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1 Introduction

There are an abundance of experimentally-observed mesons containing one or more heavy

quarks [1] and these provide a window on a rich variety of strong-interaction physics. In

particular, many of them, the so-called ‘X,Y, Z’s’, are not compatible with quark model

expectations. Clear examples of this incompatibility are the charged charmonium-like

Z+
c (3900) and Z+

c (4430) which cannot be solely cc̄ and must contain at least one additional

quark-antiquark pair. One possible explanation for such exotic states is that they are

tetraquarks, compact bound states of four quarks. Others, for example ref. [2], suggest that

compact tetraquarks are not required to explain the observed spectrum. Recent reviews of

some of the X,Y, Z’s, with interpretations such as compact tetraquarks, molecular mesons,
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hybrid mesons and threshold cusps, can be found in refs. [3–8]. As well as hidden-charm

cc̄qq̄ configurations, doubly-charmed ccq̄q̄ tetraquarks have been hypothesised [9–12], but

there are currently no experimental candidates for these.

Quantum Chromodynamics (QCD) is the fundamental theory of the strong interac-

tion and, in principle, should predict whether four-quark states exist and whether these are

consistent with the expectations of tetraquark models or other interpretations. The only

ab-initio framework for performing systematically-improvable calculations at the hadronic

scale is lattice QCD: spacetime is discretised on a finite four-dimensional Euclidean lat-

tice and Monte Carlo techniques are used to compute correlation functions from which

observables can be extracted. The discrete spectrum of finite-volume energy eigenstates is

obtained from calculations of two-point correlation functions involving interpolating oper-

ators which have the required quantum numbers. Hadron-hadron scattering amplitudes,

and hence the properties of resonances and other scattering phenomena, can be calculated

via the Lüscher formalism [13, 14] which relates finite-volume spectra to infinite-volume

scattering amplitudes. There is currently no extension of this formalism to three or more

hadron scattering channels that is practical to use in calculations but this is an active area

where progress is being made. A more in-depth review of the Lüscher formalism and a

discussion on its applications and extensions can be found in ref. [15].

The Hadron Spectrum Collaboration has developed a range of interpolating operators

resembling quark-antiquark [16, 17] and meson-meson [18, 19] structures which transform

irreducibly under the symmetries of the lattice and efficiently interpolate the states of

interest. These operators have proven very successful in recent computations of finite-

volume spectra which are then used to determine scattering amplitudes [18–26]. As has

been emphasised in studies such as those in refs. [19, 22], not including a sufficiently diverse

set of relevant operators in the calculations could lead to an unreliable determination of

finite-volume spectra and, in turn, incorrect scattering amplitudes. Hence, it is desirable

to consider operators with other potentially-relevant colour-flavour-spatial-spin structures,

resembling compact tetraquarks, and investigate whether their inclusion has any impact

on the extracted spectra. The main goal of this work is to develop a very general class

of operators with compact tetraquark structures, which transform irreducibly under the

symmetries of the lattice and which respect other relevant symmetries. We will test these

constructions in lattice QCD computations of spectra in hidden-charm and doubly-charmed

channels. These include isospin-1 JPG = 0+−, 1++, 1+− hidden-charm spectra1 which

are relevant for exotic charged charmonium-like states and where the lightest tetraquark

multiplet is expected to appear [27], and isospin-0 JP = 0+, 1+, 2+ and isospin-1
2 strange

JP = 0+, 1+ exotic doubly-charmed spectra.

There have been a number of recent lattice QCD studies of tetraquarks containing one

or more heavy quarks. Computations have not found any clear indication for the presence of

hidden or open-charm tetraquarks [28–31]. Other recent lattice QCD calculations relevant

for the channels we study can be found in refs. [32–34]. In the bottom sector, there is some

1It is important to emphasise that G refers to G-parity since C-parity is not a good quantum number

for charged states. Note that C = −G in isospin-1 for the neutral component.
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evidence supporting the existence of a doubly-bottom (I)JP = (0)1+ tetraquark where

finite-volume spectrum calculations find an energy level below the relevant meson-meson

thresholds [35]. In addition, a number of computations of the potential between two static

quarks in the presence of two light quarks [36–42] have found evidence for a bound state [36,

38, 40–42]. We discuss these studies further in the context of our results in section 6.

The structure of the rest of this paper is as follows. We begin in section 2 by describ-

ing the construction of a general class of tetraquark operators which transform irreducibly

under the symmetries of the lattice. In section 3, the methodology for calculating the finite-

volume spectrum with large bases of operators in the distillation framework is presented.

The resulting spectra in the hidden-charm and doubly-charmed sectors are presented in

section 4. Some systematic effects and the stability of the extracted spectra are investi-

gated in section 5. We discuss the results in light of phenomenological and other lattice

QCD studies in section 6 before giving a summary in section 7. Appendices present some

additional properties of diquark and tetraquark operators, give quark model interpretations

of the diquark structures and list the operators used to calculate the finite-volume spectra.

2 Tetraquark operator construction

To construct interpolating operators which resemble a compact tetraquark, we combine

a diquark operator with an anti-diquark operator. The diquark operator is built from

two quark fields coupled together to obtain appropriate colour, flavour and spin quantum

numbers and, analogously, the anti-diquark operator is built from two antiquarks. The

diquark and anti-diquark are then combined to form a colour singlet with the desired

flavour and spin. These constructions provide, with no loss in generality, a convenient

way to build a diverse class of tetraquark operators which have the required quantum

numbers and respect appropriate symmetries. In this section we present an overview of

these operators: we begin by describing the flavour and colour structures before presenting

expressions for the diquark, anti-diquark and tetraquark operators. Further details and

a discussion of some additional properties can be found in appendix A. Further model-

dependent understanding on how the different diquark configurations interpolate different

states can be found in appendices B and C.

The diquark operator is constructed by coupling two quark fields together to definite

colour, flavour and continuum spin. In colour space, the quarks belong in the fundamental

representation of SU(3)C and so the diquark is in either the antisymmetric 3̄ representation

or the symmetric 6 representation. In flavour space, we use SU(3)F constructions to form a

convenient basis of operators, but this does not imply any assumption of SU(3)F symmetry

in the theory — as long as a sufficient basis is used, an arbitrary flavour combination can

be constructed from a linear combination of these operators. The up, down and strange

(u, d and s) quarks belong in the fundamental representation of SU(3)F and the charm

(c) quark is placed in a singlet. The quarks are coupled together to obtain the desired

flavour irrep out of 1, 3, 3̄ and 6. For example, coupling two u, d, s quarks as 3⊗3→ 3̄, this

irrep gives a component with flavour quantum numbers (isospin, strangeness) = (0, 0) with

flavour structure 1√
2

(ud− du), and a (1
2 ,−1) multiplet with flavour structure 1√

2
(us− su)
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and 1√
2

(ds− sd). Alternatively, coupling a c quark with a u, d, s quark as 1⊗ 3→ 3 gives

a (0,−1) component with flavour structure cs, and a (1
2 , 0) multiplet with flavour structure

cu and cd. If both quarks are in the same flavour representation, Fermi symmetry requires

that the overall operator is antisymmetric under the interchange of the quarks and this

constrains the allowed diquark configurations.

The diquark operator in colour irrep R (row r), flavour irrep F (row f) and continuum

spin J (Jz component m) is,

δ
J [Γ]
RF ;rfm(~x, t) =

∑
ra,rb

〈3, ra; 3, rb|R, r〉
∑
fa,fb

〈Fa, fa;Fb, fb|F, f〉 qTFa;rafa(~x, t)CΓmqFb;rbfb(~x, t)

(2.1)

where spinor indices have been suppressed, q(~x, t) is a quark field smeared with the dis-

tillation operator as discussed in section 3.2, 〈Da, da;Db, db|D, d〉 are the SU(2) or SU(3)

Clebsch-Gordan coefficients that couple the irreps Da⊗Da → D with da, db and d the irrep

rows, C is the charge conjugation matrix such that γ0 = CγT0 C, and Γ is a Dirac gamma

matrix which determines J , m and other properties of the diquark operator as shown in

table 3 in appendix A. Choosing an appropriate Γ gives access to spins up to J = 1 — in

order to access higher spins or excitations, this operator can be generalised by including

gauge-covariant derivatives in a similar way to the fermion-bilinear operator constructions

discussed in ref. [16].

In the anti-diquark operator, the antiquarks belong in the anti-fundamental represen-

tation of SU(3)C and therefore couple to colour irrep 3 or 6̄. The up, down and strange

antiquarks belong in the 3̄ irrep of SU(3)F and the charm antiquark is in the singlet. Pos-

sible flavour irreps for the anti-diquark are therefore 1, 3, 3̄ and 6̄. If both antiquarks are in

the same flavour irrep, Fermi symmetry again constrains the allowed configurations. The

anti-diquark operator is defined in an analogous way to the diquark operator as,

δ̄
J [Γ]
RF ;rfm(~x, t) =

∑
ra,rb

〈3̄, ra; 3̄, rb|R, r〉
∑
fa,fb

〈Fa, fa;Fb, fb|F, f〉 q̄Fa;rafa(~x, t)ΓmCq̄
T
Fb;rbfb

(~x, t)

(2.2)

where q̄(~x, t) is a (smeared) antiquark field. Here the charge conjugation matrix comes after

the Dirac gamma matrix so that under the charge conjugation operator C δ̄J [Γ]
RF C−1 = δ

J [Γ]

R̄F̄
,

and this ensures a convenient definition of tetraquark operators with definite G-parity as

discussed later.

Tetraquark operators are formed by coupling a diquark operator and an anti-diquark

operator to a colour singlet with definite flavour and spin. The only possible diquark and

anti-diquark colour combinations which give a colour singlet are 3̄ ⊗ 3 and 6 ⊗ 6̄ and this

restricts the possible diquark-anti-diquark configurations. The flavour quantum numbers

of the tetraquark operator are obtained by coupling the appropriate flavour irreps of the

diquark and anti-diquark and then choosing the desired row. By projecting onto zero

momentum, tetraquark operators have definite parity and, in channels where G-parity

is a good quantum number, operators with definite G-parity can be constructed. The
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J Λ

0 A1

1 T1

2 E ⊕ T2

3 A2 ⊕ T1 ⊕ T2

4 A1 ⊕ E ⊕ T1 ⊕ T2

Table 1. Subduction of continuum spin J into lattice irreps Λ of Oh for J ≤ 4.

tetraquark operator, projected onto momentum ~p, is,

T J [Γ1,Γ2]
[R1,R2]F [F1,F2];fm(~p, t) =

∑
~x

ei~p·~x
∑
m1,m2

〈J1,m1; J2,m2|J,m〉
∑
r1,r2

〈R1, r1;R2, r2|1〉

×
∑
f1,f2

〈F1, f1;F2, f2|F, f〉 δJ1[Γ1]
R1F1;r1f1m1

(~x, t) δ̄
J2[Γ2]
R2F2;r2f2m2

(~x, t) .
(2.3)

For the remainder of this study, we only consider ~p = 0 and so this operator has definite

parity P which is determined by the gamma matrices Γ1 and Γ2 as described in appendix A.

In channels where G-parity is a good quantum number, a tetraquark operator with definite

G-parity is given by,

T J [Γ1,Γ2],PG
[R1,R2]F [F1,F2];fm(~p = ~0, t) = T J [Γ1,Γ2]

[R1,R2]F [F1,F2];fm(~0, t) + G̃ T J [Γ2,Γ1]

[R̄2,R̄1]F [F̄2,F̄1];fm
(~0, t) , (2.4)

where G̃ = ±1. The G-parity of this operator is G = G̃ξJξ1ξ3 where ξJ , ξ1, ξ3 are phases

arising from the exchange symmetry of the Clebsch-Gordan coefficients in equation (2.3)

as described explicitly in appendix A.

This tetraquark operator has definite spin J in the continuum but the lattice discreti-

sation breaks rotational symmetry and so J is no longer a good quantum number. With

a cubic lattice discretisation and volume, the symmetry group is reduced to the octahe-

dral group Oh for states at rest [43] and broken further to the little group for states with

non-zero momentum [44]. The distribution, or subduction, of J ≤ 4 into the irreps of Oh is

tabulated in table 1. We construct lattice tetraquark operators which transform in lattice

irrep Λ (row µ) by subducing the continuum operators as described in ref. [16],

T Λ[J [Γ1,Γ2]],P (G)
[R1,R2]F [F1,F2];fµ(~p = ~0, t) =

∑
m

SJ,mΛ,µ T
J [Γ1,Γ2],P (G)

[R1,R2]F [F1,F2];fm(~p = ~0, t) , (2.5)

where S are subduction coefficients. The generalisation to ~p 6= ~0 involves the construction

of helicity operators and then the subduction to irreps of the little group of ~p as discussed

in ref. [17]. We will use these lattice tetraquark operators to calculate correlation functions

in lattice QCD from which the finite-volume spectrum can be extracted.

3 Calculation of the spectrum

To determine the spectrum in each quantum-number channel, we calculate a matrix of

two-point correlation functions using a basis of interpolating operators with appropriate

– 5 –
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quantum numbers,

Cij(t) = 〈0|Oi(t)O
†
j(0)|0〉 , (3.1)

between a creation operator O†j(0) at the source with Euclidean time 0 and an annihilation

operator Oi(t) at the sink with Euclidean time t. Inserting a complete set of energy

eigenstates into this expression gives,

Cij(t) =
∑
n

1

2En
Zn∗
i Z

n
j e
−Ent , (3.2)

where |n〉 is an energy eigenstate with energy En and the operator-state matrix elements,

Zn
i ≡ 〈n|O

†
i (0)|0〉, are also referred to as overlaps. Note that in a finite volume, the set of

energy eigenstates is discrete. The spectrum can be extracted by utilising the variational

method [45–47]: a generalised eigenvalue problem Cij(t)v
n
j = λn(t, t0)Cij(t0)vnj is solved for

some appropriate choice of t0, the eigenvalues λn, known as principal correlators, are related

to En and the eigenvectors vni are related to the overlaps. In our implementation of the

variational method described in refs. [16, 48], we fit the principal correlators to the function,

λn(t, t0) = (1−An)e
−En(t−t0) +Ane

−E′n(t−t0) , (3.3)

where the fit parameters are En, E
′
n, and An. The second exponential is used to account

for possible contamination due to excited states. The eigenvectors can be used to construct

optimised operators, Ω†n ∼
∑

i v
n
iO
†
i [18], the optimal linear combination of the operators

that interpolates state n. As will be discussed later, these optimised operators are useful

for the construction of operators resembling pairs of mesons.

In principle, any operator can interpolate every state with the same quantum numbers

according to equation (3.2) and one can use a basis containing the tetraquark operators de-

scribed above to fully calculate the finite-volume spectrum. However, in practice, previous

studies such as refs. [19, 22] have highlighted that a sufficiently diverse set of interpolating

operators must be used if finite-volume spectrum is to be extracted reliably. Even in the

absence of interactions, the spectra we study will contain meson-meson-like states or admix-

tures of such states (and other multi-hadron combinations at higher energies). It has been

show in previous work [18–26] that such states can be efficiently interpolated by including

meson-meson-like operators. Therefore, to efficiently and reliably extract the finite-volume

spectra, our operator bases will contain operators of meson-meson and tetraquark structure.

3.1 Meson-meson operators

In this section we briefly review how operators with a meson-meson-like structure can be

constructed from the product of two single-meson-like operators — further details are given

in refs. [18, 19].

Following refs. [16, 17], fermion-bilinear operators of continuum spin J and momentum

~p are constructed as,

OJ,m(~p, t) =
∑
~x

ei~p·~x q̄(~x, t)[Γ
←→
D . . .

←→
D ]J,mq(~x, t) , (3.4)

– 6 –
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where we have suppressed colour, flavour and spinor indices for clarity. The quark and an-

tiquark fields are distillation-smeared as discussed below, the quark and antiquark flavour

representations are chosen and coupled to give the desired flavour quantum numbers, and

[Γ
←→
D . . .

←→
D ]J,m consists of a Dirac gamma matrix Γ and gauge-covariant derivatives

←→
D

coupled together to give spin J . In the case when ~p = 0, m refers to the Jz component,

whilst when ~p 6= 0 we construct helicity operators using Wigner-D matrices as described

in ref. [17] and m then refers to the helicity. Since we are working in a finite cubic spa-

tial volume of extent L with periodic boundary conditions, the momentum is quantised to

~p = 2π
L (nx, ny, nz) where (nx, ny, nz) is a triplet of integers — we use [nxnynz] as a short-

hand notation to denote ~p. As for tetraquark operators, lattice operators which transform

in lattice irrep Λ (row µ) are constructed by subducing the continuum operators to obtain

O[J ]
Λ,µ(~p, t) =

∑
m S

J,m
Λ,µOJ,m(~p, t). We refer to these as single-meson operators.

Meson-meson operators [18, 19] are built from products of two single-meson operators,

OPΛ,µ(~p = ~0, t) =
∑

µ1,µ2,q̂

C(~p = ~0,ΛP , µ; ~q,Λ1, µ1;−~q,Λ2, µ2) ΩM1
Λ1,µ1

(~q, t) ΩM2
Λ2,µ2

(−~q, t) ,

(3.5)

where we have restricted to overall zero momentum, ΩMi
Λi,µi

is an optimised operator for

interpolating meson Mi transforming in the lattice irrep Λi (row µi) and the sum runs over

the lattice irrep rows and all momentum directions q̂ related by an allowed lattice rotation

to couple Λ1(~q) ⊗ Λ2(−~q) → ΛP (~p = ~0) using generalised Clebsch-Gordan coefficients

C. The construction of these meson-meson operators follows the methodology given in

refs. [18, 19] and a more detailed discussion of operators containing mesons with non-zero

spin will be presented in a forthcoming publication. Analogous constructions can be used

for meson-meson operators with overall non-zero momentum, but in this study we only

calculate spectra at overall zero momentum.

A guide to which meson-meson operators should be included in the basis is given by

the non-interacting meson-meson energy levels in the energy regions we consider. These are

calculated from the relativistic dispersion relation E =
√
m2

1 + ~p 2
1 +

√
m2

2 + ~p 2
2 for stable

single-mesons. In cases when a single-meson has non-zero spin, there can be multiple ways

to couple the orbital and spin angular momenta together to a given meson-meson JP which

subduce into the same irrep, leading to degenerate levels in the non-interacting limit. For

example, a pseudoscalar and vector can be coupled to JP = 1+ in either s-wave or d-wave.

To see how this manifests on the lattice, consider the pseudoscalar with ~p = [100] and the

vector with ~p = [−100] coupled to the lattice irrep ΛP = T+
1 . The mesons transform in

the irreps of the little group Dic4: the pseudoscalar subduces into the A2 irrep while the

helicity-0 and helicity-1 components of the vector subduce into respectively the A1 and E2

irreps. It is possible to obtain ΛP = T+
1 from both A2 ⊗ A1 and A2 ⊗ E2 [49] and two

different linear combinations of these would correspond to s and d wave in the continuum

and infinite volume limit. In general, we must include a sufficient number of relevant meson-

meson operators that are capable of extracting and disentangling these multiple energy

levels. The comparison of spectra calculated with different operator bases in section 5

demonstrates the importance of including a sufficient basis of meson-meson operators.

– 7 –
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3.2 Calculation of correlation functions

We choose a basis of meson-meson operators as described above and tetraquark operators

as described later in section 4 and compute the two-point correlation functions using the

distillation framework [50]. The combination of distillation and the techniques described

here have been demonstrated in, for example, refs. [16, 18, 19, 21–25, 51, 52]. In brief,

the distillation operator on timeslice t which acts in 3-space (~x and ~y) and colour space (r

and s) is defined as, �(~xr, ~ys; t) =
∑Nvecs

n=1 ξn(~xr; t)ξ†n(~ys; t), where in the implementation

used here ξn are the lowest Nvecs eigenvectors of the gauge-covariant Laplacian. The quark

and antiquark fields in interpolating operators are smeared by the distillation operator,

q → �q, which removes high-frequency modes and increases the overlap onto lower-lying

states. Distillation also allows for a factorisation of the two-point correlation functions

as contractions of perambulators, τnm(t′, t) = ξ†n(t′)M−1(t′, t)ξm(t), where M is the Dirac

matrix, and elementals which describe the operators with various structures projected onto

definite momentum, and this enables the efficient computation of the correlation function

matrix for a large basis of operators. Meson elementals Φαβ
n1n2(~p, t) are presented in ref. [19]

and tetraquark elementals are given by,

Ψαβγδ
n1n2n3n4

(~p=~0,t)=
∑

~wp,~xq,~yr,~zs

Cpqrs ξ†n3
(~wp;t)ξ†n4

(~xq;t)(CΓ1)αβ(Γ2C)γδξn1(~yr;t)ξn2(~zs;t),

(3.6)

where ni index distillation vectors, Greek letters label the Dirac spinor indices and Cpqrs are

combinations of SU(3)C Clebsch-Gordan coefficients that couple the colour representations

3̄ ⊗ 3̄ ⊗ 3 ⊗ 3 → 1 as in the tetraquark operators in section 2. Meson elementals are

matrices with (4Nvecs)
2 independent components and tetraquark elementals are rank-4

with (4Nvecs)
4 independent components. This means that the cost of calculations involving

tetraquark operators (multiplying and tracing perambulators and elementals) increases

rapidly when the number of vectors is increased. Therefore, if the calculation is to be

feasible, the number of vectors must not be too large.

To keep the cost of contractions reasonable by using a relatively small number of vectors

for tetraquark operators, whilst maintaining a larger number of vectors for other operators,

we introduce a second distillation operator, �̃(~xr, ~ys; t) =
∑Ñvecs

ñ=1 ξñ(~xr; t)ξ†ñ(~ys; t), com-

posed of the lowest Ñvecs vectors where Ñvecs < Nvecs. Quark/antiquark fields in tetraquark

operators are smeared with �̃ whereas those in other operators are smeared with �. As

an example, consider a meson-meson operator given by O ∼ (c̄�Γ�u)(d̄�Γ�c) and a

tetraquark operator, T ∼
(
(�̃c)TCΓ(�̃u)

) (
(c̄�̃)ΓC(d̄�̃)T

)
, where we are suppressing var-

ious indices and factors which are not relevant for this discussion. One of the connected

contributions to the correlation function between these two operators is, schematically,

〈O(t)T (0)†〉 ∼ Φn1n2(t)Φn3n4(t)τñ3n1(0, t)τñ4n3(0, t)τn4ñ1(t, 0)τn2ñ2(t, 0)Ψñ1ñ2ñ3ñ4(0) ,

(3.7)

where ni = 1, . . . , Nvecs, ñi = 1, . . . , Ñvecs, and we have suppressed spinor indices. Here,

the perambulators τ(t, 0) are 4Nvecs×4Ñvecs rectangular matrices, Φ(t) are 4Nvecs×4Nvecs

square matrices and Ψ(0) is of rank-4 with (4Ñvecs)
4 components. The viability of having a

lower number of distillation vectors for tetraquark operators and some tests of varying the
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Sink

Operators Tetraquark Meson-Meson

-
Figure 1. A schematic representation of the types of Wick contractions required to compute

the two-point correlation function matrices in this study. We use Φ (grey) to depict the single-

meson elementals, Ψ (red) to depict the tetraquark elementals and the lines joining them to depict

perambulators.

number of vectors are discussed in section 5.3. Although not utilised in this study, another

possible use of employing more than one distillation operator is to increase the number of

operators in the variational basis through including operators with different smearings.

To further reduce the computation time, we only calculate one half of the off-diagonal

elements in the matrix of two-point correlation functions between a tetraquark operator

and meson-meson operator, and then obtain the other half using the Hermiticity of the cor-

relation matrix. In addition, we neglect contributions where a charm quark and antiquark

annihilate: these are expected to be small due to OZI suppression and this has been found

to be the case empirically in lattice calculations [53]. The elements of the two-point corre-

lation function matrix that we compute are shown in figure 1 where we show a schematic

representation of the types of Wick contractions required.

4 Results

As a first application of these tetraquark operator constructions, we perform calculations on

an anisotropic lattice of volume (L/as)
3×(T/at) = 163×128 where L is the spatial extent of

the lattice, T is the temporal extent, as ≈ 0.12 fm is the spatial lattice spacing and at is the

temporal lattice spacing such that the anisotropy ξ = as
at
≈ 3.5. We use 478 configurations

generated from a tree level Symanzik improved gauge action and a Clover fermion action

with Nf = 2 + 1 flavours of dynamical quarks. The mass parameter of the two degenerate
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light quarks is such that mπ = 391 MeV while the strange quark is tuned so that its mass

approximates the physical value [54, 55]. The quenched Clover charm quark mass parame-

ter is tuned to reproduce the physical ηc meson mass [52]. When quoting results in physical

units, we set the scale using the mass of the Ω baryon from the measured value on this

lattice, atm
latt.
Ω = 0.2951(22) [56], and the experimental mass mexp.

Ω = 1672.45(29) MeV [1],

giving a−1
t =

mexp.
Ω

atmlatt.
Ω

= 5667 MeV. Using several lattice volumes, the anisotropy was mea-

sured to be ξπ = 3.444(6) from the dispersion relation of the pion [18] and ξD = 3.454(6)

from the D [57]. Using only the 163 volume, we find ξηc = 3.484(2) from the ηc. For

the purposes of this study, where the anisotropy is only used to compute the location of

non-interacting meson-meson energy levels, we will use the value of ξπ.

To indicate the location of non-interacting meson-meson energy levels on plots, for sta-

ble mesons we use the relativistic dispersion relation giving, E =
√
m2

1 + ~p 2
1 +

√
m2

2 + ~p 2
2 ,

as discussed in section 3.1. The masses of relevant stable mesons on this lattice ensem-

ble are given in table 2 and the variationally-optimised operators for these mesons, ΩM
Λ,µ,

are constructed from linear combinations of single-meson operators as discussed above.

For the ρ meson, which is unstable on this lattice, we compute ‘non-interacting M -ρ

energy levels’, where M is a stable meson, using the relativistic dispersion relation for

M and the finite-volume ρ energy levels obtained on this ensemble as given in table 2,

i.e. E =
√
m2
M + ~p 2

M + ρ~pΛ. The optimised ρ operators, Ωρ
Λ,µ, are linear combinations of

meson-meson and single-meson operators [19]. It should be emphasised that in this study

the only uses of these non-interacting energy levels are to show their location on plots and

as an indication for which meson-meson operators should be included in the operator basis.

The meson-meson and tetraquark operators used to calculate the spectrum in each

channel are listed in appendix D. For this lattice volume, we use Ñvecs = 24 for tetraquark

operators and Nvecs = 64 for other operators unless stated otherwise. The choice of meson-

meson operators has already been discussed in section 3.1. For the tetraquark operators,

ideally all relevant operators of the form described in section 2 would be included in the op-

erator basis, but the computational cost can then become too high for the calculations to be

practical for the purposes of this study. In the doubly-charmed isospin-0 ΛP = A+
1 , E

+, T+
2

channels we are able to include all the tetraquark operator constructions allowed by Fermi

symmetry. For the remaining channels, we use a subset of tetraquark operators that are

expected to overlap onto lower-lying states. Appendices B and C describe how a non-

relativistic model can provide a guide to which diquark/anti-diquark configurations are

expected to overlap most efficiently onto lower-lying tetraquarks. In short, tetraquark

operators containing a diquark (anti-diquark) with a γ5 or γ0γ5 gamma matrix struc-

ture and in colour irrep 3̄ (3) are expected to overlap most efficiently onto a ground-state

tetraquark,2 and at the very least our basis should include such operators. However, it was

found that the γ5 and γ0γ5 structures do not overlap onto the energy eigenstates in suf-

ficiently distinct ways (the correlation matrix contains approximately linearly-dependent

rows/columns). Therefore, instead of having redundant operators, we included a selection

of other tetraquark operators to give more diverse bases.

2Using Jaffe’s terminology, this configuration is commonly known as the ‘good’ diquark.
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Meson Mass (MeV)

π 391.4(7)

D 1885.1(4)

D∗ 2008.9(6)

Ds 1950.9(3)

D∗s 2071.2(5)

ηc 2964.4(2)

J/ψ 3044.7(2)

χc0 3426.3(6)

Energy (MeV)

ρ
[000]
T1

890(5)

ρ
[100]
A1

1027(4)

ρ
[100]
E2

1089(5)

Table 2. Ground state masses of stable mesons (left) and the energy of the lowest-lying finite-

volume energy level for lattice irrep Λ and momentum relevant for the ρ meson denoted by ρ~pΛ
(right) as measured on our ensemble [18, 19, 52, 57]. Only the statistical uncertainty is quoted.

5 10 15 20 25 30

C
ii
(t
)e

(m
J
/

ψ
+
m

π
)t

t/at

Figure 2. Cii(t)e
(mJ/ψ+mπ)t in arbitrary units for the tetraquark operators given in the legend in

the ΛPG = T++
1 isospin-1 hidden-charm channel. Error bars are smaller than the size of the points

shown.

We now present computed spectra for a range of channels, beginning with a detailed

discussion of the ΛPG = T++
1 irrep in the isospin-1 hidden-charm sector before presenting

other isospin-1 hidden-charm results and then moving to the doubly-charmed sector.

4.1 Isospin-1 hidden-charm sector

As an illustration of the results, we first discuss some features of the spectrum computed

in the ΛPG = T++
1 irrep3 of the isospin-1 hidden-charm sector (with flavour content cc̄ll̄

where the light quark and antiquark are coupled to isospin-1). The basis of operators

3The lowest spin in this irrep is JPG = 1++ and note that C = −G in isospin-1 for the neutral component.
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Figure 3. Normalised magnitude of elements in the matrix of two-point correlation functions,

|Cij |/
√
CiiCjj , on timeslice 3 in the ΛPG = T++

1 isospin-1 hidden-charm channel. The first three

operators are tetraquark operators and the remaining are meson-meson operators ordered as in

table 6.

used is given in table 6 of appendix D. Note that, because we do not include contributions

arising from a charm quark and antiquark annihilating, our operator bases do not contain

any single-meson operators.

The diagonal elements of the matrix of correlators for the three tetraquark operators

are shown in figure 2 — signals are seen to be precise and significantly non-zero. In figure 3

we present the two-point correlator matrix on timeslice 3. This shows that some of the

off-diagonal elements between tetraquark and meson-meson operators are non-zero.

After applying the variational method, principal correlators for the lowest six energy

levels are shown in figure 4. We fit these to equation (3.3) and in each case find a reasonable

description having χ2/Nd.o.f ∼ 1 — the resulting spectrum is given in the figure. It can be

seen that the number of energy levels in the computed spectrum is equal to the number

of non-interacting meson-meson levels expected in the energy region considered and they

all lie close to the non-interacting levels. As discussed in section 3.1 and indicated in the

figure, some of the non-interacting meson-meson energy levels are degenerate. Because

our basis of operators has sufficiently different structures, we are able to cleanly extract

nearly-degenerate energy levels.

Normalised operator-state overlaps are also shown in figure 4 and we see that every en-

ergy level has a dominant overlap onto one meson-meson operator. Additionally, the third

and fourth levels have dominant overlaps onto two linearly independent J/ψπ operators
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Figure 4. The central plot shows the spectrum in the hidden-charm isospin-1 ΛPG = T++
1 channel

calculated using the basis of meson-meson and tetraquark operators given in table 6 of appendix D.

Boxes give the computed energies with their vertical extent representing the one-sigma statistical

uncertainty on either side of the mean and, solely as a visual aid, they are coloured according to

their dominant meson-meson operator overlap. Horizontal lines denote the non-interacting meson-

meson energy levels with an adjacent number indicating the degeneracy if it is larger than one.

The corresponding principal correlators are shown on the left ordered by increasing energy from

bottom to top: the data (points) and fits (curves) for t0 = 9 are plotted as λn(t, t0)eEn(t−t0) showing

the central values and one sigma statistical uncertainties; in each case the fit is reasonable with

χ2/Nd.o.f ∼ 1. The histograms on the right show the operator-state overlaps, Zn
i = 〈n|O†i |0〉, for

each energy level. The operators are given in the legend and the overlaps are normalised so that

the largest value for one given operator across all energy levels is equal to one.
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Figure 5. As in the spectrum plot of figure 4 but showing the spectra for the isospin-1 hidden-

charm sector with ΛPG = T++
1 , A+−

1 , T+−
1 . Within each plot, the left, middle and right column

shows the spectrum determined using the full basis of meson-meson and tetraquark operators, only

meson-meson operators and only tetraquark operators respectively.

— this is not surprising since around this energy there are two degenerate non-interacting

levels. We cannot draw strong quantitative conclusions about the tetraquark operator

overlaps because the absolute normalisations are somewhat arbitrary and renormalisation

factors would be needed to relate the overlaps to physical quantities, but we do see that

most states have some overlap onto one or more tetraquark operators.

For comparison, figure 5 (left panel) shows the ΛPG = T++
1 spectrum calculated with

the full basis of meson-meson and tetraquark operators, with only meson-meson operators

and with only tetraquark operators. No significant deviations are observed between the

spectrum computed using the full basis and that computed using the basis of only meson-

meson operators. If only tetraquark operators are used, some poorly determined energy

levels are found but the spectrum is not reliably extracted and this suggests that these

tetraquark operators alone do not constitute a sufficient basis of operators.

Moving to other channels in the isospin-1 hidden-charm sector, extracted spectra for

the ΛPG = A+−
1 , T+−

1 irreps4 are shown in figure 5. In general, a similar pattern of features

is seen as was found for ΛPG = T++
1 : there are no significant deviations between the spectra

calculated using the full basis and using only meson-meson operators, the spectrum is not

reliably determined if only tetraquark operators are used, and with a full basis of operators

the number of energy levels is equal to the number of non-interacting meson-meson levels

expected and they lie close to the non-interacting levels. Furthermore, the operator-state

overlaps follow the same qualitative pattern as shown in figure 4.

4The lowest spin in each of these irreps is respectively JPG = 0+−, 1+−.
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Figure 6. As figure 5 but for the isospin-0 doubly-charmed sector with quark flavour ccl̄l̄. Dashed

lines indicate kinematic thresholds where a non-interacting level is not expected. Dotted lines indi-

cate non-interacting meson-meson levels where the corresponding operators have not been included

in the operator basis. Ellipses indicate that additional energy levels have been extracted in/above

these regions but we have not plotted them as we have not included all relevant meson-meson

operators in these energy regions.

From previous studies, when a narrow resonance is present in elastic scattering, an

‘extra’ finite-volume energy level is observed in that energy region but no evidence for

such an extra level is seen in our spectra. The results suggest that there are only weak

hadron-hadron interactions and no strong indications of a bound state or narrow resonance

in these channels. However, the situation is not as straightforward when one considers

coupled-channel scattering or broad resonances [23, 24]. To draw rigorous conclusions and

determine whether there are bound states or resonances present, a Lüscher analysis, where

the finite-volume spectra are related to the scattering amplitudes, is necessary. To reliably

constrain the scattering amplitudes, this would require calculations at non-zero momentum

and/or different volumes which is beyond the scope of this first study. An important

conclusion is that the addition of a class of operators resembling compact tetraquarks has

little consequence on the finite-volume spectrum and, in turn, the scattering amplitudes.

4.2 Doubly-charmed sector

Turning to the doubly-charmed sector, figure 6 shows spectra for flavour content ccl̄l̄ in

the ΛP = T+
1 , E

+, T+
2 isospin-0 channels5 and figure 7 shows spectra for flavour ccl̄s̄ with

isospin-1
2 in the irreps ΛP = A+

1 , T
+
1 . It can be again seen that there are no significant

deviations between the spectra including and excluding tetraquark operators, and the spec-

5The lowest spin JP = 1+ appears in T+
1 and the lowest spin JP = 2+ appears in E+, T+

2 .
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Figure 7. As figure 6 but for the isospin- 1
2 doubly-charmed sector with quark flavour ccl̄s̄.

tra can not be reliably extracted using only tetraquark operators. Using the full basis of

operators (see table 7), the number of energy levels in each spectrum is equal to the number

of expected non-interacting meson-meson energy levels in the relevant energy region. Be-

cause the basis of operators used has sufficiently diverse structures, we are able to extract

many nearly-degenerate energy levels. In addition, we find that every energy level has a

dominant meson-meson operator overlap. As in the results of the hidden-charm sector, we

emphasise that the addition of a class of operators resembling compact tetraquarks does

not significantly alter the finite-volume spectrum extracted.

The lowest-lying DD and D∗D∗ levels in s-wave are forbidden in the JP = 0+, 2+

isospin-0 doubly-charmed channels: the flavour wavefunction is antisymmetric in isospin-0

whilst the spin and spatial wavefunctions are symmetric, giving an overall antisymmetric

wavefunction which is forbidden by Bose symmetry. These channels are particularly ap-

pealing to look for a tetraquark because if a low-lying state exists, it would lie far below

the allowed non-interacting meson-meson energy levels and would be easily identified. Ad-

ditionally, a low-lying JP = 2+ stable tetraquark would subduce into both of the irreps

ΛP = E+, T+
2 and so appear with little ambiguity — no such energy levels are seen in

figure 6. A JP = 0+ tetraquark would appear in the ΛP = A+
1 irrep and, although a plot is

not shown, we calculated the spectrum in this channel with the operators given in table 7.

The first allowed non-interacting meson-meson energy level is DD(2S), where D(2S) is

the first radial excitation of the D meson.6 We do not find any energy levels below the

DD(2S) threshold at ∼ 4500 MeV.

6We use a single-meson operator with structure [γ5←→D
←→
D ], where the two derivatives are coupled to

J = 0, for the D(2S) rather than an optimised operator.
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We now draw particular attention to the spectrum in the ΛP = T+
1 isospin-0 channel

where the non-interacting DD∗ and D∗D∗ levels can have degeneracy two. We have reliably

extracted two energy levels (the third and fourth) that have dominant overlap onto the two

relevant DD∗ operators and two energy levels (fifth and sixth) that have dominant overlap

onto the two relevant D∗D∗ operators. It can be seen that each pair of energy levels is non-

degenerate which suggests there is some interaction. In order to quantify this, a further

analysis requiring computations on different volumes and overall non-zero momentum is

needed to relate the finite-volume spectrum to the scattering amplitudes via the Lüscher

formalism. It is also important to stress that a reliable determination of the coupled s and

d-wave scattering amplitudes in this channel depends on our ability to robustly extract

these multiple energy levels.

5 Systematics and stability of the extracted spectra

Before discussing the results further, we consider some systematic effects which may have

an impact on them and present some tests of varying the operator basis and the number

of distillation vectors.

5.1 Systematic uncertainties

As a first application of these tetraquark operator constructions, we have performed calcu-

lations on a relatively small lattice volume, with spatial extent L ∼ 2 fm, and this may be

too small to distinguish the spatial structures of the extended meson-meson and compact

tetraquark. The tetraquark operator can be Fierz rearranged as a linear combination of

meson-meson operators multiplied by a factor of 1/L3 [31], suppressing the overlap of a

possible tetraquark state onto the meson-meson operators. Further calculations, beyond

the scope of this study, would be required to give some indication on how the results vary

with the volume.

As this is a first demonstration, we have performed calculations with unphysically-

heavy light quarks, corresponding to mπ = 391 MeV, and the presence/absence of

tetraquarks may depend on the mass of the light quarks. Ultimately, calculations with

light-quark masses approaching their physical values are required for comparison with ex-

periment. On the other hand, studying how the spectra change as the quark masses are

varied would give insight into the relevant QCD interactions and could be compared with

expectations in different models.

Other possible systematic uncertainties include discretisation effects and the tuning of

the charm quark mass. These issues were addressed in ref. [52] and we do not repeat the

discussion here.

5.2 Varying the operator basis

Some tests of how varying the operator bases affects the results have already been presented

in section 4. In summary, it was found that there were no significant changes in the low-

lying spectra when only meson-meson operators were used compared to using the full basis
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of tetraquark and meson-meson operators. However, reliable spectra could not be extracted

if only tetraquark operators were used.

As an illustration of what could happen if a sufficiently diverse set of meson-meson

operators is not used, we show in figure 8 spectra in the doubly-charmed isospin-0 ΛP = T+
1

channel computed using different operator bases. Note that degenerate meson-meson

energy levels would be present here in the non-interacting limit as discussed in sec-

tion 3.1. Column A shows the spectrum computed using the full basis of meson-meson

and tetraquark operators (see table 7) and we see that the number of energy levels is equal

to the number of expected non-interacting meson-meson energy levels in the energy re-

gion considered. We make the same conclusion for column B which shows the spectrum

calculated using only meson-meson operators. Column C shows the spectrum using only

meson-meson operators without the D
[100]
A2

D∗
[100]
E2

operator which is relevant for the DD∗

level at ≈ 4100 MeV — it is seen that now one fewer energy level is extracted and the

second DD∗ level moves slightly higher in energy which is as expected when not enough

operators are used [19]. The right column D shows the spectrum calculated with the oper-

ators as in C supplemented with the tetraquark operators — an additional level is found

compared to C high up in the spectrum. This demonstrates the necessity of accounting

for all the relevant meson-meson energy levels in the energy region being considered and

using a sufficient basis of operators of different structures. Otherwise there is the danger

that this level could be mistakenly taken as a signal for the presence of a tetraquark.

5.3 Varying the number of distillation eigenvectors

If the number of distillation eigenvectors used for the tetraquark operators is too low, the

operator may not efficiently interpolate states of interest as it may be too smeared and

so no longer resemble a compact tetraquark. However, as discussed in section 3.2, the

computational cost involving tetraquark operators scales much more strongly than meson-

meson operators with the number of distillation eigenvectors and therefore the number

used can not be too large if the calculations are to be feasible. In this section, we test how

sensitive the results are to varying number of distillation eigenvectors.

The spectrum in the doubly-charmed isospin-0 ΛP = T+
1 channel is shown in figure 9

using different numbers of distillation vectors for tetraquark operators, Ñvecs = 16, 24, 32,

with both the full basis of meson-meson and tetraquark operators (see table 7) and only

tetraquark operators. It can be seen that the results are not sensitive to the number of

distillation eigenvectors used.

We also computed all the spectra using Nvecs = Ñvecs = 24, i.e. the same number of dis-

tillation vectors for both meson-meson and tetraquark operators. The results were found to

be consistent with the spectra presented in section 4 (which used Ñvecs = 24 for tetraquark

operators and Nvecs = 64 for meson-meson operators). This shows that the results are also

not sensitive to the number of distillation vectors used for the meson-meson operators.

In summary, these tests suggest that the results are not very sensitive to the number

of distillation vectors being used. In addition, a recent study in ref. [58] demonstrated that

a small number of distillation vectors is sufficient to extract finite-volume spectra as long

as one does not consider higher momenta, higher spin or highly excited states. Because we
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Figure 8. As figure 6 but for the ΛP = T+
1 isospin-0 ccl̄l̄ channel with different bases of operators:

A uses the full basis of meson-meson and tetraquark operators, B uses only meson-meson operators,

C uses only meson-meson operators minus one DD∗ operator as described in the text, and D uses

the operators as in C supplemented with the tetraquark operators.

are considering overall zero momentum and relatively low-lying states, this gives further

support to our conclusion.

6 Discussion and comparison with previous studies

In this section we discuss the results in the context of expectations from phenomenological

models and compare with previous lattice calculations. In a simple one-gluon-exchange

model of a diquark as described in appendix B, the two quarks interact via a colour-

colour spin-spin interaction and the most attractive diquark and anti-diquark configurations

have (colour irrep, spin) = (3̄, 0) and (3, 0) respectively. Therefore, the most favourable

tetraquark has JP = 0+ which subduces into ΛP = A+
1 . However, a large quark mass sup-

presses the spin-spin interactions and so some models expect spin-1 diquark configurations

involving heavy quarks to occur and form a tetraquark multiplet [27]. This multiplet con-

tains tetraquarks with JP = 1+ and 2+ which subduce into the T+
1 irrep and the E+, T+

2

irreps respectively. Besides the quark mass, this one-gluon-exchange interaction does not

depend on the flavours of the quarks. However, when the flavour irreps of the two quarks
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Figure 9. As figure 6 but showing the ΛP = T+
1 isospin-0 ccl̄l̄ spectrum calculated using tetraquark

operators with different numbers of distillation vectors, Ñvecs = 16, 24, 32. The left three columns

are using the full basis of meson-meson and tetraquark operators, and the right three columns are

using only tetraquark operators.

(antiquarks) are the same, Fermi symmetry requires the overall diquark (anti-diquark)

configurations to be antisymmetric and this restricts the allowed structures.

In the hidden-charm isospin-1 sector, there are no identical quarks/antiquarks and so

no constraints from symmetry on the allowed configurations. Models [27, 59] suggest that

the lightest tetraquark multiplet has JPG = 0+−, 1++, 1+−, 2+− and we have performed a

thorough investigation in all these channels except for JPG = 2+−. In the ΛPG = A+−
1

channel, expected to be the most attractive, and the ΛPG = T++
1 and T+−

1 channels, there

are no hints of a narrow state or any significant interactions in the computed spectra. No ex-

perimental candidate has been observed with JPG = 0+−, nor is there currently any charged

charmonium-like candidate with undetermined JPG that is light enough to be identified as

the lowest-lying JPG = 0+− tetraquark. The observed Z+
c (3900) has JPG = 1++ [1] and

has been suggested to be a candidate for a tetraquark. That we see no sign of it is consistent

with previous lattice QCD calculations presented in ref. [29] which also calculated the finite

volume spectrum using meson-meson and tetraquark operators. Our results are also consis-

tent with other lattice QCD calculations [32–34] which do not find evidence of a bound state

or narrow resonance in this channel. There is currently no well-established experimental

candidate with JPG = 1+−, but if the X(3872) is a tetraquark its isospin-1 partner would

appear in this channel. Again, that we see no clear signal for a state here is consistent with

previous lattice QCD calculations [31]. That study also found that the spectrum in this

channel was insensitive to the addition of tetraquark-like operators to the operator basis.
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In the doubly-charmed sector, possible diquark configurations are further constrained

by Fermi statistics. The (3̄, 0) and (6, 1) cc diquarks are forbidden as they are symmetric

under the interchange of quarks and only the (3̄, 1) and (6, 0) diquarks are allowed. In the

one-gluon exchange model given in appendix B, the colour-colour spin-spin interaction is re-

pulsive for these allowed configurations and is least repulsive for (3̄, 1). The attractive (3, 0)

q̄q̄ anti-diquark configurations are required to be antisymmetric in flavour in F = 3 and the

most attractive configuration has isospin, I = 0. Therefore, the most favourable tetraquark

has (I)JP = (0)1+. Other attractive configurations include (I)JP = (0)0+, (0)2+ contain-

ing a (6̄, 1) anti-diquark and (I)JP = (1
2)0+, (1

2)1+ from picking the I = 1
2 components of

the (3, 0) anti-diquark. However, no signs of these are seen in any of the computed spectra

in the many doubly-charmed channels we studied. That we find no significant deviation

between the spectra including and excluding tetraquark operators is consistent with the

results presented in ref. [30] which computed the spectrum in the (I)JP = (0)1+ chan-

nel. That study used meson-meson and tetraquark operators but, because the operator

basis was more restricted than ours, was unable to extract all of the multiple levels which

correspond to degenerate meson-meson levels in the non-interacting limit. Computations

presented in ref. [28] find an attractive interaction in the (I)JP = (0)1+ channel using a less

direct approach in which lattice QCD computations are used to extract a potential which

is then used to determine scattering amplitudes. They do not find a bound state or reso-

nance for a range of light quark masses corresponding to mπ = 410−700 MeV and conclude

that this attractive interaction gets stronger with decreasing pion mass, further motivating

studies of how the results vary as the light quark mass decreases towards the physical point.

In one-gluon exchange models, the colour-colour spin-spin interaction is always re-

pulsive for the cc diquark, but the repulsion is suppressed by the quark mass which sug-

gests that doubly-bottomed tetraquarks may be more favourable than doubly-charmed

tetraquarks. This is supported by lattice QCD calculations of finite volume-spectra us-

ing bases of meson-meson and tetraquark-like operators which suggest the existence of

a (I)JP = (0)1+ doubly-bottomed tetraquark [35]. Further support comes from lattice

calculations of the potential between two static bottom quarks in the presence of two

light antiquarks [36, 38–40, 42]. This potential is found to lead to a bound state with

(I)JP = (0)1+. Our doubly-charmed (I)ΛP = (0)T+
1 spectrum is not inconsistent with

there being an attractive interaction although there were no obvious signs of a bound

state in this channel. This is also consistent with recent phenomological studies [60–62]

which suggest the doubly-bottom tetraquark is bound and the doubly-charmed tetraquark

is unbound. Further calculations using bottom quarks and a Lüscher analysis would be of

interest. Computations involving the bottom quark with the fermion action used in this

study are not straightforward since discretisation effects would be large. It is possible to

implement the bottom quark with alternative actions such as Non-Relativistic QCD but

this is beyond the scope of this study.

Overall, our study has improved on previous lattice QCD investigations of tetraquarks

in two ways. The first is that we use a diverse set of tetraquark and meson-meson operators

so that we can reliably obtain a large number of energy levels in each channel and, for the

first time in a lattice QCD calculation, robustly extract the multiple energy levels associated
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with meson-meson energy levels which are degenerate in the non-interacting limit.7 This is

important for future spectrum calculations involving the scattering of mesons with non-zero

spin. The second is that we have computed spectra in a large number of channels proposed

to contain the hypothetical lightest tetraquark multiplet — some of these channels have

not been studied before.

7 Summary

We have described the construction of a general class of operators resembling compact

tetraquarks which have a range of different diquark-anti-diquark structures, transform ir-

reducibly under the symmetries of the lattice and respect other relevant symmetries. As a

first demonstration, these operators have been used in conjunction with meson-meson oper-

ators to compute correlation functions in the isospin-1 hidden-charm and doubly-charmed

sectors using the distillation framework. Finite-volume spectra were extracted by analysing

the correlation functions with the variational method. It was found that the addition of

tetraquark operators to a basis of meson-meson operators did not significantly affect the

finite-volume spectrum and subsequently, would not affect the scattering amplitudes. Be-

cause a diverse set of operators was used, for the first time we were able to reliably extract

the multiple energy levels associated with degenerate non-interacting meson-meson levels.

In all channels, we find that the number of energy levels is equal to the number of non-

interacting meson-meson levels expected in the energy region considered and the majority

of energies were at most slightly shifted from the non-interacting levels. Hence, there are

no strong indications that there are any bound states or narrow resonances present.

This study sets out the groundwork and technology for future work. Calculations with

larger lattice volumes and/or at non-zero overall momentum would be necessary to reli-

ably determine scattering amplitudes via the Lüscher method and so rigorously discern the

bound state and resonance content in the various channels. In addition, there is strong mo-

tivation to study how the results change when the light quark mass is varied. Calculations

with lower quark masses would require large volumes. As discussed in ref. [50], to maintain

a given smearing radius in the distillation approach, the number of distillation vectors used

must scale with the volume. Because tetraquark elementals are of rank-4, increasing the

number of distillation vectors vastly increases the computational cost and so, to make the

calculations feasible, an extension of the distillation framework would be required, for exam-

ple, a stochastic version [63] or an alternative basis of vectors. Calculations with more dis-

tillation vectors would also enable the dependence of the results on the degree of tetraquark-

operator smearing to be investigated further. Whilst the extracted spectra in the channels

studied did not significantly change upon the addition of tetraquark operators to the oper-

ator basis, there are many other channels where tetraquarks have been suggested to exist

and more detailed lattice QCD investigations are of interest, for example, in the isospin-0

hidden-charm sector, the open-charm sector, the bottom sector and the light scalar mesons.

7Recall that, as discussed in section 3.1, these can occur when at least one of the mesons has non-zero spin.
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A Diquark and tetraquark operators

In this appendix we present some additional details of the diquark and tetraquark opera-

tors. Consider a diquark operator, δ(~x, t) =
∑

CGs qT (~x, t)(CΓ)q(~x, t), where CGs refers

to the Clebsch-Gordan coefficients in equation (2.1) and various indices have been sup-

pressed. Under proper Lorentz transformations, this operator transforms in the same way

as the analogous fermion bilinear and the continuum spin, J , of the diquark for different

choices of Γ is given in table 3. Under a parity transformation, the operator transforms to

Pδ(~x, t)P−1 = ηP q
T (−~x, t)CΓq(−~x, t), where ηP = ±1 is a parity factor that depends on

the gamma matrix Γ as given in the table. The analogous anti-diquark operator has the

same transformation properties. The parity of the tetraquark operator is the product of

the parity factors of the diquark and anti-diquark operators.

Taking the Hermitian conjugate of the diquark, we obtain δ† = hΓsCsF δ̄, where the

symmetry of the Dirac gamma matrix hΓ = ±1 is shown in table 3 and s = ξ1ξ3 are phases

arising from the exchange symmetry of the colour (sC) and flavour (sF ) Clebsch-Gordan
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1 γ5 γ0γ5 γ0 γi γiγ0 γ5γi [γi, γj ]

Γ a0 π π2 b0 ρ ρ2 a1 b1

J 0 0 0 0 1 1 1 1

ηP − + + − + + − −
hΓ + − + + + − + −
sΓ − − − + + + − +

Table 3. For different Dirac gamma matrices, we show the notation Γ used to denote the gamma

matrix, the continuum spin J , the parity factor ηP , the hermiticity factor hΓ and the spin coupling

symmetry sΓ.

coefficients of the diquark operator. The phase ξ1 = ±1 arises from reversing the order of

the SU(3) irreps,

〈D1, d1;D2, d2|D, d〉 = ξ1〈D2, d2;D1, d1|D, d〉, (A.1)

and the phase ξ3 = ±1 arises from complex conjugating the irreps,

〈D1, d1;D2, d2|D, d〉 = ξ3〈D̄1, d̄1; D̄2, d̄2|D̄, d̄〉. (A.2)

We use the phase conventions of refs. [67, 68]. For tetraquark operators with G-parity sym-

metry as in equation (2.4), the G-parity is given by G = G̃ξJξ1ξ3 where ξJ = (−1)J1+J2−J

is the phase arising when the arguments of the SU(2) Clebsch-Gordan coefficients are

interchanged and ξ1 and ξ3 here arise from the exchange symmetry of the SU(3)F Clebsch-

Gordan coefficients of the tetraquark operator.

When the flavour irreps of the quarks in the diquark are identical, the overall colour-

flavour-spin coupling in the diquark must be antisymmetric due to Fermi statistics. To see

this schematically, consider the diquark δ =
∑
Cab qaqb with overall coupling coefficients

C. If Cab is symmetric, the sum would be exactly zero because qaqb is antisymmetric. The

symmetry arising from spin (CΓ)αβ = sΓ(CΓ)βα is given in table 3 and the symmetries

arising from colour and flavour are discussed above.

B One-gluon exchange model

In a simple one-gluon exchange model of a diquark [69], the two quarks interact via a

colour-colour spin-spin interaction term,

H = −αsA12(λ1 · λ2)(~S1 · ~S2) (B.1)

where A12 is a model-dependent mass term that behaves like 1/m1m2 in the heavy quark

limit, λ are the Gell-Mann matrices that span the Lie algebra of SU(3)C and ~S is the

spin of the quark. The relative factors that arise for various colour irreps R and spin

S are given in table 4. It can be seen that the most attractive diquark is the (R,S) =

(3̄, 0) configuration. Similarly, the most attractive anti-diquark is the (3, 0) configuration.

Hence a scalar JP = 0+ tetraquark is expected to be the most favourable. Whilst other
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S

0 1

R
3̄ 1

2 −1
6

6 −1
4

1
12

Table 4. The relative factors of the colour-colour spin-spin interaction within the diquark in

equation (B.1) for various color irreps and spin.

1 γ5 γ0γ5 γ0 γi γiγ0 γ5γi [γi, γj ]

qq(2S+1LJ) 3P0
1S0

1S0 - 3S1
3S1

3P1
1P1

Table 5. The non-relativistic overlap of the diquark operator δJ[Γ] onto the diquark state

qq(2S+1LJ).

configurations are less favourable, this one-gluon exchange interaction is suppressed by the

masses of the quarks such that in the heavy quark limit, a rich spectrum of tetraquark

states with JP = 0+, 1+, 2+ is expected to be observed in models such as ref. [27].

In the case when the flavour irreps of the quarks within the diquark are identical,

Fermi symmetry constrains the number of possible configurations. If the flavour irrep

is antisymmetric, then the only allowed diquarks are the attractive configurations, (3̄, 0)

and (6, 1). On the other hand, when the flavour irrep is symmetric the only allowed

diquarks are the repulsive configurations, (3̄, 1) and (6, 0). A consequence of this is that

the doubly-charmed cc diquark is always repulsive with the least repulsive diquark being

(3̄, 1). However, the repulsive interaction is suppressed by the quark mass and so it is

expected that such tetraquarks may exist in the heavy quark limit [70].

C Non-relativistic quark model

In a non-relativistic quark model, diquark states at rest with orbital angular momentum L

and spin angular momentum S coupled to total angular momentum J can be constructed as,

∣∣δJ,mLS 〉=∑
mL,mS

〈L,mL;S,mS |J,m〉
∑
α,β

〈1

2
,α;

1

2
,β
∣∣S,mS

〉∫ d3q

(2π)3
Y mL
L (q̂)fnL(|~q|)b†α(~q)b†β(−~q)|0〉,

(C.1)

where b†α(~q) is a creation operator for a quark of momentum ~q and Jz component α,

and fnL(|~q|) is a model-dependent wavefunction that is determined by some interaction

potential and is specified by L and the principal quantum number n. Annihilating this

state with the field expansion of the diquark operator, we obtain,〈
0
∣∣δJ [Γ]

∣∣δJ,mLS 〉 =
∑

mL,mS

〈L,mL;S,mS |J,m〉
∑
α,β

〈1

2
, α;

1

2
, β
∣∣S,mS

〉
×
∫

d3q

(2π)3
Y mL
L (q̂)fnL(|~q|)uT(α)(~q)CΓu(β)(−~q) ,

(C.2)
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T++
1 A+−

1 T+−
1

δb0
3̄,3
δ̄b1

3,3̄
δa0

3̄,3
δ̄a0

3,3̄
δa0

3̄,3
δ̄a1

3,3̄

δρ
3̄,3
δ̄π

3,3̄
δπ

3̄,3
δ̄π

3,3̄
δρ

3̄,3
δ̄π

3,3̄

δρ
3̄,3
δ̄ρ

3,3̄
δρ6,3δ̄

ρ
6̄,3̄

δρ
3̄,3
δ̄ρ2

3,3̄

D
[000]
A1

D̄∗
[000]
T1

D
[000]
A1

D̄
[000]
A1

D
[000]
A1

D̄∗
[000]
T1

D∗
[000]
T1

D̄∗
[000]
T1

D
[100]
A2

D̄
[100]
A2

D
[100]
A2

D̄∗
[100]
A1

ηc
[000]
A1

ρ
[000]
T1

D∗
[000]
T1

D̄∗
[000]
T1

D
[100]
A2

D̄∗
[100]
E2

J/ψ
[000]
T1

π
[000]
A1

ηc
[000]
A1

π
[000]
A1

J/ψ
[000]
T1

ρ
[000]
T1

J/ψ
[100]
A1

π
[100]
A2

ηc
[100]
A2

π
[100]
A2

J/ψ
[100]
A1

ρ
[100]
E2

J/ψ
[100]
E2

π
[100]
A2

J/ψ
[000]
T1

ρ
[000]
T1

J/ψ
[100]
E2

ρ
[100]
A1

J/ψ
[100]
E2

ρ
[100]
E2

χc0
[100]
A1

π
[100]
A2

Table 6. The interpolating operators used to calculate the spectra in the isospin-1 hidden-charm

sector. For the tetraquark operators, we use the notation δΓ1

R1,F1
δ̄Γ2

R2,F2
where R1(R2) is the colour

irrep, Γ1(Γ2) is the gamma matrix and F1(F2) is the flavour irrep of the diquark (anti-diquark)

operator. For meson-meson operators, the optimised single-meson operators used are denoted by

M
[n1n2n3]
Λ , where M indicates the meson, Λ is the lattice irrep and [n1n2n3] is the momentum in

units of 2π
L . Note that all momenta related to [n1n2n3] by an allowed lattice rotation are summed

over as shown in equation (3.5).

where u is a Dirac spinor. Expanding u in the non-relativistic limit where |~q| is much

smaller than the mass of the quark, we find to leading order for Γ = γ5,〈
0
∣∣δJ [γ5]

∣∣δJ,mLS 〉=
∑

mL,mS

〈L,mL;S,mS |J,m〉 (C.3)

×
(〈1

2
,−1

2
;
1

2
,
1

2

∣∣S,mS

〉
−
〈1

2
,
1

2
;
1

2
,−1

2

∣∣S,mS

〉)
︸ ︷︷ ︸

∼δS0δmS0

∫
d3q

(2π)3
Y mL
L (q̂)︸ ︷︷ ︸

∼δL0δmL0

fnL(|~q|).

Hence, δJ [γ5] overlaps with the qq(2S+1LJ = 1S0) diquark construction. Similar results for

other Γ are shown in table 5.

D Operator lists

The interpolating operators used to calculate the spectra are listed in table 6 for the

hidden-charm sector and table 7 for the doubly-charmed sector.
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I = 0 I = 1
2

A+
1 T+

1 E+ T+
2 A+

1 T+
1

δa06,1δ̄
b0
6̄,3

δb1
3̄,1
δ̄a03,3 δa16,1δ̄

b1
6̄,3

δa16,1δ̄
b1
6̄,3

δb0
3̄,1
δ̄b0
3,6̄

δa16,1δ̄
b0
6̄,3

δa16,1δ̄
b1
6̄,3

δρ2
3̄,1
δ̄π2
3,3 δb1

3̄,1
δ̄a13,3 δb1

3̄,1
δ̄a13,3 δb1

3̄,1
δ̄a13,3 δb1

3̄,1
δ̄a03,3

δb0
3̄,1
δ̄a03,3 δρ

3̄,1
δ̄π2
3,3 D

[110]
A2

D∗
[110]
B2

D
[100]
A2

D∗
[100]
E2

δπ6,1δ̄
π
6̄,6̄ δρ

3̄,1
δ̄π3,3

δb1
3̄,1
δ̄a13,3 δρ

3̄,1
δ̄π3,3 D

[110]
A2

D∗
[110]
A1

δρ
3̄,1
δ̄ρ
3,6̄

δρ
3̄,1
δ̄ρ
3,6̄

D
[000]
A1

D(2S)
[000]
A1

D
[000]
A1

D∗
[000]
T1

D
[110]
A2

D∗
[110]
B1

D
[000]
A1

Ds
[000]
A1

D
[000]
A1

D∗s
[000]
T1

D
[100]
A2

D∗
[100]
A1

D∗
[100]
A1

D∗
[100]
E2

D
[100]
A2

Ds
[100]
A2

D∗
[000]
T1

Ds
[000]
A1

D
[100]
A2

D∗
[100]
E2

D
[110]
A2

Ds
[110]
A2

D
[100]
A2

D∗s
[100]
A1

D∗
[000]
T1

D∗
[000]
T1

D∗
[000]
T1

D∗s
[000]
T1

D
[100]
A2

D∗s
[100]
E2

D∗
[100]
A1

D∗
[100]
E2

D∗
[100]
A1

D∗s
[100]
A1

D∗
[100]
A1

Ds
[100]
A2

D∗
[100]
E2

D∗
[100]
E2

D∗
[100]
E2

D∗s
[100]
E2

D∗
[100]
E2

Ds
[100]
A2

D∗
[000]
T1

D∗s
[000]
T1

D∗
[100]
A1

D∗s
[100]
E2

D∗
[100]
E2

D∗s
[100]
A1

D∗
[100]
E2

D∗s
[100]
E2

Table 7. As table 6 but for the doubly-charmed sector with isospin-0 (left columns) and isospin- 1
2

(right columns).
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