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ABSTRACT 

 

Mitochondrial DNA (mtDNA) instability disorders are responsible for a large clinical 

spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal 

dementia are extremely rare. We report a large family with a late-onset phenotype including 

motor neuron disease, cognitive decline looking like frontotemporal dementia, cerebellar 

ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and COX negative 

fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The 

multiple mtDNA deletions found in skeletal muscle revealed a mtDNA instability disorder. 

Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural 

alterations and fragmentation of the mitochondrial network. Interestingly, expression of 

matrix-targeted photoactivable GFP showed that mitochondrial fusion was not inhibited in 

patient fibroblasts. By whole-exome sequencing (WES), we identified a missense mutation 

(c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil 

helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial 

protein located in the intermembrane space and enriched at cristae junctions. Overexpression 

of CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network 

and ultrastructural major abnormalities including loss, disorganization and dilatation of 

cristae.  

The observation of a frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) 

phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families 

with pathologically proven FTD-ALS. We identified the same missense p.Ser59Leu mutation 

in one of these FTD-ALS families. This work opens a novel field to explore the pathogenesis 

of FTD-ALS clinical spectrum by showing that mitochondrial disease may be at the origin of 

some of these phenotypes.  

 

Page 3 of 81

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

3 

 

INTRODUCTION 

 Mitochondrial disorders can result from defects in mitochondrial DNA (mtDNA) or in 

nuclear genes that encode proteins that are imported in the mitochondria. Last years, a 

growing list of genes responsible for mtDNA instability has been reported (Copeland, 2012; 

Ylikallio et al., 2012; Shapira et al., 2012). Mutations in these genes lead either to 

mitochondrial DNA depletion syndrome (MDS), a devastating mitochondrial disease of 

childhood associated with a significant reduction of mtDNA copy number, or disorders 

characterized by accumulation of multiple mtDNA deletions in postmitotic tissues 

(Suomalainen et al., 2010; Copeland, 2012). Diseases associated with deletions comprise 

commonly known clinical presentations including progressive external ophtalmoplegia (PEO) 

and ataxia neuropathy syndromes but also some rares disorders (for review see Copeland, 

2012). To date, nuclear genes responsible for mtDNA instability disorders mainly fall into 

three categories : (i) genes encoding proteins directly involved in mtDNA replication, such as 

POLG, POLG2 or TWINKLE, (ii) genes encoding proteins responsible for the maintenance of 

mitochondrial nucleotide pool, such as TP, TK2, DGUOK… and, (iii) genes encoding 

membrane proteins involved in mitochondrial dynamics, such as OPA1 or MFN2 (Amati-

Bonneau et al., 2008; Hudson et al., 2008; Rouzier et al., 2012). This third category was 

recently individualized. Autosomal dominant optic atrophy (ADOA) is mainly related to 

mutations in the optic atrophy 1 gene (OPA1) which encodes a dynamin-like GTPase 

involved in the fusion of the inner mitochondrial membrane (Delettre et al., 2000). 

Mitofusin 2 (Mfn2) is one of the two mitofusin proteins also required for mitochondrial 

fusion. Mfn1 and Mfn2 are conserved integral outer mitochondrial membrane proteins, each 

consisting of a large GTPase domain and 2 heptad repeat (HR), or putative coil-coiled 

domains, all of which face the cytoplasm (Koshiba et al., 2004; Meeusen et al., 2004; Song et 

al., 2009). MFN2 mutations are a major cause of primary axonal Charcot-Marie-Tooth 
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disease type 2A (CMT2A) (Zuchner et al., 2004), an autosomal dominant neuropathy that 

impairs motor and sensory neurons with the longest axons resulting in earliest symptoms in 

distal extremities. A subset of OPA1 missense mutations have been associated with the 

“ADOA plus” syndrome and with accumulation of mtDNA deletions in muscle (Amati-

Bonneau et al., 2008; Hudson et al., 2008). Complex phenotypes have also been associated 

with MFN2 mutations. Recently, we reported a large family with optic atrophy beginning in 

early childhood, associated with axonal neuropathy and mitochondrial myopathy with 

mtDNA deletions in adult life. The clinical presentation looks like the “ADOA plus” 

phenotype linked to OPA1 mutations but is associated with a novel MFN2 missense mutation, 

thus confirming the link between mtDNA stability and mitochondrial fusion (Rouzier et al., 

2012).  

 Here, we report the involvement of a novel gene responsible for “mitochondrial DNA 

breakage” syndrome and frontotemporal lobe dementia-amyotrophic lateral sclerosis (FTD-

ALS) through 2 families from French and Spanish origin. The responsible gene, CHCHD10, 

encodes a coiled-coil helix coiled-coil helix protein whose function is unknown. However, 

CHCHD10 belongs to a family of mitochondrial proteins located in the intermembrane space, 

some of which interact with OPA1 and are involved in cristae integrity and mitochondrial 

fusion (Darshi et al., 2011; An et al., 2012).  

  

PATIENTS AND METHODS 

Patients 

The pedigree of the first family of French origin is shown in Fig. 1. All clinical data are 

summarized in table 1. Blood and tissue samples were obtained after patients had given 

informed consent. The index case was a 67-year-old woman (IV-6), who developed a 

cerebellar ataxia at 50 years of age, associated with progressive bulbar syndrome, dementia 
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and sensorineural deafness. Clinical examination showed cerebellar ataxia, Babinski sign, 

areflexia and bulbar palsy with dysarthria and dysphagia. Neuropsychological tests revealed a 

frontal lobe syndrome. Laboratory investigations showed normal lactate concentrations 

(1.6 mmol/l, normal <2.1 mmol /l). She died at 67 years of age.  

The age of onset of the 7 other patients who underwent a muscle biopsy was between 49 and 

65 year-old. Three patients presented a motor neuron disease (MND), 2 a cerebellar ataxia 

and the last two had a MND and a cerebellar ataxia, like the index case. All developed 

cognitive disorders with mainly a frontal lobe syndrome, except patient V-2 who died at 51 

year-old. Neuropsychological evaluation of patient IV-3 showed severe impairment in 

episodic memory, attention, verbal fluency and executive functions with behavioral changes 

corresponding to frontal dementia. Brain MRI of patient V-10 was normal and the one of the 

patient IV-3 showed moderate cortical atrophy. Brain MRI performed in 4 other patients (III-

2, IV-11, IV-13, V-2) showed no specific abnormality. Proximal weakness was observed in 4 

individuals (IV-3, IV-11, IV-13 and IV-15) with bilateral ptosis and facial paresis in patient 

IV-15. Electromyography excluded peripheral neuropathy with normal test (V-10), chronic 

neurogenic changes suggesting a lower motor neuron disease (IV-15) or myopathic 

abnormalities only (IV-3).  Patients IV-3 and V-10 are still alive, all others died after more 

than 10 years of evolution. 

Other affected individuals had no muscle biopsy (I-1, II-1, II-2, II-6, III-1, III-4, III-5, III-6, 

III-7, III-8 and IV-9). They presented dementia, progressive bulbar syndrome with dysarthria 

and dysphagia, and became bedridden. 

Muscle histopathology and ultrastructure 

Muscle samples were frozen in cooled isopentane and stored in liquid nitrogen for 

histological and histoenzymatic analysis including Gomori modified trichrome staining, 

cytochrome c oxydase (COX) activity, succinate dehydrogenase (SDH) activity and double 
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COX/SDH staining according to standard protocols. A fragment of muscle was also fixed in 

2% glutaraldehyde and processed for ultrastructural analysis by electron microscopy.  

OXPHOS spectrophotometric measurements 

Enzymatic spectrophotometric measurements of the OXPHOS respiratory chain complexes 

and citrate synthase were performed at 37°C on muscle crude homogenates and fibroblasts 

according to standard procedures (Rustin et al., 1994).  

Polarographic study 

Polarographic studies on fibroblasts of intact cell respiration and digitonin (0.004%)-

permeabilized cells mitochondrial substrate oxidation were carried out as previously 

described (Rustin et al., 1994).  

Blue native gel electrophoresis (BN-PAGE) and immunoblotting  

15 µg of muscle mitochondrial respiratory complexes, obtained by solubilisation in a solution 

of 1.5 M aminocaproic acid (Sigma-Aldrich), 75 mM BIS-TRIS (Sigma-Aldrich) and 4% 

dodecyl-β-D-maltoside (Sigma-Aldrich), were separated by BN-PAGE on a 4–13% 

acrylamide gradient gel (Schägger et al., 2001).  Then they were electroblotted onto a PVDF 

membrane, prior to sequential incubation with specific antibodies directed against GRIM19 

subunit of complex I, SDHA subunit of complex II, UQCRC2 subunit of complex III, 

MTCO1 subunit of complex IV and ATP5A subunit of complex V (Mitosciences) allowing to 

verify that samples were equally loaded between patients and controls.  

Protein measurement 

Proteins were measured according to Bradford microassay (Bradford, 1976).  

mtDNA molecular analysis 

Total DNA was extracted using standard phenol chloroform procedure. Long-range PCR and 

Southern blot analysis were performed as previously described (Paul et al., 1996; Moraes et 

al., 1996). mtDNA quantification in muscle was performed by real-time quantitative PCR as 
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described by Rouzier et al., 2010. Primer sequences and PCR conditions are available on 

request.  

Sequencing of nuclear genes  

The coding regions of POLG (NM_002693.2), SLC25A4 (ANT1) (NM_001151.3) and PEO1 

(Twinkle) (NM_021830.4) genes were sequenced as previously described (Naimi et al., 

2006). PCR products were purified with Illustra ExoStar enzyme (GE Healthcare), processed 

with an ABI PRISM® dRhodamine Terminator Cycle Sequencing Ready Reaction kit 

(Applied Biosystems) and analyzed on an ABI 3130XL automated sequencer (Applied 

Biosystems).  

Cell culture 

Skin punches were obtained from patient V-10 after informed consent. Primary fibroblast 

cultures were established using standard procedures in RPMI supplemented with 10% Fetal 

Bovine Serum (FBS), 45µg/ml uridine and 275µg/ml sodium pyruvate. Cultures were 

incubated at 37°C with 5% CO2. For galactose conditions, medium was replaced 24h before 

experiments by glucose-free medium containing 5mM galactose and 5mM pyruvate (Zanna et 

al., 2008).  

HeLa cells were maintained in DMEM supplemented with penicillin (100U/ml)/streptomycin 

(0.1mg/ml), 10% fetal calf serum (FCS), at 37°C in a humidified atmosphere with 5% CO2 in 

air. For transient transfections, HeLa cells were transfected using Lipofectamine 2000 

(Invitrogen) according to the manufacturer’s instructions. 

Mitochondrial network analysis 

For mitochondrial staining, cells were incubated in a 100nM solution of MitoTracker red 

(Invitrogen) for 15 min, medium was replaced by HeLa cells culture medium incubated 2 h at 

37°C and washed in PBS. The samples were fixed with paraformaldehyde (PFA) 4% 

(Electron Microscopy Sciences), washed with PBS, and mounted on glass slides using 
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Prolong Gold Antifade Reagent (Molecular Probes). For immunostaining, cells were fixed 

with 4% PFA, washed five times with PBS and permeabilised with 2% Triton X-100. After 

PBS washing, coverslips were incubated with 5% BSA (Bovin Serum Albumin) for 30 min at 

room temperature before adding mouse anti-FlagM2 (Agilent Technologies) (1/2000 antibody 

diluted with PBS-BSA 5%), mouse anti-HA (Cell Signaling) (1/100 antibody diluted with 

PBS-BSA 5%) or rabbit anti-FlagM2 (Cell Signaling) (1/800 antibody diluted with PBS-BSA 

5%). The samples were incubated at room temperature for 1h, PBS washed, and then 

incubated with fluorescent secondary antibody goat anti-mouse Alexa 488 (Life 

Technologies) (1/1000 antibody diluted with PBS-BSA 1%) or antibody goat anti-rabbit 

Alexa 647 (Life Technologies) (1/1000 antibody diluted with PBS-BSA 1%) for 1 hour at 

room temperature. The coverslips were washed five times with PBS, mounted on glass slides 

using Prolong Gold Antifade Reagent (Molecular Probes) and analyzed using a Zeiss 

LSM510 meta confocal laser-scanning microscope. 

The images were deconvolved with Huygens Essential Software
TM

 (Scientific Volume 

Imaging) using a theoretically calculated point spread function (PSF) for each of the dyes. All 

selected images were iteratively deconvolved with a maximum iterations scored 40 and a 

quality threshold at 0.05. The deconvolved images were used for quantitative mitochondrial 

network analysis with Huygens Essentiel Software
TM

 with the following standardised set of 

parameters: threshold = 25% and seed = 0% for each cell types and garbage = 5 or 10 for 

HeLa cells and fibroblasts respectively. The quantitative data were further analysed in 

Microsoft Excel and GraphPad Prism 5 (GraphPad Software). Mitochondrial network length 

was quantified for 35 randomly-selected individual cells.  

Data are represented as mean ± S.E.M. Statistical analyses were performed by Student’s 

unpaired t-test using GraphPad Prism 5 (GraphPad Software).  

 

Page 9 of 81

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

9 

Exome sequencing 

Genomic DNA was extracted from blood and 3µg were fragmented by sonication. Exome 

targets were enriched with the SureSelect Human All Exon v4+UTR – 70 Mb Kit (Agilent 

technologies) and sequenced on the Illumina HiSEQ 2000 platform (Illumina). Raw image 

files were processed by the IlluminaReal Time Analysis pipeline for base calling and 

generating the read sets. The bioinfomatics analysis of sequencing data was based on the 

Illumina CASAVA pipeline (v1.8). CASAVA performs alignment of the 2x75 bp paired-end 

sequence reads to the hg19 reference genome, calls the SNPs based on the allele calls and 

read depth, and detects variants (SNPs &Indels). The alignment algorithm used was 

ELANDv2e. Only the positions included in the bait coordinates were conserved. The web 

application ERIS (Integragen) was used for data visualization and prioritization of variants. 

For mutation validation and segregation analysis, a part of CHCHD10 (NM_213720.1) 

spanning the mutation site in exon 2 was amplified with the following primers: 5’-

TCGGGCCAGCCGGGGCTC-3’ (forward) and 5’-GGAAGCCTGCCTCTAAGTGA-3’ 

(reverse). Purification and sequencing of PCR products were performed as described above. 

Homology modelling of human CHCHD10 

Using the threading program PHYRE2 (Kelley et al., 2009), 142 residues of CHCHD10 

(Met1 to Pro142) were modeled using CHCHD5 as template (PDB ID: 2LQL). Swiss-Pdb 

Viewer 3.7 (http://www.expasy.org/spdbv) was used to analyze the structural insight into 

CHCHD10 mutation and visualize the structure. 

Plasmid constructions 

The human full-length CHCHD10 cDNA was amplified by RT-PCR from total RNA of 

patient fibroblasts by using Transcription First strand cDNA synthesis kit (Roche) and Taq 

PCRx DNA polymerase (Invitrogen).  
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We used the following primers: 5’-GGATCCACCGCCGCCACCATG-3’ (forward) and     

5’-CTCGAGGGGCAGGGAGCTCAG-3’ (reverse) containing BamHI and XhoI restriction 

sites, respectively. Restriction-digested PCR products were cloned into pCMV-3tag-3A to 

generate Flag-tagged CHCHD10. Sequencing of the clones obtained led to the identification 

of plasmids coding for wild-type (CHCHD10
WT

) and mutant (CHCHD10
S59L

) cDNAs.  

Western blotting 

5-25 µg of total protein extracts were separated on acrylamide-SDS gels and transferred to 

PVDF membranes (Millipore, Saint-Quentin). Specific proteins were detected by using 

mouse anti-Mfn2 (1/2000, Abcam, #ab56889), anti-VDAC (1/2000, Millipore, #MABN504), 

anti-Flag M2 (1/2000, Agilent Technologies, #200412), anti-PCNA (1/5000, BD Biosciences, 

#610664), rabbit polyclonal anti-mitofilin (1/2000; Proteintech #10179-1-AP), anti-GAPDH 

(1/20000, Abcam #ab9485), anti-β tubulin (1/10000, Sigma-Aldrich, #T4026), anti-SMAC 

(1/4000, Abcam #ab8114),  anti-TOM 20 (1/5000, BD Biosciences, #612278), anti-

CHCHD10 (1/500, Sigma-Aldrich #HPA003440) and goat polyclonal anti-Hsp60 (1/4000, 

Santa Cruz, #sc-1052) antibodies. Anti-mouse, anti-rabbit or anti-goat secondary antibody 

(Dako) was used at 1/10000 and signals were detected using a chemiluminescence system 

(Immobilon Western HRP Chemilumiscent substrates, Millipore). Human multiple tissue blot 

was used as described by the manufacturer (G-Biosciences). 

Isolation of mitochondria and mitoplast preparation 

Mitochondria were isolated from HeLa transfected cells using Q-Proteome mitochondria 

isolation kit (Qiagen) as described by the manufacturer. Mitochondria were treated with 

Proteinase K (Invitrogen) in the presence or absence of 0.2% TritonX-100 exactly as 

described in Bannwarth et al., 2012. To prepare the mitoplasts, we used a digitonin treatment. 

Briefly, purified mitochondria were suspended in suspension buffer (250 mM sucrose, 1mM 

EDTA, 20mM HEPES-NaOH, pH7.4). Mitochondria were treated with digitonin (2mg/ml) 
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15 min at room temperature. The resulting mitoplasts were treated 10 min at room 

temperature with Proteinase K (100ng/µl). Proteolysis was halted by the addition of 10mM 

PMSF (Sigma-Aldrich) for 15 min on ice. Laemmli sample buffer was added directly to 

samples, boiled and loaded on SDS-PAGE.  

Alkali extraction of intact mitochondria 

Alkali extraction was performed as previously described (Bannwarth et al., 2012). Briefly, 

intact isolated mitochondria (25µg) were treated with 0.1M Na2CO3 (pH 11.5) for 30 min on 

ice, and then centrifuged at 16,000g for 15 min at 4°C. Supernatants were retained and pellets 

were washed once and then resuspended in an equivalent volume of homogenization buffer 

(250mM sucrose, 1mM EDTA, 20mM Hepes-NaOH pH7.4, plus protease inhibitor). 

Equivalent volumes were analyzed by immunoblot.  

Immunoelectron microscopy  

Cells were fixed with 2% paraformaldehyde, 0.2% glutaraldehyde in 0.1 M phosphate buffer 

(pH 7.4) for 2 hr and were processed for ultracryomicrotomy according to a slightly modified 

Tokuyasu method (Tokuyasu, 1973). In brief, cell suspension was spun down in 10% gelatin. 

After immersion in 2.3 M sucrose (in [pH 7.4], 0.1 M PB) overnight at 4°C, the samples were 

rapidly frozen in liquid nitrogen. Ultrathin (70 nm thick) cryosections were prepared with an 

ultracryomicrotome (Leica EMFCS) and mounted on formvar-coated nickel grids (Electron 

Microscopy Sciences). Immunostainings were processed with an automated immunogold 

labeling system Leica EM IGL as following: the grids were incubated successively in PBS 

containing 50 mM NH4Cl (5 min twice), PBS containing 1% BSA (5 min twice), PBS 

containing rabbit anti-CHCHD10 (Sigma-Aldrich) or anti-Hsp60 (Abcam, #ab46798) 

antibody in 1% BSA for 1 h, PBS containing 0.1% BSA (5 min 3 times), PBS containing 1% 

BSA and 10 nm colloidal gold conjugated protein AG (CMC), PBS containing 0.1% BSA for 
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5 min, PBS for 5 min twice. Lastly, the samples were fixed for 10 min with 1% 

glutaraldehyde, rinsed in distilled water and were contrasted with a mixture of 1.8% 

methylcellulose and 0.3% uranyl acetate on ice. After having been dried in air, sections were 

examined under a JEOL 1400 transmission electron microscope. 

Mitochondrial fusion assay 

Mitochondrial fusion was examined using mitochondria-targeted photoactivatable GFP 

(mitoPAGFP), as described (Karbowski et al., 2004). The matrix-targeted presequence from 

Su9 (Wakabayashi et al., 2009) was fused to the N-terminus of photoactivatable GFP 

(Addgene #11910) and cloned into the lentiviral vector pHR-SIN (Kim et al., 2011). 

Fibroblasts were infected with lentiviral particles carrying mitoPAGFP. 30 min before 

observation, fibroblasts were stained with 7 nM tetramethylrhodamine ethyl ester to visualize 

mitochondria. mitoPAGFP was photoactivated by 405-nm light (30% power, three times) in a 

small region (30 x 30 pixels) using a Zeiss 780 LSM confocal microscope with an 

environmentally controlled chamber. Images were taken at 15-min intervals for 60 min. 

Fluorescence intensity of mitoPAGFP was quantified using NIH Image J. 

 

RESULTS 

Mitochondrial myopathy with multiple mtDNA deletions in patients                                                             

Muscle biopsy was performed in 8 patients after informed consent (III-2, IV-3, IV-6, IV-11, 

IV-13, IV-15, V-2, V-10) (Fig.1). Muscle analysis of the index case (IV-6) showed typical 

features of mitochondrial myopathy including intracellular lipid accumulation with COX-

negative and ragged-red fibres (RRF) (30%) (Fig.2A-B). Electron microscopy showed altered 

morphology of mitochondria and cristae organization with paracristalline inclusions (Fig.2C). 

Similar findings with numerous RRF and COX-deficient fibres were found in all patients 

tested. Spectrophotometric analysis showed a combined respiratory chain deficiency in most 
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patients (Table 1). BN-PAGE assay of patients IV-3 and V-2 revealed smaller bands with 

antibody against complex V corresponding to assembly defect or increased instability 

(Fig.2D). All patients carried multiple mtDNA deletions in muscle identified by both long 

range PCR (not shown) and Southern blot analysis (Fig.2E). The determination of relative 

mtDNA copy number was performed by real-time quantitative PCR without finding any 

depletion (not shown).  

Respiratory chain deficiency, abnormal mitochondrial network and mitochondrial 

ultrastructural alterations in patient fibroblasts  

Spectrophotometric analysis of fibroblasts from patient V-10 cultivated in glucose medium 

revealed no respiratory chain deficiency and polarographic analysis showed normal oxygen 

consumption and mitochondrial substrate oxidation (Table 2A, 2C). In a glucose-free medium 

containing galactose, cells are forced to rely predominantly on OXPHOS for ATP production 

because the carbon source feeds the glycolytic pathway with a low efficiency. In galactose 

medium, spectrophotometric analysis revealed a multiple RC deficiency in patient fibroblasts 

and polarographic analysis showed a decrease of oxygen consumption, glutamate/malate and 

succinate (Table 2B, 2D). BN-PAGE analysis of patient fibroblasts revealed no abnormality 

including complex V (not shown), the activity of which was normal by spectrophotometry. 

Multiple mtDNA deletions were not observed and the determination of relative mtDNA copy 

number was performed by real-time quantitative PCR without finding any depletion (not 

shown).  

We also compared the mitochondrial morphology of fibroblasts from patient V-10 with that 

obtained from control fibroblasts. After staining with Mitotracker and examination by 

confocal microscopy, control fibroblasts in glucose medium displayed a typical filamentous 

interconnected network. Patient fibroblasts presented with a fragmentation of the 
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mitochondrial network and less connected mitochondria (Fig.3A-B). We obtained the same 

results in galactose medium (not shown). 

We then performed ultrastructural analysis of patient fibroblasts. Typical mitochondria of 

control cells had numerous, thin, well‐defined cristae, running perpendicularly to the 

mitochondrial longitudinal axis, and with a regular pattern of parallel organization (Fig.3C). 

They represented 90% of the mitochondrial profiles seen in two independent, genotype-blind, 

analyses of control cells. In patient cells, they represented 35% of the mitochondrial profiles. 

Completely disorganized mitochondria with sparse or absent cristae without recognizable 

parallel orientation were only observed in patient fibroblasts (18%) (Fig.3D). Less 

disorganized mitochondria represented 47% of the mitochondrial pattern in patient cells and 

10% in control cells (Fig.3E). 

No mitochondrial fusion defect in patient fibroblasts 

The fragmentation of mitochondrial network observed in patient fibroblasts can be of 

different origins including a fusion deficiency. Furthermore, genes like MFN2 or OPA1 

involved in mitochondrial fusion are responsible for complex neurological phenotypes 

associated with mtDNA deletions. To examine mitochondrial fusion, we expressed matrix-

targeted photoactivatable GFP in control and patient fibroblasts (Karbowski et al., 2004). 

After photoactivation of mitoPAGFP in a portion of mitochondria, we monitored mixing of 

the fluorescent matrix marker. We found that the fluorescence intensity of mitoPAGFP 

similarly decreased for 60 min in both fibroblasts, suggesting that mitochondrial fusion is not 

inhibited in patient fibroblasts (Fig.4).  

Identification of a missense mutation in the CHCHD10 gene by exome sequencing 

Analysis of genes involved in multiple mtDNA deletions with a compatible phenotype 

(POLG, SLC25A4, PEO1) revealed no mutation. To identify the causative gene, we 

sequenced the exome of patients IV-11 and V-10. The procedure yielded 9.8 and 12.4 Gb of 
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mappable sequence and after alignment to the hg19 reference genome, the average depth was 

~70x and ~91x, respectively. From the 62 252 and 63 036 identified SNPs in patients IV-11 

and V-10 respectively, the pathogenic variant was identified by the following scheme: (1) 

Selection of heterozygous variants shared by the 2 patients, (2) Exclusion of polymorphic 

variants present in dbSNP132, EVS (Exome Variant Server), HapMap, 1000 Genome 

databases and in-house control exomes (3) Segregation analysis within the family. This 

filtering led us to identify a single heterozygous missense mutation (c.176C>T; p.Ser59Leu) 

in exon 2 of CHCHD10  that was present in the 8 patients tested and was absent in 2 healthy 

individuals (IV-14 and IV-16) with normal neurological examination at 79 and 69 years, 

respectively (Fig.5A-B). This gene encodes the coiled-coil helix coiled-coil helix domain-

containing protein 10 whose function is unknown. However, the C-terminal CHCH domain is 

primarily seen in mitochondrial proteins and was known to be involved in the protein import 

and metal binding in the intermembrane space (Banci et al., 2009). The mutation changes a 

highly conserved serine into a leucine and was not present in 200 ethnically and 

geographically matched control alleles (Fig.5C). In silico study by PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/), SIFT (http://sift.jcvi.org/) and Mutation Taster 

(http://www.mutationtaster.org/ ) predicted this variant to be probably damaging. 

The CHCH domain of CHCHD10 is characterized by a CX9C motif. Although all CX9C 

proteins presumably preserve a disulfide bonded α-hairpin conformation, they have a large 

range of sequence lengths and a very low degree of sequence similarity both within or 

specific organism and the orthologs of different species (Longen et al., 2009; Cavallo et al., 

2010). Therefore, these features do not allow to easily predict accurate structural models for 

this protein family. Recently, Banci et al. have structurally characterized two members of 

them, CHCHD5 and CHCHD7, in their fully oxidized states (Banci et al., 2012). Using the 

same program, 142 residues of CHCHD10 (Met1 to Pro142) were modeled using CHCHD5 
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as template (PDB ID: 2LQL). Swiss-Pdb Viewer 3.7 (http://www.expasy.org/spdbv) was used 

to analyze the structural insight into CHCHD10 mutation and visualize the structure. The 

modeling of CHCHD10 shows (i) a non-structured N-terminal region, (ii) a highly 

hydrophobic helix (Gly43 to Ala 68) which may be typically an interface of interaction with 

an interacting protein, (iii) and the CHCH domain near the C-terminal region characterized by 

a CX9C motif (Fig.5D). The four cysteine residues (102, 112, 122 and 132) of the CHCH 

domain are involved in two disulfide bonds. The p.Ser59 is located in the hydrophobic N-

terminal α-helix, and as the few other polar residues of this helix, it may intervene in 

hydrogen bonds to stabilize CHCHD10 interaction with another protein. Thus, the 

p.Ser59Leu mutation could possibly alter protein-protein interactions. 

To investigate whether the p.Ser59Leu mutation has an effect on the expression of 

CHCHD10, we analysed CHCHD10 level in muscle of patients by western blotting. We used 

GAPDH and the mitochondrial SMAC protein as controls for quantitation. Normalization 

showed no significant reduction of CHCHD10 expression in patient muscles compared to 

control (not shown).  

CHCHD10 is a mitochondrial protein located in the intermembrane space 

First, we looked at the expression of CHCHD10 in human tissues by western blot. The protein 

is ubiquitous and highly expressed in organs with a high mitochondria content like the heart 

or liver (Fig.6A). Confocal microscopic analysis then showed a colocalization, in HeLa cells, 

of endogenous CHCHD10 with MitoTracker, a dye that accumulates specifically in 

mitochondria (Fig.6B). To analyze submitochondrial localization of CHCHD10, mitochondria 

isolated from HeLa cells were treated with proteinase K. Proteins inside mitochondria are 

protected from protease digestion. As shown in Figure 6C, CHCHD10 was resistant to 

treatment with proteinase K indicating that the protein is present inside mitochondria. As 

expected, the TOM20 protein (outer mitochondrial membrane) was digested by proteinase K 
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while SMAC (intermembrane space) was resistant to protease digestion. Analysis of the 

mitochondrial preparations for PCNA and GAPDH confirmed the absence of nuclear and 

cytosolic contaminations, respectively. When mitochondria were subjected to alkali 

extraction, peripheral membrane proteins were recovered in the supernatant, while integral 

membrane proteins were found in the membrane-containing pellet fractions (Fig.6D). As 

expected, the outer membrane integral protein VDAC was primarily recovered in the pellet 

following extraction while SMAC was recovered in the supernatant. CHCHD10 was 

distributed in the supernatant indicating that it was located in the soluble fraction. Last, to 

discriminate between intermembrane space or matrix localization, mitochondria were treated 

with digitonin to open the inner membrane space. In the resulting mitoplasts, CHCHD10 was 

degraded by proteinase K like MFN2 (outer mitochondrial membrane), SMAC 

(intermembrane space) and mitofilin, an inner mitochondrial membrane protein mainly facing 

the intermembrane space, while Hsp60, which is located in the mitochondrial matrix, was 

protected against protease digestion (Fig.6E). All these results suggest that CHCHD10 is an 

intermembrane space protein. 

CHCHD10 is enriched at cristae junctions 

We performed immunogold labeling of chemically fixed cryosectioned HeLa cells (Fig.7A). 

The sections were labeled with a primary antibody against CHCHD10, followed by a 

secondary gold conjugate. For quantitative analysis, we determined the location of each gold 

particle (n = 229) with respect to the inner boundary membrane and the closest cristae 

membrane and plotted its respective localization in a model (Fig.7B). We found that the 

majority of mitochondrial gold particles were enriched in the vicinity of cristae junctions as 

reported previously for mitofilin, a major component of the MINOS complex (Jans et al., 

2013). We performed the same experiment with a primary antibody against Hsp60, a protein 

highly expressed in the matrix, as a control (Fig. 7C-D). 
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Expression of CHCHD10 mutant leads to fragmentation of the mitochondrial network 

and to defect in cristae maintenance 

To confirm the role of the p.Ser59Leu mutation, we analyzed the effects of overexpression of 

the pathogenic allele on mitochondrial network. HeLa cells were transiently transfected with 

the empty vector, the wild-type allele or the pathological allele. After transfection,  HeLa cells 

produced equivalent amounts of wild-type and mutant CHCHD10 (Fig.8A).  Mitochondrial 

network morphology and CHCHD10 labeling were next assessed using Mitotracker red and 

CHCHD10 antibodies, respectively. Forty eight hours after transfection with either empty 

vector or the wild-type allele, Mitotracker revealed a filamentous network. Overexpression of 

mutant CHCHD10
S59L

 altered mitochondrial morphology in transfected cells with a 

significant fragmentation of the network (Fig.8B-C). We also looked at the mitochondrial 

morphology by electron microscopy. Contrary to overexpression of either empty vector or the 

wild-type allele, overexpression of the CHCHD10
S59L

 mutant led to major abnormalities 

including loss, desorganization or dilation of cristae. Matrix condensation was also observed 

in numerous mitochondria (Fig.9A-D). 

Involvement of the same CHCHD10 mutation in an FTD-ALS family 

The observation of a FTD-ALS phenotype in a mitochondrial disease led us to analyze 

CHCHD10 variants in a cohort of 21 FTD-ALS families previously tested by exome 

sequencing. We identified the heterozygous c.176C>T (p.Ser59Leu) mutation in a patient 

whose family is originally from Catalonia (Spain). This man developed walking difficulties at 

57 years of age. Progressively, he presented a pseudo-bulbar syndrome with dysarthria and 

dysphagia. Electromyography confirmed motor neuron involvement with symmetrical 

denervation predominent in muscles of the face but also in muscles of upper and lower limbs. 
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Motor and sensory conduction velocities were normal. The patient also had cognitive 

impairment and behavioural changes suggesting a frontotemporal dementia. 

Neuropsychological testing revealed a frontal lobe dysfunction, notably impairment of 

conceptualization, perseverative behaviours and paraphasia with relative preservation of 

memory. Brain MRI showed mild bilateral frontal atrophy. Parkinsonian signs were also 

present with akinesia, rigidity and gait disorders and a UPDRS scale at 10. In addition, the 

patient presented bilateral sensorineural hypoacousia and a muscular fatigability. A total loss 

of autonomy was observed after 8 years of evolution, then he was loss sight. The elder sister 

and one brother of the index case presented ALS with predominant bulbar features and died 

after 4 years of evolution. Their father developed a neurological disease with progressive 

walking and speaking difficulties at 61 years of age leading to death 3 years later. No patient 

had a muscle biopsy. The presence of the mutation was confirmed by Sanger method in the 

index case but the absence of DNA samples from other family members did not allow to 

perform segregation analysis.  

 

DISCUSSION  

In this study, we first identified a new gene involved in mtDNA instability disease. 

We describe a large family in which affected individuals carry a missense mutation in the 

CHCHD10 gene. The clinical phenotype associated with this CHCHD10 mutation is unusual 

because patients developed a late-onset disease, which begins around fifty, with highly 

variable clinical presentations. Affected individuals presented with either isolated or 

associated symptoms including ataxia, dementia and ALS-like presentation; the only element 

common to all patients being the presence of a mitochondrial myopathy with numerous 

ragged-red and COX-negative fibers associated with multiple mtDNA deletions. None of the 

affected individuals presented with an external ophtalmoplegia. A patient only (IV-15) 
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presented with a ptosis associated with facial palsy, probably due to motor neuron disease. In 

this family, the phenotype is really particular compared to those reported in mtDNA 

instability disorders. The course of the disease was highly variable, ranging from one to more 

than 15 years of evolution before death. However, it was more severe than the PEO 

(Progressive External Ophtalmoplegia) phenotypes classically observed in pedigrees with 

autosomal dominant transmission of multiple mtDNA deletions (Copeland, 2012). Cerebellar 

ataxia is exceptionnally observed in the absence of PEO in mtDNA instability disease, except 

in MIRAS or MSCAE phenotypes (Copeland, 2012), secondary to POLG mutations, or in 

IOSCA (Hakonen et al., 2007), secondary to TWINKLE mutations. MND with ALS-like 

symptoms is even rarer with exceptional cases associated with POLG, TK2 or DGUOK 

mutations (Ronchi et al., 2012). The cognitive impairment observed in our family looks like 

frontotemporal dementia usually observed in ALS patients. This observation led us to analyse 

CHCHD10 in FTD-ALS families with a dominant mode of transmission and to identify the 

same missense p.Ser59Leu mutation in one of these families. FTD-ALS is a genetically 

heterogeneous disorder and a hexanucleotide repeat expansion in a noncoding region of the 

chromosome 9 open reading frame 72 (C9ORF72) gene, the function of which is unknown, 

has been recently identified as a common cause of FTD-ALS (DeJesus-Hernandez et al., 

2001; Renton et al., 2011).  Patients with a C9ORF72 expansion present with FTD, ALS, or 

both. Parkinsonism is common and the phenotype of our second family was highly evocative 

of a C9ORF72 expansion. However, C9ORF72 screening and the analysis of other candidate 

genes for ALS and FTD were negative in this family (TARDBP, FUS/TLS, SOD1, VCP, 

CHMP2B, ANG, SQSTM1, UBQLN2, PFN1). No patient had a muscle biopsy but it is likely 

that sensorineural hypoacousia and muscle weakness observed in the index case were related 

to mitochondrial dysfunction. Our study clearly shows that CHCHD10 is a novel gene 
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responsible for ALS-FTD clinical spectrum, which raises the intriguing prospect of an 

underlying mitochondrial basis for this group of disorders. 

 

The function of CHCHD10 is unknown. However, it belongs to a family of 

mitochondrial proteins characterized by conserved CXnX motifs (Banci et al., 2009) and it is 

expected to be involved in oxidative phosphorylation (Martherus et al., 2010). These proteins 

are incorporated into the intermembrane space and are then trapped through a redox-

dependent protein machinery via the intermembrane space protein Mia 40 (CHCHD4) 

(Stojanovski et al., 2012). CHCHD3 is a member of this family predominantly localized to 

the inner membrane, facing toward the intermembrane space (Darshi et al., 2012). It is part of 

the large protein complex called as MINOS and plays a role in maintening mitochondrial 

function and cristae integrity (Darshi et al., 2011; van der Laan et al., 2012). OPA1 has been 

shown to be involved in regulating cristae remodeling independently of its role in 

mitochondrial fusion (Frezza et al., 2006). CHCHD3 interacts both with OPA1 and mitofilin 

suggesting that it is a scaffolding protein that stabilizes complexes involved in maintening 

cristae architecture (Darshi et al., 2011). Another member of this family, CHCM1/CHCHD6, 

is critical for maintening the cristae morphology, ATP production and oxygen consumption. It 

has the same localization than CHCHD3 and strongly interacts with mitofilin (An et al., 

2012). Here, we show that CHCHD10 is a mitochondrial protein, located in the 

intermembrane space. Unlike CHCHD3 and CHCM1/CHCHD6, which are inner membrane-

associated proteins, CHCHD10 is a soluble protein. By electron microscopy, we also show 

that it is enriched at cristae junctions, like mitofilin, suggesting that it could be another actor 

in maintening cristae morphology. The cristae alterations found both in patient fibroblasts and 

HeLa cells overexpressing CHCHD10
S59L

 mutant are also in favor of this hypothesis. There is 

a strong evidence that the mitochondrial F1F0-ATP synthase, apart from its enzymatic 

Page 22 of 81

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

22 

activity, plays a major role in determining the structure of cristae (Zick et al., 2009). The 

regular arrangement of this highly abundant protein complex might serve as a kind of 

backbone stabilizing tubular cristae structures. On the contrary, we could ask whether the 

abnormal pattern observed for F1F0-ATP synthase by BN-PAGE analysis in the muscle of 

patients is not secondary to an abnormal organization of cristae linked to the p.Ser59Leu 

mutation. Furthermore, this mutation leads to a respiratory chain deficiency both in muscle 

and fibroblasts of patients suggesting that CHCHD10 is critical for maintening ATP 

production and oxygen consumption. It has been shown that cristae shape regulates 

respiratory chain supercomplexes stability and assembly with an impact on mitochondrial 

respiratory efficiency, thus suggesting that shape of biological membranes can influence 

membrane protein complexes (Cogliati et al., 2013). Further experiments will be necessary to 

determine whether these effects of CHCHD10 mutant are linked to destabilization of cristae 

morphology.  

 

Down-regulation of both CHCHD3 and CHCM1/CHCHD6 in HeLa cells resulted in 

fragmentation and clustering of the mitochondrial network (Darshi et al., 2011; An et al., 

2012). This could indicate either increased fission or decreased fusion in knock-out cells. 

Studies with the dominant negative mutant of Drp1, DRP1
K38A

, which blocks fission, 

suggested that the mitochondria in CHCHD3 knock-out cells have impaired fusion activity 

(Darshi et al., 2011). Fibroblasts of patients carrying the CHCHD10 mutated allele presented 

a fragmentation of the mitochondrial network and less connected mitochondria. However, a 

direct assay with a photoactivable mitochondrial form of GFP did not find a mitochondrial 

fusion defect in patient fibroblasts. The accumulation of mtDNA deletions in skeletal muscle 

can be secondary to an increase in mtDNA damage, a defect in mtDNA repair and/or a failure 

to clear mitochondria with damaged DNA (Chen and Chan, 2010). Recently, we have shown 
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that fibroblasts bearing a MFN2 mutation, responsible for optic atrophy ‘plus’ phenotype with 

mtDNA multiple deletions, have a lower capacity to repair stress-induced mtDNA lesions 

compared to control cells (Rouzier et al., 2012). It is likely that the defect in mtDNA repair 

that we observed is due to defective fusion that leads to a variability in repair protein content 

across the mitochondrial population, thus contributing to mtDNA instability. Mitochondrial 

DNA instability found in patients carrying the p.Ser59Leu CHCHD10 mutation cannot be 

explained by a fusion deficiency. However, mammalian cells contain thousands of copies of 

mtDNA assembled into hundreds of nucleoids that are closely associated with the inner 

membrane and often appear to be wrapped around cristae or crista-like inner membrane 

invaginations (Brown et al., 2011). One cannot exclude that cristae alterations secondary to 

CHCHD10
S59L

 expression lead to nucleoid structure disorganization and contribute to defect 

of mtDNA maintenance.  

In conclusion, our study has provided strong supporting evidence that the CHCHD10 

protein plays a role in the maintenance of mitochondrial cristae morphology and mtDNA 

stability. Additonal work will be needed to clarify the pathogenic mechanisms linking 

CHCHD10 mutations with these downstream deleterious consequences and ultimately, the 

observed neurodegenerative phenotype. Moreover, this work opens a novel field to explore 

the pathogenesis of FTD-ALS clinical spectrum by showing that mitochondrial disease may 

be at the origin of some of these phenotypes. The analysis of CHCHD10 also needs to be 

performed in patients presenting with ALS or FTD in both sporadic and familial cases. 
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LEGENDS TO FIGURES 

Figure 1. Pedigree of the first family. Solid symbols represent clinically affected 

individuals. * corresponds to individuals tested for segregation analysis. 

Figure 2. Muscle analysis. A-B. Histopathology with Gomori modified trichrome (A) 

showing RRFs and COX/SDH stain (B) revealing COX-deficient fibres, which are recognized 

by the prevalent blue stain. C. Ultrastructure of skeletal muscle showing abnormal 

mitochondria with cristalloid inclusions (arrows) D. Blue native electrophoresis of muscle 
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homogenates. Equal amounts (15 µg) of mitochondrial protein from age-matched control 

subjects (C) and patients IV-3 and V-2 were subjected to BN-PAGE, blotted onto a PVDF 

membrane and then incubated with specific antibodies. * corresponds to supplementary bands 

detected by anti-complex V antibody. E. Southern blot analysis revealing multiple deletion 

bands in addition to wild-type fragments in muscle of patients III-2, IV-11, IV-6 and V-2. C, 

control individual.  

Figure 3. Mitochondrial fragmentation and ultrastructural alterations in skin 

fibroblasts. A. Cells obtained from a control (left panel) and patient V-10 (right panel) were 

analyzed by confocal microscopy using MitoTracker Red. Enlarged details of the areas are 

indicated. B. Mitochondrial phenotypes showed in A were quantified for 35 randomly-

selected individual cells per each studied fibroblast cell line from 2 independent experiments. 

The data obtained were used to calculate the total length of the mitochondrial network per cell 

(left panel) and the average mitochondrial fragment length (right panel). Differences between 

the 2 cell lines were analyzed by Student’s t test: significant (*: 0.05>p>0.01), very 

significant (**: 0.01>p>0.001) or extremely significant (***: p<0.001). C-E. Ultrastructural 

analysis of control (C) and patient V-10 (D-E) fibroblasts. Scale bar : 1µm C. Representative 

image of mitochondria with typical normal aspect found in control cells. D. Complete 

mitochondrial disorganization only found in patient cells. E. Moderate disorganization mainly 

found in patient cells.  

Figure 4. Fusion analysis in patient fibroblasts. Control and patient fibroblasts expressing 

mitochondria-targeted photoactivatable GFP (mitoPAGFP) were stained with 7 nM 

tetramethylrhodamine ethyl ester (TMRE). mitoPAGFP was photoactivated with 405-nm 

laser in a small region of cells (30 x 30 pixels) at 0 min. Fibroblasts were observed with 15-

min intervals for 60 min. Fluorescence intensity of mitoPAGFP was quantified using NIH 

Image J. Values represent the mean ± SME (n = 7 for control and 9 for patient). 
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Figure 5. Identification of the p.Ser59Leu mutation in CHCHD10. A. Schematic 

representation of the exome data analysis and data filtering. NS: non-synonymous variants; 

SS: splice site disrupting single nucleotide variants; I: exonic indels. Known variants 

correspond to SNPs and Indels already reported in dbSNP132, EVS (Exome Variant Server), 

HapMap, 1000 Genome databases and in-house control exomes. B. CHCHD10 mutation 

sequences in patients III-2, IV-3, IV-6, IV-11, IV-13, IV-15, V-2, V-10 and a control (WT). 

C. Cross-species protein conservation of CHCHD10, flanking the altered amino acid p.Ser59. 

D. Model of CHCHD10 based on the CHCHD5 structure (PDB ID: 2LQL). Aliphatic, polar, 

basic and acidic residues are respectively in grey, black, blue and red. Disulfide bonds are in 

green. The polar residue Serine 59 is indicated with an asterisk.  

Figure 6. Mitochondrial localization of CHCHD10. A. Expression of CHCHD10 protein in 

human tissues analyzed by western blotting using human multiple tissue blot. B. 

Colocalization of endogenous CHCHD10 protein with MitoTracker Red indicating 

mitochondrial localization for CHCHD10 in HeLa cells (overlay in yellow). C. Intact isolated 

mitochondria from HeLa cells (lanes 1-4) were incubated in presence (+) or in absence (-) of 

Proteinase K or Triton X-100 before analysis by immunoblotting using antibodies against 

CHCHD10, TOM20 (mitochondrial outer membrane protein) or SMAC (mitochondrial 

intermembrane space protein). To verify the purity of isolated mitochondria, total lysates 

(lane 5) and mitochondrial isolates (lane 6) were analyzed by immunoblotting using 

antibodies against CHCHD10, GAPDH (cytosolic protein) or PCNA (nuclear protein). D. 

Intact mitochondria were prepared and subjected to Na2CO3 extraction. A soluble protein 

fraction (S) and an integral membrane protein fraction (P) were prepared. Samples of an 

extract from intact mitochondria (input), and the fraction of each extraction were subjected to 

western blot analysis. VDAC and SMAC were used to identify behaviors of well defined 

mitochondrial proteins that are integral membrane protein and soluble, respectively. E. 
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Isolated mitochondria from HeLa cells (lanes 1-2) were incubated in presence (+) or in 

absence (-) of Digitonin or Proteinase K before analysis by immunoblotting using antibodies 

against CHCHD10, MFN2 (outer membrane protein), mitofilin (inner membrane protein 

mainly facing the intermembrane space), SMAC (intermembrane space protein) or Hsp60 

(mitochondrial matrix protein). 

Figure 7. Submitochondrial localization of CHCHD10 using immunoelectron 

microscopy. A. Immunogold labeling of CHCHD10 in HeLa cells. Arrows point to the 

position of gold particles. Enlarged details of the areas are indicated by black boxes. Scale 

bar: 500nm. B. Localization of the gold particles as determined by immunogold labeling of 

CHCHD10 plotted on a scheme representing a part of a mitochondrion. OM, outer membrane; 

IM, inner membrane. The histogram shows the fraction of gold particules within the indicated 

distance to the cristae junction. The histogram and the graphical representation are based on 

the same measured gold particle localizations. C. Control immunogold labeling of Hsp60 in 

HeLa cells. Scale bar: 500nm. D. Localization of the gold particles as determined by 

immunogold labeling of Hsp60 plotted on a scheme representing a part of a mitochondrion. 

OM, outer membrane; IM, inner membrane. The histogram shows the fraction of gold 

particules within the indicated distance to the cristae junction. The histogram and the 

graphical representation are based on the same measured gold particle localizations. 

Figure 8. Effects of overexpression of wild-type and pathogenic CHCHD10 alleles on 

mitochondrial network in HeLa cells.  Transfections were performed with empty vector 

(EV) or vectors encoding either wild-type CHCHD10-Flag (WT) or mutant CHCHD10-Flag 

(S59L). A. Western blot on HeLa cells extracts using antibodies against Flag, CHCHD10 or 

β-tubulin. NS, non specific. B. Analysis of DAPI (blue), Mitotracker (red) staining and 

CHCHD10 (green) immuno-labeling by fluorescence microscopy in HeLa cells transfected 

with either wild-type CHCHD10-Flag (WT) or mutant CHCHD10-Flag (S59L). C. 
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Quantification of mitochondrial phenotypes of cells transfected with empty vector (EV) or 

vectors encoding either wild-type CHCHD10-Flag (WT) or mutant CHCHD10-Flag (S59L). 

Thirty five randomly-selected individual cells per each transfection were analyzed from 2 

independent experiments. The data obtained were used to calculate the total length of the 

mitochondrial network per cell. Differences between the 2 cell lines were analyzed by 

Student’s t test: very significant (**: 0.01>p>0.001) or extremely significant (***: p<0.001). 

Figure 9. Effects of overexpression of wild-type and pathogenic CHCHD10 alleles on 

cristae morphology in HeLa cells.  A. Representative image of mitochondria after 

transfection with the empty vector. B. Representative image of mitochondria in cells 

overexpressing the wild-type CHCHD10 allele. C-D.  Representative images of mitochondria 

in cells overexpressing the mutant CHCHD10 allele (S59L).  

Table 1. Clinical data of affected members. M, male ; F, female ; AO, Age at onset ; AB, 

age at biopsy ; AD, age of death ; †, deceased; ?, unknown ; m, muscle; MND, motor neuron 

disease ; RRF, ragged-red fibers; COX-, COX negative fibers ; ↓, decreased; +, present; -, 

absent. 

Table 2. Respiratory chain analysis in patient fibroblasts A-B. Spectrophotometric 

analysis of the respiratory chain enzyme activities in patient fibroblasts in glucose (A) and in 

galactose medium (B). CS, citrate synthase. Results are expressed as extreme absolute values 

or absolute values for controls or patients, respectively. Values are expressed in nanomols of 

substrate per minute per milligram of proteins (lowered values are in grey). C-D. 

Polarographic analysis of the respiratory chain in patient fibroblasts in glucose (C) and in 

galactose medium (D). G3P, glycerol 3-phosphate. Results are expressed as extreme absolute 

values or absolute values for controls or patients, respectively. Values are expressed in 

nanomols of oxygen per minute per milligram of proteins (lowered values are in grey).   
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 III-2 IV-3 IV-6 IV-11 IV-13 IV-15 V-2 V-10 

Sexe M F F M F M M F 

AO (years) ? 65 50 58 60 50 50 49 

AB (years) 78 68 67 63 62 75 50 50 

AD (years) † ? - 67 70 † ? 77 51 - 

Syndromic diagnosis MND MND + cerebellar 

syndrome 

MND + cerebellar 

syndrome 

MND Cerebellar  

syndrome 

MND + cerebellar 

syndrome 

MND with 

ALS-like  

Cerebellar 

syndrome 

Cerebellar ataxia - + + - + + - + 

Dysarthria Bulbar Bulbar Bulbar+cerebellar Bulbar Cerebellar Bulbar Bulbar Cerebellar 

Dysphagia Bulbar Bulbar Bulbar Bulbar - Bulbar Bulbar - 

Areflexia + + + ? ? + + + 

Babinski sign + + + - + + - + 

Cognitive 

impairment 

+ + + + + + - + 

Others Deafness Proximal 

weakness 

Deafness Proximal 

weakness 

Proximal weakness, 

neurogenic bladder 

Proximal weakness, 

ptosis, facial paresis 

- - 

Muscle histology RRF++ COX- RRF++ 

COX- 

RRF 30%  

COX- 

lipid and glycogen 

accumulation 

RRF 30% COX- 

40% lipid and 

glycogen 

accumulation 

RRF 30%  

COX-  

lipid  

accumulation 

RRF ++  

COX-  

lipid  

accumulation 

RRF 20%  

COX- 20%  

lipid 

accumulation 

RRF++  

COX- 15%  

lipid and glycogen  

accumulation 

Respiratory chain 

analysis  
↓CI, ↓CIV(m) ↓CIII (m) ↓CI, ↓CIV (m) ↓CI, ↓CIV (m) Not done Normal  (m) ↓CI, ↓CIII, 

↓CIV, ↓CV (m) 

Normal (m) 

mtDNA deletions + (m) + (m) + (m) + (m) + (m) + (m) + (m) + (m) 

Table 1 
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D 

 

 

 

 

Table 2 
 

SPECTROPHOTOMETRIC ANALYSIS ON FIBROBLASTS  

GLUCOSE MEDIUM 

Enzymatic activities I II III IV V CS 

Control values (nmol/min/mg of proteins) 9.0-27.1 18.5-54.0 57.4-176.2 109.9-350.0 22.0-46.2 74.7-161.1 

Patient V-10  16.8 29.7 112.3 202.7 29.7 125.6 

SPECTROPHOTOMETRIC ANALYSIS ON FIBROBLASTS  

GALACTOSE MEDIUM 

Enzymatic activities I II III IV V CS 

Control values (nmol/min/mg of proteins) 15.2-19.4 28.2-33.1 88.8-116.4 181.7-315.4 22.7-32.1 124.8-223.0 

Patient V-10  10.0 26.7 60.2 167.1 28.2 177.0 

OXYGRAPHIC ANALYSIS ON FIBROBLASTS 

GLUCOSE MEDIUM 

 Oxygen consumption 

 Intact cells Digitonin permeabilized cells 

  Glutamate+Malate Succinate G3P 

Control values (nmol O2/min/mg of proteins) 5.90 - 13.80 8.00 - 16.60 8.00 - 15.80 4.90 - 13.50 

Patient V-10 9.40 15.36 9.40 7.04 

OXYGRAPHIC ANALYSIS ON FIBROBLASTS 

GALACTOSE MEDIUM 

 Oxygen consumption 

 Intact cells Digitonin permeabilized cells 

  Glutamate+Malate Succinate G3P 

Control values (nmol O2/min/mg of proteins) 5.58 – 8.25 8.16 – 9.91 8.60 – 9.76 5.22 – 12.91 

Patient V-10 4.66 6.22 7.82 8.31 
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Responses to referees 
 
All the experiments requested by the referees have been performed and their comments 
improved the impact of the manuscript in terms of clinical and pathogenesis. Identifying the 
CHCHD10 involvement in FTD-ALS led us to change the title of the paper. 
 
Referee 1 
 

1) « The BN-PAGE in Fig. 2D shows an instability of complex V, with the appearance  
of a smaller complex in the patients. The authors describe this finding as  
abnormal assembly of Complex V. Can they distinguish between a defect in  
assembly or increased instability? Which detergent and at which concentration  
has been used for these experiments? The levels of assembled complex II in the  
control (right panel) are much lower than in the patient. What is the evidence  
that the samples are equally loaded? The activity of complex V was normal in the  
patient fibroblast, even in galactose. The authors should comment on that. What  
about BN-PAGE in fibroblasts? Does it show the same result? » 
 
 
- We agree that smaller complexes observed with antibody against complex V can 

be secondary either to an abnormal assembling or to a degradation and it is not 
possible to distinguish between these two possibilities. This alternative has been 
added in the text.  
Page 13 - Lines 15,16: BN-PAGE assay of patients IV-3 and V-2 revealed 
smaller bands with antibody against complex V corresponding to assembly defect 
or increased instability (Fig.2D).  
Page 21 – Lines 23-25, Page 22- Line1 : On the contrary, we could ask whether 
the abnormal pattern observed for F1F0-ATP synthase by BN-PAGE analysis in 
the muscle of patients is not secondary to an abnormal organization of cristae 
linked to the p.Ser59Leu mutation. 
 

- Solubilisation was performed in a solution of 1.5 M aminocaproic acid, 75 mM 

BIS-TRIS and 4% dodecyl-β-D-maltoside. These informations have been added in 
the patients and methods paragraph (Page 6, Lines 12-14) 

 
- All revelations observed on figure 2D have been performed on the same gel after 

a sequential use of the 5 different antibodies. The evidence that the samples are 
equally loaded is showed by CI, CIII and CIV signals. Regarding CII, it is likely 
that the signal is not low in the patient V-2 but higher than in the control. The 
results of spectrophotometry in the muscle of this patient are in favour of this 
hypothesis with a high activity of CII (63.1 nmol/min/mg of proteins with control 
values between 20 and 65). This could reflect a compensatory mechanism 
corresponding to a mitochondrial proliferation, as it is frequently observed for 
example in patients presenting a mtDNA depletion leading to a multiple RC 
deficiency, except for nuclear encoded CII. We have not enough arguments to 
comment on this point but the sentence in the patients and methods paragraph 
has been completed. Page 6, Lanes 15-19 : Then they were electroblotted onto a 
PVDF membrane, prior to sequential incubation with specific antibodies directed 
against GRIM19 subunit of complex I, SDHA subunit of complex II, UQCRC2 
subunit of complex III, MTCO1 subunit of complex IV and ATP5A subunit of 
complex V (Mitosciences) allowing to verify that samples were equally loaded 
between patients and controls.  

 
- Mitochondrial disorders are characterized by tissue specificity. In most patients, a 

decreased activity of RC in muscle is not found in fibroblasts. Furthermore, in 
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patients IV-3 and V-2, we observed smaller complexes with antibody against 
ATP5A but the band corresponding to normal size is not weaker in patients than 
in controls. So, this result does not necessarily imply a decrease in activity of 
complex V. 

- We performed BN-PAGE analysis in patient fibroblasts. The assay did not reveal 
any abnormality including CV, the activity of which was normal by 
spectrophotometry. We mentioned this result in the text  without showing the blot, 
which is presented below for the referee.  
Page 13, Lines 15-16 : BN-PAGE analysis of patient fibroblasts revealed no 
abnormality including complex V (not shown), the activity of which was normal by 
spectrophotometry. 

 

 
 
 

2) « The western blot in Figure 5 is not of sufficient quality to be convincing.  
The loading of the samples shows discrepancy when using GAPDH or SMAC. 
Moreover, the OPA1 blotting does not show the expected long and short isoforms 
(important as the authors claim a defect in fusion). This western blot should be 
repeated to obtain convincing results, or it is better to omit it. »  
 
- It was not possible to make another blot because we have no more muscle 

samples available from patients. As it is requested by the referee, we deleted the 
figure 5. However, the information regarding the absence of a significant reduction 
of CHCHD10 expression (after normalization on 3 independent experiments) is 
still mentioned (as data not shown) because of its importance. 
 

 
3) « The enrichment of CHCHD10 at cristae is very interesting. However, the  

authors should also show a control image and quantification using an unrelated  
antibody. Moreover, in the quantification, what how is the distance from cristae  
defined? Is cristae morphology affected in cells overexpressing the mutant or  
downregulated for CHCHD10? »  
 
- In figure 7, a control image has been added showing immunogold labeling of 

Hsp60, a protein located in the mitochondrial matrix.  
Page 17, Lines 22-23 : We performed the same experiment with a primary 

Complex I 

Complex V 

Complex III 

Complex IV 

Complex II 

P
a
tie

n
t S

 

P
a
tie

n
t D

 

C
o
n
tro

l 

C
o
n
tro

l  

 

 

Page 45 of 81

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

BRAIN-2014-00021  
 

3 

antibody against Hsp60, a protein highly expressed in the matrix, as a control 
(Fig. 7C-D). 
 

- For quantitative analysis, we determined the localization of each mitochondrial 
gold particle with respect to the inner boundary membrane and the closest cristae 
membrane and plotted its respective localization in a model. This information has 
been added in the text (Page 17, Lines 17-19). 

 
- The empty vector, the wild-type allele or the pathological allele were tranfected in 

HeLa cells and we analyzed cristae morphology by electron microscopy. 
Overexpression of mutant CHCHD10S59L altered mitochondrial morphology with 
loss, desorganization or dilation of cristae. A novel figure (Fig.9A-D) has been 
added to show these results.  
Page 18, Lines 9-13 : We also looked at the mitochondrial morphology by 
electron microscopy. Contrary to overexpression of either empty vector or the 
wild-type allele, overexpression of the CHCHD10S59L mutant led to major 
abnormalities including loss, desorganization or dilation of cristae. Matrix 
condensation was also observed in numerous mitochondria (Fig.9A-D). 

 
- Last, we also found mitochondrial ultrastructural alterations in patient fibroblasts. 

Data have been added in figure 3C-E.  
Page 14, Lines 1-9 : We then performed ultrastructural analysis of patient 
fibroblasts. Typical mitochondria of control cells had numerous, thin, well•defined 
cristae, running perpendicularly to the mitochondrial longitudinal axis, and with a 
regular pattern of parallel organization (Fig.3C). They represented 90% of the 
mitochondrial profiles seen in two independent, genotype-blind, analyses of 
control cells. In patient cells, they represented 35% of the mitochondrial profiles. 
Completely disorganized mitochondria with sparse or absent cristae without 
recognizable parallel orientation were only observed in patient fibroblasts (18%) 
(Fig.3D). Less disorganized mitochondria represented 47% of the mitochondrial 
pattern in patient cells and 10% in control cells (Fig.3E). 
 

4) « In Figure 8A, the authors should comment on the band below the specific one  
that appears after transfection and is recognized both by the FLAG and the  
specific antibody ».  
 
- We agree that we did not enough explored the significance of this smaller band 

recognized both by the Flag and the specific antibody that are directed against 
the C-terminal part of the overexpressed and the endogenous proteins. It was not 
possible to exclude that this band could correspond to a specific isoform 
generated via downstream alternative translation initiation (dATI) (Kazak et al. 
2012) occuring from AUG encoding methionines 45 or 48 of CHCHD10. To test 
this hypothesis, we mutated Flag-tagged CHCHD10 at codon 45 or 48 and 
overexpressed the corresponding plasmids in HeLa cells. The western blot below 
shows that the smaller band is also observed in the absence of internal 
methionine 45 or 48. This result suggests that it likely corresponds to a non 
specific signal with a possible N-terminal degradation.  
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Western blot on HeLa cells extracts using antibodies against Flag, CHCHD10 or 
GAPDH. Transfections were performed with empty vector (EV) or vectors encoding 
either wild-type CHCHD10-Flag (WT), mutant CHCHD10-Flag (M45I) or mutant 
CHCHD10-Flag (M48I). NT : non transfected. 
 
We added NS (Non Specific Signal) on the blot now presented in figure 8A. 
 
 

5) « The experiment shown in Figure 9 is not convincing in the present form. The  
authors should use a tagged version of DRP1-K38A to perform these experiments  
and use anti-tag antibody to detect transfected cells. The panel should also  
show control untransfected cells and cells transfected with the dominant-  
negative DRP1 alone (here dramatic elongation of the network should be visible).  
In the current experiment, it is remarkable that even in the presence of WT  
CHCHD10 the mutant DRP1 does not produce elongation of the mitochondrial  
network. This could mean that also transfection of WT protein affects fusion, or  
that the authors are not imaging the right cells. In the text the mutant Drp1 is  
described as resistant to fission. This is misleading. In reality this is a  
dominant-negative version of the protein that blocks fission, thus allowing the  
evaluation of unbalanced fusion. This assay is very indirect. A more direct way  
to look at mitochondrial fusion would be transfection of a photoactivable form  
of GFP followed by monitoring diffusion of the fluorescence in live imaging  
after photoactivation of a small portion of the network. This is an important  
point, since the authors conclude that CHCHD10 is involved in fusion ».  
 
- We agree that DRP experiment, that was used to support the hypothesis that 

CHCHD10 was involved in mitochondrial fusion, is an indirect and inaccurate 
experiment. We performed the direct assay requested by the referee and we did 
not find a mitochondrial fusion defect in patient fibroblasts. The DRP experiment 
has been deleted and has been replaced by these data shown now in figure 4 
with a corresponding paragraph in result section (Page14, Lines 10-19). 
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6) « One final comment: localization of CHCHD10 in mitochondria, and a role in  

complex IV activity were previously described by Martherus et al., BBRC, 2010. It  
would be fair to cite this paper in the discussion».  

 
-     This has been done.  

Page 20 - Lines 24-25, Page 21 - Line 1 : However, it belongs to a family of 
mitochondrial proteins characterized by conserved CXnX motifs (Banci et al., 
2009) and it is expected to be involved in oxidative phosphorylation (Martherus et 
al., 2010). 

 
Referee 2 

 
 

1) « The clinical description of the patients indicates that areflexia and  
pyramidal signs are present together in several patients. What kind of pyramidal  
signs do the authors mean? Pyramidal involvement would rather lead to increased  
reflexes, this is why I would like to clarify this point ».  
 
- We agree that this point needs to be clarified and in fact pyramidal signs that we 

observed corresponded to Babinski sign, which suggested a motoneurone 
disease when associated with areflexia. « Pyramidal signs » has been replaced 
by « Babinski sign » both in the text and table 1. 
 

 
2) « It would be good to clarify how many potentially disease causing variants  

have been identified on exome sequencing after the bioinformatics evaluation and  
how many could be excluded by segregation analysis within the family. » 
 
- This information is presented in figure 5A. We found more than 60 000 variants in 

each patient. After filtering and exclusion of known polymorphisms, heterozygous 
variants in 5 different genes were shared by the 2 patients. The CHCHD10 variant 
only co-segregated with the disease in 8 patients (and was absent in 2 unaffected 
individuals).  
  

3) « I would also like to add to the pedigree, which family members were tested  
on segregation analysis and what the result was, because still the segregation  
within the family is the major evidence for the pathogenicity of the mutation ».  
 
- We fully agree with the referee that this information is a major evidence for the 

pathogenicity of the mutation. The pedigree has been completed. In the first 
version of the article, we forgot to precise that this mutation was absent in 2 
healthy old individuals and a sentence has been added to strengthen this point.  
Page 15 – Lines 4-8 : Segregation analysis showed that the mutation was 
present in the 8 patients tested and was absent in 2 healthy individuals (IV-14 and 
IV-16) with normal neurological examination at 79 and 69 years, respectively.  
 

4) « On Figure 2 how can the authors explain the additional bands with complex  
V antibodies on BN-PAGE? » 
 
- This question was also raised by the first referee. As we stated in paragraph 1) 

secondary to his comments, smaller bands observed with complex V antibodies 
can be secondary either to an abnormal assembling or to a degradation of the 
complex.  
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5)  « I feel a bit, that all functional studies are aiming to provide evidence  
for some indirect signs of abnormal fusion/fission and do not answer what the  
exact function of the CHCHD10 gene is. Although I find it good that the authors  
determined the localization of this protein in mitochondria ». 
 
- This comment corresponds to the one of the first referee and novel data are 

shown in figure 4.  
 

6) « Mitochondrial fragmentation and network length are quite non-specific  
findings and may present in different conditions. So I feel that the evidence  
for the pathogenicity of the mutation is not completely convincing ».  

 
- Indeed, it is easier to prove the pathogenicity of recessive mutations by 

complementation leading to phenotypic reversion in patient fibroblasts. We agree 
that mitochondrial fragmentation is not synonymous with a fusion defect. For 
example, ROS production during mitochondrial dysfunction leads to mtDNA 
damage and lipid peroxidation. This process involves membrane damage and 
changes in the mitochondrial network with fragmented mitochondria, and 
secondary fusion deficiency. However, mitochondrial fragmentation and cristae 
alterations observed after CHCHD10 S59L overexpression replicate the phenotype 
observed in patient fibroblasts. These results mainly associated with the 
segregation analysis in this large family but also with the mitochondrial 
localization of CHCHD10 make difficult to challenge the pathogenicity of the  
identified variant. 

 
 
Referee 3 
 
Major comments 
 
1) « The observation of a FTD-ALS phenotype in a mitochondrial disease is novel  

and would deserve to be better emphasized and documented, especially:  
- What about the brain MRI of CHCHD10 mutated patients with FTD? FTD is  
commonly associated with fronto-temporal atrophy.  
- Did any of the patients undergo a PET-scan?  
- Was there any analysis in the CSF to measure a-beta or Tau levels? »  
 

- In this family, the majority of patients were seen many years ago. We found MRI 
of 6 patients (III-2, IV-3, IV-11, IV-13, V-2, V-10) and, interestingly, none showed 
specific abnormality. This point has been added in the text.  
Page 5 – Lines 11-13:  Brain MRI of patient V-10 was normal and the one of the 
patient IV-3 showed moderate cortical atrophy. Brain MRI performed in 4 other 
patients (III-2, IV-11, IV-13, V-2) showed no specific abnormality. 
No patient underwent a PET-scan and a-beta or Tau levels were not measured in 
CSF. 
 

 
2) « Abnormal mitochondrial fragmentation can be of multiple origins. The  

authors try to demonstrate the action of CHCHD10 on mitochondrial fusion by 
using a mutant of DRP1, which should prevent fission. The fact that the relative 
fragmentation induced by the CHCHD10 mutant is not modified by the DRP1 
mutant rather suggests that the DRP1 mutant does not exert its dominant 
negative effect as it should. If the DRP mutant were to be active (as claimed by 
the authors), then the mitochondrial compartment would be filamentous. »  
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- We agree that DRP experiment was not a good approach and it has been 
replaced, as explained above, by photoactivable GFP assay. 
 
 

Other comments 
 

1- « The authors should display the actual values of the respiratory chain  
analyses performed in muscle as it would help interpreting the amount of  
mitochondrial deletions » 
. 
- We cannot conclude that the RC deficiency that we observed in muscle is 
directly correlated to mtDNA deletion load. In this family, the situation is the same 
than the one found in « ADOA plus » phenotype associated with mutations in 
MFN2 or OPA1. Patients present a RC defect in muscle with mtDNA deletions but 
they also have mitochondrial dysfunction in fibroblasts in the absence of mtDNA 
deletions (Amati-Bonneau et al., 2008 ; Rouzier et al., 2012). 
Mitochondrial diseases are characterized by their tissue specificity and it is likely 
that CHCHD10 dysfunction has numerous consequences in terms of membrane 
damage, cristae disorganization, ROS production that all contribute to RC 
deficiency. That is the reason why, even if mtDNA deletions found in muscle 
highly contribute to the decrease in RC complexes activity, there is no direct 
correlation between deletion load and RC defect intensity. As there are a lot of 
tables and figures in the paper, that are more informative than a supplementary 
table including all biochemical results in muscle of the 8 patients, we prefered to 
summarize RC activity data in Table 1.  
 
2- « CHCHD10 seems to be located in the inter-membrane space whereas  
mitochondrial DNA stands inside the matrix of the mitochondria. Therefore, how 
do the authors explain the impact of CHCHD10 mutations on the maintenance of 
mitochondrial DNA? »  
 
- In the absence of fusion deficiency, it is not possible to clearly answer to this 
question. However the link between nucleoids and mitochondrial cristae could be 
involved in mtDNA instability. A paragraph has been added in the discussion to 
evoke this possibility.   
Page 15 - Lines 4-8 : Mitochondrial DNA instability found in patients carrying the 
p.Ser59Leu CHCHD10 mutation cannot be explained by a fusion deficiency. 
However, mammalian cells contain thousands of copies of mtDNA assembled into 
hundreds of nucleoids that are closely associated with the inner membrane and 
often appear to be wrapped around cristae or crista-like inner membrane 
invaginations (Brown et al., 2011). One cannot exclude that cristae alterations 
secondary to CHCHD10S59L expression lead to nucleoid structures disorganization 
and contribute to defect of mtDNA maintenance.  

 
 
3- « The interpretation of the respiratory chain analyses performed in the  
fibroblasts of one patient is not clear. How do the authors explain normal  
respiration under glucose but abnormal respiration under galactose? Since  
fibroblasts do not show mitochondrial DNA deletions, does it mean that the  
mechanism by which the respiration is abnormal in fibroblasts is different from the 
mechanism in muscle? »  
 
- This test is routinely performed to explore mitochondrial dysfunction and to 
characterize the energetic competence of patient cells. During incubation in a 
glucose-free medium containing galactose, cells are forced to rely predominantly 
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on oxidative phosphorylation for ATP synthesis, given the low efficiency of this 
carbon source to feed the glycolytic pathway (Robinson et al., 1992). In cells with 
mitochondrial dysfunction, this experiment helps to highlight an underlying RC 
deficiency contrary to control cells, which do not present any defect in galactose 
medium.  
Mitochondrial disorders are characterized by tissue specificity and as we 
explained above, it is clear that RC defect found in different tissues depends on 
numerous parameters. Indeed, it is likely that even if mitochondrial dysfunction in 
muscle and fibroblasts has a common primary origin, the consequences are 
different and both abnormal respiration and RC activity defect measured in 
fibroblasts are not secondary to mtDNA deletions. 
 
 
4- « Did the authors screen CHCHD10 in other families with FTD-ALS? »  
 
- This comment was really relevant. We had previously analyzed 32 patients with 
multiple mtDNA deletions without finding any mutation in CHCHD10. Then, we 
screened a cohort of 21 FTD-ALS families which had been analyzed by exome 
sequencing. We identified one family with the same pSer59Leu mutation in 
CHCHD10 and a result paragraph has been added in the manuscript ( Page 18 - 
Lines 14-25, Page 19 – Lines 1-10 ).  
Furthermore, the identification of this second family led us to modify the title and 
highly improved the impact of the paper.  
 
 
5- « The numbers of figures could be reduced. » We deleted the figure 5. 
However, we performed numerous additional experiments requested by the 3 
referees. So, it was not possible to reduce the number of figures. 
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 1 
ABSTRACT 2 
 3 

Mitochondrial DNA (mtDNA) instability disorders are responsible for a large clinical 4 

spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal 5 

dementia are extremely rare. We report a large family with a late-onset phenotype including 6 

motor neuron disease, cognitive decline looking like frontotemporal dementia, cerebellar 7 

ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and COX negative 8 

fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The 9 

multiple mtDNA deletions found in skeletal muscle revealed a mtDNA instability disorder. 10 

Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural 11 

alterations and fragmentation of the mitochondrial network. Interestingly, expression of 12 

matrix-targeted photoactivable GFP showed that mitochondrial fusion was not inhibited in 13 

patient fibroblasts. By whole-exome sequencing (WES), we identified a missense mutation 14 

(c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil 15 

helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial 16 

protein located in the intermembrane space and enriched at cristae junctions. Overexpression 17 

of CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network 18 

and ultrastructural major abnormalities including loss, disorganization and dilatation of 19 

cristae.  20 

The observation of a frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) 21 

phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families 22 

with pathologically proven FTD-ALS. We identified the same missense p.Ser59Leu mutation 23 

in one of these FTD-ALS families. This work opens a novel field to explore the pathogenesis 24 

of FTD-ALS clinical spectrum by showing that mitochondrial disease may be at the origin of 25 

some of these phenotypes.  26 

 27 
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 1 
INTRODUCTION 2 

 Mitochondrial disorders can result from defects in mitochondrial DNA (mtDNA) or in 3 

nuclear genes that encode proteins that are imported in the mitochondria. Last years, a 4 

growing list of genes responsible for mtDNA instability has been reported (Copeland, 2012; 5 

Ylikallio et al., 2012; Shapira et al., 2012). Mutations in these genes lead either to 6 

mitochondrial DNA depletion syndrome (MDS), a devastating mitochondrial disease of 7 

childhood associated with a significant reduction of mtDNA copy number, or disorders 8 

characterized by accumulation of multiple mtDNA deletions in postmitotic tissues 9 

(Suomalainen et al., 2010; Copeland, 2012). Diseases associated with deletions comprise 10 

commonly known clinical presentations including progressive external ophtalmoplegia (PEO) 11 

and ataxia neuropathy syndromes but also some rares disorders (for review see Copeland, 12 

2012). To date, nuclear genes responsible for mtDNA instability disorders mainly fall into 13 

three categories : (i) genes encoding proteins directly involved in mtDNA replication, such as 14 

POLG, POLG2 or TWINKLE, (ii) genes encoding proteins responsible for the maintenance of 15 

mitochondrial nucleotide pool, such as TP, TK2, DGUOK… and, (iii) genes encoding 16 

membrane proteins involved in mitochondrial dynamics, such as OPA1 or MFN2 (Amati-17 

Bonneau et al., 2008; Hudson et al., 2008; Rouzier et al., 2012). This third category was 18 

recently individualized. Autosomal dominant optic atrophy (ADOA) is mainly related to 19 

mutations in the optic atrophy 1 gene (OPA1) which encodes a dynamin-like GTPase 20 

involved in the fusion of the inner mitochondrial membrane (Delettre et al., 2000). 21 

Mitofusin 2 (Mfn2) is one of the two mitofusin proteins also required for mitochondrial 22 

fusion. Mfn1 and Mfn2 are conserved integral outer mitochondrial membrane proteins, each 23 

consisting of a large GTPase domain and 2 heptad repeat (HR), or putative coil-coiled 24 

domains, all of which face the cytoplasm (Koshiba et al., 2004; Meeusen et al., 2004; Song et 25 

al., 2009). MFN2 mutations are a major cause of primary axonal Charcot-Marie-Tooth 26 
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disease type 2A (CMT2A) (Zuchner et al., 2004), an autosomal dominant neuropathy that 1 

impairs motor and sensory neurons with the longest axons resulting in earliest symptoms in 2 

distal extremities. A subset of OPA1 missense mutations have been associated with the 3 

“ADOA plus” syndrome and with accumulation of mtDNA deletions in muscle (Amati-4 

Bonneau et al., 2008; Hudson et al., 2008). Complex phenotypes have also been associated 5 

with MFN2 mutations. Recently, we reported a large family with optic atrophy beginning in 6 

early childhood, associated with axonal neuropathy and mitochondrial myopathy with 7 

mtDNA deletions in adult life. The clinical presentation looks like the “ADOA plus” 8 

phenotype linked to OPA1 mutations but is associated with a novel MFN2 missense mutation, 9 

thus confirming the link between mtDNA stability and mitochondrial fusion (Rouzier et al., 10 

2012).  11 

 Here, we report the involvement of a novel gene responsible for “mitochondrial DNA 12 

breakage” syndrome and frontotemporal lobe dementia-amyotrophic lateral sclerosis (FTD-13 

ALS) through 2 families from French and Spanish origin. The responsible gene, CHCHD10, 14 

encodes a coiled-coil helix coiled-coil helix protein whose function is unknown. However, 15 

CHCHD10 belongs to a family of mitochondrial proteins located in the intermembrane space, 16 

some of which interact with OPA1 and are involved in cristae integrity and mitochondrial 17 

fusion (Darshi et al., 2011; An et al., 2012).  18 

  19 

PATIENTS AND METHODS 20 

Patients 21 

The pedigree of the first family of French origin is shown in Fig. 1. All clinical data are 22 

summarized in table 1. Blood and tissue samples were obtained after patients had given 23 

informed consent. The index case was a 67-year-old woman (IV-6), who developed a 24 

cerebellar ataxia at 50 years of age, associated with progressive bulbar syndrome, dementia 25 
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and sensorineural deafness. Clinical examination showed cerebellar ataxia, Babinski sign, 1 

areflexia and bulbar palsy with dysarthria and dysphagia. Neuropsychological tests revealed a 2 

frontal lobe syndrome. Laboratory investigations showed normal lactate concentrations 3 

(1.6 mmol/l, normal <2.1 mmol /l). She died at 67 years of age.  4 

The age of onset of the 7 other patients who underwent a muscle biopsy was between 49 and 5 

65 year-old. Three patients presented a motor neuron disease (MND), 2 a cerebellar ataxia 6 

and the last two had a MND and a cerebellar ataxia, like the index case. All developed 7 

cognitive disorders with mainly a frontal lobe syndrome, except patient V-2 who died at 51 8 

year-old. Neuropsychological evaluation of patient IV-3 showed severe impairment in 9 

episodic memory, attention, verbal fluency and executive functions with behavioral changes 10 

corresponding to frontal dementia. Brain MRI of patient V-10 was normal and the one of the 11 

patient IV-3 showed moderate cortical atrophy. Brain MRI performed in 4 other patients (III-12 

2, IV-11, IV-13, V-2) showed no specific abnormality. Proximal weakness was observed in 4 13 

individuals (IV-3, IV-11, IV-13 and IV-15) with bilateral ptosis and facial paresis in patient 14 

IV-15. Electromyography excluded peripheral neuropathy with normal test (V-10), chronic 15 

neurogenic changes suggesting a lower motor neuron disease (IV-15) or myopathic 16 

abnormalities only (IV-3).  Patients IV-3 and V-10 are still alive, all others died after more 17 

than 10 years of evolution. 18 

Other affected individuals had no muscle biopsy (I-1, II-1, II-2, II-6, III-1, III-4, III-5, III-6, 19 

III-7, III-8 and IV-9). They presented dementia, progressive bulbar syndrome with dysarthria 20 

and dysphagia, and became bedridden. 21 

Muscle histopathology and ultrastructure 22 

Muscle samples were frozen in cooled isopentane and stored in liquid nitrogen for 23 

histological and histoenzymatic analysis including Gomori modified trichrome staining, 24 

cytochrome c oxydase (COX) activity, succinate dehydrogenase (SDH) activity and double 25 
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COX/SDH staining according to standard protocols. A fragment of muscle was also fixed in 1 

2% glutaraldehyde and processed for ultrastructural analysis by electron microscopy.  2 

OXPHOS spectrophotometric measurements 3 

Enzymatic spectrophotometric measurements of the OXPHOS respiratory chain complexes 4 

and citrate synthase were performed at 37°C on muscle crude homogenates and fibroblasts 5 

according to standard procedures (Rustin et al., 1994).  6 

Polarographic study 7 

Polarographic studies on fibroblasts of intact cell respiration and digitonin (0.004%)-8 

permeabilized cells mitochondrial substrate oxidation were carried out as previously 9 

described (Rustin et al., 1994).  10 

Blue native gel electrophoresis (BN-PAGE) and immunoblotting  11 

15 µg of muscle mitochondrial respiratory complexes, obtained by solubilisation in a solution 12 

of 1.5 M aminocaproic acid (Sigma-Aldrich), 75 mM BIS-TRIS (Sigma-Aldrich) and 4% 13 

dodecyl-β-D-maltoside (Sigma-Aldrich), were separated by BN-PAGE on a 4–13% 14 

acrylamide gradient gel (Schägger et al., 2001).  Then they were electroblotted onto a PVDF 15 

membrane, prior to sequential incubation with specific antibodies directed against GRIM19 16 

subunit of complex I, SDHA subunit of complex II, UQCRC2 subunit of complex III, 17 

MTCO1 subunit of complex IV and ATP5A subunit of complex V (Mitosciences) allowing to 18 

verify that samples were equally loaded between patients and controls.  19 

Protein measurement 20 

Proteins were measured according to Bradford microassay (Bradford, 1976).  21 

mtDNA molecular analysis 22 

Total DNA was extracted using standard phenol chloroform procedure. Long-range PCR and 23 

Southern blot analysis were performed as previously described (Paul et al., 1996; Moraes et 24 

al., 1996). mtDNA quantification in muscle was performed by real-time quantitative PCR as 25 
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described by Rouzier et al., 2010. Primer sequences and PCR conditions are available on 1 

request.  2 

Sequencing of nuclear genes  3 

The coding regions of POLG (NM_002693.2), SLC25A4 (ANT1) (NM_001151.3) and PEO1 4 

(Twinkle) (NM_021830.4) genes were sequenced as previously described (Naimi et al., 5 

2006). PCR products were purified with Illustra ExoStar enzyme (GE Healthcare), processed 6 

with an ABI PRISM® dRhodamine Terminator Cycle Sequencing Ready Reaction kit 7 

(Applied Biosystems) and analyzed on an ABI 3130XL automated sequencer (Applied 8 

Biosystems).  9 

Cell culture 10 

Skin punches were obtained from patient V-10 after informed consent. Primary fibroblast 11 

cultures were established using standard procedures in RPMI supplemented with 10% Fetal 12 

Bovine Serum (FBS), 45µg/ml uridine and 275µg/ml sodium pyruvate. Cultures were 13 

incubated at 37°C with 5% CO2. For galactose conditions, medium was replaced 24h before 14 

experiments by glucose-free medium containing 5mM galactose and 5mM pyruvate (Zanna et 15 

al., 2008).  16 

HeLa cells were maintained in DMEM supplemented with penicillin (100U/ml)/streptomycin 17 

(0.1mg/ml), 10% fetal calf serum (FCS), at 37°C in a humidified atmosphere with 5% CO2 in 18 

air. For transient transfections, HeLa cells were transfected using Lipofectamine 2000 19 

(Invitrogen) according to the manufacturer’s instructions. 20 

Mitochondrial network analysis 21 

For mitochondrial staining, cells were incubated in a 100nM solution of MitoTracker red 22 

(Invitrogen) for 15 min, medium was replaced by HeLa cells culture medium incubated 2 h at 23 

37°C and washed in PBS. The samples were fixed with paraformaldehyde (PFA) 4% 24 

(Electron Microscopy Sciences), washed with PBS, and mounted on glass slides using 25 
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Prolong Gold Antifade Reagent (Molecular Probes). For immunostaining, cells were fixed 1 

with 4% PFA, washed five times with PBS and permeabilised with 2% Triton X-100. After 2 

PBS washing, coverslips were incubated with 5% BSA (Bovin Serum Albumin) for 30 min at 3 

room temperature before adding mouse anti-FlagM2 (Agilent Technologies) (1/2000 antibody 4 

diluted with PBS-BSA 5%), mouse anti-HA (Cell Signaling) (1/100 antibody diluted with 5 

PBS-BSA 5%) or rabbit anti-FlagM2 (Cell Signaling) (1/800 antibody diluted with PBS-BSA 6 

5%). The samples were incubated at room temperature for 1h, PBS washed, and then 7 

incubated with fluorescent secondary antibody goat anti-mouse Alexa 488 (Life 8 

Technologies) (1/1000 antibody diluted with PBS-BSA 1%) or antibody goat anti-rabbit 9 

Alexa 647 (Life Technologies) (1/1000 antibody diluted with PBS-BSA 1%) for 1 hour at 10 

room temperature. The coverslips were washed five times with PBS, mounted on glass slides 11 

using Prolong Gold Antifade Reagent (Molecular Probes) and analyzed using a Zeiss 12 

LSM510 meta confocal laser-scanning microscope. 13 

The images were deconvolved with Huygens Essential SoftwareTM (Scientific Volume 14 

Imaging) using a theoretically calculated point spread function (PSF) for each of the dyes. All 15 

selected images were iteratively deconvolved with a maximum iterations scored 40 and a 16 

quality threshold at 0.05. The deconvolved images were used for quantitative mitochondrial 17 

network analysis with Huygens Essentiel SoftwareTM with the following standardised set of 18 

parameters: threshold = 25% and seed = 0% for each cell types and garbage = 5 or 10 for 19 

HeLa cells and fibroblasts respectively. The quantitative data were further analysed in 20 

Microsoft Excel and GraphPad Prism 5 (GraphPad Software). Mitochondrial network length 21 

was quantified for 35 randomly-selected individual cells.  22 

Data are represented as mean ± S.E.M. Statistical analyses were performed by Student’s 23 

unpaired t-test using GraphPad Prism 5 (GraphPad Software).  24 

 25 
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Exome sequencing 1 

Genomic DNA was extracted from blood and 3µg were fragmented by sonication. Exome 2 

targets were enriched with the SureSelect Human All Exon v4+UTR – 70 Mb Kit (Agilent 3 

technologies) and sequenced on the Illumina HiSEQ 2000 platform (Illumina). Raw image 4 

files were processed by the IlluminaReal Time Analysis pipeline for base calling and 5 

generating the read sets. The bioinfomatics analysis of sequencing data was based on the 6 

Illumina CASAVA pipeline (v1.8). CASAVA performs alignment of the 2x75 bp paired-end 7 

sequence reads to the hg19 reference genome, calls the SNPs based on the allele calls and 8 

read depth, and detects variants (SNPs &Indels). The alignment algorithm used was 9 

ELANDv2e. Only the positions included in the bait coordinates were conserved. The web 10 

application ERIS (Integragen) was used for data visualization and prioritization of variants. 11 

For mutation validation and segregation analysis, a part of CHCHD10 (NM_213720.1) 12 

spanning the mutation site in exon 2 was amplified with the following primers: 5’-13 

TCGGGCCAGCCGGGGCTC-3’ (forward) and 5’-GGAAGCCTGCCTCTAAGTGA-3’ 14 

(reverse). Purification and sequencing of PCR products were performed as described above. 15 

Homology modelling of human CHCHD10 16 

Using the threading program PHYRE2 (Kelley et al., 2009), 142 residues of CHCHD10 17 

(Met1 to Pro142) were modeled using CHCHD5 as template (PDB ID: 2LQL). Swiss-Pdb 18 

Viewer 3.7 (http://www.expasy.org/spdbv) was used to analyze the structural insight into 19 

CHCHD10 mutation and visualize the structure. 20 

Plasmid constructions 21 

The human full-length CHCHD10 cDNA was amplified by RT-PCR from total RNA of 22 

patient fibroblasts by using Transcription First strand cDNA synthesis kit (Roche) and Taq 23 

PCRx DNA polymerase (Invitrogen).  24 
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We used the following primers: 5’-GGATCCACCGCCGCCACCATG-3’ (forward) and     1 

5’-CTCGAGGGGCAGGGAGCTCAG-3’ (reverse) containing BamHI and XhoI restriction 2 

sites, respectively. Restriction-digested PCR products were cloned into pCMV-3tag-3A to 3 

generate Flag-tagged CHCHD10. Sequencing of the clones obtained led to the identification 4 

of plasmids coding for wild-type (CHCHD10WT) and mutant (CHCHD10S59L) cDNAs.  5 

Western blotting 6 

5-25 µg of total protein extracts were separated on acrylamide-SDS gels and transferred to 7 

PVDF membranes (Millipore, Saint-Quentin). Specific proteins were detected by using 8 

mouse anti-Mfn2 (1/2000, Abcam, #ab56889), anti-VDAC (1/2000, Millipore, #MABN504), 9 

anti-Flag M2 (1/2000, Agilent Technologies, #200412), anti-PCNA (1/5000, BD Biosciences, 10 

#610664), rabbit polyclonal anti-mitofilin (1/2000; Proteintech #10179-1-AP), anti-GAPDH 11 

(1/20000, Abcam #ab9485), anti-β tubulin (1/10000, Sigma-Aldrich, #T4026), anti-SMAC 12 

(1/4000, Abcam #ab8114),  anti-TOM 20 (1/5000, BD Biosciences, #612278), anti-13 

CHCHD10 (1/500, Sigma-Aldrich #HPA003440) and goat polyclonal anti-Hsp60 (1/4000, 14 

Santa Cruz, #sc-1052) antibodies. Anti-mouse, anti-rabbit or anti-goat secondary antibody 15 

(Dako) was used at 1/10000 and signals were detected using a chemiluminescence system 16 

(Immobilon Western HRP Chemilumiscent substrates, Millipore). Human multiple tissue blot 17 

was used as described by the manufacturer (G-Biosciences). 18 

Isolation of mitochondria and mitoplast preparation 19 

Mitochondria were isolated from HeLa transfected cells using Q-Proteome mitochondria 20 

isolation kit (Qiagen) as described by the manufacturer. Mitochondria were treated with 21 

Proteinase K (Invitrogen) in the presence or absence of 0.2% TritonX-100 exactly as 22 

described in Bannwarth et al., 2012. To prepare the mitoplasts, we used a digitonin treatment. 23 

Briefly, purified mitochondria were suspended in suspension buffer (250 mM sucrose, 1mM 24 

EDTA, 20mM HEPES-NaOH, pH7.4). Mitochondria were treated with digitonin (2mg/ml) 25 
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15 min at room temperature. The resulting mitoplasts were treated 10 min at room 1 

temperature with Proteinase K (100ng/µl). Proteolysis was halted by the addition of 10mM 2 

PMSF (Sigma-Aldrich) for 15 min on ice. Laemmli sample buffer was added directly to 3 

samples, boiled and loaded on SDS-PAGE.  4 

Alkali extraction of intact mitochondria 5 

Alkali extraction was performed as previously described (Bannwarth et al., 2012). Briefly, 6 

intact isolated mitochondria (25µg) were treated with 0.1M Na2CO3 (pH 11.5) for 30 min on 7 

ice, and then centrifuged at 16,000g for 15 min at 4°C. Supernatants were retained and pellets 8 

were washed once and then resuspended in an equivalent volume of homogenization buffer 9 

(250mM sucrose, 1mM EDTA, 20mM Hepes-NaOH pH7.4, plus protease inhibitor). 10 

Equivalent volumes were analyzed by immunoblot.  11 

Immunoelectron microscopy  12 

Cells were fixed with 2% paraformaldehyde, 0.2% glutaraldehyde in 0.1 M phosphate buffer 13 

(pH 7.4) for 2 hr and were processed for ultracryomicrotomy according to a slightly modified 14 

Tokuyasu method (Tokuyasu, 1973). In brief, cell suspension was spun down in 10% gelatin. 15 

After immersion in 2.3 M sucrose (in [pH 7.4], 0.1 M PB) overnight at 4°C, the samples were 16 

rapidly frozen in liquid nitrogen. Ultrathin (70 nm thick) cryosections were prepared with an 17 

ultracryomicrotome (Leica EMFCS) and mounted on formvar-coated nickel grids (Electron 18 

Microscopy Sciences). Immunostainings were processed with an automated immunogold 19 

labeling system Leica EM IGL as following: the grids were incubated successively in PBS 20 

containing 50 mM NH4Cl (5 min twice), PBS containing 1% BSA (5 min twice), PBS 21 

containing rabbit anti-CHCHD10 (Sigma-Aldrich) or anti-Hsp60 (Abcam, #ab46798) 22 

antibody in 1% BSA for 1 h, PBS containing 0.1% BSA (5 min 3 times), PBS containing 1% 23 

BSA and 10 nm colloidal gold conjugated protein AG (CMC), PBS containing 0.1% BSA for 24 
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5 min, PBS for 5 min twice. Lastly, the samples were fixed for 10 min with 1% 1 

glutaraldehyde, rinsed in distilled water and were contrasted with a mixture of 1.8% 2 

methylcellulose and 0.3% uranyl acetate on ice. After having been dried in air, sections were 3 

examined under a JEOL 1400 transmission electron microscope. 4 

Mitochondrial fusion assay 5 

Mitochondrial fusion was examined using mitochondria-targeted photoactivatable GFP 6 

(mitoPAGFP), as described (Karbowski et al., 2004). The matrix-targeted presequence from 7 

Su9 (Wakabayashi et al., 2009) was fused to the N-terminus of photoactivatable GFP 8 

(Addgene #11910) and cloned into the lentiviral vector pHR-SIN (Kim et al., 2011). 9 

Fibroblasts were infected with lentiviral particles carrying mitoPAGFP. 30 min before 10 

observation, fibroblasts were stained with 7 nM tetramethylrhodamine ethyl ester to visualize 11 

mitochondria. mitoPAGFP was photoactivated by 405-nm light (30% power, three times) in a 12 

small region (30 x 30 pixels) using a Zeiss 780 LSM confocal microscope with an 13 

environmentally controlled chamber. Images were taken at 15-min intervals for 60 min. 14 

Fluorescence intensity of mitoPAGFP was quantified using NIH Image J. 15 

 16 

RESULTS 17 

Mitochondrial myopathy with multiple mtDNA deletions in patients                                                             18 

Muscle biopsy was performed in 8 patients after informed consent (III-2, IV-3, IV-6, IV-11, 19 

IV-13, IV-15, V-2, V-10) (Fig.1). Muscle analysis of the index case (IV-6) showed typical 20 

features of mitochondrial myopathy including intracellular lipid accumulation with COX-21 

negative and ragged-red fibres (RRF) (30%) (Fig.2A-B). Electron microscopy showed altered 22 

morphology of mitochondria and cristae organization with paracristalline inclusions (Fig.2C). 23 

Similar findings with numerous RRF and COX-deficient fibres were found in all patients 24 

tested. Spectrophotometric analysis showed a combined respiratory chain deficiency in most 25 
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patients (Table 1). BN-PAGE assay of patients IV-3 and V-2 revealed smaller bands with 1 

antibody against complex V corresponding to assembly defect or increased instability 2 

(Fig.2D). All patients carried multiple mtDNA deletions in muscle identified by both long 3 

range PCR (not shown) and Southern blot analysis (Fig.2E). The determination of relative 4 

mtDNA copy number was performed by real-time quantitative PCR without finding any 5 

depletion (not shown).  6 

Respiratory chain deficiency, abnormal mitochondrial network and mitochondrial 7 

ultrastructural alterations in patient fibroblasts  8 

Spectrophotometric analysis of fibroblasts from patient V-10 cultivated in glucose medium 9 

revealed no respiratory chain deficiency and polarographic analysis showed normal oxygen 10 

consumption and mitochondrial substrate oxidation (Table 2A, 2C). In a glucose-free medium 11 

containing galactose, cells are forced to rely predominantly on OXPHOS for ATP production 12 

because the carbon source feeds the glycolytic pathway with a low efficiency. In galactose 13 

medium, spectrophotometric analysis revealed a multiple RC deficiency in patient fibroblasts 14 

and polarographic analysis showed a decrease of oxygen consumption, glutamate/malate and 15 

succinate (Table 2B, 2D). BN-PAGE analysis of patient fibroblasts revealed no abnormality 16 

including complex V (not shown), the activity of which was normal by spectrophotometry. 17 

Multiple mtDNA deletions were not observed and the determination of relative mtDNA copy 18 

number was performed by real-time quantitative PCR without finding any depletion (not 19 

shown).  20 

We also compared the mitochondrial morphology of fibroblasts from patient V-10 with that 21 

obtained from control fibroblasts. After staining with Mitotracker and examination by 22 

confocal microscopy, control fibroblasts in glucose medium displayed a typical filamentous 23 

interconnected network. Patient fibroblasts presented with a fragmentation of the 24 
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mitochondrial network and less connected mitochondria (Fig.3A-B). We obtained the same 1 

results in galactose medium (not shown). 2 

We then performed ultrastructural analysis of patient fibroblasts. Typical mitochondria of 3 

control cells had numerous, thin, well�defined cristae, running perpendicularly to the 4 

mitochondrial longitudinal axis, and with a regular pattern of parallel organization (Fig.3C). 5 

They represented 90% of the mitochondrial profiles seen in two independent, genotype-blind, 6 

analyses of control cells. In patient cells, they represented 35% of the mitochondrial profiles. 7 

Completely disorganized mitochondria with sparse or absent cristae without recognizable 8 

parallel orientation were only observed in patient fibroblasts (18%) (Fig.3D). Less 9 

disorganized mitochondria represented 47% of the mitochondrial pattern in patient cells and 10 

10% in control cells (Fig.3E). 11 

No mitochondrial fusion defect in patient fibroblasts 12 

The fragmentation of mitochondrial network observed in patient fibroblasts can be of 13 

different origins including a fusion deficiency. Furthermore, genes like MFN2 or OPA1 14 

involved in mitochondrial fusion are responsible for complex neurological phenotypes 15 

associated with mtDNA deletions. To examine mitochondrial fusion, we expressed matrix-16 

targeted photoactivatable GFP in control and patient fibroblasts (Karbowski et al., 2004). 17 

After photoactivation of mitoPAGFP in a portion of mitochondria, we monitored mixing of 18 

the fluorescent matrix marker. We found that the fluorescence intensity of mitoPAGFP 19 

similarly decreased for 60 min in both fibroblasts, suggesting that mitochondrial fusion is not 20 

inhibited in patient fibroblasts (Fig.4).  21 

Identification of a missense mutation in the CHCHD10 gene by exome sequencing 22 

Analysis of genes involved in multiple mtDNA deletions with a compatible phenotype 23 

(POLG, SLC25A4, PEO1) revealed no mutation. To identify the causative gene, we 24 

sequenced the exome of patients IV-11 and V-10. The procedure yielded 9.8 and 12.4 Gb of 25 
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mappable sequence and after alignment to the hg19 reference genome, the average depth was 1 

~70x and ~91x, respectively. From the 62 252 and 63 036 identified SNPs in patients IV-11 2 

and V-10 respectively, the pathogenic variant was identified by the following scheme: (1) 3 

Selection of heterozygous variants shared by the 2 patients, (2) Exclusion of polymorphic 4 

variants present in dbSNP132, EVS (Exome Variant Server), HapMap, 1000 Genome 5 

databases and in-house control exomes (3) Segregation analysis within the family. This 6 

filtering led us to identify a single heterozygous missense mutation (c.176C>T; p.Ser59Leu) 7 

in exon 2 of CHCHD10  that was present in the 8 patients tested and was absent in 2 healthy 8 

individuals (IV-14 and IV-16) with normal neurological examination at 79 and 69 years, 9 

respectively (Fig.5A-B). This gene encodes the coiled-coil helix coiled-coil helix domain-10 

containing protein 10 whose function is unknown. However, the C-terminal CHCH domain is 11 

primarily seen in mitochondrial proteins and was known to be involved in the protein import 12 

and metal binding in the intermembrane space (Banci et al., 2009). The mutation changes a 13 

highly conserved serine into a leucine and was not present in 200 ethnically and 14 

geographically matched control alleles (Fig.5C). In silico study by PolyPhen-2 15 

(http://genetics.bwh.harvard.edu/pph2/), SIFT (http://sift.jcvi.org/) and Mutation Taster 16 

(http://www.mutationtaster.org/ ) predicted this variant to be probably damaging. 17 

The CHCH domain of CHCHD10 is characterized by a CX9C motif. Although all CX9C 18 

proteins presumably preserve a disulfide bonded α-hairpin conformation, they have a large 19 

range of sequence lengths and a very low degree of sequence similarity both within or 20 

specific organism and the orthologs of different species (Longen et al., 2009; Cavallo et al., 21 

2010). Therefore, these features do not allow to easily predict accurate structural models for 22 

this protein family. Recently, Banci et al. have structurally characterized two members of 23 

them, CHCHD5 and CHCHD7, in their fully oxidized states (Banci et al., 2012). Using the 24 

same program, 142 residues of CHCHD10 (Met1 to Pro142) were modeled using CHCHD5 25 
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as template (PDB ID: 2LQL). Swiss-Pdb Viewer 3.7 (http://www.expasy.org/spdbv) was used 1 

to analyze the structural insight into CHCHD10 mutation and visualize the structure. The 2 

modeling of CHCHD10 shows (i) a non-structured N-terminal region, (ii) a highly 3 

hydrophobic helix (Gly43 to Ala 68) which may be typically an interface of interaction with 4 

an interacting protein, (iii) and the CHCH domain near the C-terminal region characterized by 5 

a CX9C motif (Fig.5D). The four cysteine residues (102, 112, 122 and 132) of the CHCH 6 

domain are involved in two disulfide bonds. The p.Ser59 is located in the hydrophobic N-7 

terminal α-helix, and as the few other polar residues of this helix, it may intervene in 8 

hydrogen bonds to stabilize CHCHD10 interaction with another protein. Thus, the 9 

p.Ser59Leu mutation could possibly alter protein-protein interactions. 10 

To investigate whether the p.Ser59Leu mutation has an effect on the expression of 11 

CHCHD10, we analysed CHCHD10 level in muscle of patients by western blotting. We used 12 

GAPDH and the mitochondrial SMAC protein as controls for quantitation. Normalization 13 

showed no significant reduction of CHCHD10 expression in patient muscles compared to 14 

control (not shown).  15 

CHCHD10 is a mitochondrial protein located in the intermembrane space 16 

First, we looked at the expression of CHCHD10 in human tissues by western blot. The protein 17 

is ubiquitous and highly expressed in organs with a high mitochondria content like the heart 18 

or liver (Fig.6A). Confocal microscopic analysis then showed a colocalization, in HeLa cells, 19 

of endogenous CHCHD10 with MitoTracker, a dye that accumulates specifically in 20 

mitochondria (Fig.6B). To analyze submitochondrial localization of CHCHD10, mitochondria 21 

isolated from HeLa cells were treated with proteinase K. Proteins inside mitochondria are 22 

protected from protease digestion. As shown in Figure 6C, CHCHD10 was resistant to 23 

treatment with proteinase K indicating that the protein is present inside mitochondria. As 24 

expected, the TOM20 protein (outer mitochondrial membrane) was digested by proteinase K 25 

Page 67 of 81

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

17 

while SMAC (intermembrane space) was resistant to protease digestion. Analysis of the 1 

mitochondrial preparations for PCNA and GAPDH confirmed the absence of nuclear and 2 

cytosolic contaminations, respectively. When mitochondria were subjected to alkali 3 

extraction, peripheral membrane proteins were recovered in the supernatant, while integral 4 

membrane proteins were found in the membrane-containing pellet fractions (Fig.6D). As 5 

expected, the outer membrane integral protein VDAC was primarily recovered in the pellet 6 

following extraction while SMAC was recovered in the supernatant. CHCHD10 was 7 

distributed in the supernatant indicating that it was located in the soluble fraction. Last, to 8 

discriminate between intermembrane space or matrix localization, mitochondria were treated 9 

with digitonin to open the inner membrane space. In the resulting mitoplasts, CHCHD10 was 10 

degraded by proteinase K like MFN2 (outer mitochondrial membrane), SMAC 11 

(intermembrane space) and mitofilin, an inner mitochondrial membrane protein mainly facing 12 

the intermembrane space, while Hsp60, which is located in the mitochondrial matrix, was 13 

protected against protease digestion (Fig.6E). All these results suggest that CHCHD10 is an 14 

intermembrane space protein. 15 

CHCHD10 is enriched at cristae junctions 16 

We performed immunogold labeling of chemically fixed cryosectioned HeLa cells (Fig.7A). 17 

The sections were labeled with a primary antibody against CHCHD10, followed by a 18 

secondary gold conjugate. For quantitative analysis, we determined the location of each gold 19 

particle (n = 229) with respect to the inner boundary membrane and the closest cristae 20 

membrane and plotted its respective localization in a model (Fig.7B). We found that the 21 

majority of mitochondrial gold particles were enriched in the vicinity of cristae junctions as 22 

reported previously for mitofilin, a major component of the MINOS complex (Jans et al., 23 

2013). We performed the same experiment with a primary antibody against Hsp60, a protein 24 

highly expressed in the matrix, as a control (Fig. 7C-D). 25 
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Expression of CHCHD10 mutant leads to fragmentation of the mitochondrial network 1 

and to defect in cristae maintenance 2 

To confirm the role of the p.Ser59Leu mutation, we analyzed the effects of overexpression of 3 

the pathogenic allele on mitochondrial network. HeLa cells were transiently transfected with 4 

the empty vector, the wild-type allele or the pathological allele. After transfection,  HeLa cells 5 

produced equivalent amounts of wild-type and mutant CHCHD10 (Fig.8A).  Mitochondrial 6 

network morphology and CHCHD10 labeling were next assessed using Mitotracker red and 7 

CHCHD10 antibodies, respectively. Forty eight hours after transfection with either empty 8 

vector or the wild-type allele, Mitotracker revealed a filamentous network. Overexpression of 9 

mutant CHCHD10S59L altered mitochondrial morphology in transfected cells with a 10 

significant fragmentation of the network (Fig.8B-C). We also looked at the mitochondrial 11 

morphology by electron microscopy. Contrary to overexpression of either empty vector or the 12 

wild-type allele, overexpression of the CHCHD10S59L mutant led to major abnormalities 13 

including loss, desorganization or dilation of cristae. Matrix condensation was also observed 14 

in numerous mitochondria (Fig.9A-D). 15 

Involvement of the same CHCHD10 mutation in an FTD-ALS family 16 

The observation of a FTD-ALS phenotype in a mitochondrial disease led us to analyze 17 

CHCHD10 variants in a cohort of 21 FTD-ALS families previously tested by exome 18 

sequencing. We identified the heterozygous c.176C>T (p.Ser59Leu) mutation in a patient 19 

whose family is originally from Catalonia (Spain). This man developed walking difficulties at 20 

57 years of age. Progressively, he presented a pseudo-bulbar syndrome with dysarthria and 21 

dysphagia. Electromyography confirmed motor neuron involvement with symmetrical 22 

denervation predominent in muscles of the face but also in muscles of upper and lower limbs. 23 

Motor and sensory conduction velocities were normal. The patient also had cognitive 24 

impairment and behavioural changes suggesting a frontotemporal dementia. 25 
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Neuropsychological testing revealed a frontal lobe dysfunction, notably impairment of 1 

conceptualization, perseverative behaviours and paraphasia with relative preservation of 2 

memory. Brain MRI showed mild bilateral frontal atrophy. Parkinsonian signs were also 3 

present with akinesia, rigidity and gait disorders and a UPDRS scale at 10. In addition, the 4 

patient presented bilateral sensorineural hypoacousia and a muscular fatigability. A total loss 5 

of autonomy was observed after 8 years of evolution, then he was loss sight. The elder sister 6 

and one brother of the index case presented ALS with predominant bulbar features and died 7 

after 4 years of evolution. Their father developed a neurological disease with progressive 8 

walking and speaking difficulties at 61 years of age leading to death 3 years later. No patient 9 

had a muscle biopsy. The presence of the mutation was confirmed by Sanger method in the 10 

index case but the absence of DNA samples from other family members did not allow to 11 

perform segregation analysis.  12 

 13 

DISCUSSION  14 

In this study, we first identified a new gene involved in mtDNA instability disease. 15 

We describe a large family in which affected individuals carry a missense mutation in the 16 

CHCHD10 gene. The clinical phenotype associated with this CHCHD10 mutation is unusual 17 

because patients developed a late-onset disease, which begins around fifty, with highly 18 

variable clinical presentations. Affected individuals presented with either isolated or 19 

associated symptoms including ataxia, dementia and ALS-like presentation; the only element 20 

common to all patients being the presence of a mitochondrial myopathy with numerous 21 

ragged-red and COX-negative fibers associated with multiple mtDNA deletions. None of the 22 

affected individuals presented with an external ophtalmoplegia. A patient only (IV-15) 23 

presented with a ptosis associated with facial palsy, probably due to motor neuron disease. In 24 

this family, the phenotype is really particular compared to those reported in mtDNA 25 
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instability disorders. The course of the disease was highly variable, ranging from one to more 1 

than 15 years of evolution before death. However, it was more severe than the PEO 2 

(Progressive External Ophtalmoplegia) phenotypes classically observed in pedigrees with 3 

autosomal dominant transmission of multiple mtDNA deletions (Copeland, 2012). Cerebellar 4 

ataxia is exceptionnally observed in the absence of PEO in mtDNA instability disease, except 5 

in MIRAS or MSCAE phenotypes (Copeland, 2012), secondary to POLG mutations, or in 6 

IOSCA (Hakonen et al., 2007), secondary to TWINKLE mutations. MND with ALS-like 7 

symptoms is even rarer with exceptional cases associated with POLG, TK2 or DGUOK 8 

mutations (Ronchi et al., 2012). The cognitive impairment observed in our family looks like 9 

frontotemporal dementia usually observed in ALS patients. This observation led us to analyse 10 

CHCHD10 in FTD-ALS families with a dominant mode of transmission and to identify the 11 

same missense p.Ser59Leu mutation in one of these families. FTD-ALS is a genetically 12 

heterogeneous disorder and a hexanucleotide repeat expansion in a noncoding region of the 13 

chromosome 9 open reading frame 72 (C9ORF72) gene, the function of which is unknown, 14 

has been recently identified as a common cause of FTD-ALS (DeJesus-Hernandez et al., 15 

2001; Renton et al., 2011).  Patients with a C9ORF72 expansion present with FTD, ALS, or 16 

both. Parkinsonism is common and the phenotype of our second family was highly evocative 17 

of a C9ORF72 expansion. However, C9ORF72 screening and the analysis of other candidate 18 

genes for ALS and FTD were negative in this family (TARDBP, FUS/TLS, SOD1, VCP, 19 

CHMP2B, ANG, SQSTM1, UBQLN2, PFN1). No patient had a muscle biopsy but it is likely 20 

that sensorineural hypoacousia and muscle weakness observed in the index case were related 21 

to mitochondrial dysfunction. Our study clearly shows that CHCHD10 is a novel gene 22 

responsible for ALS-FTD clinical spectrum, which raises the intriguing prospect of an 23 

underlying mitochondrial basis for this group of disorders. 24 

 25 
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The function of CHCHD10 is unknown. However, it belongs to a family of 1 

mitochondrial proteins characterized by conserved CXnX motifs (Banci et al., 2009) and it is 2 

expected to be involved in oxidative phosphorylation (Martherus et al., 2010). These proteins 3 

are incorporated into the intermembrane space and are then trapped through a redox-4 

dependent protein machinery via the intermembrane space protein Mia 40 (CHCHD4) 5 

(Stojanovski et al., 2012). CHCHD3 is a member of this family predominantly localized to 6 

the inner membrane, facing toward the intermembrane space (Darshi et al., 2012). It is part of 7 

the large protein complex called as MINOS and plays a role in maintening mitochondrial 8 

function and cristae integrity (Darshi et al., 2011; van der Laan et al., 2012). OPA1 has been 9 

shown to be involved in regulating cristae remodeling independently of its role in 10 

mitochondrial fusion (Frezza et al., 2006). CHCHD3 interacts both with OPA1 and mitofilin 11 

suggesting that it is a scaffolding protein that stabilizes complexes involved in maintening 12 

cristae architecture (Darshi et al., 2011). Another member of this family, CHCM1/CHCHD6, 13 

is critical for maintening the cristae morphology, ATP production and oxygen consumption. It 14 

has the same localization than CHCHD3 and strongly interacts with mitofilin (An et al., 15 

2012). Here, we show that CHCHD10 is a mitochondrial protein, located in the 16 

intermembrane space. Unlike CHCHD3 and CHCM1/CHCHD6, which are inner membrane-17 

associated proteins, CHCHD10 is a soluble protein. By electron microscopy, we also show 18 

that it is enriched at cristae junctions, like mitofilin, suggesting that it could be another actor 19 

in maintening cristae morphology. The cristae alterations found both in patient fibroblasts and 20 

HeLa cells overexpressing CHCHD10S59L mutant are also in favor of this hypothesis. There is 21 

a strong evidence that the mitochondrial F1F0-ATP synthase, apart from its enzymatic 22 

activity, plays a major role in determining the structure of cristae (Zick et al., 2009). The 23 

regular arrangement of this highly abundant protein complex might serve as a kind of 24 

backbone stabilizing tubular cristae structures. On the contrary, we could ask whether the 25 
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abnormal pattern observed for F1F0-ATP synthase by BN-PAGE analysis in the muscle of 1 

patients is not secondary to an abnormal organization of cristae linked to the p.Ser59Leu 2 

mutation. Furthermore, this mutation leads to a respiratory chain deficiency both in muscle 3 

and fibroblasts of patients suggesting that CHCHD10 is critical for maintening ATP 4 

production and oxygen consumption. It has been shown that cristae shape regulates 5 

respiratory chain supercomplexes stability and assembly with an impact on mitochondrial 6 

respiratory efficiency, thus suggesting that shape of biological membranes can influence 7 

membrane protein complexes (Cogliati et al., 2013). Further experiments will be necessary to 8 

determine whether these effects of CHCHD10 mutant are linked to destabilization of cristae 9 

morphology.  10 

 11 

Down-regulation of both CHCHD3 and CHCM1/CHCHD6 in HeLa cells resulted in 12 

fragmentation and clustering of the mitochondrial network (Darshi et al., 2011; An et al., 13 

2012). This could indicate either increased fission or decreased fusion in knock-out cells. 14 

Studies with the dominant negative mutant of Drp1, DRP1K38A, which blocks fission, 15 

suggested that the mitochondria in CHCHD3 knock-out cells have impaired fusion activity 16 

(Darshi et al., 2011). Fibroblasts of patients carrying the CHCHD10 mutated allele presented 17 

a fragmentation of the mitochondrial network and less connected mitochondria. However, a 18 

direct assay with a photoactivable mitochondrial form of GFP did not find a mitochondrial 19 

fusion defect in patient fibroblasts. The accumulation of mtDNA deletions in skeletal muscle 20 

can be secondary to an increase in mtDNA damage, a defect in mtDNA repair and/or a failure 21 

to clear mitochondria with damaged DNA (Chen and Chan, 2010). Recently, we have shown 22 

that fibroblasts bearing a MFN2 mutation, responsible for optic atrophy ‘plus’ phenotype with 23 

mtDNA multiple deletions, have a lower capacity to repair stress-induced mtDNA lesions 24 

compared to control cells (Rouzier et al., 2012). It is likely that the defect in mtDNA repair 25 
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that we observed is due to defective fusion that leads to a variability in repair protein content 1 

across the mitochondrial population, thus contributing to mtDNA instability. Mitochondrial 2 

DNA instability found in patients carrying the p.Ser59Leu CHCHD10 mutation cannot be 3 

explained by a fusion deficiency. However, mammalian cells contain thousands of copies of 4 

mtDNA assembled into hundreds of nucleoids that are closely associated with the inner 5 

membrane and often appear to be wrapped around cristae or crista-like inner membrane 6 

invaginations (Brown et al., 2011). One cannot exclude that cristae alterations secondary to 7 

CHCHD10S59L expression lead to nucleoid structure disorganization and contribute to defect 8 

of mtDNA maintenance.  9 

In conclusion, our study has provided strong supporting evidence that the CHCHD10 10 

protein plays a role in the maintenance of mitochondrial cristae morphology and mtDNA 11 

stability. Additonal work will be needed to clarify the pathogenic mechanisms linking 12 

CHCHD10 mutations with these downstream deleterious consequences and ultimately, the 13 

observed neurodegenerative phenotype. Moreover, this work opens a novel field to explore 14 

the pathogenesis of FTD-ALS clinical spectrum by showing that mitochondrial disease may 15 

be at the origin of some of these phenotypes. The analysis of CHCHD10 also needs to be 16 

performed in patients presenting with ALS or FTD in both sporadic and familial cases. 17 
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 28 

LEGENDS TO FIGURES 29 

Figure 1. Pedigree of the first family. Solid symbols represent clinically affected 30 

individuals. * corresponds to individuals tested for segregation analysis. 31 

Figure 2. Muscle analysis. A-B. Histopathology with Gomori modified trichrome (A) 32 

showing RRFs and COX/SDH stain (B) revealing COX-deficient fibres, which are recognized 33 

by the prevalent blue stain. C. Ultrastructure of skeletal muscle showing abnormal 34 

mitochondria with cristalloid inclusions (arrows) D. Blue native electrophoresis of muscle 35 

homogenates. Equal amounts (15 µg) of mitochondrial protein from age-matched control 36 

subjects (C) and patients IV-3 and V-2 were subjected to BN-PAGE, blotted onto a PVDF 37 

membrane and then incubated with specific antibodies. * corresponds to supplementary bands 38 
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detected by anti-complex V antibody. E. Southern blot analysis revealing multiple deletion 1 

bands in addition to wild-type fragments in muscle of patients III-2, IV-11, IV-6 and V-2. C, 2 

control individual.  3 

Figure 3. Mitochondrial fragmentation and ultrastructural alterations in skin 4 

fibroblasts. A. Cells obtained from a control (left panel) and patient V-10 (right panel) were 5 

analyzed by confocal microscopy using MitoTracker Red. Enlarged details of the areas are 6 

indicated. B. Mitochondrial phenotypes showed in A were quantified for 35 randomly-7 

selected individual cells per each studied fibroblast cell line from 2 independent experiments. 8 

The data obtained were used to calculate the total length of the mitochondrial network per cell 9 

(left panel) and the average mitochondrial fragment length (right panel). Differences between 10 

the 2 cell lines were analyzed by Student’s t test: significant (*: 0.05>p>0.01), very 11 

significant (**: 0.01>p>0.001) or extremely significant (***: p<0.001). C-E. Ultrastructural 12 

analysis of control (C) and patient V-10 (D-E) fibroblasts. Scale bar : 1µm C. Representative 13 

image of mitochondria with typical normal aspect found in control cells. D. Complete 14 

mitochondrial disorganization only found in patient cells. E. Moderate disorganization mainly 15 

found in patient cells.  16 

Figure 4. Fusion analysis in patient fibroblasts. Control and patient fibroblasts expressing 17 

mitochondria-targeted photoactivatable GFP (mitoPAGFP) were stained with 7 nM 18 

tetramethylrhodamine ethyl ester (TMRE). mitoPAGFP was photoactivated with 405-nm 19 

laser in a small region of cells (30 x 30 pixels) at 0 min. Fibroblasts were observed with 15-20 

min intervals for 60 min. Fluorescence intensity of mitoPAGFP was quantified using NIH 21 

Image J. Values represent the mean ± SME (n = 7 for control and 9 for patient). 22 

Figure 5. Identification of the p.Ser59Leu mutation in CHCHD10. A. Schematic 23 

representation of the exome data analysis and data filtering. NS: non-synonymous variants; 24 

SS: splice site disrupting single nucleotide variants; I: exonic indels. Known variants 25 
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correspond to SNPs and Indels already reported in dbSNP132, EVS (Exome Variant Server), 1 

HapMap, 1000 Genome databases and in-house control exomes. B. CHCHD10 mutation 2 

sequences in patients III-2, IV-3, IV-6, IV-11, IV-13, IV-15, V-2, V-10 and a control (WT). 3 

C. Cross-species protein conservation of CHCHD10, flanking the altered amino acid p.Ser59. 4 

D. Model of CHCHD10 based on the CHCHD5 structure (PDB ID: 2LQL). Aliphatic, polar, 5 

basic and acidic residues are respectively in grey, black, blue and red. Disulfide bonds are in 6 

green. The polar residue Serine 59 is indicated with an asterisk.  7 

Figure 6. Mitochondrial localization of CHCHD10. A. Expression of CHCHD10 protein in 8 

human tissues analyzed by western blotting using human multiple tissue blot. B. 9 

Colocalization of endogenous CHCHD10 protein with MitoTracker Red indicating 10 

mitochondrial localization for CHCHD10 in HeLa cells (overlay in yellow). C. Intact isolated 11 

mitochondria from HeLa cells (lanes 1-4) were incubated in presence (+) or in absence (-) of 12 

Proteinase K or Triton X-100 before analysis by immunoblotting using antibodies against 13 

CHCHD10, TOM20 (mitochondrial outer membrane protein) or SMAC (mitochondrial 14 

intermembrane space protein). To verify the purity of isolated mitochondria, total lysates 15 

(lane 5) and mitochondrial isolates (lane 6) were analyzed by immunoblotting using 16 

antibodies against CHCHD10, GAPDH (cytosolic protein) or PCNA (nuclear protein). D. 17 

Intact mitochondria were prepared and subjected to Na2CO3 extraction. A soluble protein 18 

fraction (S) and an integral membrane protein fraction (P) were prepared. Samples of an 19 

extract from intact mitochondria (input), and the fraction of each extraction were subjected to 20 

western blot analysis. VDAC and SMAC were used to identify behaviors of well defined 21 

mitochondrial proteins that are integral membrane protein and soluble, respectively. E. 22 

Isolated mitochondria from HeLa cells (lanes 1-2) were incubated in presence (+) or in 23 

absence (-) of Digitonin or Proteinase K before analysis by immunoblotting using antibodies 24 

against CHCHD10, MFN2 (outer membrane protein), mitofilin (inner membrane protein 25 
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mainly facing the intermembrane space), SMAC (intermembrane space protein) or Hsp60 1 

(mitochondrial matrix protein). 2 

Figure 7. Submitochondrial localization of CHCHD10 using immunoelectron 3 

microscopy. A. Immunogold labeling of CHCHD10 in HeLa cells. Arrows point to the 4 

position of gold particles. Enlarged details of the areas are indicated by black boxes. Scale 5 

bar: 500nm. B. Localization of the gold particles as determined by immunogold labeling of 6 

CHCHD10 plotted on a scheme representing a part of a mitochondrion. OM, outer membrane; 7 

IM, inner membrane. The histogram shows the fraction of gold particules within the indicated 8 

distance to the cristae junction. The histogram and the graphical representation are based on 9 

the same measured gold particle localizations. C. Control immunogold labeling of Hsp60 in 10 

HeLa cells. Scale bar: 500nm. D. Localization of the gold particles as determined by 11 

immunogold labeling of Hsp60 plotted on a scheme representing a part of a mitochondrion. 12 

OM, outer membrane; IM, inner membrane. The histogram shows the fraction of gold 13 

particules within the indicated distance to the cristae junction. The histogram and the 14 

graphical representation are based on the same measured gold particle localizations. 15 

Figure 8. Effects of overexpression of wild-type and pathogenic CHCHD10 alleles on 16 

mitochondrial network in HeLa cells.  Transfections were performed with empty vector 17 

(EV) or vectors encoding either wild-type CHCHD10-Flag (WT) or mutant CHCHD10-Flag 18 

(S59L). A. Western blot on HeLa cells extracts using antibodies against Flag, CHCHD10 or 19 

β-tubulin. NS, non specific. B. Analysis of DAPI (blue), Mitotracker (red) staining and 20 

CHCHD10 (green) immuno-labeling by fluorescence microscopy in HeLa cells transfected 21 

with either wild-type CHCHD10-Flag (WT) or mutant CHCHD10-Flag (S59L). C. 22 

Quantification of mitochondrial phenotypes of cells transfected with empty vector (EV) or 23 

vectors encoding either wild-type CHCHD10-Flag (WT) or mutant CHCHD10-Flag (S59L). 24 

Thirty five randomly-selected individual cells per each transfection were analyzed from 2 25 
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independent experiments. The data obtained were used to calculate the total length of the 1 

mitochondrial network per cell. Differences between the 2 cell lines were analyzed by 2 

Student’s t test: very significant (**: 0.01>p>0.001) or extremely significant (***: p<0.001). 3 

Figure 9. Effects of overexpression of wild-type and pathogenic CHCHD10 alleles on 4 

cristae morphology in HeLa cells.  A. Representative image of mitochondria after 5 

transfection with the empty vector. B. Representative image of mitochondria in cells 6 

overexpressing the wild-type CHCHD10 allele. C-D.  Representative images of mitochondria 7 

in cells overexpressing the mutant CHCHD10 allele (S59L).  8 

Table 1. Clinical data of affected members. M, male ; F, female ; AO, Age at onset ; AB, 9 

age at biopsy ; AD, age of death ; †, deceased; ?, unknown ; m, muscle; MND, motor neuron 10 

disease ; RRF, ragged-red fibers; COX-, COX negative fibers ; ↓, decreased; +, present; -, 11 

absent. 12 

Table 2. Respiratory chain analysis in patient fibroblasts A-B. Spectrophotometric 13 

analysis of the respiratory chain enzyme activities in patient fibroblasts in glucose (A) and in 14 

galactose medium (B). CS, citrate synthase. Results are expressed as extreme absolute values 15 

or absolute values for controls or patients, respectively. Values are expressed in nanomols of 16 

substrate per minute per milligram of proteins (lowered values are in grey). C-D. 17 

Polarographic analysis of the respiratory chain in patient fibroblasts in glucose (C) and in 18 

galactose medium (D). G3P, glycerol 3-phosphate. Results are expressed as extreme absolute 19 

values or absolute values for controls or patients, respectively. Values are expressed in 20 

nanomols of oxygen per minute per milligram of proteins (lowered values are in grey).   21 
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