protocols. In particular our models in-
clude what we call policy-rich protocols, and so we begin by
informally explaining this terminology.

Suppose that a router participating in a DBF computation
has a best route 𝑟 to a destination 𝑑. If it then receives a
route 𝑟′ for 𝑑 from an immediate neighbour it will first apply
some policy 𝑓 associated with that neighbour and produce
a candidate route 𝑓(𝑟′). It will then compare 𝑟 with 𝑓(𝑟′) to
determine which is best. Let us denote the outcome of this
selection process as best(𝑓 (𝑟′), 𝑟). A very simple example
comes from shortest-path routes where 𝑟 is just an integer
representing distance, 𝑓𝑤(𝑟) = 𝑤 + 𝑟 for some weight 𝑤, and
best(𝑟, 𝑟′) = min(𝑟, 𝑟′).

If we dig deeply into the classical theory underlying best-
path algorithms — both synchronous [1, 9], and asynchro-
nous [3]—we find that it always assumes the following equa-
tion, or something equivalent, must hold:

𝑓(best(𝑟1, 𝑟2)) = best(𝑓 (𝑟1), 𝑓 (𝑟2)) (1)

This property is referred to as distributivity. In terms of rout-
ing, the left-hand side of this equation can be interpreted as a
decision made by a router sending routes 𝑟1 and 𝑟2 while the
right-hand side is a decision made by the neighbour receiving
those routes. Assuming the equality holds, the classical the-
ory proves that routing protocols arrive at globally optimal
routes — the best routes over all possible paths.

By a policy-rich language we mean one in which distribu-
tivity does not hold. A clear example of how distributivity
violations might arise in routing can be seen in the use of
route maps which are functions (scripts) that take routes as
input and return routes as output. For example, if 𝑔 and ℎ are
route maps, then we might define another route map 𝑓 as:

𝑓(𝑟) = if 𝑃 (𝑟) then 𝑔(𝑟) else ℎ(𝑟), (2)
where 𝑃 is a predicate on routes (such as “does this route
contain the BGP community 17?”). To see how easily dis-
tributivity can be violated, suppose that:

𝑃 (𝑎) = true,
𝑃 (𝑏) = false,

𝑎 = best(𝑎, 𝑏),
ℎ(𝑏) = best(𝑔(𝑎), ℎ(𝑏)).

Then the left-hand side of Eq 1 is:
𝑓(best(𝑎, 𝑏)) = 𝑓(𝑎) = 𝑔(𝑎),

while the right-hand side becomes:
best(𝑓 (𝑎), 𝑓 (𝑏)) = best(𝑔(𝑎), ℎ(𝑏)) = ℎ(𝑏)

For Eq 1 to hold we need 𝑔(𝑎) = ℎ(𝑏), which may not be
the case (indeed, if 𝑔(𝑎) = ℎ(𝑏) were always true, then there
would be no point in defining 𝑓 !). Perhaps the most common
example of such conditional policies is route filtering, where
ℎ(𝑟) is equal to the invalid route.

A specialist schooled in the classical theory of path finding
might be tempted to forbid the use of such “broken” policies
when using the Bellman-Ford orDijkstra algorithms. Yet, once
again, practice has outstripped theory. The Border Gateway
Protocol (BGP) [24] — a key component of the Internet’s in-
frastructure — is a policy-rich routing protocol.

We argue that today’s BGP is in fact broken since it is
possible to write policies that can result in anomalous be-
haviour such as non-convergence [22, 28] and multiple sta-
ble states [11]. Multiple stable states are problematic as the
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extra stable states are nearly always unintended and often vi-
olate the intent of policy writers. Leaving an unintended sta-
ble state requires manual intervention and, in the worst case,
a high degree of coordination between competing networks.

Hence a pertinent question is how to tame the policy lan-
guage of BGP-like protocols to ensure good behaviour? Of
course we could mandate that all protocols must conform
to Eq 1. However, we would then not be able to implement
typical inter-domain policies that are based on commercial
relationships [16, 17]. In addition, something as simple as
shortest-path routing with route filtering would be banned.

Gao & Rexford [8] showed that the simple commercial re-
lationships described in [16, 17], if universally followed, are
enough to guarantee convergence. However their model is
BGP-specific and gives us no guidance on how policy-rich
protocols should be constrained in general.

Amiddle ground for generic policy-rich protocols has been
achieved for both Dijkstra’s algorithm [26] and those in the
DBF family [25]. Rather than insisting on distributivity, we
instead require that for all routes 𝑟 and policies 𝑓 we have:

𝑟 = best(𝑟, 𝑓 (𝑟)). (3)

In other words, applying policy to a route cannot produce a
route that is more preferred. Although Eq 3 is sufficient for
Dijkstra’s Algorithm [26], it must be strengthened [25] for
DBF algorithms to:

𝑟 = best(𝑟, 𝑓 (𝑟)) ≠ 𝑓(𝑟). (4)

That is, applying policy to a route cannot produce a route
that is more preferred and it cannot leave a route unchanged.
We call such policy languages strictly increasing. Note that if
policies 𝑔 and ℎ are strictly increasing, then the conditional
policy 𝑓 defined in Eq 2 is also strictly increasing. In other
words, a strictly increasing policy language remains strictly
increasing when route maps are introduced.

However, without distributivity we can no longer achieve
globally optimal routes and so we must be content with lo-
cally optimal routes [26] – each router obtains the best routes
possible given the best routes revealed by its neighbours.

In the case of BGP it is natural to ask if the strictly in-
creasing requirement is too strong and if it prohibits desir-
able policies. We feel that it may be the best possible con-
ditions achievable that do not include constraints topologi-
cal constraints. it is the best possible condition available. So-
brinho [25] shows that they are more general than the Gao-
Rexford conditions, by implementing the Gao-Rexford con-
ditions in a strictly increasing framework. The same paper
shows that if you further generalise the strictly increasing con-
dition, then the time required to check if the conditions hold
becomes exponential in the size of the network and hence in-
feasible to check.

1.1 Related work
We will discuss three main prior works: Griffin, Shepherd &
Wilfong [12], Gao & Rexford [8] and Sobrinho [25]. Each of
these prove theorems about the conditions needed for some
form of convergence for path-vector protocols.

In order to place these in context and to highlight the gaps
that exist we will now discuss what we think are the main
desirable properties of such theorems:

(1) They should guarantee convergence from any starting
state. This ensures re-convergence occurs even after ar-
bitrary changes to the network topology.

(2) The same final state should always be reached, no mat-
ter what state the network is in initially and what order
the asynchronous events happen.

(3) The proofs should be as general as possible. Ideally
they should apply not just to BGP, but to a broad range
of current and future vector-based protocols.

(4) The conditions should be efficiently verifiable. By this
wemean that given access to the network configuration,
it should be possible to verify the conditions in polyno-
mial time in the size of the network.

The work of Griffin, Shepherd & Wilfong [12] takes gen-
eral routing problem instances, and compiles them down to
stable path problems. Using these, they then demonstrate nec-
essary and sufficient conditions for convergence. However
the results do not guarantee convergence from arbitrary states,
only from a clean state, and verification takes exponential
time. They do however prove that the final state is unique.
Therefore they achieve points 2 & 3 but not 1 & 4.

Gao & Rexford [8] give conditions that guarantee conver-
gence for a model of BGP. They prove that these are sufficient
to guarantee convergence from an arbitrary state, but not nec-
essarily to the same state each time. The conditions are effi-
ciently verifiable. Therefore they achieve points 1 & 4 but not
2. With respect to point 3, we argue that there is considerable
scope for generalisation. Their conditions are very strong, and
impose constraints not just on the protocol, but on the topol-
ogy of the network itself whichmust be partially ordered with
respect to a customer-provider relationship. Thismeans that it
is necessary to re-verify the conditions each time the network
topology changes. Their proof is specific to BGP and does not
apply to other DBF protocols. Even within BGP adding ad-
ditional features, such as back-up routes, requires re-proving
key parts of the theorems in their entirety. As part of BGP,
they also assume in-order, reliable delivery of messages.

Sobrinho [25] provided an important turning point in the
theory by introducing algebraic models that are at a higher-
level of abstraction than previous work. The approach allows
the paper to reason about path-vector (but not distance-vector)
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protocols as a whole, rather than one specific protocol. In par-
ticular Sobrinho shows that if the algebra is strictly increas-
ing 1 then convergence is guaranteed from arbitrary starting
states to some final stable solution. The increasing property is
efficiently verifiable as it is built-in to the algebra. Therefore
like Gao & Rexford, the work achieves points 1 & 4 but not
2. With respect to 3, the work is far more general as it uses
a generic model for path-vector protocols. However further
generalisation is still possible as the paper assumes in-order,
reliable delivery.

1.2 Our contributions
Our primary contribution is taking the strictly increasing con-
dition of Sobrinho and proving a new convergence theorem
that satisfies points 1, 2, 3 & 4 concurrently. Beyond this, our
work has two other novel contributions: 1) a factorisation of
the asynchronous environment from the synchronous algo-
rithm and 2) a machine-checked library of proofs that can
be reused by other researchers.

It is well known that reasoning about asynchronous pro-
cesses is far harder than their synchronous counterparts. The
related works in Section 1.1 each develop their own model of
asynchronous computation that interacts in complicated ways
with the essential actions of the policy-based protocol.

An improved approach can be found in Üresin & Dubois’
work on asynchronous iterative algorithms [27]. They prove
that if the synchronous algorithm obeys their ACO condi-
tions then this is sufficient to guarantee the convergence of
the asynchronous version of the algorithm. In the context of
routing protocols, this cleanly separates the underlying rout-
ing problem from the distributed environment in which we
are solving it. Furthermore their asynchronous model allows
messages to be delayed, lost, reordered and duplicated.

The unpublished work of Gurney [15] builds on this by
showing that the existence of a particular type of ultrametric
space implies the ACO conditions. Using this, we need only
define an ultrametric that correctly interacts with the synchro-
nous routing computation to guarantee the convergence of the
asynchronous computation. Figure 1 illustrates how all of the
pieces fit together.

We have also fully formalised our work in Agda [23], a
theorem-proving language which captures much of construc-
tive mathematics and in which both proofs and programs can
be written. We feel this formalisation is in line with recent
trends in the verification of infrastructure-related software.
This is becoming increasingly urgent in areas as diverse as op-
erating systems [18], compilers [19, 21] and networking [14,
29]. Our formalisation necessarily includes the asynchronous

1Sobrinho uses the term “monotonic” to refer to the property we call “in-
creasing”. When combined with his assumptions about paths, his model can
be shown to be “strictly increasing”. See Section 5.1 for a discussion.

Strictly increasing algebra

Ultrametric conditions

ACO conditions

Absolute convergence

⇓

⇓

⇓

(𝑐)

(𝑏)

(𝑎)

Figure 1: Putting it all together. Arrows indicate logical im-
plications. (𝑎) is from Üresin & Dubois [27]. (𝑏) is from Gur-
ney [15]. (𝑐) is presented in this paper. Our Agda formalisa-
tion [6] covers (𝑎), (𝑏) and (𝑐). See [30] for a discussion of
our formalisation of (𝑎) and (𝑏).

theory of Üresin & Dubois and Gurney, and we discuss this
preparatory work in [30].

As well as greatly increasing confidence in our proofs, the
generality of our resultsmeans that this formalisation can also
form the basis of future work. The proofs are freely avail-
able [6], and we hope that it will prove useful to the com-
munity. In particular, by constructing a model of a particular
path-vector routing protocol in Agda and showing that it sat-
isfies the increasing property, it is possible to show that the
protocol is well-behaved. In Section 7 we outline how to do
this for a routing algebra with an expressive policy language
that is safe-by-design.

Although our results are fully formalised, we present them
here using a traditional style, informal but rigorous.

1.3 Generality vs implementation details
In any mathematical model of a real-world system, there is
a fundamental tension between capturing the most general
form of the system and capturing every detail of the imple-
mentation. More implementation details can always be added
to better model a particular instance, at the cost of losing the
ability to apply the work more generally.

In this paper we have erred on the side of generality. While
we acknowledge that BGP is the dominant policy-rich path-
vector routing protocol, the ultimate aim of our work is not
only to inform how BGP policies may be constrained to pro-
vide better guarantees, but also to guide the design of future
policy-rich protocols.

As an example of this, we have used a very general model
of asynchronous computation which we believe can easily
capture the hard-state nature of BGP, yet we have not fully
formalised this intuition. Had we explicitly modelled a hard-
state protocol, it would have excluded us from applying our
work to soft-state protocols as well.

3



1.4 Road map
In Section 2.1 we formalise route preferences and policy us-
ing an algebraic approach inspired by that of Sobrinho [25].
In Sections 2.2 & 2.3 we model the synchronous DBF com-
putation as the repeated iteration of matrix operations. This
approach provides a clear, and implementation independent,
specification of the problem we are solving: finding a fixed
point of this iteration. In Section 3 we review the model of
asynchronous computation from Üresin & Dubois [27] and
Gurney [15]. Section 4 applies the theory to distance-vector
protocols, while Section 5 applies the theory to path-vector
protocols. We briefly describe our Agda formalisation in Sec-
tion 6. In Section 7 we give an example of a safe-by-design
algebra.

2 ALGEBRAIC MODEL
Wenowpresent ourmodel for distance-vector and path-vector
routing protocols.

2.1 Routing algebras
Definition 1. A routing algebra is a tuple (𝑆, ⊕, 𝐹 , 0, ∞)
where:

• 𝑆 is the set of routes
• ⊕ ∶ 𝑆 × 𝑆 → 𝑆 is the choice operator, which given

two routes returns the preferred route. We informally
referred to ⊕ as best in the introduction.

• 𝐹 is a set of edge weights. Edge weights are functions
𝑓 ∶ 𝑆 → 𝑆, which given a route return the original
route extended by the edge.

• 0 ∈ 𝑆 is the trivial route from any node to itself.
• ∞ ∈ 𝑆 is the invalid route.

We assume that these structures have the following minimal
properties (see Table 1 for definitions):

• ⊕ is associative and commutative (the order in which
routes are chosen between is irrelevant).

• ⊕ is selective (choosing between two routes always re-
turns one of the two routes).

• 0 is an annihilator for ⊕ (the trivial route is always
preferred to any other route).

• ∞ is an identity for ⊕ (all routes are preferred to the
invalid route).

• ∞ is a fixed point for all 𝑓 ∈ 𝐹 (extending the invalid
route is also the invalid route).

Table 2 presents examples of structures that fulfil these prop-
erties and solve some simple path problems.

Using ⊕ we can define an order over routes as follows:

𝑎 ≤ 𝑏 ≜ 𝑎 ⊕ 𝑏 = 𝑎
𝑎 < 𝑏 ≜ 𝑎 ≤ 𝑏 ∧ 𝑎 ≠ 𝑏.

Property Definition
⊕ is associative 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏) ⊕ 𝑐
⊕ is commutative 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎
⊕ is selective 𝑎 ⊕ 𝑏 ∈ {𝑎, 𝑏}
0 is an annihilator for ⊕ 𝑎 ⊕ 0 = 0 = 0 ⊕ 𝑎
∞ is an identity for ⊕ 𝑎 ⊕ ∞ = 𝑎 = ∞ ⊕ 𝑎
∞ is a fixed point for 𝐹 𝑓(∞) = ∞

𝐹 is increasing over ⊕ 𝑎 ≤ 𝑓(𝑎)
𝐹 is strictly increasing over ⊕ 𝑎 ≠ ∞ ⇒ 𝑎 < 𝑓(𝑎)
𝐹 distributes over ⊕ 𝑓(𝑎 ⊕ 𝑏) = 𝑓(𝑎) ⊕ 𝑓(𝑏)

Table 1: Definitions of the algebraic properties we use. The
first set are required of routing algebras, the second set are
various optional properties.

𝑆 ⊕ 𝐹 ∞ 0 Use
ℕ∞ min 𝐹+ ∞ 0 shortest paths
ℕ∞ max 𝐹+ 0 ∞ longest paths
ℕ∞ max 𝐹min 0 ∞ widest paths

[0, 1] max 𝐹× 0 1 most reliable paths
Table 2: A few very simple routing algebras, where 𝐹⊗ =
{𝑓𝑠(𝑎) = 𝑠 ⊗ 𝑎 ∣ 𝑠 ∈ 𝑆} for an arbitrary operator ⊗, e.g.
𝐹+ = {𝑓𝑠(𝑎) = 𝑠 + 𝑎 ∣ 𝑠 ∈ ℕ∞}

.

As ⊕ is associative, commutative and selective, we have that
≤ is a total/linear order. Note: for all 𝑎 we have 0 ≤ 𝑎 ≤ ∞.
Definition 2. A routing algebra is increasing if for all 𝑓 and
𝑎 we have that 𝑎 ≤ 𝑓(𝑎).
Definition 3. A routing algebra is strictly increasing if for all
𝑓 and 𝑎 (with the exception of ∞) we have that 𝑎 < 𝑓(𝑎).

2.2 What problem are we solving?
Given a network of 𝑛 nodes, with edges weighted with ele-
ments from 𝐹 , we represent the topology by an 𝑛 × 𝑛 adja-
cency matrix A where A𝑖𝑗 ∈ 𝐹 is the weight of the edge
from 𝑖 to 𝑗. Missing edges can be represented by the constant
function 𝑓(𝑎) = ∞.

Let 𝕄𝑛(𝑆) be the set of 𝑛 × 𝑛 matrices over 𝑆. The global
routing state can be represented as a matrix X ∈ 𝕄𝑛(𝑆). The
row X𝑖 represents node 𝑖’s routing table and so the element
X𝑖𝑗 is node 𝑖’s best current route to node 𝑗. We define the sum
of two matrices X and Y as:

(X ⊕ Y)𝑖𝑗 ≜ X𝑖𝑗 ⊕ Y𝑖𝑗
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and the application of A to X as:

A(X)𝑖𝑗 ≜ ⨁
𝑘

A𝑖𝑘(X𝑘𝑗)

In one synchronous round of a distributed Bellman-Ford
computation every node in the network propagates its routing
table to other nodes in the network who then update their own
tables accordingly. We model this operation as 𝜎:

𝜎(X) ≜ A(X) ⊕ I

where I is the identity matrix:

I𝑖𝑗 =
{

0 if 𝑖 = 𝑗
∞ otherwise

�

The nature of the underlying computation becomes clearer
when looking at a single element of 𝜎(X):

𝜎(X)𝑖𝑗 =
(⨁

𝑘
A𝑖𝑘(X𝑘𝑗)

)
⊕ I𝑖𝑗

=
{

0 if 𝑖 = 𝑗
⨁𝑘 A𝑖𝑘(X𝑘𝑗) otherwise

� (5)

Node 𝑖’s new route to 𝑗 is the best choice out of the extensions
of the routes offered to it by each of neighbour 𝑘.

Lemma 1. After an iteration, a node’s route to itself is al-
ways the trivial route (i.e. ∀𝑖 ∶ 𝜎(X)𝑖𝑖 = 0).

Proof. See reasoning above. □

2.3 Synchronous computation
We model a synchronous Distributed Bellman-Ford compu-
tation as repeated applications of 𝜎:

𝜎0(Y) ≜ Y
𝜎𝑘+1(Y) ≜ 𝜎(𝜎𝑘(Y))

Definition 4. A state, X, is stable if it is a fixed point for 𝜎:

𝜎(X) = X

This is equivalent to saying that no node can improve its se-
lected routes by unilaterally choosing to switch. Therefore
such a state is a local but not necessarily a global optimum.

Starting in an arbitrary stateX, 𝜎 converges synchronously
if there exists a 𝑘 such that:

𝜎𝑘+1(X) = 𝜎𝑘(X)

so that 𝜎𝑘(X) is a stable state.

3 ASYNCHRONICITY
So far we have defined a synchronous model, where update
messages between nodes are exchanged instantaneously and
in parallel. However, in reality, nodes dispatch update mes-
sages asynchronously and theymay be delayed, reordered, du-
plicated or even lost along the way. Reasoning about the out-
comes of such unpredictable events is known to be extremely
challenging. To help tame this complexity, we now describe
an established mathematical model of such behaviour.

3.1 A model of asynchronicity
We use the model from Üresin & Dubois [27] which assumes
a discrete and linear notion of time 𝕋 that denotes the times
of events of interest in the network.
Definition 5. A schedule consists of a pair of functions:

• 𝛼 ∶ 𝕋 → 2𝑉 is the activation function, where 𝛼(𝑡) is
the set of nodes which update their routing table at time
𝑡.

• 𝛽 ∶ 𝕋 × 𝑉 × 𝑉 → 𝕋 is the data flow function, where
𝛽(𝑡, 𝑖, 𝑗) is the time at which the information used by
node 𝑖 at time 𝑡 was sent by node 𝑗.

where 𝑉 is the set of nodes in the network, such that:
S1 : every node continues to activate indefinitely

∀𝑖𝑡.∃𝑘. 𝑖 ∈ 𝛼(𝑡 + 𝑘)
S2 : information only travels forward in time

∀𝑖𝑗𝑡. 𝛽(𝑡, 𝑖, 𝑗) < 𝑡
S3 : stale information is eventually replaced

∀𝑖𝑗𝑡.∃𝑡′.∀𝑘. 𝛽(𝑡′ + 𝑘, 𝑖, 𝑗) ≠ 𝑡
Note: at first glance S1 seems to preclude node failure in the
network. We discuss why this is not the case in Section 3.2.

This is a very weak model of asynchronous communica-
tion. Nothing in S2 or S3 forbids the data flow function 𝛽
from delaying, losing, reordering or duplicating messages.

For a given schedule (𝛼, 𝛽) and starting stateXwe define 𝛿,
the asynchronous version of 𝜎, as follows:

𝛿0(X)𝑖𝑗 ≜ X𝑖𝑗

𝛿𝑡(X)𝑖𝑗 ≜
{

⨁𝑘 A𝑖𝑘(𝛿𝛽(𝑡,𝑖,𝑘)(X)𝑘𝑗) ⊕ I𝑖𝑗 if 𝑖 ∈ 𝛼(𝑡)
𝛿𝑡−1(X)𝑖𝑗 otherwise

�

We can immediately recover 𝜎 by setting 𝛼(𝑡) = {1, ..., 𝑛} and
𝛽(𝑡, 𝑖, 𝑗) = 𝑡 − 1, i.e. at each time step every node activates
and all nodes use data generated at the previous time step.

3.2 Dynamic networks and convergence
In the definition of 𝛿, network topology and individual poli-
cies are hard-coded into the adjacency matrix A. However
real networks are in constant states of flux and we need to be
able to capture this in our model.
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When the network undergoes a change at time 𝑡, we view
the continuing computation as a new instance of the prob-
lem, using a new adjacency matrix and taking 𝛿𝑡(X), the cur-
rent network state, to be the new starting state X′. If an edge
weight is changed or an edge is added or removed then the
relevant entry in A is adjusted. If a node is added or removed
we simply add or a remove the corresponding row and col-
umn into the adjacency matrix, A, and the starting state, X′.

After a change to the network, the new starting state X′

may contain stale routes that no longer exist in the new net-
work. It is therefore vital that the theorems in this paper guar-
antee that 𝛿 is well-behaved starting in all states, rather than
just the states consistent with the current topology.

If changes to the network topology occur too frequently
then convergence may never occur. Therefore convergence
is only guaranteed if there is a sufficiently long period of net-
work stability.
Definition 6. 𝛿 converges from state X when there exists a
stable state X∗ such that for all schedules there exists a con-
vergence time 𝑡 such that for all 𝑘 then 𝛿𝑡+𝑘(X) = X∗.

There exist routing algebras that may converge from some
states but not others. For instance the classic shortest paths
algebra converges from the initial state, but if started from
arbitrary states it suffers from count-to-infinity problems.
Definition 7. 𝛿 convergeswhen it converges from all possible
starting states.
Definition 8. 𝛿 converges absolutelywhen it always converges
to the same stable state from all possible starting states.

Absolute convergence therefore guarantees that 𝛿 will al-
ways converge to a single, predictable final state, no matter
what state started in.

3.3 A convergence theorem
Using the well-established model of asynchronous computa-
tion described in Section 3.1 has two main advantages:

(1) there already exist published sufficient conditions for
absolute convergence.

(2) these conditions only require properties of the synchro-
nous iteration 𝜎, not the asynchronous iteration 𝛿.

Only having to reason about the synchronous behaviour greatly
simplifies our proof. In fact, this paper goes on to prove abso-
lute convergence of 𝛿 without ever mentioning 𝛼 and 𝛽 again.
In contrast the papers discussed in Section 1.1 directly rea-
son about the asynchronous nature of the protocols and, per-
haps consequently, all make the simplifying assumptions of
in-order, reliable delivery of messages.

One of the most widely used results is that of Üresin &
Dubois [27]. Their sufficient conditions for absolute conver-
gence are then used as a basis for many other sufficient con-
ditions (see [7] for an overview).

We have chosen to use the result from [15], which in our
opinion is one of the more intuitive. It requires the construc-
tion of a notion of distance between states such that for anyX
the distance between X and 𝜎(X) is strictly greater than the
distance between 𝜎(X) and 𝜎2(X). At a high level this makes
sense, as if every application of 𝜎 moves the state a smaller
and smaller distance, then eventually one must reach a stable
state where applying 𝜎 no longer moves the state at all.
Definition 9. A ultrametric over a set 𝑆 is a distance function
𝑑 ∶ 𝑆 × 𝑆 → ℕ that satisfies the following conditions:
M1 : 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦
M2 : 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
M3 : 𝑑(𝑥, 𝑧) ≤ max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧))

As can be seen, an ultrametric is just a stronger version of a
standard metric, where the triangle inequality:

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
has been strengthened to:

𝑑(𝑥, 𝑧) ≤ max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧))
Definition 10. A function 𝑓 ∶ 𝑆 → 𝑆 is contracting over an
ultrametric 𝑑 if for all 𝑥 ≠ 𝑦 then:

𝑑(𝑥, 𝑦) ≥ 𝑑(𝑓(𝑥), 𝑓 (𝑦))
Definition 11. A function 𝑓 ∶ 𝑆 → 𝑆 is strictly contracting
on orbits over an ultrametric 𝑑 if for all 𝑥 ≠ 𝑓(𝑥) then:

𝑑(𝑥, 𝑓 (𝑥)) > 𝑑(𝑓(𝑥), 𝑓 2(𝑥))

Lemma 2. If 𝑓 is strictly contracting on orbits over 𝑑 then
there exists a fixed point for 𝑓 .

Proof. While convergence has not occurred, we can con-
tinue constructing the following chain using the strictly con-
tracting on orbits property:

𝑑(𝑥, 𝑓 (𝑥)) > 𝑑(𝑓(𝑥), 𝑓 2(𝑥)) > 𝑑(𝑓 2(𝑥), 𝑓 3(𝑥)) > ...
This is a decreasing chain in ℕ and so must have finite length.
Therefore there must eventually be a time 𝑡 such that 𝑓 𝑡(𝑥) =
𝑓 𝑡+1(𝑥) and so 𝑓 𝑡(𝑥) is the required fixed point. □

Definition 12. A function 𝑓 ∶ 𝑆 → 𝑆 is strictly contracting
on its fixed point over an ultrametric 𝑑 if for all 𝑥 ≠ 𝑥∗ then:

𝑑(𝑥∗, 𝑥) > 𝑑(𝑥∗, 𝑓 (𝑥))
Definition 13. An ultrametric is bounded if there exists a
𝑑𝑚𝑎𝑥 such that for all 𝑥 and 𝑦 then 𝑑(𝑥, 𝑦) ≤ 𝑑𝑚𝑎𝑥.

Lemma 3. If 𝑑 is an ultrametric over routes 𝑆 then

𝐷(X,Y) = max
𝑖𝑗

𝑑(X𝑖𝑗 ,Y𝑖𝑗)

is an ultrametric over routing states 𝕄𝑛(𝑆).

Proof. See [15] and our Agda [6]. □
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Theorem 4. Given a routing algebra (𝑆, ⊕, 𝐹 , 0, ∞) then
𝛿 converges absolutely if there exists an ultrametric 𝑑 over
routes, such that:
(1) 𝐷 is bounded
(2) 𝜎 is strictly contracting on orbits over 𝐷
(3) 𝜎 is contracting on its fixed point over 𝐷

where 𝐷(X,Y) = max𝑖𝑗 𝑑(X𝑖𝑗 ,Y𝑖𝑗)
Proof. See Theorem 5 in [15] and our Agda [6]. □

Note: the cited proof actually requires that 𝜎 is contracting,
not just contracting on its fixed point. However in practice it
only ever applies the contracting property to the fixed point.

4 DISTANCE VECTOR PROTOCOLS
We now prove that distance-vector protocols with increasing
routing algebras with finite domains always converge. This
models RIP-like protocols that support conditional policies.
To do so we construct an ultrametric, 𝑑, over routes and then
prove that 𝜎 is strictly contracting with respect to 𝐷, hence
fulfilling the pre-conditions of Theorem 1.

4.1 An ultrametric over routes
We begin by assuming that 𝑆 is finite.

Height of routes. As 𝑆 is finite, all downwards closed sub-
sets under the relation ≤ must also be finite. The height of an
element can therefore be defined as follows:

ℎ(𝑥) ≜ |{𝑦 ∈ 𝑆 ∣ 𝑥 ≤ 𝑦}|
The trivial route, 0, is the most desirable route and there-
fore has the maximum height which we name 𝐻 . The invalid
route, ∞, is the least desirable route and therefore it is the
route with the minimal height of 1. Therefore we have:

1 = ℎ(∞) ≤ ℎ(𝑥) ≤ ℎ(0) = 𝐻
Distance between routes. Using ℎ, we next define the dis-

tance function 𝑑 ∶ 𝑆 × 𝑆 → ℕ as follows:

𝑑(𝑥, 𝑦) ≜
{

0 if 𝑥 = 𝑦
max(ℎ(𝑥), ℎ(𝑦)) otherwise

�

According to this definition, the distance between two routes
grows in proportion to how desirable the best one is. Intu-
itively this is a reasonable measure of distance. Better routes
are more likely to be adopted by other nodes and incorpo-
rated into future routes, and hence a disagreement between
desirable routes is much more serious than a disagreement
between undesirable routes.

Lemma 5. 𝑑 is an ultrametric.

Proof. We need to prove all three ultrametric axioms hold.

M1 : immediate, 1 ≤ ℎ(𝑥) and so 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦.

M2 : immediate, max is commutative and so 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).

M3: we need to prove that for all 𝑥, 𝑦 and 𝑧:
𝑑(𝑥, 𝑧) ≤ max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧))

Case 𝑥 = 𝑧: then 𝑑(𝑥, 𝑧) = 0 and so the inequality holds.
Case 𝑥 = 𝑦: then

𝑑(𝑥, 𝑧) ≤ max(𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑧))
= max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧))

Case 𝑦 = 𝑧: similarly
Case 𝑥 ≠ 𝑦, 𝑦 ≠ 𝑧 and 𝑥 ≠ 𝑧: then

𝑑(𝑥, 𝑧) = max(ℎ(𝑥), ℎ(𝑧))
≤ max(ℎ(𝑥), ℎ(𝑦), ℎ(𝑧))
= max(max(ℎ(𝑥), ℎ(𝑦)),max(ℎ(𝑦), ℎ(𝑧)))
= max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧))

Hence 𝑑 obeys all three ultrametric axioms. □

Distance between routing states. As proved by Lemma 3
in Section 3.3, we can define the ultrametric 𝐷 over routing
states using 𝑑 as follows:

𝐷(X,Y) ≜ max
𝑖,𝑗

𝑑(X𝑖𝑗 ,Y𝑖𝑗)

Again 𝐷 measures the distance betweenX andY. If all the el-
ements ofX andY are equal then they occupy the same point
in the space, otherwise the distance between them grows in
proportion to the most desirable route they disagree on.

Lemma 6. If the algebra is strictly increasing then 𝜎 is
strictly contracting over 𝐷.

Proof. We need to prove that for all X ≠ Y:
𝐷(X,Y) > 𝐷(𝜎(X), 𝜎(Y))

It therefore suffices to prove that for all nodes 𝑖 and 𝑗
𝐷(X,Y) > 𝑑(𝜎(X)𝑖𝑗 , 𝜎(Y)𝑖𝑗) (6)

Case 1: 𝜎(X)𝑖𝑗 = 𝜎(Y)𝑖𝑗

Then we immediately have (6) as:
𝐷(X,Y) > 0 (by M1 & X ≠ Y)

= 𝑑(𝜎(X)𝑖𝑗 , 𝜎(Y)𝑖𝑗) (by M1 & case 1)
Case 2: 𝜎(X)𝑖𝑗 ≠ 𝜎(Y)𝑖𝑗

Without loss of generality we assume that 𝜎(X)𝑖𝑗 is a more
desirable route than 𝜎(Y)𝑖𝑗 :

𝜎(X)𝑖𝑗 < 𝜎(Y)𝑖𝑗 (7)
All nodes route to themselves via the trivial route (Lemma 1)
and therefore if 𝑖 = 𝑗 then 𝜎(X)𝑖𝑗 = 0 = 𝜎(Y)𝑖𝑗 which con-
tradicts the assumption of case 2. Hence going forwards we
assume that 𝑖 ≠ 𝑗.

7



Consequently by Eq 5 (in Section 2.2) we have that:
𝜎(X)𝑖𝑗 = ⨁

𝑘
A𝑖𝑘(X𝑘𝑗)

and, as ⊕ is selective, there exists a node 𝑘 such that:
𝜎(X)𝑖𝑗 = A𝑖𝑘(X𝑘𝑗) (8)

If X𝑘𝑗 = ∞ then we have that 𝜎(X)𝑖𝑗 = ∞ which contradicts
(7) and so we have that:

X𝑘𝑗 ≠ ∞ (9)
If X𝑘𝑗 = Y𝑘𝑗 then we have that:

𝜎(X)𝑖𝑗 = A𝑖𝑘(X𝑘𝑗) (by 8)
= A𝑖𝑘(Y𝑘𝑗) (by assumption)
≥ 𝜎(Y)𝑖𝑗 (by defn. of 𝜎)

which contradicts (7) and so therefore:
X𝑘𝑗 ≠ Y𝑘𝑗 (10)

We can now prove (6) as follows:
𝐷(X,Y) ≥ 𝑑(X𝑘𝑗 ,Y𝑘𝑗) (by defn. of 𝐷)

= max(ℎ(X𝑘𝑗), ℎ(Y𝑘𝑗)) (by 10)
≥ ℎ(X𝑘𝑗) (by defn. of max)
> ℎ(A𝑖𝑘(X𝑘𝑗)) (by str. incr. & 9)
= ℎ(𝜎(X)𝑖𝑗) (by 8)
= max(ℎ(𝜎(X)𝑖𝑗), ℎ(𝜎(Y)𝑖𝑗)) (by 7)
= 𝑑(𝜎(X)𝑖𝑗 , 𝜎(Y)𝑖𝑗)) (by case 2)

which is the required result. □

Theorem 7. Given a routing algebra (𝑆, ⊕, 𝐹 , 0, ∞) such
that 𝑆 is finite and 𝐹 is strictly increasing over ⊕, then 𝛿
converges absolutely.

Proof. We can apply Theorem 1 directly as:
• 𝐷 is clearly bounded above by 𝐻 .
• Lemma 5 applied toX and 𝜎(X) gives us that 𝜎 is strictly

contracting on orbits.
• Lemma 2 therefore provides the existence of the fixed

point X∗, and Lemma 5 applied to X∗ and X gives us
that 𝜎 is contracting on this fixed point.

Hence 𝛿 converges absolutely over (𝑆, ⊕, 𝐹 , 0, ∞). □

4.2 Practical implications
Theorem 2 guarantees that distance-vector routing protocols
with finite, strictly increasing algebras are guaranteed to con-
verge from any starting state to the same final state, even in
the most unfavourable of asynchronous conditions. In partic-
ular, it implies that convergence would still be guaranteed if
complex conditional policies were added to distance-vector
protocols like RIP.

5 PATH VECTOR PROTOCOLS
In practice the finiteness condition proves restrictive as many
routing algebras of interest have an infinite set of routes. For
example even the shortest-path algebra, which solves perhaps
the most basic routing problem of all, uses the carrier set
ℕ. However remember that this theorem guarantees conver-
gence from any state. Shortest-path distance-vector protocols
on the other hand may experience count-to-infinity problems
when the starting state contains routes generated along paths
that do not exist in the current topology.

How do real routing protocols get around this? RIP artifi-
cially limits the maximum hop count to 16, hence ensuring
that the set 𝑆 is finite. However the most common approach
is that of path-vector protocols which track the paths along
which the routes are generated. Routes are then removed if
they contain a looping path. We show that for strictly increas-
ing algebras this is sufficient to guarantee that eventually the
protocol will always reach a finite subset of consistent routes
from which it can then converge. We will now define some
additional theory for talking about path-vector protocols.

5.1 Paths
A path is a defined to be a sequence of contiguous edges and
a path is simple if it never visits a node more than once. For
our purposes, we also consider an additional simple path ⊥,
which will represent the path of the invalid route. Note that in
order to deal with arbitrary starting states, we do not restrict
the set of paths to those in the current network topology.

Let 𝒫 be the set of simple paths. The 𝑤𝑒𝑖𝑔ℎ𝑡 ∶ 𝒫 → 𝑆 of
a path 𝑝 is defined as follows:

𝑤𝑒𝑖𝑔ℎ𝑡(𝑝) =
⎧⎪
⎨
⎪⎩

∞ if 𝑝 = ⊥
0 if 𝑝 = [ ]
A𝑖𝑗(𝑤𝑒𝑖𝑔ℎ𝑡(𝑞)) if 𝑝 = (𝑖, 𝑗) ∶∶ 𝑞

�

There is no standardised way that path-vector protocols
keep track of paths, and so we need an abstraction to hide
the implementation details. Therefore we assume that there
exists a projection function 𝑝𝑎𝑡ℎ ∶ 𝑆 → 𝒫 which takes a
route and returns the path the route was generated along.
Definition 14. A path algebra is a routing algebra equipped
with a 𝑝𝑎𝑡ℎ function that obeys the following properties:
P1 : 𝑥 = ∞ ⇔ 𝑝𝑎𝑡ℎ(𝑥) = ⊥
P2 : 𝑥 = 0 ⇒ 𝑝𝑎𝑡ℎ(𝑥) = [ ]

P3 : 𝑝𝑎𝑡ℎ(A𝑖𝑗(𝑟)) =
⎧⎪
⎨
⎪⎩

⊥ if 𝑖 ∈ 𝑝𝑎𝑡ℎ(𝑟)
⊥ if 𝑗 ≠ 𝑠𝑟𝑐(𝑝𝑎𝑡ℎ(𝑟))
(𝑖, 𝑗) ∶∶ 𝑝𝑎𝑡ℎ(𝑟) otherwise

�

Note that 𝑃 3 means that any increasing algebra with a 𝑝𝑎𝑡ℎ
function is automatically strictly increasing as it cannot be the
case thatA𝑖𝑗(𝑟) = 𝑟 as the paths are not equal. Going forwards
we therefore only require increasingness for path algebras.
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=
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Figure 2: The structure of the ultrametrics in the paper.

We feel that the use of the 𝑝𝑎𝑡ℎ function abstraction has
some significant advantages over the approach of Sobrinho [25],
who models the paths separately from the routing algebra.
Our abstraction can model operations such as AS prepend-
ing by simply adjusting the 𝑝𝑎𝑡ℎ function to strip out padded
ASs, whereas to do so in [25] would require adjusting the
proof itself. Similarly it is more difficult to describe route fil-
tering in [25] as by default the algebra does not have access
to the path information.
Definition 15. A route 𝑟 is consistent if it is equal to the
weight of the path along which it was generated, i.e.

𝑤𝑒𝑖𝑔ℎ𝑡(𝑝𝑎𝑡ℎ(𝑟)) = 𝑟

Every consistent route is uniquely specified by a simple path.
Therefore the set of consistent routes, 𝑆𝑐 , can be defined as:

𝑆𝑐 ≜ {𝑤𝑒𝑖𝑔ℎ𝑡(𝑝) ∣ 𝑝 ∈ 𝒫}

If 𝑝 and 𝑞 are consistent then so is 𝑝 ⊕ 𝑞 as ⊕ is selective.
Likewise if 𝑥 is consistent then P1 – P3 guarantee that A𝑖𝑗(𝑥)
is consistent as well. Therefore if every route in X is con-
sistent so is every route in 𝜎(X). Consequently the only way
inconsistent routes can be introduced into the routing state is
by a change to the network topology, for example if a node
along the route’s path changes its policy or a link along the
path is removed.

As 𝑆𝑐 is finite then from Theorem 2 we immediately have
that 𝛿 converges from any consistent state for strictly increas-
ing algebras. However if 𝑆 is infinite then are an infinite num-
ber of inconsistent states and so Theorem 2 does not guaran-
tee convergence from arbitrary starting states. In particular
the height function ℎ is ill-defined when 𝑆 is infinite.

5.2 An ultrametric over routes
When constructing an ultrametric over routes for path alge-
bras, the key insight is that, as 𝑆𝑐 is finite, we can reuse the
ultrametric from Section 4.1 when comparing two consistent
routes.

The remaining problem is to find a quantity that decreases
when applying 𝜎 to an inconsistent routing state. The key is
that any inconsistent route in 𝜎(X) must be an extension of
some inconsistent route in X. Therefore after each applica-
tion of 𝜎 the length of the shortest inconsistent path must
strictly increase. As all the paths are simple their length can-
not be greater than 𝑛 and so, in the absence of further topology
changes, all routes must become consistent.

The two separate ultrametrics can then be combined to
form a unified ultrametric over both inconsistent and consis-
tent routes (see Figure 2).

Inconsistent height of routes. With this in mind, the incon-
sistent height of a route can therefore be defined as follows:

ℎ𝑖(𝑥) ≜
{

1 if 𝑥 ∈ 𝑆𝑐

(𝑛 + 1) − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑡ℎ(𝑥)) otherwise
�

where 𝑛 is the number of nodes in the network.
All consistent routes have the minimum height 1, and the

maximum height is 𝑛 + 1 as we only consider simple paths.
To explicitly highlight the parallels with Section 4.1, we will
call this maximum height:

𝐻 𝑖 ≜ 𝑛 + 1

Inconsistent distance between routes. Define a new distance
function 𝑑𝑖 over 𝑆 as:

𝑑𝑖(𝑥, 𝑦) ≜ max(ℎ𝑖(𝑥), ℎ𝑖(𝑦))

Note that this is not a true ultrametric as it does not obey M1
(i.e. 𝑥 = 𝑦 ⇔ 𝑑(𝑥, 𝑦) = 0) but, as we will see, this require-
ment is unnecessary as it will never be used to compare two
equal elements.

Distance between routes. As 𝑆𝑐 is finite then 𝐻 and 𝑑
from Section 4.1 are defined over consistent routes. Let us
rename them 𝐻𝑐 and 𝑑𝑐 respectively.

A distance function over all routes can now be defined as:

𝑑(𝑥, 𝑦) =
⎧⎪
⎨
⎪⎩

0 if 𝑥 = 𝑦
𝑑𝑐(𝑥, 𝑦) if 𝑥 ≠ 𝑦 and {𝑥, 𝑦} ⊆ 𝑆𝑐

𝐻𝑐 + 𝑑𝑖(𝑥, 𝑦) if 𝑥 ≠ 𝑦 and {𝑥, 𝑦} ⊈ 𝑆𝑐
�

If the two routes are both consistent then we use 𝑑𝑐 to com-
pute the distance between them. However if either one is in-
consistent then we use 𝑑𝑖 instead. It is necessary to add 𝐻𝑐

to 𝑑𝑖 in order to get the contracting properties we will require
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later. In particular it ensures that the distance between incon-
sistent routes is always greater than the distance between con-
sistent routes. This is necessary as at some point the last in-
consistent route will be flushed from the network.

Clearly M1 and M2 are satisfied by 𝑑, but M3 is not imme-
diately obvious. In fact the triangle inequality does hold but
the proof does not provide any insights. Interested readers can
find the details in our Agda formalisation [6].
Distance function over states. As beforewe can now define

the distance function over routing states as:
𝐷(X,Y) = max

𝑖𝑗
𝑑(X𝑖𝑗 ,Y𝑖𝑗)

Unlike in Section 4.1, we cannot prove that 𝐷 is a strict con-
traction, and therefore concurrently prove that𝐷 is both strictly
contracting on orbits and contracting on its fixed point. Hence
it is necessary to prove both of them separately.

Lemma 8. If 𝜎(X)𝑖𝑗 is inconsistent then there exists a node
𝑘 such that X𝑘𝑗 is inconsistent and X𝑘𝑗 ≠ 𝜎(X)𝑘𝑗 .

Proof. As 𝜎(X)𝑖𝑗 is inconsistent it must be an extension of
some inconsistent route inX and therefore there exists a node
𝑙 such that 𝜎(X)𝑖𝑗 = A𝑖𝑙(X𝑙𝑗) and X𝑙𝑗 is inconsistent.

If X𝑙𝑗 ≠ 𝜎(X)𝑙𝑗 then 𝑙 is our required node. Otherwise
if X𝑙𝑗 = 𝜎(X)𝑙𝑗 then 𝜎(X)𝑙𝑗 is inconsistent. We can therefore
repeat the entire argument with 𝜎(X)𝑙𝑗 . However the length of
the path of 𝜎(X)𝑙𝑗 is strictly less than that of the path of 𝜎(X)𝑖𝑗
and so each time the length of the path strictly decreases and
therefore the argument must eventually terminate. □

Lemma 9. If the path algebra is increasing then 𝜎 is strictly
contracting on orbits over 𝐷.

Proof. We need to prove that for all X ≠ 𝜎(X):
𝐷(X, 𝜎(X)) > 𝐷(𝜎(X), 𝜎2(X))

Assume X ≠ 𝜎(X). Let 𝑖 and 𝑗 be the nodes such that entries
X𝑖𝑗 and 𝜎(X)𝑖𝑗 have the maximum 𝑑 distance between them,
then:

𝐷(X, 𝜎(X)) = 𝑑(X𝑖𝑗 , 𝜎(X)𝑖𝑗)
We then need to show that for all nodes 𝑝 and 𝑞:

𝑑(X𝑖𝑗 , 𝜎(X)𝑖𝑗) > 𝑑(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞) (11)
Case 1: X𝑖𝑗 = 𝜎(X)𝑖𝑗

Then by M1 we have that
𝐷(X, 𝜎(X)) = 𝑑(X𝑖𝑗 , 𝜎(X)𝑖𝑗) = 0

and therefore by M1 again that X = 𝜎(X) which contradicts
the assumption X ≠ 𝜎(X).

Case 2: X𝑖𝑗 and 𝜎(X)𝑖𝑗 are consistent.

Case 2.1: 𝜎(X)𝑝𝑞 = 𝜎2(X)𝑝𝑞

Then (11) holds immediately as:

𝑑(𝑋𝑖𝑗 , 𝜎(X)𝑖𝑗) = 𝑑𝑐(X𝑖𝑗 , 𝜎(X)𝑖𝑗)
> 0
= 𝑑(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞)

Case 2.2: 𝜎(X)𝑝𝑞 and 𝜎2(X)𝑝𝑞 are consistent.

Then (11) holds immediately as:

𝑑(𝑋𝑖𝑗 , 𝜎(X)𝑖𝑗) = 𝑑𝑐(X𝑖𝑗 , 𝜎(X)𝑖𝑗)
> 𝑑𝑐(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞)
= 𝑑(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞)

by applying Case 2 from Lemma 5 which proves that 𝑑𝑐 is
strictly contracting.

Case 2.3: 𝜎(X)𝑝𝑞 or 𝜎2(X)𝑝𝑞 is inconsistent.

In either case by Lemma 6 there exists a node 𝑘 such that
X𝑘𝑞 is inconsistent and X𝑘𝑞 ≠ 𝜎(X)𝑘𝑞 . This contradicts the
assumptions that 𝐷(X, 𝜎(X)) = 𝑑(X𝑖𝑗 , 𝜎(X)𝑖𝑗) whereX𝑖𝑗 and
𝜎(X)𝑖𝑗 are both consistent, as our definition of 𝑑 ensures that
the distance between consistent routes is always strictly less
than the distance between inconsistent routes.

Case 3: X𝑖𝑗 or 𝜎(X)𝑖𝑗 is inconsistent.

Case 3.1: 𝜎(X)𝑝𝑞 = 𝜎2(X)𝑝𝑞

Then (11) holds immediately as:

𝑑(𝑋𝑖𝑗 , 𝜎(X)𝑖𝑗) = 𝐻𝑐 + 𝑑𝑖(X𝑖𝑗 , 𝜎(X)𝑖𝑗)
> 0
= 𝑑(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞)

Case 3.2: 𝜎(X)𝑝𝑞 and 𝜎2(X)𝑝𝑞 are consistent.

Then (11) holds immediately as:

𝑑(𝑋𝑖𝑗 , 𝜎(X)𝑖𝑗) = 𝐻𝑐 + 𝑑𝑖(X𝑖𝑗 , 𝜎(X)𝑖𝑗)
> 𝑑𝑐(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞)
= 𝑑(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞)

and 𝑑𝑐 is bounded above by 𝐻𝑐

Case 3.3: 𝜎(X)𝑝𝑞 or 𝜎2(X)𝑝𝑞 are inconsistent.
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In this final case we have that

𝐷(X, 𝜎(X)) = 𝑑(X𝑖𝑗 , 𝜎(X)𝑖𝑗)
= 𝑑𝑖(X𝑖𝑗 , 𝜎(X)𝑖𝑗)
= max(ℎ𝑖(X𝑖𝑗), ℎ𝑖(𝜎(X)𝑖𝑗))

and therefore 𝐷(X, 𝜎(X)) is the height of the shortest incon-
sistent path in X and 𝜎(X). Likewise we have that:

𝑑(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞) = 𝑑𝑖(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞)
= max(ℎ𝑖(𝜎(X)𝑝𝑞), ℎ𝑖(𝜎2(X)𝑝𝑞))

and so 𝑑(𝜎(X)𝑝𝑞 , 𝜎2(X)𝑝𝑞) is the height of some inconsistent
route in 𝜎(X) or 𝜎2(X). However that route must be an exten-
sion of some inconsistent route in X or 𝜎(X) and therefore its
path is strictly longer than the shortest inconsistent path in X
and 𝜎(X). Hence the required inequality holds. □

Lemma 10. If the path algebra is increasing then 𝜎 is con-
tracting on its fixed point.

Proof. This proof has almost exactly the same structure as
Lemma 7. The only difference is in Case 2.3, where the con-
tradiction takes a slightly different formwhichwe now briefly
outline below. Interested readers can find the remaining de-
tails in our Agda formalisation [6].
X∗ cannot be inconsistent as otherwise applying 𝜎 would

increase the length of the shortest inconsistent path. Hence
X∗ is consistent. In Case 2.3 we have that:

𝐷(X∗,X) = 𝑑𝑐(X∗
𝑖𝑗 ,X𝑖𝑗) (12)

and so, as X∗ is consistent, X must be consistent as well.
Hence 𝜎(X) is consistent, which contradicts the assumption
of Case 2.3 that either X∗

𝑝𝑞 or 𝜎(X)𝑝𝑞 is inconsistent. □

Theorem 11. Given an path algebra (𝑆, ⊕, 𝐹 , 0, ∞) such
that 𝐹 is increasing over ⊕, then 𝛿 converges absolutely.

Proof. We can apply Theorem 1 directly as:
• 𝐷 is clearly bounded above by 𝐻𝑐 + (𝑛 + 1).
• 𝜎 is strictly contracting on orbits by Lemma 7.
• 𝜎 is contracting on its fixed point by Lemma 8.

Hence 𝛿 converges absolutely over (𝑆, ⊕, 𝐹 , 0, ∞). □

6 FORMALISATION IN AGDA
Every mathematical result in this paper, down to the most
trivial lemma, has been formalised in the theorem-proving
language Agda. This includes any theorems the paper uses
from Üresin & Dubois [27] and Gurney [15].

6.1 The advantages of formalisation
The formalisation allows our proofs to be checked by a com-
puter, and so we can assign a far higher degree of confidence
as to their correctness than usual. Even where we omit details
or use standard informal mathematical reasoning to improve
readability (e.g. Lemma 8), the proofs are backed by mathe-
matical arguments which are guaranteed to be fully rigorous.

Furthermore the act of formalisation itself was invaluable
in creating and shaping these proofs. For instance in the initial
pen-and-paper proof of Lemma 7, the unstructured way in
which we laid out the initial proof led us to overlook Case 2.3.
Only when formalising the result, did we notice that this case
remained unproven. This in turn led us to presenting the proof
in the much cleaner structure displayed in this paper.

The library of proofs is freely available [6] and is laid out
in a modular structure. Users only have to prove that the al-
gebraic implementation of their protocol obeys the strictly
increasing conditions in order to guarantee absolute conver-
gence. In the Section 7 we give an outline of how to define
such an algebra in Agda.We hope that the library’s extensible
nature means that it will be of use to the research community.

6.2 A small example
Agda is based on dependant type theory and patternmatching.
Another advantage of Agda is that it allows the use of unicode
symbols, and consequently the formal proofs can follow the
pen-and-paper versions much more closely.

Consider the distance function over routes 𝑑 ∶ 𝑆 → 𝑆 → ℕ
which we defined at the start of Section 4.1 as:

𝑑(𝑥, 𝑦) ≜
{

0 if 𝑥 = 𝑦
max(ℎ(𝑥), ℎ(𝑦)) otherwise

�

In Agda the definition of 𝑑 is almost identical:

d ∶ S → S → ℕ
d x y with x ≟ y
... | yes x=y = 0
... | no x≠y = h x ⊔ h y

Then to prove that 𝑑 obeys, for example, M2, we can use ex-
actly the same language constructs to write the proof:

d−sym ∶ ∀ x y → d x y ≡ d y x
d−sym x y with x ≟ y | y ≟ x
... | yes x=y | yes y=x = refl
... | yes x=y | no y≠x = contradiction (sym x=y) y≠x
... | no x≠y | yes y=x = contradiction (sym y=x) x≠y
... | no x≠y | no y≠x = ⊔−comm (h x) (h y)

The proof first checks whether 𝑥 equals 𝑦 and 𝑦 equals 𝑥. If
both the equalities hold then we need to prove that 0 = 0
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which is proven via refl which is a proof that anything is al-
ways equal to itself by the reflexivity of equality. If one equal-
ity holds but the other does not, then we have a contradiction
(using the symmetry of equality). If neither equality holds
then we need to prove that h x ⊔ h y is equal to h y ⊔ h x. This
is proved via ⊔−comm, a proof of the commutativity of the
max operator which is available in the Agda standard library.

7 A SAFE-BY-DESIGN ALGEBRA
We now present an example of how one could use our Agda li-
brary to develop a safe-by-design routing algebra. Our exam-
ple is a path-vector algebra that contains many of the features
of BGP such as local preferences, community values [4] and
conditional policies. These policies can perform operations
such as path-filtering and modifying local preferences and
communities. The conditions themselves are implemented us-
ing a simple language of predicates that includes the ability
to inspect communities. The algebra is a superset of the Strat-
ified Shortest Paths algebra [10].

However it differs from the algebra underlying today’s BGP
in two crucial ways. Firstly BGP allowsASs to hide their local
preferences and set them to arbitrary values upon importing
routes from other ASs. This violates increasing assumption.
Secondly the implementation of the MED attribute gives rise
to an ⊕ that is not associative [13].

Our algebra avoids these two issues by a) ignoring MED
and b) having policies that only allow local preference to in-
crease. We present our algebra only to give a practical exam-
ple of how our theory can be used, and to show that “most” of
the features of BGP are inherently safe. We are not presenting
it as a practical solution to these two problems in real-world
BGP. We discuss the open question of whether an algebra
with hidden information can be increasing in Section 8.2.

As our algebra is increasing, our Agda implementation of
Theorem 3 guarantees that it any protocol based on it is safe-
by-design (i.e. it is impossible to write any policy that will
interfere with convergence).

7.1 The algebra
A route is defined as following:

data Route ∶ Set where
invalid ∶ Route
valid ∶ LPref → CommunitySet → SimplePath n → Route

i.e. there exists an invalid route, and all other routes have a
local preference, a set of communities and a simple path.

The trivial route, ∞, is the route “valid 0 ∅ []” and the
invalid route, 0, is “invalid”.

The projection function 𝑝𝑎𝑡ℎ from routes to simple paths
required by path algebras can be defined as:

path ∶ Route → SimplePath n
path invalid = ⊥
path (valid _ _ p) = p

The Agda definition of ⊕, the operation for choosing be-
tween routes, is a little too long for this paper. Interested read-
ers may consult the Agda code [6]. However 𝑥 ⊕ 𝑦 follows
the following decision procedure:
(1) If 𝑥 or 𝑦 is invalid return the other.
(2) else if the level of one of 𝑥 or 𝑦 is strictly less than the

other return that route.
(3) else if the length of the path of one of 𝑥 or 𝑦 is strictly

less than the other return that route.
(4) else break ties by a lexicographic comparison of paths.
We now turn to defining the set of edge weights 𝐹 . As we

are aiming for a safe-by-design protocol, all functions in 𝐹
must be increasing with respect to ⊕.

We start by defining a simple yet expressive language for
constructing conditions that can be used by our policy lan-
guage to make decisions.
data Condition ∶ Set where
and ∶ Condition → Condition → Condition
or ∶ Condition → Condition → Condition
not ∶ Condition → Condition
inPath ∶ Node → Condition
inComm ∶ Community → Condition
lprefEq ∶ LPref → Condition

We next define a policy language as follows:
data Policy ∶ Set1 where
reject ∶ Policy
incrPrefBy ∶ ℕ → Policy
addComm ∶ Community → Policy
delComm ∶ Community → Policy
compose ∶ Policy → Policy → Policy
condition ∶ Condition → Policy → Policy

The semantics of each type of policy are defined by the func-
tion that applies policies to routes:
apply ∶ Policy → Route → Route
apply _ invalid = invalid
apply reject _ = invalid
apply (incrPrefBy x) (valid l cs p) = valid (l + x) cs p
apply (addComm c) (valid l cs p) = valid l (add c cs) p
apply (delComm c) (valid l cs p) = valid l (remove c cs) p
apply (compose p q) r = apply q (apply p r)
apply (condition c p) r =

if (evaluate c r) then (apply p r) else r
Since we cannot decrease a route’s local preference, it is not
possible to define a non-increasing policy.

12



We define the set of edge weight functions as:
𝐹 = {𝑓𝑖,𝑗,𝑝𝑜𝑙 ∣ ∀𝑖, 𝑗, 𝑝𝑜𝑙}

where nodes 𝑖 and 𝑗 are the source and destination of the edge
and 𝑝𝑜𝑙 is a Policy. The function 𝑓𝑖,𝑗,𝑝𝑜𝑙 is defined as follows:
f ∶ (Node × Node × Policy) → Route → Route
f _ invalid = invalid
f (i , j , pol) (valid x cs p) with (i , j) ⇿? p | i ∉? p
... | no ¬ij⇿p | _ = invalid
... | _ | no i∈p = invalid
... | yes ij⇿p | yes i∉p =

apply pol (valid x cs ((i , j) ∷ p ∣ ij⇿p ∣ i∉p))
where (i , j) ⇿? p tests if the edge (𝑖, 𝑗) is a valid extension
of path 𝑝 (i.e. if 𝑗 = 𝑠𝑟𝑐(𝑝)), and i ∉? p tests whether or not 𝑖
already exists in 𝑝 (i.e. if the resulting path would loop).

The above definitions ensure that the algebra
(Route, ⊕, F, valid 0 ∅ [], invalid)

satisfies all the requirements of an increasing path algebra
as defined in Sections 2.1 & 5.1. For formal proofs of these
properties see the Agda formalisation [6]. Hence our imple-
mentation of Theorem 3 in Agda guarantees that this protocol
converges from any state to a unique solution even in the pres-
ence of message loss, reordering and duplication.

There are other features of BGP that are safely increasing
but, for space reasons, are not included in this model. For
example AS path prepending would be possible to add with
minor tweaks to the 𝑝𝑎𝑡ℎ function and the policy language.

8 OPEN QUESTIONS
8.1 Convergence time
The rate of convergence of 𝜎 for increasing path algebras
is still poorly understood. Consider a network of 𝑛 nodes.
With distributive policies, we know that in the worst case
𝑂(𝑛) synchronous iterations of 𝜎 are required to reach a fixed
point [1, 9]. In our upcoming work [5], we prove a much
stronger upper bound of 𝑂(𝑛2), and show that this bound is
tight by exhibiting an algebra and a family of networks that
require 𝑂(𝑛2) synchronous iterations to converge.

However it appears that not all non-distributive, increas-
ing algebras require 𝑂(𝑛2) iterations (e.g. the shortest-widest-
paths algebra). We suspect that a careful analysis of policy
language features might be able to tease apart distinct classes
with respect to worst-case convergence time.

8.2 Hidden information
In the algebra described in Section 7 the local preference at-
tribute is not deleted when exporting a route, unlike in (exter-
nal) BGP. This raises a more general issue for routing proto-
cols that allow information to be hidden. It is an open question

as to whether it is possible to have increasing algebras with
hidden information without requiring global coordination.

Ensuring increasing policies in today’s BGP may require
communicating lost information with some other mechanism
such as community values. Of course only the relative rank-
ing of local preference values assigned within an AS matter.
For example one AS might use a local preference of 100 for
its most preferred routes, while another could use 2000. In
this context can we ensure increasing policies using only bi-
lateral agreements between neighbouring networks or does it
truly require global coordination? If the latter, then a political,
rather than a technical solution is required.

8.3 Verification of data-center policies
BGP is widely used today to implement (private) connectiv-
ity within and between data-centers [20]. In such an environ-
ment the network architects have total control of the global
topology and therefore hidden information is not an issue. Yet
even here we have witnessed the use of conditional policies,
combined with filtering and the manipulation of local prefer-
ence on routes. Perhaps tools such as Propane [2] could be
extended to either ensure that all policies are strictly increas-
ing, or at the very least provide warnings when they are not?

8.4 Formalising bisimulation
As discussed in Section 1.3 there are trade-offs between gen-
erality and implementation details. However some more op-
erations which don’t immediately fit into our formalism can
be addressed using bisimulation.

An algebra 𝐴 is bisimilar to an algebra 𝐵 if the behaviour
of 𝐴’s 𝜎 is indistinguishable from the behaviour of 𝐵’s 𝜎.
Therefore if 𝐴 converges absolutely, then so does 𝐵. We can
use this to prove the convergence of some algebras that don’t
technically fulfil the earlier definitions of path algebras, by
exhibiting a bisimilar path algebra.

For example, a path algebra assumes the existence of the
𝑝𝑎𝑡ℎ function, that provides the router-level path a route was
generated along. However in BGP, routes only store the AS
level path, and perhaps the router-level path of the current
AS. At first glance this would appear to preclude applying
Theorem 3 to algebras with hierarchical paths.

However imagine a version of a BGP-like protocol that did
not discard the router level path upon exiting an AS, but also
did not let policies make decisions based on this extra infor-
mation. This algebra has a 𝑝𝑎𝑡ℎ function and therefore satis-
fies Theorem 3, and is clearly bisimilar to the original algebra
that did discard router-level paths. Hence the original algebra
converges as well. This, and similar arguments, have not yet
been formalised.
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