
Integrated speaker-adaptive speech synthesis

Moquan Wan, Gilles Degottex, Mark J.F. Gales

Cambridge University Engineering Department, UK
mw545@cam.ac.uk, gad27@cam.ac.uk, mjfg@eng.cam.ac.uk

Abstract
Enabling speech synthesis systems to rapidly adapt to sound
like a particular speaker is an essential attribute for building
personalised systems. For deep-learning based approaches,
this is difficult as these networks use a highly distributed rep-
resentation. It is not simple to interpret the model parame-
ters, which complicates the adaptation process. To address this
problem, speaker characteristics can be encapsulated in fixed-
length speaker-specific Identity Vectors (iVectors), which are
appended to the input of the synthesis network. Altering the
iVector changes the nature of the synthesised speech. The chal-
lenge is to derive an optimal iVector for each speaker that en-
codes all the speaker attributes required for the synthesis sys-
tem. The standard approach involves two separate stages: es-
timation of the iVectors for the training data; and training the
synthesis network. This paper proposes an integrated training
scheme for speaker adaptive speech synthesis. For the iVector
extraction, an attention based mechanism, which is a function
of the context labels, is used to combine the data from the tar-
get speaker. This attention mechanism, as well as nature of the
features being merged, are optimised at the same time as the
synthesis network parameters. This should yield an iVector-like
speaker representation that is optimal for use with the synthe-
sis system. The system is evaluated on the Voice Bank corpus.
The resulting system automatically provides a sensible attention
sequence and shows improved performance from the standard
approach.
Index Terms: speech synthesis, iVector, integrated, adaptation,
attention mechanism

1. Introduction
Adaptive speech synthesis addresses the task of generating
speech of an arbitrary speaker’s voice [1], and for deep neu-
ral network acoustic models, this is a challenging task due to the
large number of parameters and connections which are not inter-
pretable and therefore hard to adapt. To address this issue, one
standard approach is to encapsulate speaker characteristics in
fixed-length speaker-specific Identity Vectors, or iVectors, and
appending an iVector to the input of the acoustic model alters
the nature of the output to represent a particular speaker, with-
out adapting the entire acoustic model [2][3]. There are previ-
ous studies on other adaptation methods, such as output feature
transformation and learning hidden unit contributions (LHUC)
[4]. While they to some extent outperform iVector-based adap-
tation, they suffer from a large number of adaptation parame-
ters, while the dimension of the iVector is significantly lower,
which is critical for intepretation and rapid adaptation. In addi-
tion, iVector-based adaptation can be easily applied to a range
of deep acoustic models, such as feed-forward deep neural net-
work (DNN), recurrent neural network (RNN), WaveNet [5] or
Char2Wav [6]. Therefore, in this work, the focus is to improve
the iVector representation for better adaptive synthesis perfor-
mance.

The traditional approach of iVector-based adaptation in-
volves two distinct stages. First an auxiliary iVector extrac-
tion model is optimised and one iVector is estimated for each
speaker, and then the iVectors are appended to correspond-
ing inputs for acoustic model training. One of the simplest
form of iVector is one-hot speaker code, and many have ap-
plied this form of iVectors for adaptation successfully [5][7][8].
The problem with this form is that the speaker codes do not
represent any speaker characteristics, and the burden of rep-
resenting speaker variations dictates a much powerful and ex-
pensive acoustic model. Also it is difficult to adapt to a new
speaker, since the speaker code cannot be derived from new
adaptation data. Another form of iVector is DNN-based d-
vector [9]. In this framework, an auxiliary DNN is trained to
classify each frame to the corresponding speaker, and the d-
vector of a speaker is the average of the activations of the last
hidden layer (or a bottle-neck hidden layer) across all frames
from that speaker. The d-vector solves the problem of adapt-
ing to a new speaker, but it suffers a similar problem as speaker
codes, that the target outputs of the auxiliary DNN do not repre-
sent any speaker characteristics, since they are simply one-hot
vectors. Therefore, in this work, the choice of iVector is Gaus-
sian Mixture Model (GMM) based i-vector [10][11]. In this
framework, a Universal Background Model (UBM) is trained
on the acoustic data of all speakers. Next, one GMM is trained
for each speaker. The trainings of GMMs are unsupervised,
and the mixture components are distributed based on acoustic
characteristics, and they are more informative than the arbitrary
one-hot speaker codes. Finally, each i-vector is estimated as a
low-dimensional compact representation of the difference be-
tween the speaker-specific GMM and the UBM. The i-vectors
span a space of speaker characteristics, and it is easy to interpo-
late or interpret in this speaker space. It is also easy to estimate
a new i-vector for a new speaker, to train a new speaker-specific
GMM, given adaptation data and UBM.

However, in all the above-mentioned approaches and many
others, there are three major shortcomings:

1. iVector extraction process is independently trained first, fol-
lowed by the training of the acoustic model for speech gen-
eration, and there are two separate training criteria that can
result in two sub-optimal systems. The iVector representa-
tions are extracted for generic speaker adaptation tasks, and
not all elements in an iVector are equally important for the
specific task of adaptive speech synthesis, thus the iVectors
can be less efficient.

2. iVector extraction process takes all frames of data as equally
important, where actually a large portion of the data do
not represent the distinctive characteristics of the speakers.
Therefore, the iVectors may not effectively distinguish the
speakers;

3. iVector extraction process makes use of the acoustic data
only, since it is commonly believed that most of the speaker

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/189162872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

characteristics are encapsulated in the acoustic data; how-
ever, the corresponding linguistic data (the contextual la-
bels) are wasted, while they can provide additional infor-
mation about speaker characteristics, or they can assist in
weighing different frames of acoustic data in iVector ex-
traction process.

Therefore, in this work, two improvements are proposed for
these shortcomings, an integrated training framework for a uni-
fied training criteria, and an attention mechanism to automati-
cally select the most speaker-representative parts of speech for
iVector extraction. For the attention mechanism, the attentions
are derived from the linguistic features. Studies have shown that
speaker variability in vowels is more significant and consistent
as compared to consonants [12], and we expect the attention
mechanism to automatically emphasise more in the vowels.

2. iVector-based Adaptive Speech Synthesis

Figure 1: iVector-based adaptive speech generation

For iVector-based adaptive speech synthesis systems, at
generation stage, a speaker-specific iVector is appended to the
linguistic input of the acoustic model, in order to generate
acoustic output of the corresponding speaker. For a frame, a
mini-batch or an utterance, the speech generation process is as
follows:

ŷ
(s)
t = F

(
xt,λ

(s),θA
)

(1)

Here xt is the linguistic input, λ(s) is the iVector of speaker
s, and ŷ(s)

t is the predicted speaker-specific acoustic output.
F (·) represents the acoustic model with parameters θA. (Fig.1)

In this section, three different iVector extraction methods,
their corresponding training processes and the dependencies are
compared.

2.1. Independent iVector Extraction

Figure 2: Independent iVector extraction-based adaptive speech
generation, with 2 distinct stages

In previous studies [4][11], the iVector extraction model is
trained independently first before the training of the acoustic
model (left of Fig.2). Also at iVector extraction stage, the input
of the extraction process includes only the acoustic data:

λ(s) = G
(
Y (s),θIy

)
(2)

Here Y (s) = {y(s)

1:T (s)} represents all acoustic data of
speaker s, and λ(s) is the iVector of speaker s. G (·) represents
an auxiliary model with parameters θIy , and it is optimised
completely before the training of the acoustic model, with only
dependency on {Y (s)}.

After the auxiliary model is optimised and the iVectors ex-
tracted, the acoustic model θA can be trained with the following
gradient expression:

∂E
∂θA

=
1∑

∀s T
(s)

∑
∀s

T (s)∑
t=1

∂E(s)t

∂θA

∣∣∣∣
λ(s),xt,y

(s)
t

(3)

Here E represents the overall cost function to minimise, and
E(s)t is mini-batch cost. In our experiments, the training criteria
is mean-square-error (MSE):

E =
1∑

∀s T
(s)

∑
∀s

T (s)∑
t=1

||ŷ(s)
t − y

(s)
t ||

2

=
1∑

∀s T
(s)

∑
∀s

T (s)∑
t=1

E(s)t

(4)

For our baseline model, the auxiliary model is standard
GMM-based i-vector extraction method [10][11], where the
auxiliary model is trained to maximise the probability of all the
data across different speakers, with the following constraint: for
each speaker-dependent GMM, the mean supervector µ(s) of
speaker s has the following expression:

µ(s) ≈ µUBM + Tλ(s), λ(s) ∼ N (0, I) (5)

where µUBM is the mean supervector of speaker-independent
UBM, and T is the speaker-independent total variability ma-
trix. When the covariance matrices are constrained to identity
matrices, these two parameters and the i-vectors are the model
parameters to optimise. The optimisation process includes Ex-
pectation Maximisation (EM), which is not really compatible
with stochastic gradient descent (SGD) for back-propagation,
and thus not for the integrated frameworks with deep acoustic
models.

2.2. Integrated iVector Extraction

The first improvement is to fine-tune and optimise the auxil-
iary model θIy alongside the training of the acoustic model θA,
as the independently extracted iVectors is designed for generic
speaker adaptation tasks, and they may not efficiently encap-
sulate speaker characteristics that are more relevant for speech
synthesis tasks, specifically.

Therefore, while the iVector extraction still uses all the
acoustic data (Eq.2), the training of θIy depends on the cur-
rent state of θA as well, and the following is the expression of
the partial derivative:

Figure 3: Integrated iVector extraction-based adaptive speech
generation

∂E
∂θIy

=
1∑

∀s
T (s)

∑
∀s

T (s)∑
t=1

∂E(s)t

∂θIy

∣∣∣∣
θA,xt,y

(s)
t ,Y (s)

(6)

=
1∑

∀s
T (s)

∑
∀s(∂λ(s)

∂θIy

∣∣∣∣
Y (s)

) T (s)∑
t=1

(
∂E(s)t

∂λ(s)

∣∣∣∣
θA,xt,y

(s)
t

) (7)

The partial derivative w.r.t. θIy is propagated via λ(s)

(Fig.3), and for each mini-batch, the dependencies of this partial
derivative include {Y (s),θA,xt,y

(s)
t }.

The expression of gradient of the acoustic model θA, given
λ(s), is the same as Eq.3.

For our integrated framework, the auxiliary model is a deep
network, and both models can be jointly optimised using SGD
and back-propagation. Also, since the number of frames / utter-
ances from each speaker varies, an averaging layer is added on
top to handle sequences with various lengths T (s), to find the
mean of some output vectors:

λ(s) = G
(
Y (s),θIy

)
= G

(
{y(s)

1:T (s)},θIy
)

=
1

T (s)

T (s)∑
τ=1

GIy
(
y(s)
τ ,θIy

)
(8)

In our work, the last layer of GIy(·) is a linear layer, since the
GMM-based i-vectors follow normal distribution and have no
range limit.

2.3. Integrated iVector Extraction with Attention Mecha-
nism

Next we introduce the attention mechanism, to automatically
select the more representative parts of speech for iVector extrac-
tion, as a large portion of the acoustic data do not represent the
distinctive characteristics of the speakers. The attentions are de-
rived from the linguistic features i.e. the contextual labels, and
the additional information could assist in the selection of the
most representative parts of acoustic data. For instance, vowels
are naturally more speaker-representative than consonants, and
voiced regions are more representative than unvoiced regions. It
is expected that these could be automatically derived from the
linguistic data.

Figure 4: Integrated iVector extraction-based adaptive speech
generation, with attention mechanism (top right)

Now, the iVector extraction uses all the acoustic data and
all the linguistic data:

λ(s) = G
(
Y (s),X(s),θI

)
(9)

= G
(
Y (s),X(s), {θIy,θIx}

)
(10)

And we use θIy to denote the parameters of the auxiliary vector
extraction part, with acoustic data Y (s) as its input; and θIx to
denote the parameters of the attention mechanism, with linguis-
tic dataX(s) as its input, respectively.

The expression of partial derivative w.r.t. θIy is very sim-
ilar to Eq.7, with the additional dependencies on the attention
mechanism and its input:

∂E
∂θIy

=
1∑

∀s
T (s)

∑
∀s

T (s)∑
t=1

∂E(s)t

∂θIy

∣∣∣∣
θA,xt,y

(s)
t ,Y (s),X(s),θIx

=
1∑

∀s
T (s)

∑
∀s

(11)

(∂λ(s)

∂θIy

∣∣∣∣
Y (s),X(s),θIx

)
T (s)∑
t=1

(
∂E(s)t

∂λ(s)

∣∣∣∣
θA,xt,y

(s)
t

)

For each mini-batch, the dependencies of this partial deriva-
tive include {Y (s),X(s),θIx,θA,xt,y

(s)
t }. The gradient ex-

pression of θIx is also very similar:

∂E
∂θIx

=
1∑

∀s T
(s)

∑
∀s

T (s)∑
t=1

∂E(s)t

∂θIx

∣∣∣∣
θA,xt,y

(s)
t ,X(s)

=
1∑

∀s T
(s)

∑
∀s

(12)(∂λ(s)

∂θIx

∣∣∣∣
X(s),Y (s),θIy

)
T (s)∑
t=1

(
∂E(s)t

∂λ(s)

∣∣∣∣
θA,xt,y

(s)
t

)
For each mini-batch, the dependencies of this partial deriva-

tive include {Y (s),X(s),θIy,θA,xt,y
(s)
t }.

For our integrated framework, since the iVector takes the
form of an average (Eq.8), the attention model can provide the
weights for the averaging (Fig.4):

λ(s) =

T (s)∑
τ=1

α(s)
τ GIy

(
y(s)
τ ,θIy

)
(13)

subject to α(s)
τ ∈ [0, 1];

T (s)∑
τ=1

α(s)
τ = 1

To satisfy these constraints, a normalising layer is applied
on top of the last layer of the attention extraction model:

α(s)
τ =

GIx
(
x

(s)
τ ,θIx

)
∑T (s)

τ ′=1 GIx
(
x

(s)

τ ′ ,θIx
) (14)

In our work, the last layer of GIx(·) is a sigmoid layer.

3. Training of the Models
This section discusses how to train the various model compo-
nents in each framework, the dependencies in the training of
each and the pre-trainings involved.

3.1. Independent iVector Extraction

The training of the independent iVector extraction auxiliary
model depends only on {Y (s)}. After independent iVector
extraction, since the only parameters to optimise are acous-
tic model parameters θA, training is quite straightforward with
stochastic gradient descent (SGD) (Eq.3). The gradient depen-
dencies include {λ(s),xt,y

(s)
t }.

3.2. Integrated iVector Extraction

The gradient dependencies of the acoustic model θA include
{λ(s),xt,y

(s)
t }, same as above. The gradient dependencies of

the auxiliary model θIy include {Y (s),θA,xt,y
(s)
t }, and it is

practically challenging and numerically unnecessary to load all
acoustic data to form a gigantic Y (s) for the estimation of λ(s).
Therefore, for each mini-batch of {xt,y(s)

t }, P utterances are
randomly drawn for a noisy estimation of λ(s) and gradients,
and the process is listed in Algorithm 1.

For the initialisation of the model, we found that pre-
training both model components, the acoustic model θA and the
auxiliary model θIy , can largely improve the performance and
convergence speed. The pre-training of θA is simply the incom-
pletely trained baseline model (e.g. the best validation score in
the warm-up phase of training of baseline), and the pre-training

Algorithm 1: Integrated training procedure
Initialization: random initialisation or load pre-trained

model components;
for each epoch do

for each mini-batch (utterance) in training data, do
load linguistic and acoustic data

(
x

(s)
t ,y

(s)
t

)
;

identify the speaker s;
draw P utterances of the same speaker;

(exclude current and held-out utterances);
if attention mechanism applied then

concatenate P utterances⇒
(
X(s),Y (s)

)
;

update all model parameters, Eq.3, 12, 13;
end
else

concatenate P utterances⇒
(
Y (s)

)
;

update all model parameters, Eq.3, 7;
end

end
end

of θIy has a cost function of the mean-square-error between the
predicted iVectors and the independently extracted iVectors for
the baseline model:

Epre =
1∑

∀s T
(s)

∑
∀s

T (s)∑
t=1

||λ(s)
t − λ

′(s)||2 (15)

λ
(s)
t is one instance of noisy estimate of iVector s using P utter-

ances, and λ′(s) is the independently extracted iVector for the
baseline model.

3.3. Integrated iVector Extraction with Attention Mecha-
nism

The gradient dependencies of the acoustic model θA include
{λ(s),xt,y

(s)
t }, same as above. The gradient dependen-

cies of the auxiliary model parameters {θIy,θIx} include
{Y (s),X(s),θA,xt,y

(s)
t }, and the training process is same as

before, Algorithm 1.
For the initialisation of the model, the pre-trained acoustic

model θA and the auxiliary vector extraction part θIy are the
incompletely trained components (best validation score in the
warm-up phase) from the training of the integrated framework
above. The pre-training of θIx uses the same cost function of
Eq.15, with bootstrapped θIy .

3.4. Speech Generation for an Unseen Speaker

For the integrated frameworks, to generate speech for an unseen
speaker, first, all (or a subset of) available utterances of speaker
s are concatenated for the estimation of λ(s) using the auxil-
iary model. Next, λ(s) and the linguistic features of the target
sentence are used for the generation of acoustic features (Eq.1).

For training process, training utterances (not held-out) are
given to both the acoustic model and the auxiliary model. For
validation process, previously unseen (held-out) utterances are
given to the acoustic model, and previously seen (training) ut-
terances are used for iVector estimation.

Figure 5: phone sequence (black words and green boundaries), attention trajectory (blue) and vuv trajectory (red) for held-out utter-
ance: ”We also need a small plastic snake”

4. Experiments
4.1. Configurations

In the experiments, 189 speakers from the Voice Bank corpus
[13] are chosen for training, with on average ∼ 400 utterances
for each speaker, excluding 40 common held-out utterances. 10
speakers each are chosen for validation and testing, and the 40
previously unseen utterances from these 20 speakers are used
for validation and testing, respectively. Note that the estima-
tions of the iVectors of the validation and testing speakers do
not use these 40 unseen utterances, but the rest.

We denote the model with independently extracted iVec-
tor as ”baseline”, the model with integrated iVector extraction
as ”IIE”, and the model with integrated iVector extraction and
attention mechanism as ”IIEA”. The GMM-based baseline i-
vectors are extracted using ALIZE toolkit [14].

The acoustic features for iVector extraction consists of
60D mel-cepstral coefficients (MCC), 25D band-aperiodicities
(BAP) and linear-interpolated log F0, and their delta and delta-
delta dynamic terms (total 258D). Voiced-unvoiced binaries
(VUV) are not included for iVector extraction, but is included
as the output of the acoustic model (total 259D). The acoustic
features are extracted with STRAIGHT vocoder [15].

The linguistic input for both attention mechanism and the
acoustic model consists of 592 binary linguistic features and 9
numerical features (total 601D). The iVectors are appended to
every frame of the linguistic input.

We use Merlin [16], Theano [17] and Lasagne [18] to build
the deep neural networks for the integrated adaptive speech
generation frameworks. The speech generation acoustic model
(bottom-right of Fig.4) θA is a feed-forward DNN with a linear
output layer of size 259 on top of 6 tanh layers of size 1536
each. The auxiliary model in integrated frameworks θIy is a
DNN with a linear output layer on top of a tanh layer of the
same size, either 32 or 128. The attention mechanism θIx is a
DNN with a normalising output layer on top of a tanh layer of
size 16 and a sigmoid layer of size 1. P is set to 20 for opti-
mal speed and performance. The optimiser is ADAM [19] with
decaying learning rate.

4.2. Interpret Attention

In our experiments, the attention tends to peak within the voiced
regions (see Fig.5, where VUV=1). The attention also tends
to peak within the vowels, which fits our hypothesis that these
regions are more representative of speaker characteristics. On
the other hand, the attention mechanism can be more selective
than a simple VUV binary decision or a simple vowel/consonant
binary decision, and it is optimised automatically with the same

cost function on the final acoustic output. Therefore, we should
expect IIEA to generate a more representative set of iVectors
specifically for adaptive speech synthesis.

4.3. Objective Evaluations

Next we analyse in more details for iVector size 32 and 128.

Model MCD BAP F0 F0 VUV
(dB) (dB) RMSE CORR error

baseline 7.002 2.285 32.027 0.813 6.007%
IIE 6.836 2.256 30.817 0.821 6.028%

IIEA 6.852 2.249 30.150 0.829 6.016%
Table 1: Objective Validation measures, iVector size 32

In Table 1, IIE outperforms baseline in every aspect except
VUV error rate; IIEA outperforms IIE in every aspect except
Mel-cepstral Distortion (MCD). These suggest that both the in-
tegrated framework and the attention mechanism improve the
iVector representation for better performance in adaptive speech
synthesis.

Model MCD BAP F0 F0 VUV
(dB) (dB) RMSE CORR error

baseline 6.703 2.229 30.463 0.836 5.924%
IIE 6.601 2.220 30.017 0.831 5.770%

IIEA 6.615 2.222 29.889 0.833 5.799%
Table 2: Objective Testing measures, iVector size 128

In Table 2, IIE outperforms baseline in every aspect ex-
cept F0 correlation; however, IIEA only outperforms IIE in F0
RMSE and F0 Correlation. The degradation is largely because
the attention mechanism is difficult to train, and it is possible but
maybe laborious to improve the performance of IIEA through
more extensive hyper-parameter tuning. Nonetheless, as men-
tioned before, attention mechanism provides sensible and inter-
pretable results (Fig.5), which are promising to progress further.

4.4. Subjective Evaluations

For subjective evaluations, we focus on two aspects, the natural-
ness of speech and the similarity to the original speaker. Each
listener taking the test assessed the 3 pairs of model combina-
tions for 8 random utterances among ∼400 held-out test utter-
ances. For the similarity tests, the original utterance was given
as the reference. Workers from Amazon Mechanical Turk were
asked to take the test for a small reward [20][21].

For CMOS results, paired t-test is used to examine the sig-
nificance between models, with solid brackets mean p-value<
0.001, dashed brackets means p-value< 0.01, and dotted brack-
ets means p-value< 0.05.

First we look at iVector size 128, since their objective re-
sults are generally better. In naturalness test (Fig.6), in terms
of both CMOS and percentage preference, IIEA outperforms
IIE, which outperforms baseline, as we have expected. Since
the configuration of the acoustic model remains the same, this
shows that both integrated training and attention mechanism
improves the iVector representations of the speakers, for better
performance in speech synthesis tasks, as compared to generic
iVector representation.

Figure 6: naturalness preference test results, iVector size 128;
32 listeners took the test

Figure 7: similarity preference test results, iVector size 128;
33 listeners took the test

In similarity test (Fig.7), in terms of CMOS, again IIEA
outperforms IIE, which outperforms baseline. In terms of per-
centage preference, IIE outperforms IIEA, but both have much
smaller (<19%) and very similar values (±0.4%), and percent-
age of no-preference is very high (47%), thus there is no suffi-
cient evidence that IIEA has significant worse performance than
IIE in similarity tests, while both outperform the baseline with
relatively large improvements.

Next we look at iVector size 32, and interestingly, the trend
of size 128 reversed, that this time IIE outperforms IIEA in nat-
uralness (Fig.8), and IIEA outperforms IIE in similarity (Fig.9).
Still, both IIE and IIEA outperforms the baseline in CMOS and
percentage preference in all cases, and the difference between
IIE and IIEA is not very significant, much less than the differ-
ence between either of them and the baseline.

Further analysis is required to fully understand the perfor-
mance of the models in different configurations and tests, for an
informed decision of which to choose given different tasks and
priority objectives.

Figure 8: naturalness preference test results, iVector size 32;
34 listeners took the test

Figure 9: similarity preference test results, iVector size 32;
31 listeners took the test

5. Conclusions
In this work, we introduced integrated training framework and
attention mechanism to improve the representativeness of iVec-
tor extraction for adaptive speech synthesis specifically, and we
proposed some simple but effective auxiliary models for each
components of the framework. They show improved perfor-
mance, in both objective and subjective evaluations, compared
to the standard approach GMM-based i-vector system, and the
attention mechanism yields sensible and promising results.

In addition, our proposed integrated iVector extraction with
attention mechanism can be applied to other forms of deep
acoustic models for speaker adaptation as well. While in this
work, the acoustic model is a simple feed-forward DNN, with
contextual labels as inputs and vocoder parameters (and deltas)
as outputs, it is very straightforward to apply our framework
to an RNN acoustic model, to WaveNet [5] for waveform
level synthesis by replacing the current one-hot vector, or to
Char2Wav [6] for a complete end-to-end adaptive speech syn-
thesis system.

In the future, we would like to investigate more compli-
cated models, such as an RNN-based attention mechanism, or
a WaveNet-like acoustic model. We would also like to investi-
gate the effect of the amount of data for rapid adaptation, and
the effect of iVector size for potential small-size iVector-based
controllable synthesis.

6. Acknowledgements
The research for this paper was jointly supported by EPSRC In-
ternational Doctoral Scholarship, reference number 10348827;
St. John’s College Internal Graduate Scholarship; the European
Unions Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement No 655764;
and EPSRC grant EP/I031022/1 (Natural Speech Technology).

7. References
[1] K. Tokuda, H. Zen, and A. W. Black, “An HMM-based speech

synthesis system applied to english,” pp. 227–230, 2002.

[2] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant anal-
ysis for inferences about identity,” pp. 1–8, 2007.

[3] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector
Length Normalization in Speaker Recognition Systems.” vol.
2011, pp. 249–252, 2011.

[4] Z. Wu, P. Swietojanski, C. Veaux, S. Renals, and S. King, “A study
of speaker adaptation for DNN-based speech synthesis.” pp. 879–
883, 2015.

[5] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “WaveNet: A generative model for raw audio,”
CoRR abs/1609.03499, 2016.

[6] J. Sotelo, S. Mehri, K. Kumar, J. F. Santos, K. Kastner,
A. Courville, and Y. Bengio, “Char2Wav: End-to-end speech syn-
thesis,” 2017.

[7] H.-T. Luong, S. Takaki, G. E. Henter, and J. Yamagishi, “Adapting
and controlling DNN-based speech synthesis using input codes,”
in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on. IEEE, 2017, pp. 4905–4909.

[8] N. Hojo, Y. Ijima, and H. Mizuno, “An Investigation of DNN-
Based Speech Synthesis Using Speaker Codes.” in INTER-
SPEECH, 2016, pp. 2278–2282.

[9] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-
dependent speaker verification,” pp. 4052–4056, 2014.

[10] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[11] P. Karanasou, Y. Wang, M. J. Gales, and P. C. Woodland, “Adap-
tation of deep neural network acoustic models using factorised
i-vectors,” 2014.

[12] C. Dromey and M. Sanders, “Intra-speaker variability in palato-
metric measures of consonant articulation,” Journal of communi-
cation disorders, vol. 42, no. 6, pp. 397–407, 2009.

[13] C. Veaux, J. Yamagishi, and S. King, “The voice bank corpus: De-
sign, collection and data analysis of a large regional accent speech
database,” pp. 1–4, 2013.

[14] A. Larcher, J.-F. Bonastre, B. G. Fauve, K.-A. Lee, C. Lévy, H. Li,
J. S. Mason, and J.-Y. Parfait, “Alize 3.0-open source toolkit for
state-of-the-art speaker recognition.” pp. 2768–2772, 2013.

[15] H. Kawahara, I. Masuda-Katsuse, and A. De Cheveigne, “Re-
structuring speech representations using a pitch-adaptive time–
frequency smoothing and an instantaneous-frequency-based F0
extraction: Possible role of a repetitive structure in sounds,”
Speech communication, vol. 27, no. 3, pp. 187–207, 1999.

[16] Z. Wu, O. Watts, and S. King, “Merlin: An open source neural
network speech synthesis system,” Proc. SSW, Sunnyvale, USA,
2016.

[17] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio,
“Theano: A CPU and GPU math compiler in python,” pp. 1–7,
2010.

[18] S. Dieleman, J. Schlter, C. Raffel, E. Olson, S. K. Snderby,
D. Nouri et al., “Lasagne: First release.” Aug. 2015. [Online].
Available: http://dx.doi.org/10.5281/zenodo.27878

[19] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” CoRR, vol. abs/1412.6980, 2014. [Online].
Available: http://arxiv.org/abs/1412.6980

[20] M. K. Wolters, K. B. Isaac, and S. Renals, “Evaluating speech
synthesis intelligibility using Amazon Mechanical Turk,” 2010.

[21] S. Buchholz and J. Latorre, “Crowdsourcing preference tests, and
how to detect cheating,” 2011.

