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Abstract—Deep learning approaches yield state-of-the-art per-
formance in a range of tasks, including automatic speech
recognition. However, the highly distributed representation in
a deep neural network (DNN) or other network variations is
difficult to analyse, making further parameter interpretation and
regularisation challenging. This paper presents a regularisation
scheme acting on the activation function output to improve
the network interpretability and regularisation. The proposed
approach, referred to as activation regularisation, encourages
activation function outputs to satisfy a target pattern. By defining
appropriate target patterns, different learning concepts can
be imposed on the network. This method can aid network
interpretability and also has the potential to reduce over-fitting.
The scheme is evaluated on several continuous speech recognition
tasks: the Wall Street Journal continuous speech recognition task,
eight conversational telephone speech tasks from the IARPA
Babel program and a U.S. English broadcast news task. On
all the tasks, the activation regularisation achieved consistent
performance gains over the standard DNN baselines.

Index Terms—activation regularisation, interpretability, visu-
alisation, neural network, deep learning

I. INTRODUCTION

Recent progress in deep learning [3], [4], [5] has improved
the state-of-the-art performance in a range of applications,
including the automatic speech recognition (ASR) systems.
The multiple layers of non-linear transformations in a deep
neural network (DNN), or related network variations, allow
complex and difficult data to be well modelled. However,
its high-level abstraction and representation of input features
make it difficult to interpret the DNN parameters. This can
cause various issues for improving parameter estimation, and
network generalisation.

To reduce over-fitting, regularisation techniques are com-
monly used in DNN training. Weight decay adds a squared
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L2-norm term of the DNN parameters to the cost function.
This penalises large weights during parameter optimisation.
Rather than modifying the criterion, dropout [6] randomly
turns off, drops, a set of nodes during the training procedure;
as a result, the final DNN can be viewed as an ensemble
model of many small DNNs. This averaging helps reduce
over-fitting to the training data. Optimisation techniques, such
as batch normalisation [7], can also be used to accelerate
the training and obtain a better generalised performance.
However, these approaches do not aid the interpretability
of network parameters. Structured neural networks introduce
interpretation by adding structure to the network topology.
Different groups of parameters, or nodes, are introduced and
restricted to model specific aspects of the data. Inspired by the
animal visual cortex, convolutional neural networks [8], [9]
(CNNs) introduce convolutional, pooling, and fully-connected
layers to restrict the network connectivity. Multi-task neural
networks [10], [11], [12] change the output layer with auxiliary
tasks to further reinforce the primary task. Mixture density
networks [13], [14], [15] parametrise the mixture components
via DNNs, effectively modelling a “deep” probability density
function. Multi-basis adaptive neural networks [16], [17] in-
volve parallel sub-networks to cover different data domains.

A number of approaches have been proposed to interpret
trained DNN parameters. Reverse engineering methods have
been investigated to analyse the hidden unit representations.
These schemes focus on analysing a well-trained neural net-
work, instead of inducing useful interpretations during the
training process. For instance, Garson’s algorithm in [18],
[19] was used to inspect feature importance in DNN models.
In the area of computer vision, weight analysis of neural
networks has been examined to interpret neural networks. In
[19], [20], [21], the input feature was optimised to maximise
the output of a given hidden activation in the network. The
visualisation of the feature implies the function of that ac-
tivation. [22] inverted the activations and transformations of
convolutional neural networks via the forward propagation step
to reconstruct the input features detected by an activation.
Alternatively, topographic filter maps [23] impose a spatial
order in which the nodes of a CNN are arranged closely on
a 2-dimensional (2D) grid. This is implemented by adding a
regularisation term to the criterion that reduces the difference
of activation function outputs between nearby nodes. Similarly,
the mismatches between spatial neighbours can be controlled
to smooth activation function outputs for achieving a better
regularisation in speaker adaptation [1] or in DNN training [5].



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. Y, ZZZ 2

This paper describes a method to both improve inter-
pretability and regularisation of DNNs. A general framework
is proposed based on this concept, referred to as activation
regularisation. Instead of being treated independently, the
nodes in hidden layers are reorganised to form an activation
grid. A reference, named as target pattern, is introduced.
The target pattern can encode a range of learning concepts,
which can induce interpretability. This information is then
used as a regularisation term to train the model parameters.
By adding a regularisation term to the cost function, activation
function outputs can be controlled to satisfy a target pattern
in the training phase. In this way, the DNN behaviour can
be interpreted by visualising and inspecting the network grid.
Also, this regularisation has the potential to reduce over-
fitting and improve the capability to generalise DNNs. For
the discussion of the framework, this paper focuses on DNNs.
However, this approach can be applied to more complex
models such as recurrent neural networks.

The rest of this paper is organised as follows. The basic
DNN topology and notations are reviewed in Section II. Sec-
tion III proposes the framework for activation regularisation.
Experiment results and discussions are reported in Section IV.
The conclusion of this paper is presented in Section V.

II. BASIC DNN TOPOLOGY

In speech recognition, DNN models are commonly used
to predict the context-dependent state emitting probability
p(xt|y) at time t via a pseudo-likelihood

p(xt|y) =
P (y|xt)p(xt)

P (y)
∝ P (y|xt)

P (y)
(1)

where xt and y, respectively, represent the feature vector of an
acoustic observation and a context-dependent state; as p(xt)
is independent of y, it can be ignored. This paper takes the
feed-forward neural network as an example for the discussion
of the proposed method. A feed-forward DNN maps the input
feature vector xt onto a set of output targets y through a series
of hidden layers. Each hidden layer introduces a number of
nodes and an activation function for each node. The activation
function input z(l)t and output h(l)

t are recursively defined as

z
(l)
t = W (l)Th

(l−1)
t + b(l), 1 ≤ l ≤ L (2)

h
(l)
t = φ

(
z
(l)
t

)
, 1 ≤ l < L (3)

h
(0)
t = xt (4)

where L denotes the total numbers of layers; φ(·) represents
the activation function; z(l)t represents a transformation given
on the l-th layer; and the parameters of the transformation
are defined as W (l) and b(l). DNN models use non-linear
activation functions to yield highly distributed representations.
The activation function φ(·) can take many forms, such as
sigmoid function

φi

(
z
(l)
t

)
=

1

1 + exp
(
−z(l)ti

) ; (5)

hyperbolic tangent (tanh) function

φi

(
z
(l)
t

)
=

1− exp
(
−2z

(l)
ti

)
1 + exp

(
−2z

(l)
ti

) ; (6)

or rectified linear unit (ReLU) function

φi

(
z
(l)
t

)
= max

(
0, z

(l)
ti

)
. (7)

These functions allow the network to derive high-level feature
abstractions. At the DNN output, a softmax function is used for
multi-label classification tasks. It models the target posterior
given the input network representation

P (y = i|xt) =
exp

(
z
(L)
ti

)
∑
j exp

(
z
(L)
tj

) . (8)

In ASR, y commonly stands for the context-dependent state
target, which may contain thousands of targets [3].

Let θ =
〈
W (1), b(1), . . . ,W (L), b(L)

〉
denote the DNN pa-

rameters. Given training data and a suitable criterion L(θ), the
parameters θ can be optimised via the error back-propagation
algorithm. The cross-entropy (CE) criterion is a standard
criterion for frame-wise training

L(θ) = − 1

T

T∑
t=1

logP (yt|xt;θ) (9)

where T is the total number of training samples; xt and yt
are an acoustic feature vector and its context-dependent target,
respectively. For sequential tasks such as speech recognition,
sequential criteria can also be used. For instance, the minimum
phone error (MPE) criterion [24] is defined as

L(θ) =
∑
u

∑
H
P (H|Xu;θ)lev(H,Hrefu ) (10)

where u ranges over the training utterances; H represents a
hypothesis for that utterance; Xu = [xu1, . . . ,xuTu

] denotes
the whole feature sequence with Tu frames belonging to the
u-th utterance; and lev(H,Hrefu ) represents the Levenshtein
distance between the candidate H and the reference Hrefu .
The tuned, well-trained, DNN is then integrated into an HMM
framework to yield the acoustic model in ASR systems.

III. ACTIVATION REGULARISATION

One issue in neural network training is that the hidden-
layer nodes can take an arbitrary order and thus are not inter-
pretable. This can cause problems for network regularisation
and speaker adaptation as it is difficult to relate parameters to
each other. One example is LHUC [25] speaker adaptation
where the number of parameters to adapt is equal to the
number of nodes. It is difficult to robustly estimate a large
number of parameters when there is limited adaptation data.

Activation regularisation encourages outputs of the acti-
vation functions to relate to some reference, referred to as
the target pattern. By defining appropriate target patterns,
meaningful learning concepts can be imposed to influence
activation function behaviour. Moreover, appropriately manip-
ulating the network nodes into a specific order prevents an
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arbitrary ordering, which has the potential to improve network
regularisation.

The activation regularisation is achieved by adding a regu-
larisation term R(θ) to the training criterion F(θ)

F(θ) = L(θ) + ηR(θ) (11)

where L(θ) is the standard training criterion; and η determines
the contribution of the activation regularisation term R(θ).
The framework for activation regularisation can be described
in four discrete stages:

1) The network nodes in one layer are first rearranged to
form a grid, and activation function outputs can then be
expressed as H∗(l)t .

2) A transformation T (·) is then applied to the activation
function outputs, which yields H̃∗(l)t .

3) A target pattern G
(l)
t is specified. Various concepts

can be embedded in the target pattern, for example,
interpretation or smoothness.

4) Given H̃∗(l)t and G(l)
t , a suitable regularisation function

R(·) is applied to minimise the difference between the
activation outputs and target pattern.

A. Activation Grid

As discussed in standard network training, nodes of hidden
layers can take an arbitrary order. This lack of an ordering
constraint leads to two problems: first, a direct visualisation
of a layer gives no insights or interpretations; second, manip-
ulation of nodes beyond individual elements is challenging.

To introduce a spatial order, an activation grid can be
defined for each layer. For instance, a layer with 1024 nodes
can form a 32×32 2D grid. Given a network with parameters
θ and an input observation xt, the reorganisation operation
G(xt,θ) generates the grid representation H∗(l)t for activation
function outputs in each hidden layer h(l)

t

G(xt,θ) = 〈H∗(1)t ,H
∗(2)
t , · · · ,H∗(L−1)t 〉. (12)

In a 2D space, H∗(l)t is a matrix; in higher dimensional
settings, H∗(l)t can be described as a higher-order tensor. This
paper takes the 2D situation as an example for the discussion.
Figure 1 shows an example of a hidden layer with 9 nodes:
non-contiguous nodes (in dotted boxes) can form a region in
its grid representation. This grid is projected onto a Cartesian
coordinate system, and each node (i, j) can be located as a
point in this network-grid space, denoted as sij .

B. Activation Transformation

Given the activation grid, a transform can then be applied to
the outputs of the activation functions. For instance, activation
function outputs of the grid can be normalised and transformed
to form an activation “distribution”, or a high-pass filtered ac-
tivation “image”. The transformed activation function outputs
are defined as H̃∗(l)t , specified by a transform T (·) applied to
H
∗(l)
t

H̃
∗(l)
t = T (H

∗(l)
t ). (13)

h
(l)
t

H
∗(l)
t

1 2 3 4 5 6 7 8 9

1 2 3

4 5 6

7 8 9

Fig. 1. Node Re-organisation to Form a Grid for One Hidden Layer.
Non-contiguous elements (in dotted boxes) can form a region in the grid
representation.

There are multiple possible transforms T (·). A trivial method
is the identity transform, which yields the original activation
function output

H̃
∗(l)
t = H

∗(l)
t . (14)

Three types of the transforms are investigated in this paper:
the normalised activation; the probability mass function; and
the high-pass filtering.

1) Normalised Activation: The outputs of the activation
functions can directly be used as the transformed represen-
tation. However, this may cause a problem since some of the
activation function outputs only stay close to the extreme ends
of the range of activation function. At the same time, the
contribution that they make to the next layer also depends
on the parameters of the following layer. Therefore, both
the output range of an activation function and its associated
parameters to the next layer should be considered as impact
factors. The normalised activation [26] is proposed to address
these problems. It is defined as

h̃
∗(l)
tij = h

∗(l)
tij β

(l)
ij (15)

where the term β
(l)
ij is introduced to reflect the impact that the

activation has on the following layer l + 1

β
(l)
ij =

√∑
k

w
(l+1)2
kio . (16)

where io represents the original node index in h(l)
t of the

(i, j)-th grid node. This form gives a method to take into
account both aspects of the problem: the empirical range of
the activation function, and the influence of the next-layer
parameters.

The normalised activation can be integrated with other ap-
proaches of transformation, e.g., the probability mass function
or the high-pass filtering presented as follows.

2) Probability Mass Function: This grid can also be treated
as a discrete probability space. By transforming activation
function, a probability mass function (PMF) can be obtained
that contains information about the activation function be-
haviour. This probability mass function can be defined as
follows

h̃
∗(l)
tij =

h
∗(l)
tij∑

m,n h
∗(l)
tmn

(17)
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where activation function outputs are normalised by their
sum. By using this artificial distribution, activation outputs are
normalised in a similar range. This normalisation overcomes
the potential impact of different activation function types.

There are some constraints that need to be satisfied for
this PMF transform. To ensure that H̃∗(l)t is a valid distribu-
tion, h̃∗(l)tij should be non-negative. This restricts the potential
choices of activation function. Simple methods such as an
exp(·) wrapping can be utilised for an arbitrary function,
but this may disable the effect of the negative range in the
activation function.

3) High-pass Filtering: A high-pass filtering transform can
be used to induce smoothness over the activation function
outputs. It includes information about nearby units via a
convolution operation,

H̃
∗(l)
t = H

∗(l)
t ∗K (18)

where K is a filter. The filter can take a range of forms. a
Gaussian high-pass filter, used in [1], assigns the impact of
other nodes according to the distance; a simple 3× 3 kernel,
used in [5], only introduces adjacent nodes.

Using this high-pass filter, the transformation incorporates
information from the nearby nodes. For example, by encour-
aging H̃∗(l)t to be zero, nearby nodes in the grid space would
have similar behaviours. It also yields a smooth surface on the
grid, and nearby nodes tend to activate simultaneously.

C. Target Pattern

Activation regularisation encourages the transformed acti-
vation function output H̃∗(l)t to satisfy a target pattern G(l)

t .
The target pattern can encode a range of learning concepts,
which can induce interpretability. Two types of target pattern
can be used: a time-variant pattern defines target pattern G(l)

t

depending on the data; and a time-invariant pattern controls
the behaviour of H̃∗(l)t with a static pattern G(l).

1) Time-variant Patterns: The activation grid can be split
into a set of spatial regions. The meanings of regions can
take a variety of concepts, e.g., phones, noise types or speaker
variations. In this way, different grid regions can model and
respond to different concepts in the data.

For example, phone-dependent patterns encourage the grid
regions to model different phones. In each hidden layer, a
set of phoneme (or grapheme) dependent target patterns is
defined over the grid. Effectively, a point in this grid space is
associated with each phone /p/, denoted as sp. These phone
positions can be determined via methods such as t-SNE [27]
using the acoustic feature means of the phones. It is then
possible to apply a transform to target patterns, in a similar
fashion to its activation function output transform

g
(l)
tij =

exp
(
− 1

2σ2 ||sij − ŝpt ||22
)∑

m,n exp
(
− 1

2σ2 ||smn − ŝpt ||22
) (19)

where ŝpt is the position in the grid space of the “correct”
phone at time t; and σ controls the sharpness of the surface
of the pattern. Eq. 19 defines a Gaussian contour as the time-
variant target pattern. The Gaussian mean is the phone position
in the grid. Therefore, for each phone, that contour covers its

nearby region in the grid. It encourages nodes to correspond
to the same phone to be grouped in the same area. As a result,
different regions of the grid are induced to respond to different
phones. The behaviour of an activation function can then be
interpreted according to its location in the grid.

2) Time-invariant Patterns: Time variant patterns require
the concept of several “labels” to be derived from the data.
This is not necessary. Time invariant patterns can be used to
specify general, desirable, attributes of the network activation
pattern. It can be expressed as

G
(l)
t = G(l),∀t. (20)

For example, by using a zero pattern,

G
(l)
t = 0, (21)

transformed activation outputs are penalised to have small
values, which is similar to the standard L2 regularisation.

D. Regularisation Function

A function R(θ) is now required to relate the transformed
activation output H̃∗(l)t and target pattern G(l)

t

R(θ) =
1

T

∑
t

∑
l

D(H̃
∗(l)
t ,G

(l)
t ) (22)

where D(H̃
∗(l)
t ,G

(l)
t ) measures the mismatch between the

activation output and the target pattern. There are a range
of approaches to defining the difference D(·, ·). Three are
investigated in this paper: the mean squared error; the KL-
divergence; and the cosine similarity. They can all be inte-
grated into the error back-propagation algorithm by simply
changing the gradient calculation accordingly.

1) Mean Squared Error: A straightforward way to define
the difference is the mean squared error method, defined as

D(H̃
∗(l)
t ,G

(l)
t ) = ||H̃∗(l)t −G(l)

t ||2F (23)

where ||A||F stands for the Frobenius norm of a matrix

||A||F =

√∑
i,j

a2ij . (24)

This regularisation method minimises the element-wise
squared error between H̃(l)

t and G(l)
t . As an example, using

the raw activation function output as the transformed one and
setting a time-invariant target pattern G(l)

t = 0, yields

D(H̃
∗(l)
t ,G

(l)
t ) = ||H∗(l)t ||2F . (25)

This is similar to standard L2-norm regularisation, but is
applied to activation function outputs rather than the parame-
ters. Alternatively using a high-pass filtering and a zero time-
invariant target pattern G(l)

t = 0 yields

D(H̃
∗(l)
t ,G

(l)
t ) = ||H∗(l)t ∗K||2F . (26)

The output of an activation function is encouraged to be
smoothed to its nearby ones; thus a smooth surface is formed
in a local region of the grid [5].

The mean squared error regularisation works well when the
elements in H̃∗(l)t and G(l)

t are in a similar range. However,
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this may require careful selection of the target patterns de-
pending on the activation function. For activation functions
with fixed ranges, such as sigmoid or tanh, G(l)

t can be
easily rescaled to an appropriate range. However, for activation
functions such as ReLU, in which the range is not restricted,
the rescaling on G(l)

t tends to require a lot of empirical trials.
2) KL-Divergence: One way to address the dynamic range

issue between H̃∗(l)t and G(l)
t is to use the PMF normali-

sation, combined with distribution distances such as the KL-
divergence method. The difference D(H̃

∗(l)
t ,G

(l)
t ) is the KL-

divergence of the two distributions [1], the target pattern Gt

and the activation distribution H̃∗(l)t ,

D(H̃
∗(l)
t ,G

(l)
t ) =

∑
i,j

g
(l)
tij log

(
g
(l)
tij

h̃
∗(l)
tij

)
. (27)

For example, by using the phone-dependent target pattern
(Eq. 19) and the probability mass function (Eq. 17), the KL-
divergence can spur different regions in the grid to correspond
to different phones.

3) Cosine Similarity: The KL-divergence regularisation re-
quires H̃∗(l) to be positive, to yield a valid distribution. This
limits the choices of activation function. There are approaches
to convert specific activation functions to be positive. For
example, by using tanh +1, instead of tanh, in Eq. 17, the
KL-divergence regularisation can manipulate the hyperbolic
tangent function with a similar pattern as a sigmoid one.
However, these methods require a pre-defined lower-bound on
the activation function, which cannot be applied in all cases.
An alternative approach, the negative cosine similarity, can be
used

D(H̃
∗(l)
t ,G

(l)
t ) = − cos

(
vec

(
H̃
∗(l)
t

)
,vec

(
G

(l)
t

))
= −

∑
i,j h̃

∗(l)
tij g

(l)
tij∣∣∣∣∣∣H̃∗(l)t

∣∣∣∣∣∣
F

∣∣∣∣∣∣G(l)
t

∣∣∣∣∣∣
F

(28)

where vec(·) converts a matrix to a vector representation.
This regularisation defines the similarity between two vectors
in an inner-product space. It measures the difference as the
angle between the activation output vector vec

(
H̃
∗(l)
t

)
and

the target pattern one vec
(
G

(l)
t

)
. This supports all forms of

activation function.

IV. EXPERIMENTS

Experiments were conducted on three tasks: the Wall Street
Journal (WSJ) continuous speech recognition task [28]; eight
conversational telephone speech tasks from the IARPA Babel
program [29]; and the U.S. English broadcast news (BN)
task [30], [31]. The GMMs, DNNs and proposed models were
trained on a modified version of HTK Toolkit 3.5 [32].

Three types of activation regularisation were investigated in
these experiments:

1) KL: The KL system used the KL-divergence regularisa-
tion (Eq. 27) with the activation PMF (Eq. 17) and the
phone-dependent target pattern (Eq. 19). The activation
grid of this DNN was encouraged to have phone regions.

2) Cos: The Cos system used the cosine similarity regular-
isation (Eq. 28) with the normalised activation (Eq. 15)
and the phone-dependent target pattern (Eq. 19). This
activation grid was encouraged to have phone regions,
which was similar to the KL system.

3) Smooth: The smooth system used the mean-squared-
error regularisation (Eq. 23) with the high-pass filtering
activation transformation (Eq. 18) and the zero target
pattern (Eq. 21). A 3 × 3 kernel was used as the high-
pass filter, in which the central tap was 1 and others
were -0.125. In this way, the activation function outputs
were smoothed with their adjacent ones in the grid; and
a smooth surface was formed over the activation grid.

A. Wall Street Journal

In this task, systems were trained on the 15-hour Wall
Street Journal training set (WSJ-SI84) from 84 speakers and
evaluated on both the 1994 H1-Dev and H1-Eval testsets.
Decoding was performed with the WSJ tri-gram language
model.

First, the 39-dimensional PLP+∆+∆∆ processed by both
global cepstral mean normalisation (CMN) and cepstral vari-
ance normalisation (CVN) were used to train a GMM-HMM
model (with about 3k tied triphone states). This GMM system
was then used to obtain the state-level alignment of the
training set for the DNN systems. The 468-dimensional DNN
input feature was the PLP+∆+∆∆+∆∆∆ (both processed
by global CMN and CVN) in a temporal context window
of 9 frames. Three activation functions were used for DNNs:
sigmoid, tanh and ReLU. For each one, the respective DNN
consisted of 5 hidden layers with 1024 nodes in each layer.
Its parameters were initialised in the layer-wise discriminative
pre-training setting and then optimised by back-propagation on
the cross-entropy criterion. L2 regularisation was used during
the training phase. A dropout DNN system was also trained1

and the present probability was set to 0.2.
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Fig. 2. WSJ-SI84 2-dimensional Mapping of English Phonemes via t-SNE.

For systems with activation regularisation, each layer
formed a 32×32 grid. For the KL and Cos systems, 46 English
phones were used to define the time-variant target patterns,
and 2D positions of the phones were estimated via the t-SNE

1Dropout regularisation does not yield significant gains in this task.
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method over the average of frames of different phones. They
were then scaled to fit in a unit square [0, 1]× [0, 1]. Figure 2
illustrates the 2D projection of the phones. The regularisation
parameters were empirically tuned on the development data
H1-Dev. For the Cos and Smooth systems, sigmoid, ReLU
and hyperbolic tangent activation functions were investigated.
For the KL system, only sigmoid activation function was used.

Figure 3 shows the outputs of the third-hidden-layer activa-
tion grid of standard (no additional regularisation), KL, Cos
and Smooth sigmoid DNNs for an ”aa” frame sample.2. As
expected, both the KL and Cos DNNs yielded the target pat-
terns: the activation functions around the phone “aa” location

(a) Standard (b) KL

(c) Cos (d) Smooth

Fig. 3. Comparison of Standard (No Additional Regularisation), KL, Cos and
Smooth DNN Activation Function Outputs on an “aa” Frame.

echoed higher values than other regions. The Smooth DNN,
which does not have a specific target, just yielded a smoothed
pattern.

The impact of the normalised activation, as defined in
Eq. 15, is shown in Table I. By using this transform instead

TABLE I
WSJ-SI84 IMPACT OF NORMALISED ACTIVATION (NORMACT) ON

SIGMOID DNNS ON H1-DEV

R NormAct WER (%)
L2 – 10.0

KL 7 9.9
3 9.7

of raw activation function outputs in the regularisation term,
the KL system could further reduce the word error rate
(WER). Similar results were also found in the Cos and Smooth
DNNs. Table II compares the impact of different η and σ
configurations in the KL regularisation. The best performance
was achieved by setting η to 0.2 and σ2 to 0.1. With σ2 = 0.1
and a 32×32 grid, approximately 322 activation functions are
within one standard deviation of the stimulation point for a
particular phone. This is the region most heavily influenced

2An example video, showing the activation function outputs of one sen-
tence, is provided at http://mi.eng.cam.ac.uk/˜cw564/stimulated/example.avi.

TABLE II
WSJ-SI84 COMPARISON OF η AND σ2 OF KL-REGULARISED SIGMOID

DNNS ON H1-DEV [WER (%)]

PPPPPPσ2
η

0.1 0.2 0.3 0.5

0.05 10.0 9.9 – –
0.1 9.9 9.7 10.1 10.6
0.2 9.9 9.8 – –

0.0 0.1 0.2 0.3 0.4
Regularisation Penalty
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Fig. 4. WSJ-SI84 Cross-entropy and KL-divergence Values of the CV Set on
Different Regularisation Penalties.

by this form of regularisation term. Figure 4 illustrates the
cross entropy and KL-divergence values of the cross validation
set, which can be viewed as an indicator of the generalised
performance, for different η settings and a fixed value of σ2

at 0.1. Higher values of η resulted in lower KL-divergence
values. The cross-entropy initially decreased (improved), but
then increased in value with higher values of η. The minimal
cross-entropy value was achieved when η was in the range
between 0.1 and 0.3, which is consistent with the optimal
decoding performance on H1-Dev.

Tables III and IV summarises the decoding performance of
different DNNs on the H1-Dev and H1-Eval testsets. The

TABLE III
WSJ-SI84 SYSTEM SUMMARY ON H1-DEV [WER (%)]

R Sigmoid ReLU Tanh
L2 10.0 10.9 10.5
Dropout 10.0 – –
KL 9.7 – –
Cos 9.7 10.5 10.5
Smooth 9.8 10.8 10.4

TABLE IV
WSJ-SI84 SYSTEM SUMMARY ON H1-EVAL [WER (%)]

R Sigmoid ReLU Tanh
L2 10.2 10.9 11.2
Dropout 10.0 – –
KL 10.0 – –
Cos 10.1 10.8 11.0
Smooth 10.1 10.8 10.9

Cos and Smooth regularisation on sigmoid, ReLU and tanh
DNNs yielded similar performance. On this relatively small
task, small consistent gains could be obtained. On the H1-
Eval, the proposed methods slightly outperformed the dropout
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regularisation; however, they yielded similar results as the
dropout on H1-Dev.

B. Babel Languages

Experiments in this section were conducted on seven devel-
opment languages and one surprise language from the IARPA
Babel program in the option period3 3. For all the languages,
an automatic, unicode-based, graphemic dictionary generation
[33] was applied. The “pure” graphemes were extended with
position information and language dependent attributes. The
full language pack (FLP) dataset was used for each language.
It consisted of 40 hours of conversational telephone speech
(CTS). An additional 10-hour development dataset was used
as the testset.

Two language models were used in these experiments: the
n-gram LM and the recurrent neural networks (RNN) LM
trained using the CUED RNN LM toolkit [34]. These were
both trained on acoustic data transcripts containing approx-
imately 500k words. Additional n-gram LMs were trained
on data collected from the web [35]. These web LMs were
then interpolated with the FLP LMs by optimising inter-
polation weights on the development data. Acoustic models
were speaker adaptively trained Tandems [36] and (stacked)
Hybrids [37] that shared the same set of features. The DNN
input features were formed as concatenating PLP, pitch [38],
probability of voicing [38] and multi-language bottleneck fea-
tures [39] provided by IBM and RWTH Aachen, in a temporal
context window of 9 frames. Thus, a total of 4 acoustic models
was built for each language. Stacked Hybrids were trained us-
ing mono-phone discriminative pre-training initialisation and
followed by cross-entropy training and minimum-phone-error
training, with and without the activation regularisation. Unless
otherwise stated, KL regularisation was used; 5 hidden layers
with a 32 × 32 grid in each layer were used. The grid for
activation regularisation was built using the sets of graphemes
extended with position information and attributes. To achieve
high transcription accuracy, the final system combined the
4 acoustic models, two hybrid and two tandem, via a joint
decoding [40]. Note no activation regularisation was used for
the tandem systems. More details of this joint system can
be found in [41]. Keyword search was performed using the
joint decoding lattices. About 2k keywords were available for
each language [42]. The performance was measured by the
maximum term weighted value (MTWV) [43].

The first experiment compared these regularisation config-
urations on Javanese with a simplified configuration. A single
DNN using the RWTH multi-language bottleneck features
was investigated, and decoding was performed using a tri-
gram LM. Again sigmoid, ReLU and tanh activation functions
were investigated in different regularisation schemes. The
recognition performance of the CE systems is compared in
Table V. On different activation function settings, Cos and
Smooth DNNs outperformed their corresponding baselines.
The sigmoid function yielded better performance than other

3Pashto IARPA-babel104b-v0.4bY, Guarani IARPA-babel305b-v1.0a, Igbo IARPA-
babel306b-v2.0c, Amharic IARPA-babel307b-v1.0b, Mongolian IARPA-babel401b-
v2.0b, Javanese IARPA-babel402b-v1.0b, Dholuo IARPA-babel403b-v1.0b, Georgian
IARPA-babel404b-v1.0a

TABLE V
CE DECODING SUMMARY ON JAVANESE [WER (%)]

R Sigmoid ReLU Tanh
L2 58.2 59.2 58.5
KL 57.2 – –
Cos 57.9 59.0 57.9
Smooth 57.9 58.9 58.0

activation functions, and the best system was the KL sigmoid
DNN. These sigmoid CE systems were further tuned using
the MPE criterion. Table VI shows the performance of dif-
ferent MPE DNNs. The MPE training on different systems

TABLE VI
DECODING SUMMARY OF CE AND MPE SIGMOID DNNS ON JAVANESE

[WER (%)]

R CE MPE
L2 58.2 56.5
KL 57.2 55.8
Cos 57.9 56.2
Smooth 57.9 56.3

yielded lower-error performance than their corresponding CE
baselines. Similar to CE systems, the best performance was
achieved by the KL system, reducing the token error rate from
56.5% to 55.8%.

The second experiment contrasted standard and KL systems
on all languages in more advanced configuration combining 4
acoustic models and interpolated FLP and web data LMs in
a single joint decoding run. The overall MTWV results are
presented alongside in-vocabulary (IV) and out-of-vocabulary
(OOV) query only results. The results in Table VII show that

TABLE VII
COMPARISON OF STANDARD DNN AND KL REGULARISED SYSTEMS ON

ALL LANGUAGES

Language KL WER MTWV
(%) IV OOV Total

Pashto 7 44.6 0.4720 0.3986 0.4644
3 44.4 0.4752 0.4032 0.4672

Guarani 7 45.2 0.5823 0.5614 0.5800
3 44.9 0.5885 0.5712 0.5869

Igbo 7 55.3 0.4007 0.3673 0.3974
3 55.1 0.4020 0.3680 0.3986

Amharic 7 41.1 0.6500 0.5828 0.6402
3 40.8 0.6619 0.5935 0.6521

Mongolian 7 47.8 0.5382 0.4805 0.5316
3 47.6 0.5497 0.4910 0.5431

Javanese 7 50.9 0.4991 0.4448 0.4924
3 50.7 0.5024 0.4679 0.4993

Dholuo 7 38.5 0.6547 0.5551 0.6434
3 38.3 0.6563 0.5585 0.6451

Georgian 7 39.4 0.7184 0.7066 0.7179
3 38.9 0.7275 0.7197 0.7265

ASR gains are seen even after system combination for all
languages. Similarly, gains can be seen in KWS performance
for all languages.

The third experiment assessed whether activation regular-
isation scaled with increasing the grid size on the 4 most
challenging languages. Experiments have so far examined a



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. Y, ZZZ 8

32 × 32 grid. A larger 45 × 45 grid was examined for all
languages plus an even larger 55 × 55 grid for the most
challenging language. The use of a larger 45 × 45 grid in

TABLE VIII
IMPACT OF GRID SIZE OF KL SYSTEMS ON FOUR MOST CHALLENGING

LANGUAGES

Language Grid WER MTWV
(%) IV OOV Total

Pashto
32× 32 44.4 0.4752 0.4032 0.4672
45× 45 43.8 0.4828 0.4083 0.4750

Igbo
32× 32 55.1 0.4020 0.3680 0.3986
45× 45 54.7 0.4071 0.3680 0.4026
55× 55 54.6 0.4079 0.3555 0.4024

Mongolian
32× 32 47.6 0.5497 0.4910 0.5431
45× 45 46.8 0.5606 0.5171 0.5559

Javanese
32× 32 50.7 0.5024 0.4679 0.4993
45× 45 50.5 0.5043 0.4679 0.5001

Table VIII shows ASR and KWS gains for all languages.
Further increase in the grid size, 55 × 55, for the most
challenging language Igbo, yielded little benefit. The results
in Tables VII and VIII show the advantages of activation
regularisation, which results in ASR and KWS gains in all
examined languages.

C. Broadcast News
This task used the 144-hour 1996 and 1997 Hub-4 English

Broadcast News Speech dataset (LDC97S44, LDC98S71),
containing 288 shows from approximately 8k speakers. Two
testsets were used for the evaluation: the 2.7-hour Dev03
and 2.6-hour Eval03. The utterances of both testsets were
processed by automatic segmentation, and their averaged ut-
terance durations were 10.7 and 10.9 seconds, respectively.
Decoding was performed with a tri-gram language model.
Related settings are described in more detail in [44].

For DNN models, the sigmoid activation function was
examined. The baseline DNN cross-entropy system used the
468-dimensional PLP+∆+∆∆+∆∆∆ features, processed by
both global CMN and CVN, in a temporal context window of 9
frames as the input feature. The network consisted of 5 hidden
layers, and each layer formed a default 32×32 grid. The DNN
parameters were initialised in the layer-wise discriminative
pre-training fashion and then optimised by back-propagation
on the CE criterion. This CE DNN baseline was further trained
on the MPE criterion.

For activation regularisation, the default English phone set
was used, and phone positions were obtained via t-SNE over
the training-set averaged frames of the phones. Regularisation
parameters were again empirically tuned on the development
data Dev03.

Table IX summarises the performance of different CE
systems. Three systems using activation regularisation out-
performed their respective DNN baselines. The KL system
showed the best performance, which reduced the relative WER
up to 5% in contrast with the CE DNN baseline. The CE KL
system was then further tuned on the MPE criterion. Similar
to the CE ones, the MPE KL system outperformed the MPE
baseline as illustrated in Table X, reducing the WER up to 4%
relatively.

TABLE IX
CE SIGMOID DNN PERFORMANCE ON BROADCAST NEWS [WER (%)]

R Dev03 Eval03
L2 12.5 10.7
KL 11.9 10.3
Cos 12.3 10.6
Smooth 12.2 10.7

TABLE X
MPE SIGMOID DNN PERFORMANCE ON BROADCAST NEWS [WER (%)]

R Dev03 Eval03
L2 11.6 10.1
KL 11.2 9.8

V. CONCLUSION

This paper presents a general framework for activation
regularisation to improve interpretability and regularisation
in deep learning models. This framework allows appropriate
target patterns to be interpreted on activation function outputs.
The target patterns are introduced to induce desired infor-
mation such as different learning concepts or smoothness.
A regularisation term is added to the cost function, which
encourages activation outputs to perform similarly to the target
pattern. In this way, network interpretation can be easily
deduced from the visualisation of activation function outputs.
Furthermore, they give the potential to reduce over-fitting and
aid DNN generalisation. The proposed methods were evaluated
on three tasks: the Wall Street Journal continuous speech
recognition task, eight conversational telephone speech tasks
from the IARPA Babel program and a U.S. English broadcast
news task. The activation regularisation has shown consistent
performance gains in contrast with their corresponding DNN
baselines. Future work will look at activation regularisation
on more complex network topologies such as recurrent neural
networks and further adaptation methods that utilises informa-
tion in activation output patterns.
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