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The algebra of bounded linear operators
on p̀ ˚ `q has infinitely many closed ideals

By Thomas Schlumprecht at College Station and András Zsák at Cambridge

Dedicated to the memory of Ted Odell

Abstract. We prove that in the reflexive range 1 < p < q <1, the algebra L. p̀˚`q/

of all bounded linear operators on p̀ ˚ `q has infinitely many closed ideals. This solves a prob-
lem raised by A. Pietsch [4, Problem 5.3.3] in his book ‘Operator ideals’.

1. Introduction

The classification of the closed ideals of the algebra L. p̀ ˚ `q/ of bounded linear opera-
tors on p̀ ˚ `q has a long history. There were several results proved in the 1970s, and the
reader is referred to the book by A. Pietsch [4, Chapter 5] for details. In particular, a result of
P. Volkmann [9] (see also [4, Theorem 5.3.2]) asserts that for 1 � p < q <1 there are exactly
two maximal ideals of L. p̀ ˚ `q/. These are the closures of the ideals of operators factoring
through p̀ and `q , respectively. In [4, Theorem 5.3.2] a one-to-one correspondence is estab-
lished between the set of all other closed, proper ideals of L. p̀ ˚ `q/ and the set of all closed
ideals of L. p̀; `q/. Here an ideal of L. p̀; `q/ is a subspace J of L. p̀; `q/ with the prop-
erty that ATB 2 J whenever A 2 L.`q/, T 2 J and B 2 L. p̀/. Pietsch raises the following
problem.

Problem ([4, Problem 5.3.3]). For 1� p < q <1 does L. p̀; `q/ have infinitely many
closed ideals?

Since we are dealing with Banach spaces with bases, it is clear that the compact operators
K DK. p̀; `q/ is the smallest non-trivial (i.e., non-zero) closed ideal. Since the formal inclu-
sion map Ip;qW p̀ ! `q is not compact, K is a proper ideal. For anyone well versed in basis
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2 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

techniques, it is a not too difficult exercise that every operator in L. p̀; `q/ is strictly singular,
and that every non-compact operator factors Ip;q . It follows that

¹0º ¨ K ¨ JIp;q � S D L. p̀; `q/;

where JIp;q is the closure of the ideal of operators factoring through Ip;q , S D S. p̀; `q/ is the
ideal of strictly singular operators, and moreover any other closed ideal of L. p̀; `q/must con-
tain JIp;q . It is, however, not obvious that JIp;q is proper. This was shown for 1 < p < q <1
by V. D. Milman [3] who first proved that Ip;q is finitely strictly singular, and then exhibited
an operator in L. p̀; `q/ that is not finitely strictly singular. (Definitions will be given in Sec-
tion 2 below.) The next significant result was proved by B. Sari, N. Tomczak-Jaegermann,
V. G. Troitsky and the first named author. In [7] they showed that for 1 < p < 2 < q <1,
the ideal FS of finitely strictly singular operators and the ideal J`2 generated by operators
factoring through `2 are proper, distinct, and distinct from the ones above. So in this case
L. p̀; `q/ has at least four non-trivial, proper closed ideals. Later the first named author [8]
found two more ideals, again in the range 1 < p < 2 < q <1, namely the ideals generated
by operators factoring through the formal inclusion maps Ip;2 and I2;q , respectively. These
new ideals lie between Ip;q and FS \ J`2 , and hence the fact they are incomparable shows
that JIp;q ¤ FS \ J`2 , and thus there are at least seven non-trivial, proper, closed ideals
in L. p̀; `q/ when 1 < p < 2 < q <1.

The main result of this paper is a solution of Pietsch’s question in the reflexive range.

Theorem A. For all 1 < p < q <1 there is a chain of size the continuum consisting
of closed ideals in L. p̀; `q/ that lie between the ideals JIp;q and FS .

Moreover, we obtain the following refinement.

Theorem B. For all 1 < p < 2 < q <1 there is a chain of size the continuum con-
sisting of closed ideals in L. p̀; `q/ that lie between JIp;q and JI2;q .

We note that these results provide further examples of separable reflexive Banach
spaces X such that L.X/ has continuum many closed ideals. The first such examples were
given by A. Pietsch [5].

The paper is organized as follows. In Section 2 we introduce definitions, notations and
certain complemented subspaces of p̀ that will later lead to new ideals. A crucial rôle is played
here by H. P. Rosenthal’s famous Xp spaces, which we recall in some detail. We shall use
p̀-direct sums of finite-dimensional versions of Xp. The so-called lower fundamental function

(defined below) of these direct sums will be computed at the end of Section 2. In Section 3 we
prove a key lemma that will be at the heart of the proof of our main results. The latter will be
presented in Section 4. We conclude with a list of open problems in Section 5.

Throughout this paper we take the scalar field to be R. All our results can be adapted
without difficulty to the complex case.

Acknowledgement. We would like to thank the referee for a very careful reading of
our paper and for making numerous helpful suggestions to improve it.
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Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals 3

2. Definitions and known results

In this section we introduce a large number of definitions as well as some preliminary
results. This long section is divided into several subsections to help structure it.

2.1. Operator ideals. Let X and Y be Banach spaces. We denote by L.X; Y / the
space of all bounded, linear operators from X to Y . We write L.X/ for L.X;X/, and we
let IX 2 L.X/ stand for the identity operator on X . If X and Y have fixed bases .xi / and .yi /,
respectively, such that .yi / is dominated by .xi /, then we write IX;Y for the formal inclusion
X ! Y defined by

IX;Y

�X
i

aixi

�
D

X
i

aiyi ;

which is well defined and bounded. WhenX (respectively, Y ) is p̀, 1 � p <1, then we write
Ip;Y (respectively, IX;p) instead of IX;Y . Similarly, we write I1;Y instead of Ic0;Y , etc.

By an ideal of L.X; Y / we mean a subspace J of L.X; Y / satisfying the ideal property:
ATB 2 J for all A 2 L.Y /, T 2 J and B 2 L.X/. When X D Y , this coincides with the
usual algebraic notion of an ideal of the algebra L.X/. A closed ideal is an ideal that is closed
in the operator norm. Clearly, the closure of an ideal is a closed ideal.

Our notion of ideal is equivalent to Pietsch’s notion of operator ideal [4]. The latter is
a functor that assigns to each pair .V;W / of Banach spaces a subspace J.V;W / of L.V;W /

such that for all Banach spaces U; V;W;Z and allA 2 L.W;Z/; T 2 J.V;W /; B 2 L.U; V /,
we have ATB 2 J.U;Z/. This is called a closed operator ideal if J.V;W / is a closed sub-
space of L.V;W / for all V;W . Given a (closed) operator ideal J, it is clear that J.V;W /

is then an ideal (respectively, closed ideal), in the above sense, of L.V;W / for all spaces V
and W . Conversely, given a (closed) ideal J of L.X; Y / in the above sense, the functor that
assigns to .V;W / (the closure of) the set of all finite sums of operators of the form ATB with
A 2 L.Y;W /, T 2 J and B 2 L.V;X/ is a (closed) operator ideal in the sense of Pietsch for
which J.X; Y / D J.

In this paper we shall only deal with closed ideals. Recall that T 2 L.X; Y / is strictly
singular if it is not an isomorphic embedding on any infinite-dimensional subspace of X ,
and T is finitely strictly singular if for all " > 0 there exists n 2 N such that for every sub-
space E of X with dimE � n there exists x 2 E such that kT xk < "kxk. We denote by
K.X; Y / � FS.X; Y / � S.X; Y / the ideals of, respectively, compact, finitely strictly singu-
lar and strictly singular operators. WhenX D Y , these become K.X/ � FS.X/ � S.X/. It is
not hard to see that these are all closed operator ideals.

For an operator T WU ! V between Banach spaces U and V , we let JT D JT .X; Y /

be the closed ideal of L.X; Y / generated by operators factoring through T . Thus JT is the
closure in L.X; Y / of all finite sums of operators of the form ATB , where A 2 L.V; Y / and
B 2 L.X;U /. When U D V and T D IU , then we write JU instead of JIU .

2.2. `p spaces. For 1 � p � 1 we denote by p0 the conjugate index of p. So we have

1

p
C
1

p0
D 1:

We will denote by ¹ep;i W 1 � i <1º the unit vector basis of p̀ when 1 � p <1 and of c0
when p D1. For n 2 N, the unit vector basis of `np will be denoted by ¹e.n/p; j W 1 � j � nº.
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4 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

Fix p 2 .1;1/ and define Zp to be the p̀-direct sum

Zp D

 
1M
nD1

`n2

!
`p

:

This has a canonical unit vector basis ¹e.n/2;j W n 2 N; 1 � j � nº. By Khintchine’s inequality,
the spaces `n2 , n 2 N, are uniformly complemented in p̀. It follows that Zp is also comple-
mented in p̀, and hence isomorphic to it by Pełczyński’s Decomposition Theorem. We fix once
and for all an isomorphism UpWZp ! p̀. Although the spacesZp and p̀ are isomorphic, their
canonical unit vector bases ¹e.n/2;j W n 2 N; 1� j � nº and ¹ep;i W 1� i <1º, respectively, are
very different when p ¤ 2. This is an example of the following convention that we adopt
throughout this paper. For us a Banach space means a Banach space together with a fixed basis
(which will always be normalized and 1-unconditional). We will use different notation for the
same space if we consider more than one basis.

2.3. Current state of affairs. We begin by recalling Volkmann’s result [9] that for
1 � p < q <1 the algebra L. p̀ ˚ `q/ has exactly two maximal ideals: the closures of
the ideals of operators factoring through p̀ and `q , respectively. Moreover, the set of all
non-maximal, proper closed ideals of L. p̀ ˚ `q/ is in a one-to-one, inclusion-preserving cor-
respondence with the set of all closed ideals of the algebra L. p̀; `q/. These results are stated
in [4, Theorem 5.3.2]. We also refer the reader to [8, Section 2].

Using the notation established in Section 2.1, the following diagrams summarize what
we know about non-trivial closed ideals of L. p̀; `q/. When 1 < p < q <1, we have

K ¨ JIp;q � FS ¨ L. p̀; `q/:

Recall that the last two inclusions are due to V. D. Milman [3]. Also, if J is a proper, closed
ideal distinct from K , then J contains JIp;q .

Combining the main results of [7] and [8], we obtain the following picture in the range
1 < p < 2 < q <1.

JIp;2 FS

K > JIp;q

>

¬ FS \ J`2

>

>

¬ FS _ J`2 >

>

L. p̀; `q/

JI2;q

>

>

J`2

>

>

Here arrows stand for inclusion. It is not known whether the ideal FS _ J`2 , the smallest
closed ideal containing FS and J`2 , is proper. All other inclusions are strict. The ideals K

and JIp;q are the smallest, respectively second smallest non-zero ideals. In [7] it was also
shown that any ideal containing an operator not in FS must contain J`2 . It follows that there
is no ideal between FS \ J`2 and J`2 , and that FS _ J`2 is the only immediate successor
of FS . Two ideals connected by ¬ are incomparable. It is not known whether JIp;q is a proper
subset of JIp;2 \ JI2;q .
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Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals 5

2.4. Rosenthal’s Xp spaces. In 1970 H. P. Rosenthal published an influential paper [6]
with important consequences both for the theory of Lp spaces, and for probability theory. This
paper grew out of his study of sequences of independent random variables with mean zero
in Lp D LpŒ0; 1� for 1 < p <1. It led to the introduction of the spaces Xp which we now
describe. Let 2 < p <1 and w D .wn/

1
nD1 be a sequence in .0; 1�. The space Xp;w is the

completion of the space c00 of finite scalar sequences with respect to the norm

k.an/kp;w D
�X

janj
p
� 1

p
_

�X
w2njanj

2
� 1

2
:

Rosenthal proved the following [6, Theorem 4]. Let .fn/ be a sequence of independent, sym-
metric, 3-valued random variables, and let Yp be the closed linear span of .fn/ in Lp for
1 < p <1. Then Yp is Kp-complemented in Lp, where Kp is a constant depending only
on p. Moreover, if p > 2, then Yp is isomorphic to Xp;w, where wn D kfnkL2

=kfnkLp
, and

Yp0 is isomorphic to X�p;w. More precisely, the proof shows that if 1 < p <1 and we assume
that kfnkLp

D 1 for all n 2 N (as we clearly may), then there is a projection PpWLp ! Lp
onto Yp given by

Ppf D
X

anfn;

where

an D

Z 1

0

f .x/fn.x/ dx � kfnk�2L2
for all n 2 N,

such that

k.an/kp;w � kPpf kLp
� Kpk.an/kp;w � Kpkf kLp

if 2 < p <1;(2.1)
1

Kp
k.an/k

�
p0;w � kPpf kLp

� k.an/k
�
p0;w � Kpkf kLp

if 1 < p < 2:(2.2)

Here in the case 2 < p <1 we have wn D kfnkL2
for all n 2 N, whereas if 1 < p < 2, then

wn D kfnk
�1
L2

, and k.an/k�p0;w denotes the norm of
P
ane
�
n in the dual space X�p0;w, and .e�n/

is the sequence biorthogonal to the unit vector basis .en/ of Xp0;w. Note that P2 is simply
the orthogonal projection of L2 onto Y2 and K2 D 1; for 2 < p <1 we obtain Pp as the
restriction to Lp of P2, and for 1 < p < 2 we have Pp D P �p0 and Kp D Kp0 . It follows from
[6, Lemma 2] that in all cases the sequence .fn/ is a 1-unconditional basis of Yp.

Let 2 < p <1. It is easy to see that Xp;w is isomorphic to one of the spaces `2, p̀

and `2 ˚ p̀ unless .wn/ satisfies

(2.3) lim infwn D 0 and
X

nWwn<"

w
2p

p�2

n D1 for all " > 0:

Rosenthal proved that if the sequences .wn/ and .w0n/ both satisfy (2.3), then the corresponding
spaces Xp;w and Xp;w0 are isomorphic and distinct from any of the spaces `2, p̀ and `2 ˚ p̀.

In this paper we shall use finite-dimensional versions of Rosenthal’s Xp spaces, and we
will only need the result about the existence of well-isomorphic and well-complemented copies
in Lp. We begin with some definitions.

Given 2 < p <1, 0 < w � 1, n 2 N, denote by E.n/p;w the Banach space .Rn; k � kp;w/,
where .aj /njD1p;w D

 
nX

jD1

jaj j
p

! 1
p

_ w

 
nX

jD1

jaj j
2

! 1
2

:
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6 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

We write ¹e.n/j W 1� j � nº for the unit vector basis ofE.n/p;w , and denote by ¹e.n/�j W 1� j � nº

the unit vector basis of the dual space .E.n/p;w/
�, which is biorthogonal to the unit vector basis

of E.n/p;w .
Given 1 < p < 2, 0 < w � 1 and n 2 N, we fix once and for all a sequence

f
.n/
j D f

.n/
p;w;j ; 1 � j � n;

of independent symmetric, 3-valued random variables with

kf
.n/
j kLp

D 1 and kf
.n/
j kL2

D
1

w
for 1 � j � n.

We then define F .n/p;w to be the subspace span¹f .n/j W 1 � j � nº of Lp. It follows from (2.2)
that

(2.4)
1

Kp


nX

jD1

aj e
.n/�
j

 �


nX
jD1

ajf
.n/
j


Lp

�


nX

jD1

aj e
.n/�
j

;
where ¹e.n/�j W 1 � j � nº is the unit vector basis of the dual space .E.n/p0;w/

� as defined above.
Since the random variables f .n/j are 3-valued, it follows that F .n/p;w is a subspace of the span of
indicator functions of 3n pairwise disjoint sets. Thus, we can and will think of F .n/p;w as a sub-
space of `kn

p , where kn D 3n.

Proposition 1. Let 1 < p < 2, 0 < w � 1 and n 2 N. Then:

(i) ¹f .n/j W 1 � j � nº is a normalized, 1-unconditional basis of F .n/p;w .

(ii) There exists a projection P .n/p;w W `
kn
p ! `

kn
p onto F .n/p;w with kP .n/p;wk � Kp.

(iii) For each 1 � k � n and for every A � ¹1; : : : ; nº with jAj D k we have

1

Kp
�

�
k

1
p ^

1

w
k

1
2

�
�

X
j2A

f
.n/
j

 � k 1
p ^

1

w
k

1
2 :

Proof. Statements (i) and (ii) follow from the results of H. P. Rosenthal, [6, Theorem 4]
and [6, Lemma 2], that we cited above. By (2.4) we will have proved (iii) if we show that

kX
jD1

e.n/�j

 D k 1
p ^

1

w
k

1
2 ;

where ¹e.n/�j W 1 � j � nº is the unit vector basis of .E.n/p0;w/
� as defined above. Now, by defi-

nition, we have
kX

jD1

e.n/�j

 D max

´
kX

jD1

aj W

kX
jD1

jaj j
p0
� 1 and w2

kX
jD1

jaj j
2
� 1

µ
:

Then by symmetry of k � kp0;w , the maximum occurs when a1 D a2 D � � � D ak D t , say. So
kX

jD1

e.n/�j

 D max
®
kt W ktp

0

� 1 and w2kt2 � 1
¯
D k

1
p ^

1

w
k

1
2 ;

as claimed.
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Remark. We mention two extreme examples. When w D 1, then

E
.n/
p0;w Š `

n
2;

and when w D n�� with � D 1
p
�
1
2

, then

E
.n/
p0;w Š `

n
p0 :

In both cases the formal identity map is an isometric isomorphism. It follows by (2.4) that if
w D 1, then

F .n/p;w � `
n
2;

and if w D n��, then
F .n/p;w � `

n
p:

In both cases the formal identity is a Kp-isomorphism.

2.5. The spaces Yp;v. Fix 1 < p < 2, and let v D .vn/ be a decreasing sequence in the
interval .0; 1�. For each n 2N, letFn be the subspaceF .n/p;vn

of `kn
p with basis ¹f .n/j W 1� j � nº

as defined in Section 2.4 above. We introduce the space Yp;v defined to be the p̀-direct sum

Yp;v D

 
1M
nD1

Fn

!
`p

:

This is a Kp-complemented subspace of p̀. Indeed, the diagonal operator

Pp;v D diag.P .n/p;vn
/W p̀ Š

 
1M
nD1

`kn
p

!
`p

! p̀ Š

 
1M
nD1

`kn
p

!
`p

is a projection onto Yp;v, where P .n/p;vn
is the projection given by Proposition 1 (ii). Furthermore,

Yp;v is equipped with the normalized, 1-unconditional basis ¹f .n/j W n 2 N; 1 � j � nº. Note
that Yp;v, as a complemented subspace of p̀, is isomorphic to p̀. However, we shall never
make this identification, and instead consider Yp;v as a complemented subspace of p̀ with
corresponding projection Pp;v fixed as above.

We conclude this section by proving a norm estimate, Lemma 3 below, on sums of basis
vectors of Yp;v. We begin with fixing some notation. Let X be a Banach space with a fixed
(normalized, 1-unconditional) basis .xi / (finite or infinite). Let N D N if dim.X/ D1, and
N D ¹1; 2; : : : ; dim.X/º otherwise. We define the fundamental function 'X WN ! R of X by
setting

'X .k/ D sup
²X
i2A

xi

 W A � N; jAj � k³; k 2 N:

We then extend the definition of 'X to the real interval I D
S
1�k<dim.X/Œk; k C 1� by linear

interpolation. The fundamental function plays an important rôle in the study of so-called greedy
bases. Here we shall only need the following facts (see, e.g., [1, Section 2]).

Proposition 2. The functions t 7! 'X .t/ and t 7! t='X .t/, t 2 I , are increasing.
The concave envelope  W I ! R of 'X , i.e., the (pointwise) smallest concave function domi-
nating 'X , satisfies  .t/ � 2'X .t/ for all t 2 I .
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8 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

We next introduce the lower fundamental function �X WN ! R of X defined by

�X .k/ D inf
²X
i2A

xi

 W A � N; jAj � k³; k 2 N;

and extend the definition to I by linear interpolation. It is clear that �X is an increasing function
on I .

Example. Proposition 1 (iii) shows that

1

Kp
�

�
k

1
p ^

1

w
k

1
2

�
� �F .k/ � 'F .k/ � k

1
p ^

1

w
k

1
2 ;

where F D F .n/p;w and 1 � k � n.

We now turn to the estimate on the lower fundamental function of Yp;v, as promised.

Lemma 3. Given 1 < p < 2, let v D .vn/ be a decreasing sequence in .0; 1� such that
vn � n

�� for all n 2 N, where � D 1
p
�
1
2

. Then for each k 2 N we have

�Yp;v
.k/ �

1

Kp �
p
2
�
1

vl
� l; where l D

�r
k

2

�
:

(We put v0 D 1 to cover the case k D 1.)

Proof. Let A be a subset of ¹.n; j / W n 2 N; 1 � j � nº with jAj � k. For each n 2 N
set An D A \ ¹.n; j / W 1 � j � nº. By Proposition 1 (iii) we can write N as the union of dis-
joint sets L and R, where

L D

²
n 2 N W �Fn

.jAnj/ �
1

Kp
jAnj

1
p

³
and

R D

²
n 2 N W �Fn

.jAnj/ �
1

Kp

1

vn
jAnj

1
2

³
n L:

Then X
.n;j /2A

f
.n/
j


Yp;v

�

�X
n

�Fn
.jAnj/

p

� 1
p

�
1

Kp
�

�X
n2L

jAnj C
X
n2R

�
1

vn
jAnj

1
2

�p� 1
p

;

and hence, using p < 2, we obtain

(2.5) Kp

 X
.n;j /2A

f
.n/
j


Yp;v

�

�X
n2L

jAnj C

�X
n2R

1

v2n
jAnj

�p
2
� 1

p

:

Set l D b
p
k=2c. Since

P
njAnj D jAj � k, either

P
n2LjAnj � l2 or

P
n2RjAnj � l2. In

the former case, inequality (2.5) immediately gives

(2.6) Kp

 X
.n;j /2A

f
.n/
j


Yp;v

� l
2
p �

1

vl
� l;

where the second inequality follows from the assumption that vn � n�� for all n 2 N.
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Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals 9

We now consider the case when
P
n2RjAnj � l

2. Choose s 2 N and 0 � s0 � s such
that X

n2R

jAnj D

s�1X
nD1

nC s0:

For n 2 N and 1 � j � n set vn;j D vn. Since .vn/ is decreasing, summing 1=v2n;j over the setS
n2R An is minimized when

S
n2R An is an initial segment of ¹.n; j / W n 2 N; 1 � j � nº

in the lexicographic order. Thus we have

X
n2R

1

v2n
jAnj �

s�1X
nD1

1

v2n
nC

1

v2s
s0 �

1

v2
l

 
s�1X
nDl

nC s0

!
�
1

v2
l

�
l2

2
;

where we used
Pl�1
nD1 n �

l2

2
in the last inequality. Hence by (2.5) we obtain

(2.7) Kp

 X
.n;j /2A

f
.n/
j


Yp;v

�
1
p
2
�
1

vl
� l:

The claim now follows from (2.6) and (2.7) above.

3. The key lemma

This section is entirely devoted to a result that will play a central rôle in distinguishing
closed ideals. It roughly says that if one has a bounded operator and the fundamental function
of the domain is asymptotically smaller than the lower fundamental function of the range space,
then a large proportion of basis vectors must map to ‘flat’ vectors.

Lemma 4. Let Y be an infinite-dimensional Banach space with a normalized, 1-uncon-
ditional basis .fj /. For each integer m 2 N let Gm be an m-dimensional Banach space with
a normalized, 1-unconditional basis ¹g.m/i W 1 � i � mº. Assume that

lim
k!1

sup
m�k

'Gm
.k/

k
D 0(3.1)

and

lim
m!1

'Gm
.m/

�Y .cm/
D 0 for all c > 0:(3.2)

If .BmWGm ! Y /1mD1 is a sequence of operators with supmkBmk � 1, then

1

m

mX
iD1

Bm.g.m/i /

1
! 0 as m!1:

Here kyk1 D supj jyj j for y D
P
j yjfj 2 Y .

Remark. Before proving our lemma let us look at the extreme case. Assume that for
each m 2 N we are given a linear operator Bm from `m1 to `1 with kBmk � 1. In that special
case we can easily deduce our claim from Grothendieck’s inequality. Indeed, fixingm 2 N, we
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10 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

can write Bm as a matrix Bm D .Bm.j; i//, i D 1; : : : ; m, j 2 N, with

sup

´
mX
iD1

1X
jD1

tjBm.j; i/si W jsi j; jtj j � 1 for 1 � i � m; 1 � j <1

µ
D kBmk � 1;

and we then have to show that

1

m

mX
iD1

Bm.e.m/1;i /1 D 1

m

mX
iD1

max
j2N
jBm.j; i/j ! 0 as m!1:

Now Grothendieck’s inequality implies that

mX
iD1

1X
jD1

Bm.j; i/hyj ; xi i � KG ;

whenever xi , i D 1; : : : ; m, and yj , j 2 N, are elements of the unit ball of a Hilbert space H ,
and whereKG denotes the Grothendieck constant. We choose for each i D 1; : : : ; m an integer
ji 2 N such that

jBm.ji ; i/j D max
j2N
jBm.j; i/j:

We then let H D `m2 and xi D e
.m/
2;i for i D 1; : : : ; m. For each j 2 N we define a vector

Qyj D

mX
iD1

Qyj .i/e
.m/
2;i

in `m2 as follows:

Qyj .i/ D

´
sign.Bm.ji ; i// if j D ji ,

0 otherwise.

Note that k Qyj k`m
2
�
p
m, and so yj D Qyj =

p
m is in the unit ball of `m2 for each j 2 N. It

follows that

KG �

mX
iD1

1X
jD1

Bm.j; i/hyj ; xi i

D

mX
iD1

1X
jD1

Bm.j; i/yj .i/

D
1
p
m

mX
iD1

ˇ̌
Bm.ji ; i/

ˇ̌
D

1
p
m

mX
iD1

max
j2N

ˇ̌
Bm.j; i/

ˇ̌
;

which yields our claim in this special case.

Proof of Lemma 4. Fix % > 0. By (3.1) there exists an integer k0 2 N such that

'Gm
.k/

k
<
%

2
for all m � k � k0:
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Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals 11

Set c D %k�10 . By (3.2) we may choose m0 2 N such that

m0 > k0 and
'Gm

.m/

�Y .cm/
< % for all m > m0:

Now fix m > m0 and set

A D
®
i 2 ¹1; 2; : : : ; mº W

Bm�g.m/i

�
1
> %

¯
:

We will show that jAj � %m. It will then follow that

1

m

mX
iD1

Bm�g.m/i

�
1
� %C

jAj

m
� 2%;

and since m > m0 and % > 0 were arbitrary, the proof of the lemma will be complete. To
show that jAj � %m we argue by contradiction, and assume that jAj > %m. For each i 2 A fix
ji 2 N such that ˇ̌�

Bm
�
g
.m/
i

��
ji

ˇ̌
� %:

Here Œy�j denotes, for y 2 Y , the j -th coordinate of y with respect to the basis .fj /1jD1. We
then set QA D ¹ji W i 2 Aº, and for j 2 QA we let Aj D ¹i 2 A W ji D j º. We shall now obtain
a number of inequalities that will eventually lead to a contradiction.

Fix j 2 QA and for each i D 1; : : : ; m let "i be the sign of ŒBm.g
.m/
i /�j . Since kBmk � 1

and .g.m/i / is 1-unconditional, we have

'Gm
.jAj j/ �

X
i2Aj

"ig
.m/
i


Gm

�

X
i2Aj

"iBm
�
g
.m/
i

�
Y

�

� X
i2Aj

"iBm
�
g
.m/
i

��
j

� jAj j%:

Let  be the concave envelope of 'Gm
. Since A is the disjoint union of the sets Aj , j 2 QA,

we obtain
jAj D

X
j2 QA

jAj j

� %�1
X
j2 QA

'Gm
.jAj j/

� %�1
X
j2 QA

 .jAj j/

� %�1j QAj �  

�
jAj

j QAj

�
(by the concavity of  )

� 2%�1j QAj � 'Gm

�
jAj

j QAj

�
(by Proposition 2):
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12 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

Now if jAj > k0j QAj, then it follows from the above that 'Gm .k0/

k0
�
%
2

which contradicts the
choice of k0. Thus

(3.3) jAj � k0j QAj:

We next fix independent Rademacher random variables .ri /i2A, and show the estimate

(3.4) E

ˇ̌̌̌X
i2A

ri
�
Bm

�
g
.m/
i

��
j

ˇ̌̌̌
� % for all j 2 QA:

Note that the expectation here is simply the average over all choices of ˙ signs (and the use
of Jensen’s inequality below is nothing else but the triangle-inequality). However, the use of
Rademachers to express averages is a common device in Banach space theory, and does make
the calculation somewhat more transparent.

To see (3.4) fix j 2 QA and set yi D ŒBm.g
.m/
i /�j for i 2 A. By the definition of QA there

is an i0 2 A such that ji0 D j , and hence jyi0 j � %. Thus

E

ˇ̌̌̌X
i2A

riyi

ˇ̌̌̌
D E

ˇ̌̌̌X
i2A

ri0riyi

ˇ̌̌̌
D E

ˇ̌̌̌
yi0 C

X
i2A; i¤i0

ri0riyi

ˇ̌̌̌

�

ˇ̌̌̌
yi0 C

X
i2A; i¤i0

E.ri0ri /yi

ˇ̌̌̌
D jyi0 j � %;

using Jensen’s inequality in the third line. We next obtain

'Gm
.jAj/ � E

X
i2A

riBm
�
g
.m/
i

�
Y

(as kBmk � 1)

D E

X
j

ˇ̌̌̌X
i2A

ri
�
Bm

�
g
.m/
i

��
j

ˇ̌̌̌
fj


Y

(as .fj / is 1-unconditional)

�

X
j

E

ˇ̌̌̌X
i2A

ri
�
Bm

�
g
.m/
i

��
j

ˇ̌̌̌
fj


Y

(by Jensen’s inequality)

� %

X
j2 QA

fj


Y

(using (3.4) and the 1-unconditionality of .fj /)

� %�Y .j QAj/:

Recall that c D %k�10 andA � ¹1; : : : ; mºwith jAj > %m. So jAj � m, and by (3.3), j QAj � cm.
Thus, the above gives

% �
'Gm

.jAj/

�Y .j QAj/
�
'Gm

.m/

�Y .cm/
< %

by the choice of m0. This contradiction completes the proof.
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Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals 13

4. Proof of the main results

In the previous section we described a situation when images of basis vectors are on
average ‘flat’. Here we begin with a calculation (Lemma 5 below) that shows that certain for-
mal inclusion maps reduce the norm of ‘flat’ vectors. We then introduce, in the special case
1 < p < 2 and p < q <1, a class of closed ideals in L. p̀; `q/ parametrised by decreasing
sequences in .0; 1�. Theorem 6 and Corollary 7 show when these ideals are distinct from one
another. This will lead to a proof of our main result, Theorem A. In the rest of the section we
follow a similar strategy and establish Theorem B.

Lemma 5. Given 1 < p < 2 and p < q <1, let n 2 N, v 2 .0; 1�, and F D F .n/p;v with
basis ¹f .n/j W 1 � j � nº. Let

y D

nX
jD1

yjf
.n/
j 2 F

with kykF � 1, and let

Qy D

nX
jD1

yj e
.n/
2;j 2 `

n
2:

If kyk1 D maxj jyj j � � � 1 and v � �
1
2
� 1

p0 , then

k Qyk
q

`n
2

� max¹Cpp ; K
q
p º � �

r
� kyk

p
F ;

where Cp is the cotype-2 constant of p̀ and r D min¹q
2
�
p
2
; q
2
�

q
p0
º.

Here we recall that for 1 � p � 2 the Banach space LpŒ0; 1�, and hence p̀, has cotype 2.
This is a consequence of Khintchine’s inequality. See for example [2, Definition 1.e.12].

Proof. If k Qyk`n
2
�
p
� , then

k Qyk
q

`n
2

D k Qyk
q�p

`n
2

� k Qyk
p

`n
2

� �
q
2
�

p
2 � k Qyk

p

`n
2

� Cpp � �
q
2
�

p
2 � kyk

p
F ;

where we use the fact, an easy consequence of the definition of cotype, that in p̀ a normalized,
1-unconditional basis Cp-dominates the unit vector basis of `2. So the claim holds in this case.

Now assume that k Qyk`n
2
>
p
� . Set zj D

yj

k Qyk`n
2

for 1 � j � n, and let

Qz D

nX
jD1

zj e
.n/
2;j :

Then kQzk`n
2
D 1 and h Qy; Qzi D k Qyk`n

2
. Note also that jzj j �

p
� for all j . So we have 

nX
jD1

jzj j
p0

! 1
p0

D

 
nX

jD1

jzj j
p0�2
� jzj j

2

! 1
p0

� �
1
2
� 1

p0 �

 
nX

jD1

jzj j
2

! 1
p0

D �
1
2
� 1

p0 :

On the other hand, we have
v � kQzk`n

2
D v � �

1
2
� 1

p0

by assumption. It follows that
kzkp0;v � �

1
2
� 1

p0 ;
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14 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

where

z D

nX
jD1

zj e
.n/
j ;

and ¹e.n/j W 1 � j � nº is the unit vector basis of E D E.n/p0;v D .R
n; k � kp0;v/. Hence by (2.4)

we have
k Qyk`n

2
D h Qy; Qzi � k.yj /k

�
p0;v � k.zj /kp0;v � Kp � �

1
2
� 1

p0 � kykF :

It follows that
k Qyk

q

`n
2

� Kqp � �
q
2
�

q

p0 � kyk
q
F ;

which proves the claim since kykF � 1, and so kykqF � kyk
p
F .

Fix 1 < p < 2 and p < q <1. Let v D .vn/ be a decreasing sequence in .0; 1�. In
Section 2.5 we introduced the complemented subspace Yv D Yp;v of p̀ with corresponding
projection Pv D Pp;v. As already mentioned in the proof above, for each n 2 N, the unit vec-
tor basis of `n2 is Cp-dominated by the normalized, 1-unconditional basis ¹f .n/j W 1 � j � nº

of the subspace Fn D F
.n/
p;vn

. Thus the formal inclusion map

IYv ;Zq
WYv D

 
1M
nD1

Fn

!
`p

! Zq D

 
1M
nD1

`n2

!
`q

given by
IYv ;Zq

�
f
.n/
j

�
D e.n/2;j

is well defined and bounded. This defines the closed ideal JIYv ;Zq of L. p̀; `q/ generated by
operators factoring through IYv ;Zq

. In Section 2.2 we also fixed an isomorphism UqWZq ! `q .
Note that the operator Tv D Uq ı IYv ;Zq

ı Pv belongs to the ideal JIYv ;Zq . The next result
establishes conditions on two sequences v and w which imply that Tw … JIYv ;Zq .

Theorem 6. Fix 1 < p < 2 and p < q <1. Let v D .vn/ and w D .wn/ be decreasing
sequences in .0; 1�. Consider Yv, IYv ;Zq

, Tw as above. Assume that vn � n�� and wn � n��

for all n 2 N, where � D 1
p
�
1
2

. Further assume that

(4.1)
vpcn

wn
! 0 as n!1 for all c > 0

(where we simplify notation by letting v0 D 0 and vx D vbxc for a positive real number x).
Then Tw … JIYv ;Zq .

Proof. For each n 2 N let

Fn D F
.n/
p;vn

and Gn D F
.n/
p;wn

with unit vector bases ¹f .n/j W 1 � j � nº and ¹g.n/j W 1 � j � nº, respectively. Thus

f
.n/
j D f

.n/
p;vn;j

and g
.n/
j D f

.n/
p;wn;j

for 1 � j � n

using the notation introduced in Section 2.4. To simplify notation we write Y D Yv, Z D Zq ,
U D Uq and T D Tw. Thus U WZ ! `q is an isomorphism,

IY;Z WY D

 
1M
nD1

Fn

!
`p

! Z D

 
1M
nD1

`n2

!
`q
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Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals 15

is given by
IY;Z

�
f
.n/
j

�
D e.n/2;j ;

and

T W p̀ D

 
1M
mD1

`km
p

!
`p

! `q

is the composite
T D U ı IYw;Z ı Pw:

Note that T .g.m/i / D U.e
.m/
2;i / for each m 2 N and i D 1; : : : ; m.

We need to show that T … JIY;Z . We achieve this by finding a separating functional
ˆ 2 L. p̀; `q/

� as follows. For each m 2 N we define ˆm 2 L. p̀; `q/
� by setting

ˆm.V / D
1

m

mX
iD1

˝
e
.m/
2;i ; U

�1V.g
.m/
i /

˛
; V 2 L. p̀; `q/:

As kˆmk � kU�1k for allm, the sequence .ˆm/ has a!�-accumulation pointˆ in L. p̀; `q/
�.

Note that ˆm.T / D 1 for all m, and hence ˆ.T / D 1. The proof will be complete if we can
show that JIY;Z is contained in the kernel ofˆ. To see this, fixA 2L.Z; `q/ andB 2L. p̀; Y /

with kAk � 1 and kBk � 1. It is sufficient to show that

(4.2) ˆm.AIY;ZB/! 0 as m!1:

Let BmWGm ! Y denote the restriction to Gm of B . We shall use Lemma 4 to show that

(4.3)
1

m

mX
iD1

Bm�g.m/i

�
1
! 0 as m!1:

Recall that for y D
P1
nD1

Pn
jD1 yn;jf

.n/
j in Y we let

kyk1 D sup
n2N; 1�j�n

jyn;j j:

By Proposition 1 (iii) we have

'Gm
.k/ � k

1
p for all 1 � k � m,

and so condition (3.1) of Lemma 4 certainly holds. Now by Lemma 3 we have

�Y .k/ �
1

3Kp
�

1

vpk=2
�
p
k

for all large k. On the other hand, by Proposition 1 (iii) we have

'Gm
.m/ �

1

wm
m

1
2 for all m.

So for any c > 0 and for all sufficiently large m 2 N, it follows that

'Gm
.m/

�Y .cm/
� C �

vp
c0m

wm
;

where C and c0 are constants depending only on c (and p). Thus, by assumption (4.1), con-
dition (3.2) also holds, and Lemma 4 applies. This completes the proof of (4.3). To see (4.2),
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16 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

fix % 2 .0; 1/ and choose n0 2 N such that vn � %
1
2
� 1

p0 for all n � n0. This is possible, since
by (4.1) we have vn ! 0 as n!1. Note that

jˆm.AIY;ZB/j D
1

m

ˇ̌̌̌
ˇ
mX
iD1

˝
A�
�
U�1

��
e
.m/
2;i ; IY;ZBm

�
g
.m/
i

�˛ˇ̌̌̌ˇ(4.4)

�
1

m

mX
iD1

U�1 � IY;ZBm�g.m/i

�
Z
:

For each m; i 2 N with 1 � i � m we put

�
.m/
i D % _

Bm�g.m/i

�
1
:

We now fix 1 � i � m and, to simplify notation, we temporarily write � D � .m/i and

x D Bm
�
g
.m/
i

�
D

1X
nD1

nX
jD1

xn;jf
.n/
j :

Note that vn � �
1
2
� 1

p0 for all n � n0. Hence by Lemma 5 we have 
nX

jD1

jxn;j j
2

!q
2

�M � �r �


nX

jD1

xn;jf
.n/
j


p

Fn

for all n � n0;

where M D max¹Cpp ; K
q
p º and r D min¹q

2
�
p
2
; q
2
�

q
p0
º. It follows thatIY;ZBm�g.m/i

�
Z
D kIY;Z.x/kZ

D

 
1X
nD1

 
nX

jD1

jxn;j j
2

!q
2
! 1

q

�

 
n0X
nD1

 
nX

jD1

jxn;j j
2

!q
2
! 1

q

CM
1
q � �

r
q �

 X
n>n0


nX

jD1

xn;jf
.n/
j


p

Fn

! 1
q

� kxk1 �

 
n0X
nD1

n
q
2

! 1
q

CM
1
q � �

r
q � kxk

p
q

Y

� kxk1 �N CM
1
q � �

r
q

D N �
Bm�g.m/i

�
1
CM

1
q �
�
�
.m/
i

� r
q ;

where we put N D
�Pn0

nD1 n
q
2

� 1
q . Hence, using (4.4), we obtain

U�1�1 � jˆm.AIY;ZB/j � N � 1
m

mX
iD1

Bm�g.m/i

�
1
CM

1
q �

1

m

mX
iD1

�
�
.m/
i

� r
q

� N �
1

m

mX
iD1

Bm�g.m/i

�
1
CM

1
q �

 
1

m

mX
iD1

�
.m/
i

! r
q

:
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Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals 17

To see the second inequality note that r
q
< 1
2

, and so the function t 7! t
r
q is concave. Now it

follows from (4.3) that

lim sup
m
jˆm.AIY;ZB/j �

U�1 �M 1
q � %

r
q :

Since % > 0 was arbitrary, the proof of (4.2), and hence of the theorem, is complete.

Corollary 7. Let 1 < p < 2 and p < q <1. Let v D .vn/ and w D .wn/ be decreas-
ing sequences in .0; 1� bounded below by n��, � D 1

p
�
1
2

, and satisfying condition (4.1).
Then JIYv ;Zq ¨ JIYw;Zq .

Proof. It follows from (4.1) that eventually vn � wn. Hence, using the notation of
the proof of Theorem 6, the basis .f .n/j / of Fn Kp-dominates the basis .g.n/j / of Gn for all
large n. Indeed, this follows from (2.4). Thus, IYv ;Zq

factors through IYw;Zq
via the formal

inclusion map IYv ;Yw
, and thus JIYv ;Zq � JIYw;Zq . The claim now follows immediately from

Theorem 6 since Tw 2 JIYw;Zq .

Before proving Theorem A we need to show that certain maps are finitely strictly singular.

Proposition 8. Fix 1 < p < 2 and p < q <1. Let v D .vn/ be a decreasing sequence
in .0; 1� bounded below by n��, � D 1

p
�
1
2

, such that vn ! 0 as n!1. Set Y D Yp;v.
Then the formal inclusion maps IY;Zq

and IZq0 ;Y
� are finitely strictly singular.

Proof. For each n 2 N let

Fn D F
.n/
p;vn

and En D .R
n; k � kp0;vn

/

with unit vector bases ¹f .n/j W 1 � j � nº and ¹e.n/j W 1 � j � nº, respectively. We first prove
that IY;Zq

is finitely strictly singular. Fix " > 0. Choose % 2 .0; 1/ such that

%CM
1
q � %

r
q < ";

where, as before, M D max¹Cpp ; K
q
p º, r D min¹q

2
�
p
2
; q
2
�

q
p0
º and Cp is the cotype-2 con-

stant of p̀. Next fix n0 2 N such that

vn � %
1
2
� 1

p0 for all n � n0.

Set N D .
Pn0

nD1 n
q
2 /

1
q . Finally, choose d 2 N such that

Kp �
2vd

d
�N < %:

Now letH be a subspace of Y of dimension at least 2d2. By a result of V. D. Milman [3]
(see also [7, Lemma 3.4]), there exists a non-zero vector

x D

1X
nD1

nX
jD1

xn;jf
.n/
j 2 H

such that
jxm;i j D kxk1 D sup

n2N; 1�j�n
jxn;j j
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18 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

for at least 2d2 pairs .m; i/. Hence by Lemma 3, assuming as we may that kxkY D 1, we have

(4.5) 1 D kxkY � kxk1 � �Y
�
2d2

�
� kxk1 �

1

Kp
p
2
�
d

vd
:

Set � D % _ kxk1. As in the proof of Theorem 6, we obtain

kIY;Z.x/k � N � kxk1 CM
1
q � �

r
q :

By (4.5) and by the choice of d , we have N � kxk1 � Kp � 2vd

d
�N < %. In particular, � D %,

and hence the above gives
kIY;Z.x/k � %CM

1
q � %

r
q < "

by the choice of %.
The proof for IZq0 ;Y

� is similar. One first needs to prove a dual version of Lemma 5,
which is easier since in En we have an explicit formula for the norm, and then one needs to
obtain a series of estimates as in the proof of Theorem 6. We first observe that Y � is isomorphic
to W D .

L1
nD1En/`p0 by (2.4), and so it is sufficient to show that the formal inclusion map

IZq0 ;W is finitely strictly singular. So let us fix " > 0, and then choose % > 0 such that

%C %
1� q0

p0 < ":

We may and shall assume that p < q � 2. Indeed, given p < q1 < q2, we have

IZ
q0

2
;W D IZ

q0
1
;W ı IZ

q0
2
;Z

q0
1

:

Now choose n0 2 N such that

vn < %
1� q0

p0 for all n � n0.

Set N D .
Pn0

nD1 n
p0/

1
p0 and choose d 2 N with d�

1
q0 �N < %.

Given a subspace H of Zq0 of dimension at least d , use Milman’s lemma again to find

x D

1X
nD1

nX
jD1

xn;j e
.n/
2;j 2 H

with kxkZq0
D 1 such that

jxm;i j D kxk1 D sup
n2N; 1�j�n

jxn;j j

for at least d pairs .m; i/. Since 2 � q0, we have

(4.6) 1 D kxkZq0
� kxk`q0

� kxk1 � d
1
q0 ; and so kxk1 � d

� 1
q0 <

%

N
� %:

Now fix n 2 N with n � n0. On the one hand, we have

nX
jD1

jxn;j j
p0
D

nX
jD1

jxn;j j
p0�q0

jxn;j j
q0
� %p

0�q0
�

 
nX

jD1

jxn;j j
2

!q0

2

;

where we used kxk1 < % and that 2 � q0. On the other hand, by the choice of n0, and since
q0 < p0, we have

vp
0

n

 
nX

jD1

jxn;j j
2

!p0

2

� %p
0�q0
�

 
nX

jD1

jxn;j j
2

!q0

2

:
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Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals 19

The previous two inequalities imply that
nX

jD1

xn;j e
.n/
j


p0

En

� %p
0�q0
�


nX

jD1

xn;j e
.n/
2;j


q0

`n
2

:

We deduce the following estimates:

kIZq0 ;W .x/k D

 
1X
nD1


nX

jD1

xn;j e
.n/
j


p0

En

! 1
p0

�

 
n0X
nD1


nX

jD1

xn;j e
.n/
j


p0

En

! 1
p0

C %
1� q0

p0 �

 X
n>n0


nX

jD1

xn;j e
.n/
2;j


q0

`n
2

! 1
p0

� kxk1 �N C %
1� q0

p0 � kxk
q0

p0

Zq0

� %C %
1� q0

p0 < ";

where we recall that N D .
Pn0

nD1 n
p0/

1
p0 , and we used (4.6), the choice of d , and the choice

of %.

We are now ready to prove our main result.

Proof of Theorem A. We first consider the case 1 < p < 2 and p < q <1. Put

� D
1

p
�
1

2
;

and define f WN ! R by setting f .n/ D n�� for each n 2 N. For an infinite set M � N
we define a decreasing sequence wM D .wM .n//

1
nD1 in .0; 1� as follows. Let m1 < m2 < � � �

be the elements of M . We set wM .1/ D 1 and wM .2
3mk / D f .2k/ for each k 2 N, and

then extend the definition of wM to the rest of N by linear interpolation. It is clear that
wM .n/ � n

�� for all n 2 N. We will show that for infinite setsM � N � N withN nM also
infinite, the sequences v D wN and w D wM satisfy condition (4.1) of Theorem 6. Hence, by
Corollary 7 we will have JIYv ;Zq ¨ JIYw;Zq . Let us first explain how we complete the proof
of our main theorem from here. We fix a chain C of size the continuum consisting of infinite
subsets of N with any two having infinite difference. For M 2 C put YM D Yp;wM

. As shown
above, the closed ideals JIYM ;Zq ,M 2 C , are pairwise distinct and comparable. Moreover, for
each M 2 C , the operator IYM ;Zq

is finitely strictly singular by Proposition 8, and it is clearly
not compact. Hence the ideal JIYM ;Zq lies between JIp;q and FS .

Using the same p and q, we now consider ideals in L.`q0 ; p̀0/. For each M 2 C , we
have IZq0 ;Y

�
M
D I�YM ;Zq

, and hence by simple duality we have

J
I

Zq0 ;Y
�
M .`q0 ; p̀0/ D

®
T � W T 2 JIYM ;Zq

¯
:

Thus ¹J
I

Zq0 ;Y
�
M WM 2 Cº is a chain of closed ideals in L.`q0 ; p̀0/ of size the continuum.

By Proposition 8, the operators IZq0 ;Y
�

M
, M 2 C , are finitely strictly singular, and clearly not

compact, so these ideals also lie between JIq0;p0 and FS . Since q0 < p0 and 2 < p0, we have
covered all remaining cases.
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20 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

Let us now return to our claim: for infinite sets M � N � N with N nM also infinite,
the sequences v D wN and w D wM satisfy condition (4.1) of Theorem 6. Letm1 < m2 < � � �
and n1 < n2 < � � � be the elements ofM andN , respectively. Fix l 2 N. We will show that for
all sufficiently large n 2 N, we have

wN
�
n

1
3

�
wM .n/

� 2��l ;

which proves the claim. Since N nM is infinite, there exists k0 2 N such that for all n � mk0

we have
jN \ ¹1; : : : ; nºj � jM \ ¹1; : : : ; nºj C l C 2:

Fix n > 23
mk0C1

. This defines k > k0 such that 23
mk
� n < 23

mkC1 . It follows that

(4.7) wM .n/ � wM
�
23

mkC1 �
D f

�
2kC1

�
:

Next define k0 2 N by nk0 � mk � 1 < nk0C1. By the choice of k0, and since mk � 1 � mk0
,

we have

k0 D jN \ ¹1; : : : ; mk � 1ºj � jM \ ¹1; : : : ; mk � 1ºj C l C 2 D k C l C 1:

It follows that

(4.8) wN
�
n

1
3

�
� wN

�
23

mk�1�
� wN

�
23

nk0
�
D f

�
2k
0�
� f

�
2kClC1

�
:

Putting together (4.7) and (4.8), we obtain

wN
�
n

1
3

�
wM .n/

�
f
�
2kClC1

�
f
�
2kC1

� D 2��l :
This holds for any n > 23

mk0C1

, so the proof of our claim is complete.

We conclude this section with a proof of Theorem B. This will be very similar to the
general case but simpler. We shall still rely on our key lemma from Section 3. From now on
we fix 1 < p < 2 < q <1. As usual, for a decreasing sequence v D .vn/ in .0; 1� we con-
sider the complemented subspace Yv D Yp;v of p̀ with corresponding projection Pv D Pp;v
as introduced in Section 2.5. Since 2 < q, the formal inclusion

IZq ;qWZq D

 
1M
nD1

`n2

!
`q

! `q D

 
1M
nD1

`nq

!
`q

given by
IZq ;q

�
e.n/2;j

�
D e.n/q;j

is bounded, and hence, so is the formal inclusion IYv ;q D IZq ;q ı IYv ;Zq
. We shall consider

the closed ideal JIYv ;q which contains the operator Sv D IYv ;q ı Pv.
As before, we first distinguish ideals corresponding to different sequences.

Theorem 9. Let v and w be as in Theorem 6. Then Sw … JIYv ;q .

Proof. We follow closely the proof of Theorem 6. For each n 2 N let

Fn D F
.n/
p;vn

and Gn D F
.n/
p;wn

with bases ¹f .n/j W 1 � j � nº and ¹g.n/j W 1 � j � nº, respectively. To simplify notation we
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write Y D Yv and S D Sw. Thus

IY;qWY D

 
1M
nD1

Fn

!
`p

! `q D

 
1M
nD1

`nq

!
`q

is given by
IY;q

�
f
.n/
j

�
D e.n/q;j ;

and

S W p̀ D

 
1M
mD1

`km
p

!
`p

! `q

is the composite
S D IYw;q ı Pw:

Note that S.g.m/i / D e
.m/
q;i .

For each m 2 N we define ˆm 2 L. p̀; `q/
� by setting

ˆm.V / D
1

m

mX
iD1

˝
e
.m/
q0;i ; V .g

.m/
i /

˛
; V 2 L. p̀; `q/:

Since kˆmk � 1 for all m, the sequence .ˆm/ has a !�-accumulation point ˆ in the unit
ball of L. p̀; `q/

�. Note that ˆm.S/ D 1 for all m, and hence ˆ.S/ D 1. The proof will be
complete if we can show that JIY;q is contained in the kernel of ˆ. To see this, fix A 2 L.`q/

and B 2 L. p̀; Y / with kAk � 1 and kBk � 1. It is sufficient to show that

(4.9) ˆm.AIY;qB/! 0 as m!1:

Let BmWGm ! Y denote the restriction toGm of B . Exactly as in Theorem 6 we use Lemma 4
to show that

(4.10)
1

m

mX
iD1

Bm�g.m/i

�
1
! 0 as m!1;

and obtain the estimate

(4.11) jˆm.AIY;qB/j �
1

m

mX
iD1

IY;qBm�g.m/i

�
`q
:

At this point we depart from the proof of Theorem 6 as the argument becomes simpler. Let

x D

1X
nD1

nX
jD1

xn;jf
.n/
j 2 Y

with kxkY � 1. Then for each n 2 N we have
nX

jD1

jxn;j j
q
D

nX
jD1

jxn;j j
q�2
� jxn;j j

2

� C 2p � kxk
q�2
1 �


nX

jD1

xn;jf
.n/
j


2

Fn

� C 2p � kxk
q�2
1 �


nX

jD1

xn;jf
.n/
j


p

Fn

:
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22 Schlumprecht and Zsák, L. p̀ ˚ `q/ has infinitely many closed ideals

It follows that

kIY;q.x/k
q

`q
D

1X
nD1

nX
jD1

jxn;j j
q

� C 2p � kxk
q�2
1 �

1X
nD1


nX

jD1

xn;jf
.n/
j


p

Fn

D C 2p � kxk
q�2
1 � kxk

p
Y

� C 2p � kxk
q�2
1 :

Applying this to (4.11), we obtain

jˆm.AIY;qB/j � C
2
q

p �
1

m

mX
iD1

Bm�g.m/i

�1� 2
q

1

� C
2
q

p �

 
1

m

mX
iD1

Bm�g.m/i

�
1

!1� 2
q

;

using the fact that the function t 7! t1�
2
q is concave. Now we use (4.10) to deduce (4.9), as

required.

Proof of Theorem B. The proof of Theorem A provides a continuum size chain C of
infinite subsets of N, and corresponding sequences wM , M 2 C . In turn, this leads to spaces
YM D Yp;wM

and closed ideals JIYM ;q . The proof of Theorem A shows that if M;N 2 C

and M � N , then v D wN and w D wM satisfy the hypotheses in Theorem 6. In particular,
the unit vector basis of YN dominates the unit vector basis of YM , and so JIYN ;q � JIYM ;q .
Moreover, by Theorem 9, this inclusion is strict. Thus, the family ¹JIYM ;q WM 2 Cº of closed
ideals of L. p̀; `q/ is a chain and has size the continuum.

Finally, for each M 2 C , the operator IYM ;q factors through the formal inclusion

I2;qW `2 D

 
1M
nD1

`n2

!
`2

! `q D

 
1M
nD1

`nq

!
`q

via the formal inclusion IYM ;2. Thus JIYM ;q is contained in JI2;q , and it contains JIp;q since
IYM ;q is not compact.

5. Open problems

There are a number of natural questions that remain or arise after our work. The first aim
would be to answer Pietsch’s question in the range 1 � p < q.

Problem 10. Given 1� p < q <1, are there infinitely many closed ideals in L.`1; `q/

or in L. p̀; c0/?

Even in the reflexive range we do not know the exact number of closed ideals.

Problem 11. Given 1 < p < q <1, find the cardinality of the set of closed ideals
in L. p̀; `q/.
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We now know this is at least c. On the other hand, it is clear that the cardinality of
L. p̀; `q/ is c, and hence there can be at most 2c closed ideals. Of course, one could pose the
same problem with `1 replacing p̀, etc.

Note that in the case 1 < p < 2 < q <1 we constructed two continuum chains of
closed ideals. Are these equal? More generally, we could ask the following question about
the lattice structure of closed ideals in L. p̀; `q/.

Problem 12. Do the closed ideals of L. p̀; `q/, after ignoring a finite number of them,
form a chain?

So far all our new ideals are generated by a single operator. Note that if T is a non-zero
compact operator, then K D JT . It is then natural to ask the following.

Problem 13. Is FS generated by one operator? Are all closed ideals of L. p̀; `q/ gen-
erated by one operator?

Another candidate of a closed ideal, not representable by a single operator could be the
closure of the union of one of the chains we defined in the previous section.
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