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Excitonic effects play a particularly important role in the optoelectronic behavior of two-dimensional
semiconductors. To facilitate the interpretation of experimental photoabsorption and photoluminescence spectra
we provide (i) statistically exact diffusion quantum Monte Carlo binding-energy data for a Mott-Wannier model
of (donor/acceptor-bound) excitons, trions, and biexcitons in two-dimensional semiconductors in which charges
interact via the Keldysh potential, (ii) contact pair-distribution functions to allow a perturbative description of
contact interactions between charge carriers, and (iii) an analysis and classification of the different types of bright
trions and biexcitons that can be seen in single-layer molybdenum and tungsten dichalcogenides. We investigate
the stability of biexcitons in which two charge carriers are indistinguishable, finding that they are only bound
when the indistinguishable particles are several times heavier than the distinguishable ones. Donor/acceptor-bound
biexcitons have similar binding energies to the experimentally measured biexciton binding energies. We predict
the relative positions of all stable free and bound excitonic complexes of distinguishable charge carriers in the

photoluminescence spectra of WSe, and MoSe;.
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I. INTRODUCTION

The last decade has witnessed a remarkable surge of interest
in the properties of truly two-dimensional (2D), atomically thin
semiconductors. These include monolayer transition-metal
dichalcogenides (TMDCs) such as MoS,, MoSe;, WS,, and
WSe,, which acquire a direct-gap character in hexagonal
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monolayer form [1-4]. The direct gap and strong optical ab-
sorption of TMDC's suggest a range of potential optoelectronic
applications, e.g., in photodetectors, photovoltaics, and light-
emitting diodes. A particularly interesting aspect of monolayer
TMDC:s is the strong excitonic effects present in their pho-
toabsorption and photoluminescence spectra [5—-7], including
nonhydrogenic Rydberg spectra [8,9] and lines ascribed to tri-
ons (charged excitons) [10-12] and biexcitons (bound pairs of
excitons) [13—16]. The nonhydrogenic nature of the excitonic
energy spectrum is due to lateral polarization effects in 2D
crystals, which modify the form of the Coulomb interaction
between charge carriers. Mott-Wannier models of 2D trions
and biexcitons have been studied using quantum Monte Carlo
(QMC) methods [17-25], variational methods [26-28], and
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hyperspherical harmonics approaches [29], and interpolation
formulas linking the 2D-screened and 1/r Coulomb inter-
action regimes have been proposed. Here we extend these
studies to provide numerically exact binding-energy data for all
nonlocal screening strengths, including an analysis of limiting
behavior, and we classify the types of trions and biexcitons
that can be observed in different TMDCs. We also investi-
gate donor- and acceptor-bound charge-carrier complexes in
TMDC:s, such as donor-bound biexcitons and quintons, which
have not to our knowledge been studied before.

The rest of the article is structured as follows. In Sec. II
we describe the band structures of molybdenum and tungsten
dichalcogenides and analyze the nature of the trions and
biexcitons in these materials; furthermore, we perform a
group theoretical analysis of exciton properties. In Sec. III we
explain the Keldysh form of the screened Coulomb interaction
between charges in 2D semiconductors, describe the ways
in which charge-carrier complexes are expected to dissociate
and recombine, and explain the importance of the contact pair
distribution function (PDF). In Sec. IV we describe our com-
putational methodology for solving the Mott-Wannier model
of charge-carrier complexes. We present our numerical results
for the binding energies and PDFs of the different complexes
in Sec. V. Finally, we draw our conclusions in Sec. VI.

II. BRIGHT AND DARK BIEXCITONS AND TRIONS IN
MOLYBDENUM AND TUNGSTEN DICHALCOGENIDES

A. Classification of trions and biexcitons

In monolayer molybdenum and tungsten dichalcogenides
the conduction-band minimum and valence-band maximum

J

const.

I(T) ~
020 /(kaT)

where A’ is the spin-orbit-induced splitting of the conduction
band, kg is Boltzmann’s constant, and T is the tempera-
ture. A similar classification can be made for trions; see
Fig. 2. In a photoluminescence experiment, we expect to
see energies attributed to different kinds of biexcitons and
trions and emission lines of varying intensity, as explained in
Sec. ITIIC.

The opposite spin splittings of the conduction and valence
bands in tungsten dichalcogenides result in the ground-state
trions and biexcitons being dark, with the two electrons
residing in opposite valleys. These dark complexes are coupled
through an intervalley electron-electron scattering to their
excited bright counterparts with both electrons residing in the
upper spin-split conduction band. This coupling gives a finite
oscillator strength to the dark ground states that is proportional
to [wpa/(QAN]?, where pq is the coupling matrix element
between dark and bright states. As a result, the expected
photoluminescence spectrum contains two additional lines
resulting from the recombination of these “semidark™ trions
and biexcitons, at an energy shifted downwards by 2A’ relative
to the bright complexes, and having a temperature-independent
intensity.
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occur at the K and K’ points of the hexagonal Brillouin
zone. Spin-orbit coupling induces a significant splitting of
both the valence band and the conduction band at K and
K’. In molybdenum diselenides, the valence-band maximum
has the same spin as the conduction-band minimum within
each valley, while in tungsten dichalcogenides such states
have opposite spins [3]. Figure 1(a) presents examples of the
ways in which biexcitons can be formed in molybdenum and
tungsten dichalcogenides. The spin-splitting of the valence
band (0.15-0.5 eV) is sufficiently large that no holes in
the lower spin-split valence band are expected at room
temperature; however, the spin splitting of the conduction band
(A" = 3—50 meV) is small enough that electrons can be found
in the upper spin-split conduction band at room temperature
[3].

An exciton, biexciton, or trion is said to be either dark
or semidark when the recombination of an electron and hole
is forbidden by spin and momentum conservation; otherwise
the complex is said to be bright. Semidark complexes are
those in which recombination can in fact take place due
to intervalley scattering with an accompanying energy shift.
The precise photon energies depend on whether the electrons
occupy the higher- or lower-energy spin-split bands in the
initial and final states. Furthermore, the intensity of a spectral
line depends on the thermal occupancy of the initial state.
Figures 1(b) and 1(c) present a classification of biexcitons
in molybdenum and tungsten dichalcogenides with respect
to the recombination energy and the intensity of the emit-
ted photons. This intensity has the following temperature
dependence:

for no electrons in the upper spin-split conduction band,
for one electron in the upper spin-split conduction band, Q)
for two electrons in the upper spin-split conduction band,

[
B. Group theoretical analysis of excitons

Exciton wave functions can be classified according to the
irreducible representation (irrep) of the point-group symmetry
of the TMDC crystal, D3;,. As the states in the two valleys are
degenerate, one can treat the two valleys simultaneously by
using the extended group D}, = Ds;, + t D3, + t* D3),, where
t denotes translation by a lattice vector. The character table of
the extended group is given in Table IX.

TABLE I. Classification of exciton states into irreps of D5, and
the polarization (|| and z for in-plane and out-of-plane, respectively)
of the electric field to which the excitons are coupled.

Irrep Excitons Field
Kt vK'l

E* XK XE! E,
Kt K'l

E* XKl XE

Ay X (dark): {Xjt — Xi. !} E,

_ Kl ~K't

E XK1 XE

_ K1t K’

A, {Xk) +Xi1}
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FIG. 1. (a) Spin-split valence and conduction bands for MoSe,
(left) and WSe, and WS, (right). We only show the spin splitting
of the conduction band; the spin splitting of the valence band is
much larger, so that no holes in the lower spin-split valence band
are expected at room temperature [3]. (b) and (c) Classification
of biexciton recombination processes in molybdenum and tungsten
dichalcogenides, respectively. A is the band gap, while A’ is
the spin splitting of the conduction band. Ej = Exx — Ex is the
difference between the total energies Exx and Ex of a biexciton
and an exciton. /iw indicates the photon energies at which peaks in
photoluminescence spectra are expected to appear. XXQZ;Z;Z‘ denotes
a biexciton consisting of conduction-band electrons in valleys k; and
ky with spins o, and o, and valence-band holes in valleys k3 and k4
with spins o3 and o04. For example, the biexcitons shown in (a) are

both denoted by XXﬁI,gﬁ
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FIG. 2. As Fig. 1, but for negative trions in molybdenum and
tungsten dichalcogenides. Es = Ex- is the total energy Ex- of a
negative trion. T’;;Z;km denotes a trion consisting of conduction-band
electrons in valleys k; and k, with spins o, and o, and a valence-band

hole in valley k3 with spin o73.

The total exciton wave function X is given in general by
the product of three components: the spatial envelope function
®, the Bloch or lattice wave functions of the electron and hole
Uy, and the spin part x:

X = q>(reﬂrh) ® Uk(re’rh) ® X(Se,Sh). (2)

The representations of the wave functions by irreps consist
of the direct product of the individual irreps corresponding
to the three components: I'y = I'e ® I'y ® I'y. The tightly
bound ground-state excitons are characterized by a maximally
symmetrized envelope function corresponding to the identity
irrep I'y = A Therefore the representations of the exciton
states are determined by the irreps of the lattice and spin
parts.

The conduction- and valence-band Bloch states transform
according to the 2D irreps E/ and E, respectively. Using the
product table, Table X, the lattice part of the exciton wave
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function transforms as
Eff® E;f =E* & Ey, 3)

where the 2D irrep E* corresponds to intravalley excitons
in the K and K’ valleys, and E;+ corresponds to intervalley
excitons, which are dark due to momentum conservation. In the
following, we will consider the E™ intravalley excitons only.

The exciton spin part consists of two spin-1/2 particles
corresponding to the spinor 2D irrep D ;. The direct product
of the two spinors can be decomposed into the crystal point
group irreps as

Dip®Dip=A®ATOE". 4)
Hence the total exciton representation is given by

Ejice ® (AT @ AT @ E )qin =2E" © A] @ Ay @ E.

&)
The E* irrep corresponds to the vector representation, and
therefore the two E™ irreps correspond to excitons coupled
to in-plane polarized light. The z coordinate transforms as
the A irrep, and therefore the A, exciton is coupled to
out-of-plane polarized light, which involves a spin-flip process
in recombination [30]. In the case of tungsten dichalcogenides,
the A, exciton is the ground-state exciton, and results in
photon emission at an energy that is lower than the excited
bright exciton by the spin-orbit splitting of the conduction
band A’. The A] and E~ excitons are not coupled to light.
A summary of the classification of exciton states is given in
Table I using a notation similar to that used in Figs. 1 and
2. Finally, we note that the spin-flip transition resulting in
the emission of out-of-plane polarized light corresponding to
the A, exciton is also relevant for ground-state trions and
biexcitons in tungsten dichalcogenides, resulting in trion or
biexciton emission at a photon energy shifted downwards
relative to the excited bright states by A’.

III. CHARGE-CARRIER COMPLEXES IN 2D
SEMICONDUCTORS

A. Screened Coulomb interaction between charge carriers

We model the charge carriers in a 2D semiconductor
using a Mott-Wannier model, in which small numbers of
quasielectrons and quasiholes are treated within the band
effective mass approximation and interact via an appropriately
screened Coulomb interaction. The band effective masses for
different 2D semiconductors are assumed to be 2D-isotropic,
and are discussed in Sec. V B 2. However, unlike quasi-2D
electron(-hole) systems in GaAs/InAs heterostructures, the
form of the Coulomb interaction is profoundly affected by
the 2D nature of single-layer TMDCs, as we will now discuss.

Consider a charge density p(x,y)d(z) in the z = 0 plane
of the 2D material, embedded in an isotropic medium
of permittivity €. The resulting electric displacement field
isD=—-eVgp +P,(x,y)0(z) = —€V — k[VP(x,y,0)]8(2),
where ¢ is the electrostatic potential, P, (x,y) is the in-plane
polarization, and « is the in-plane susceptibility of the material.
By using Gauss’s law, V - D = p4(z), we obtain

eV = —pd(z) — k[V¢(x,y,0)18(2). (6)

PHYSICAL REVIEW B 96, 075431 (2017)

After taking the Fourier transform, denoting the wave vector
in the (x,y) plane by q, and the wave number in the z direction
by k, we find

p(Q) — kq*p(q,z = 0)

¢(q.k) = e

@)
However

1
¢(q,z =0) = 7 /¢(q,k) dk
T

1
=5 _lr@- kq*(q,z = 0)]. ®)
€q

Rearranging, we find the in-plane electric potential to be

p(q)

#(q,z =0) 76 + 1)

€))

Therefore the electrostatic potential energy between charges
gi and g; in a 2D semiconductor is
qiq;j

S LY 1
2¢q(1 +rvq)’ (10

v(g) =

where r, = «/(2¢). After taking the Fourier transform, the
potential energy can be written as

u(r) = ﬂv(i>, (11)
dmer, s

where r is the separation of the particles and

V(r/r,) = %[%(f) - Yo(ri)} (12)

where H,(x)is a Struve function and Y,,(x) is a Bessel function
of the second kind. This result was first derived by Keldysh
[31], and we refer to the interaction of Eq. (12) as the Keldysh
interaction. At long range (r > r,) this potential becomes a
Coulomb interaction:

V(r/re) T, 13)

while at short range (r < r,) it is approximately logarithmic:

2y ) (14)
exp(y)r )’

V(r/ry) = [In2ry/r) —y]l=1n (

where y is Euler’s constant. We refer to the interaction
potential of Eq. (14) as the logarithmic interaction. The
Keldysh interaction is plotted in Fig. 3, along with the Coulomb
(r+ = 0) and logarithmic (r, — 00) approximations.

The following approximation to Eq. (12) was introduced in
Ref. [32]:

r/ry

V(r/ry) = —1In <1 o

) — [y —In@)le™"".  (15)
This form of potential was used in the diffusion quantum
Monte Carlo (DMC) study of Ref. [21]. It is also plotted in
Fig. 3, where it can be seen that the error in Eq. (15) is as large
as several percent in the region r =~ r,. We compare DMC
results obtained using Egs. (12) and (15) in Sec. IVF.
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FIG. 3. Dimensionless interaction potential between charge car-
riers in a 2D semiconductor, as defined in Eq. (11). The inset shows
the percentage error in different approximations [Egs. (13), (14), and
(15)] to the Keldysh interaction of Eq. (12).

Finally, the Mott-Wannier-Keldysh Schrodinger equation
for a set of charged quasiparticles in a 2D semiconductor is

h2

_ V2 4 ﬂv(ﬁ) v =Ey, (16)

—~ Amer, s
1>]

where m; and ¢g; are the band effective mass and charge of
particle i, r;; is the separation of particles i and j, and E is the
energy eigenvalue.

Now consider the situation in which the 2D semiconductor
has a dielectric medium of permittivity €, above it and a
dielectric medium of permittivity €, below it, as would be
the case for a 2D semiconductor deposited on a substrate. In
general this is a more complicated problem than the situation
described above. However, if we take € = (€, + €,)/2 in the
expressions above, the correction to the electrostatic energy of
Eq. (11) is second order in €, — €,. Hence the Keldysh interac-
tion remains valid when the permittivity € is chosen to be the
average of the permittivities of the media on either side of the
2D semiconductor, provided these permittivities are similar.

B. Units and scaling
1. Excitonic units

The energies of complexes interacting via the Keldysh
or Coulomb interactions are given in terms of the exciton
Rydberg, R} = pe*/[2(4me)*’], and lengths are given in
terms of the exciton Bohr radius, a;j = 4 eh? /(jue?), where
w = memy/(me + my) is the reduced mass of electron-hole
pairs, with m, and my being the electron and hole masses,
respectively.

qi4;
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Let F; = r;/ag. Then Eq. (16) can be written as

Koo 2qiqjaq ., (Tijay
Zm+2; o (r*)w v a7

where & = E/Rj. Note that w/m; only depends on the
electron-hole mass ratio o = m./my. Hence for a fixed value
of r./ag, the dimensionless energy eigenvalues £ only depend
on the mass ratio, not on the absolute masses. Furthermore, for
an exciton we may write the Schrodinger equation in terms of
the difference coordinate r., as

- 2a} Fendg
[—th— —OV(M)]w =&y, (9)
Fy *

so that for a given value of r,/aj, the dimensionless exciton
energy eigenvalues Ex are also independent of the mass ratio.
For the case of the Coulomb interaction (r, = 0), the dimen-
sionless ground-state energy of an isolated excitonis &x = —4,
irrespective of the mass of the electron or the hole. The
binding energies in excitonic Rydbergs of donor-bound trions,
biexcitons, and donor-bound biexcitons only depend on r../aj
and the electron-hole mass ratio o . Unfortunately, the energies
of the different complexes go to zero in these units in the limit
that r, — 00, and so a separate set of units is required for the
case of the logarithmic interaction, as discussed in Sec. III B 2.

2. Logarithmic interaction

For the limit r, — oo, where the interaction is of
logarithmic form, we use the dimensionless units introduced
in Ref. [19]. The Schrédinger equation for a charge carrier
complex with the logarithmic approximation to the interaction
[Eq. (14)] is

- h—zv,.2+ 4id, ln< 214 ) v = Ev.
- 2m; =y 4mer, exp(y)r

(19)

Let
dmweryh

n=\ e (20)

and
2
Eo = dmer, @h
Defining dimensionless coordinates ¥, =r;/rp and a

dimensionless energy £ = E/E, the Schrodinger equation
can be written as

_ Z mﬂ@f - o2 (n(7;) +In(ro/r) +y —In@)] s = EY. (22)

i i>j

The only dependence of the dimensionless energy £ of the complex on r, is through the pairwise additive constant

C=— Z % In(ro/rs). (23)

i>j
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Note that
-1 for an exciton or donor atom,
. -1 for a trion or donor-bound exciton,
% =1-2 for a biexciton or donor-bound trion, 24)
e -2 for a donor-bound biexciton,

i>j
(ny—n_)Y—n,—n_

Hence the additive constant C cancels out of the binding
energies of the different charge-carrier complexes defined in
Sec. [II C.

For an isolated exciton, we may write the Schrodinger
equation in terms of the difference coordinate r., and reduced
mass, giving

[~ V3 + In(Fen) + In(ro/r) + ¥ — In@)]y = Exvr. (25)

The only dependence of the dimensionless energy eigenvalue
Ex on the mass ratio and r, comes from the constant term
In(ry/r,) in the Hamiltonian. Hence we may write the ground-
state dimensionless energy as

Ex = &o — In(ry/ro), (26)

where Exg = 0.41057747491(7) was evaluated by a finite-
element method (see Sec. V A).

C. Binding energies and spectra of charge-carrier complexes

We define the binding energies E% ., EXy, Ebiy, EDoys
and EJ. v of a trion, biexciton, donor-bound exciton, donor-
bound trion, and donor-bound biexciton, respectively, as

follows:

E% = Ex — Ex-, 7
E;x = 2Ex — Exx, (28)
ERix = Epo — Epsx, (29)
ERoy = Epo + Ex — Epox, (30)
Eixx = Epox — Ep+xx. (31)

where Ex, Ex-, Exx, Epo, Ep+x, Epox, and Ep+xx are the
ground-state total energies of an exciton, trion, biexciton,
donor atom, donor-bound exciton, donor-bound trion, and
donor-bound biexciton, respectively. These are the binding
energies with respect to dissociation into the most energetically
competitive species. With the exceptions of the donor-bound
exciton (DTX) and donor-bound biexciton (DTXX), each of
the complexes dissociates into an exciton (X) plus one other
complex. Binding energies of charge-conjugated complexes
(such as positive trions, acceptor-bound trions, and acceptor-
bound biexcitons) are defined in an analogous fashion. Note
that, under the definitions of Egs. (27)—(31), a binding energy
is positive for a bound complex.

The energy difference between the exciton peak in a
photoluminescence experiment and the peak corresponding
to a particular complex is equal to the energy required
to separate a single exciton from that complex. Thus the
energy difference between the exciton peak and the trion

for a complex of n charges +e and n_ charges —e.

(

peak is Ex — Ex- = E;’(,, the energy difference between the
exciton peak and the biexciton peak is 2Ex — Exx = E%y,
and the energy difference between the exciton peak and the
donor-bound trion peak is Ex + Ep0 — Epox = EEOX. On the
other hand, the energy difference between the exciton peak and
the donor-bound exciton peak is Ex — Ep+x = E}.y + Ex —
Epo, and the energy difference between the exciton peak and
the donor-bound biexciton peak is Ex + Ep+x — Ep+xx =
EDixx + Eboy — EDix. Some of these peaks are shown in
Fig. 4. In addition there are expected to be offsets to the peak
positions due to the spin splitting of the conduction bands of
TMDC:s, as described in Sec. I11.

In Sec. VF we report DMC binding energies for quintons
and other large charge-carrier complexes in tungsten and
molybdenum dichalcogenides. In each of these cases the
binding energy is defined to be the energy required to remove
an exciton from the complex; this is the binding energy with
respect to dissociation into the most energetically competitive
products.

D. Contact and exchange interactions between charge carriers

The Mott-Wannier model of a charge-carrier complex is
valid provided the complex extends over many unit cells
of the underlying crystal. However, when charge carriers
are present at the same point in space there is an energy
contribution due to local exchange and correlation effects [25].
Although the excitons in TMDCs are Mott-Wannier-like, their
wave functions only extend over a small number of primitive
unit cells, so that local exchange and correlation effects are
expected to be significant. We may represent this effect within
a Mott-Wannier model by introducing additional pairwise
contact interaction potentials. For example, for a biexciton
the Hamiltonian should include an additional term of the
form

A%8(ree) + A™S(rmn) + AT Y D " 8(ren,),  (32)

i=1 j=I

where A°¢, AT and A®" are constants and rec, Ty, and r,p,, are
the electron-electron separation, the hole-hole separation; and
the separation of electron i and hole j, respectively. Evaluating
A%, AP and A" by ab initio calculations is challenging,
and so we leave them as free parameters to be determined in
experiments or subsequent ab initio calculations. If we eval-
uate the expectation value of this contact interaction then we
find that the first-order perturbative correction to the total en-
ergy can be written as A®"gSh (0) + A% g% (0) + AP ghh (0),
where the electron-electron, hole-hole pair, and electron-hole
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(a) MoSe,
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X
XX" XTIXY XX
AXX 0 XTIXY XX
D*XX DX
A%X (SD)  (SD)
AX D*X
-120 -100 -80 -60 -40 | =20 0o 20 hw - A - Ex
< 20 o [mev]
24’
(b) WSe,
xIxe | xx X
(SD) | (SD) XX XIXT XX
AXX DX
D*XX « A0x
A X D*X (dark)
(=100 | 80 -60 ~401 | -0 0 hw-A-A-Ex
| : - A [meV]
| < 2N -
- 2N -

FIG. 4. Expected photoemission spectra for (a) MoSe, and (b) WSe,, showing lines for the different complexes studied in this work. A
and A’ are the quasiparticle band gap and the spin splitting of the conduction band, respectively. The numerical values of A’ are taken from
density-functional-theory calculations with the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional [3]. E is the total energy of an exciton.
The lines show the frequency relative to the bright exciton peak arising due to the recombination of a single electron-hole pair in each complex;
see Sec. I C. For example, the DX line shows the frequency relative to the exciton peak of the process DX — D° 4 y. The trion and
biexciton peaks labeled “SD” arise from semidark complexes, and are offset by 2A’, as explained in Sec. II A; the exciton peak labeled “dark”
arises from the process described in Sec. II B; the other peaks arise from bright complexes. Donor- and acceptor-bound exciton peaks are shown

with very low intensity due to the marginal stability of these complexes.

PDFs are

trion and biexciton in tungsten-based TMDCs determines the
coupling strength of the dark and bright states as wpq o< g%¢(0)

gxx(r) = (8(r — ree)), (33) and hence determines the recombination rates of the semidark
states [33].
X (1) = (8(r — 1)), (34)

g (r) = <Z > s(r - rel.hj)>, (35)

i=1 j=I1

respectively. We report contact PDF data within the Mott-
Wannier model.

In addition to the role of the contact PDF in evaluating
perturbative corrections due to contact interactions, the PDF
and contact PDF contain a wealth of physical information.
The exciton recombination rate of a charge-carrier complex
is proportional to the electron-hole contact PDF. Furthermore,
the PDF gives a very direct indication of the spatial size and
shape of a charge-carrier complex.

The contact PDF also plays a role in the intervalley
scattering of carriers. As the intervalley scattering involves
a large momentum transfer of the order of the inverse lattice
constant, the interaction is short range and can be modeled by
a contact interaction with both carriers in the same position. In
particular, the electron-electron contact PDF for the semidark

IV. COMPUTATIONAL METHODOLOGY

A. Quantum Monte Carlo modeling of excitonic complexes

Our total-energy and PDF calculations were carried out
using the variational quantum Monte Carlo (VMC) and DMC
approaches [34,35]. The ground-state wave function for a
set of interacting, distinguishable particles is nodeless; hence
the fixed-node DMC algorithm is exact for all the systems
studied in this work with the exception of biexcitons with
indistinguishable holes. We used a numerical representation
of the potential of Eq. (12) that is accurate to at least
eight significant figures. Trial wave functions were optimized
using VMC with variance minimization [36,37] and energy
minimization [38]. The DMC calculations were performed
using time steps in the ratio 1 : 4 with the corresponding target
configuration populations being in the ratio 4 : 1. Afterwards,
the energies were extrapolated linearly to zero time step and
hence, simultaneously, to infinite population. To perform all
our calculations, the CASINO code was used [39].
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QMC methods have previously been used to study 2D
trions with nonlocal screening [19,21] and the Coulomb
interaction [22] and 2D biexcitons with the Coulomb inter-
action (including indirect biexcitons in coupled-quantum-well
heterostructures) [17,18,40,41] and in TMDCs with nonlocal
screening [21,23]. In arecent work some of the present authors
have investigated the binding energies of trions and biexcitons
using DMC for a range of susceptibility parameters r, and
effective masses, and have represented the DMC data using
simple interpolation formulas [25]. It was shown that for the
applicable range of r, values, 2D semiconductors are expected
to show larger trion binding energies than biexciton binding
energies, in contrast to the situation in quasi-2D systems
such as GaAs/InAs quantum wells. Here we extend this work
to include extreme cases and donor/acceptor-bound carrier
complexes.

B. Wave functions for complexes of distinguishable
charge carriers
Our trial wave functions for complexes of distinguishable
charge carriers were of the Jastrow form ¥ = exp[J(R)],
where R is the vector of all the particle coordinates. The

Jastrow exponent J(R) included a pairwise sum of terms of
the form [42].

[c; + IV In(r) + cor]r?
14 c3r?

MCXZD(r) = (36)
for the Keldysh and logarithmic interactions, where r is
interparticle distance, ¢y, ¢; < 0, and ¢3 > 0 are optimizable
parameters, and

/ qiqjm;m;

I'=- 37
2ajpe*r(m; +m;) 37

for distinguishable pairs of particles of charge ¢; and g; and
mass m; and m ;. Different constants c; are used for each type
of particle pair. This form satisfies the analog of the Kato
cusp conditions [43,44]; i.e., it ensures that the local energy
W~ AW is nondivergent at coalescence points, where H is the
Hamiltonian operator.

Where the interaction between the charge carriers was of
Coulomb form, we used pairwise terms of the form

. I'r+cr? (38)
u r)y= ————
ex2D 1+ cor
in the Jastrow exponent, where ¢; <0 and ¢, > 0 are
optimizable parameters, and
200
i L (39)
agpe*(m; +m;)

for distinguishable pairs of particles of mass m; and m; and
charge g; and ¢;. This form satisfies the Kato cusp conditions
[43,44].

Donor ions and other infinitely heavy particles were fixed
point charges in our calculations. In this case u.xop provided a
one-body Jastrow term between the free particles and the fixed
particles that satisfies the Kato cusp conditions. In addition,
cuspless one-body, two-body, and three-body polynomial
terms truncated at finite range were used in our Jastrow factor
[45,46].
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C. Wave functions for biexcitons with indistinguishable holes

For biexcitons with indistinguishable holes we used the trial
wave function

¥ = exp[J R)Jx),(R), (40)

where J is of the form described in Sec. IV B. For indistin-
guishable particles of mass m and charge g interacting via the
logarithmic or Keldysh interactions, Eq. (37) must be replaced
by I'" = —g*m/(8a jne’r,), while for indistinguishable pairs
of particles interacting via the Coulomb interaction, Eq. (39)
must be replaced by I' = ¢*m/(2a ie?). x{, is the x compo-
nent of

iy = Thn + 760 (Fen)Thn + neh(relhl)relhl + Nen (relhz)relhz

— Neh (Fesh; )Tes; — Teh (Feshy )Tesns 41

where ny, and 7., are smoothly truncated polynomials, with
optimizable expansion coefficients, and ry, and re;; are the
hole-hole and electron-hole relative positions, respectively.
Equation (41) is effectively a backflow [47,48] transformation;
W = exp(J)xy, introduces the correct nodal topology for
the state that we want to consider and Eq. (41) maps
the particle coordinates {r} to quasiparticle coordinates {r’}
without changing the nodal topology. In Eq. (41),

hh
Nﬂ

Mn(r) =Y ayr"(r — L)CO(L —r) 42)

n=2
and

eh
NW

Nen(r) = Y byur™(r — L) O(L — 1) (43)

m=0

are smoothly truncated polynomials with optimizable parame-
ters {a,} and {b,}. L is a cutoff length, N;lh and N;h determine
the amount of variational freedom, C = 3 to ensure smooth
behavior at the cutoffs, and ® denotes the Heaviside function.
We require b; = Cby/L to ensure that n does not affect the
Kato cusp conditions, which are enforced by the Jastrow factor.
We optimized the free parameters in our antisymmetric wave
function using energy minimization [38].

For different values of N};h and N ;h in Egs. (42) and (43), we
compare the VMC ground-state energy, variance, and DMC
energy of biexcitons with indistinguishable electrons inter-
acting via the logarithmic interaction in Table II. Analogous
results for biexcitons interacting via the Keldysh interaction at
finite r, are shown in Table III. Our results show that increasing
N,}]lh and N;h slightly decreases the variances; nevertheless,
the VMC and DMC energies are independent of the number
of free parameters when N}Y‘h, N;'h > 2 to within our statistical
error bars. We have used Nj" = N:" =3 in our production
calculations.

Biexcitons with distinguishable electrons and indistin-
guishable holes can trivially be mapped onto biexcitons
with indistinguishable electrons and distinguishable holes by
charge conjugation.
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TABLE II. Effect of changing the number of free parameters in
n [i.e., the values of N" and N" in Egs. (42) and (43)] on the VMC
ground-state energy (Evmc), VMC energy variance, and DMC energy
(Epwmc) for biexcitons with indistinguishable holes interacting via the
logarithmic interaction. The mass ratio is o = 0.1 and the reduced
mass is u = 0.5m, where my, is the bare electron mass. In each case
Fy = 1p.

NIt = Neh Evmc (Eo) Variance (E}) Epmc (Eo)
2 0.7604(3) 0.00920 0.7585(2)
3 0.7602(3) 0.00908 0.7584(2)
4 0.7605(3) 0.00914 0.7579(2)
6 0.7606(3) 0.00927 0.7580(2)

D. Time-step and population-control errors

We chose our DMC time steps such that the root-mean-
square distance diffused by each particle in a single time step
was much less than ry for the logarithmic interaction, much
less than a; for the Coulomb interaction, and much less than
min{rg,ag} for the Keldysh interaction at finite r,. In Fig. 5 we
plot the DMC total energy of a biexciton with distinguishable
particles against time step. The figure confirms that the linear
extrapolation scheme described in Sec. IV A largely eliminates
the effects of time-step bias, provided the time steps used are
sufficiently small. For the logarithmic interaction with o = 1
and r, = ry, the time step should evidently be rather less than
0.047/E).

Figures 6 and 7 show similar time-step tests performed for
anegative trion and a donor-bound biexciton with the Keldysh
interaction. For r, > 0.25a3, one should use time steps of
less than 0.017/RJ to be in the linear time-step bias regime,
while for r, < 0.25a, time steps of less than 0.00257/ R;k are
required.

E. PDF calculations

The PDFs defined in Sec. IIID were evaluated by bin-
ning the interparticle distances sampled in VMC and DMC
calculations. The errors in the VMC and DMC PDFs are
linear in the error in the trial wave function; however, the

TABLE III. Effect of changing the number of free parameters in
n [i.e., the values of N" and N:" in Egs. (42) and (43)] on the VMC
ground-state energy (Eymc), VMC energy variance, and DMC energy
(Epwmc) of biexcitons with indistinguishable holes interacting via the
Keldysh interaction, with an electron-hole mass ratio of o = 0.1.
r, = 0 corresponds to the Coulomb interaction.

ro/ag NI =N Eyyc (R})  Variance (R}?)  Epuc (R})
0 2 —8.608(1) 0.1709 —8.6100(4)
0 3 —8.608(1) 0.1658 —8.6112(4)
0 1 —8.606(1) 0.1718 —8.6108(4)
0 6 —8.608(1) 0.1719 —8.6108(4)
8 2 —0.6304(1) 0.0008 —0.6308(1)
8 3 —0.63020(8) 0.0007 —0.6306(2)
8 4 —0.6301(1) 0.0007 —0.6308(1)
8 6 —0.63024(8) 0.0007 —0.6309(1)
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0.7470
0.7468
0.7466
0.7464

0.7462

DMC biexciton GS energy (E,)

0.7460

0 002 004 006 008 01
Time step (/E)

FIG. 5. DMC ground-state (GS) energy of a biexciton with
distinguishable particles at mass ratio o = 1 against time step,
with the logarithmic interaction between charges. The configuration
population was varied in inverse proportion to the time step. The
reduced mass is u = 0.5mq and r, = ry.

error in the extrapolated estimate (twice the DMC estimate
minus the VMC estimate) is quadratic in the error in the
trial wave function [49]. Our reported PDFs were obtained
by extrapolated estimation.

Contact PDF data have been calculated by extrapolating
electron-hole and electron-electron PDFs to zero separation
for each r, value and mass ratio considered. To perform the
extrapolation we fitted exp[g(r)] to our PDF data at short range
[50], where

gry=ay+ 202 In(r) + ayr* + dyr + - +agr®  (44)
for the Keldysh and logarithmic interactions and
g(i’)=a0+2Fr+a2r2+...+a6r6 (45)

for the Coulomb interaction (r, = 0), where I and I" are
defined in Eqgs. (37) and (39) and a;, a), ..., a; and ay, ay, ...,
ag are fitting parameters. These forms satisfy (the analog of)
the Kimball cusp conditions [51]. The model functions were
fitted to our PDF data at small r, with the data being weighted
by 2mr.

-1.6733

Y)

-1.6734
-1.6735 }
-1.6736
-1.6737

-1.6738 0=10,r=05a

0.00 0.01 0.02 0.03 0.04
Time step (W/R})

DMC trion GS energy (R

FIG. 6. DMC ground-state (GS) energy of a negative trion at
mass ratio o = 1 and r,, = 0.5a against time step, with the Keldysh
interaction between charges. The configuration population was varied
in inverse proportion to the time step.
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-7.69

-7.70

-7.71

DMC donor-bound
biexciton GS energy (R

0=0.3,r,=0.077 aj
0.015

-7.72

0.000 0.005 0.010

Time step (A/R})

FIG. 7. DMC ground-state (GS) energy of a donor-bound biexci-
ton at 0 = 0.3 and r, = 0.0774a; against time step, with the Keldysh
interaction between charges. The configuration population was varied
in inverse proportion to the time step.

F. Sensitivity of binding energy to the form
of screened interaction

We have investigated whether the approximation to the
Keldysh interaction given in Eq. (15), which has been
used in previous QMC studies of excitonic complexes [21],
leads to significant errors. For an exciton with r, = aj/2,
the DMC total energies are Ex = —1.5358899(2)R;‘ and
-1 .4668074(3)R;‘ with the Keldysh interaction [Eq. (12)] and
the approximate Keldysh interaction [Eq. (15)], respectively.
This is a difference of about 4.5%, which is small but non-
negligible. The DMC binding energies of trions with r,, = aj/2
and mass ratioo = 1 using the exact and approximate Keldysh
interactions are 0.1 377(4)R;‘ and 0.1 335(3)R;, respectively, so
the error in the binding energy due to the approximate Keldysh
interaction is about 3%. Since these errors are easily avoidable,
we have used the exact Keldysh interaction in our production
calculations.

V. NUMERICAL RESULTS
A. Excitons

The exciton ground-state energy is presented in Fig. 8. Our
DMC data are in agreement with the results of finite-element

)
=}

*
y

2

-3 « Finite element
DMC
y

80 0.2 0.4 0.6 0.8 1.0
ro !l (r. + ap)

DMC exciton GS energy (R
I
N

FIG. 8. Exciton ground-state (GS) energy evaluated using DMC
and a finite-element method. The plot also shows the approximations
to the ground-state energy obtained by first-order perturbation theory
about the Coulomb limit (green) and by using the logarithmic
approximation to the Keldysh potential (red).
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calculations as implemented in the Mathematica software [52].
In excitonic units, the energy of an exciton is independent of
the effective masses; see Sec. III B. In the Coulomb limit, one
recovers the well-known excitonic energy of —4R’. We can
determine the behavior of the energy near the Coulomb limit
by evaluating the first-order perturbative correction
(Av) 32r.(ag + 4r.)
R: (a4 16r2
128agr2[csch™ (4, /ag) + sinh ™" (47, /a})]
[(a})? + 16r2]3/2

~ 32, /a; + O((r./al)?), (46)

where Av = vkeldysh — Vcoulomb 15 the difference between the
Keldysh potential of Eq. (12) and the Coulomb potential of
Eq. (13), and the expectation value is taken with respect to the
exact ground-state wave function for the Coulomb interaction
W = exp(—2r/ag). The correction is shown in Fig. 8 as a green
line.

We have numerically evaluated the dimensionless constant
Exo in Eq. (26) to be Exg = 0.41057739(7) using DMC and
Exo = 0.41057747491(7) using the finite-element method.
These results confirm the expected accuracy of the DMC
method. The logarithmic-limit behavior from Eq. (26) is
also shown in Fig. 8 (red line) and matches the DMC data
near r, — 00. The difference AEx/E, between the exciton
energies in units of Ep with the Keldysh and logarithmic
interactions at large r, was calculated numerically. Using the
optimized ground-state wave function for the logarithmic in-
teraction, we used VMC to evaluate the first-order perturbative
approximation AEx/Eg X (VKeldysh — Vlogarithmic)- 1he results
are presented in Fig. 9 and show that the leading-order error
in the exciton energy due to the logarithmic interaction goes
as \/ag /7.

We fitted the function

—4 433y +a;y*?
(a-y| s |
Ex _ + Zk=2 ary” +In(1 —y) 47)
R: T+ (1= 1)y(br + boy) ’
with as = —29 +2&xg —a; —a; —az —as —In2, to our

DMC exciton energy data, where y = r,/(aj + r,) and the

0.001

0.010
1/ (rJag)

0.100

FIG. 9. Difference of dimensionless exciton energies with the
Keldysh interaction and the logarithmic approximation to the Keldysh
interaction, calculated using first-order perturbation theory within
VMC. The solid line is a fit of a,/aj/r. to the VMC data, with
a =0.871(2).
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riag

FIG. 10. PDF of an exciton with o = 0.3 and r, = 6.154;. The
contact PDF is extracted by fitting the numerical results to Eq. (44).

remaining {a;} and {b;} are six free fitting parameters. The
fractional error in the fit of Eq. (47) to our DMC data is
everywhere less than 0.5%.

Contact PDFs were extracted as described in Sec. IVE.
An example of a fit to Monte Carlo—sampled PDF data is
shown in Fig. 10, and our contact PDF results are shown in
Fig. 11(a). In all our plots of contact PDFs the statistical error
bars from the Monte Carlo calculation are smaller than the
symbols. Unlike the DMC mixed estimate of the energy, the
extrapolated estimate of the PDF depends on the stochastically
optimized trial wave function and hence in some cases slight
noise in the g(0) data is visible.

In the Supplemental Material [53] we provide a program for
evaluating our fit to the total energy of an exciton [Eq. (47)],
as well as fits to the binding energies of biexcitons, trions,

= (a) o .
=151 \% « g%'(0) | | 9%2(0)
N melmp
s ¥ 0.5
) N - 0
§ 2.0
> 05 & + 50
Dy

0.0 0.2 0.4 0.6 0.8 1.0
r.l(ag + r)

0.08} (b)
ag

= 0.06 00241084125
qT; ° 05v1. x 2
S
o 0.04
* O
S ¢

0.02¢ 2 .

*% . o
pogl— e ™ ve T ®vimdeme

0.0 0.2 04 0.6 0.8 1.0
r./(ag +r.)

FIG. 11. (a) Electron-hole contact PDFs of an exciton (in black)
and a negative trion (in color). (b) Electron-electron contact PDFs
of a negative trion. These data were presented in Ref. [25], and are
shown here for completeness.
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donor-bound excitons, donor-bound trions, and donor-bound
biexcitons. In addition, the program reports fits to contact PDFs
for the different clusters.

B. Biexcitons
1. Binding energies

We compare the stability of biexcitons with distinguishable
and indistinguishable holes in the limit of the Coulomb inter-
action (r, = 0) in Fig. 12(a) and at r,, = 8ag in Fig. 12(b). We
find that biexcitons with indistinguishable holes are unbound
for o 2 0.3, while biexcitons consisting of distinguishable
particles are bound at all mass ratios. The binding energies at
o = 0 are obtained using the Born-Oppenheimer potentials as
a function of heavy-hole separation r plotted in Fig. 13. We
fitted U(r) = a + B/7 + yr + 8r%, where a, B, y, and § are

?>. 1.2F l\ ' ' : — - : T
3 m (@)r,=0 o Indistinguishable holes
- \ * e Distinguishable holes

S 1T

o I

o 0.8F &

=] \
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S 06F & .
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o -]

. 04f O .
3 L

502k 1
=

() 0 1 1 1 1

0 0.2 0.4 s 0.6 0.8 1

;\%006 T T T T

g % o Indistinguishable holes

> 0.05% (b)r. = 84, e Distinguishable holes 4
[ — — Born-Oppenheimer approx.
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« 0.02
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e
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FIG. 12. DMC binding energies of biexcitons with distinguish-
able electrons and distinguishable holes and biexcitons with distin-
guishable electrons and indistinguishable holes against mass ratio o
with (a) the Coulomb interaction (r, = 0), (b) the Keldysh interaction
with r, = 8ag, and (c) the logarithmic interaction [Eq. (14)] between
charge carriers.
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(b) Logarithmic int.
-0.22 .

-0.23F .

-0.24F .
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rir,

FIG. 13. DMC Born-Oppenheimer potential energy of a heavy-
hole biexciton with distinguishable electrons against the hole separa-
tion for (a) the Keldysh interaction with r, = a3, 2ag, 4ag, 6ag;, and
8ag; and (b) the logarithmic interaction between charge carriers. The
zero of the Born-Oppenheimer potential energy in the plot is twice
the isolated exciton energy.

fitting parameters, to our DMC data to find the minimum and
the curvature about the minimum of the Born-Oppenheimer
potential. For the logarithmic interaction we fitted U(r) =
¢ + nexp(—r/d) + k In(r) to our data, where ¢, 7, d, and k
are fitting parameters. The Born-Oppenheimer approximation
in Fig. 12(b) for heavy holes is in agreement with our DMC
calculations at small o. Analogous results obtained with the
logarithmic interaction are shown in Fig. 12(c). For o 2 0.2,
only biexcitons with distinguishable holes are stable. Hence
it is only at extreme mass ratios, where exchange effects
between the heavy particles are negligible, that biexcitons with
indistinguishable particles are stable.

Figure 14 shows DMC binding energies for biexcitons
with distinguishable particles interacting via the Keldysh
interaction as a function of x =o/(1 + o) and rescaled
in-plane susceptibility y = r../(aj + r,). Our results are in
agreement with path-integral Monte Carlo (PIMC) data at
finite r,, as shown in Fig. 15 [20]. However, the PIMC data
obtained by Velizhanin and Saxena have much larger statistical
errors and they quoted a previous DMC result [54] at r, =0
due to the infeasibility of PIMC in this case. The function

E;)(X d-y Zi,j aij[xi/2+(1 —X)i/z]yj
R* 1 b2 + (1 /21y (48)
y +Zi,j ij[xt/= 4+ (1 —x)/=]y
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FIG. 14. (a) DMC binding energies of biexcitons with dis-
tinguishable particles against rescaled susceptibility r./(aj + r.).
(b) DMC binding energies of biexcitons with distinguishable particles
against rescaled mass ratio /(1 + o). (c) DMC binding energies of
biexcitons with distinguishable particles against rescaled suscepti-
bility and rescaled mass ratio. The DMC results for distinguishable
particles were reported in Ref. [25].

containing 17 fitting parameters {a;;} and {b;;} was fitted to
our DMC binding-energy data, giving a fractional error of less
than 1.5% everywhere. This choice of fitting function exhibits
the correct behavior as o — 0, as derived in Appendix B 1,
and is also invariant under charge conjugation (m. <> my).
Equation (48) accurately reproduces the DMC biexciton bind-
ing energies over the whole space of possible susceptibility
and mass-ratio parameters, unlike the simple fitting functions
reported in Ref. [25]. The latter are by construction only valid
in the currently experimentally relevant region and, because of
the relative simplicity of the fitting function, give significantly
larger fractional errors (up to 5%) than Eq. (48). The fitted
binding energy can be evaluated using the program supplied
in the Supplemental Material [53]. Binding-energy results in
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the limit of large r,, where the interaction is of logarithmic
form, are given in Sec. VG.

In Table IV, we compare the DMC binding energies of
biexcitons in monolayer TMDCs with experiment and with
previous theoretical works. Our DMC binding energies are in
good agreement with previous DMC binding energies where
available [21] and also with PIMC calculations [23]. The small
differences between DMC results in the literature must be due
to the use of different effective masses, etc. Unfortunately,
the theoretical biexciton binding energies are up to three
times smaller than those reported in experimental works
[13,15,16,55]. Thereis also a striking, qualitative disagreement
with the experimental works regarding the trion and biexciton
binding energies: the Mott-Wannier model with the Keldysh
interaction predicts that the trion has a larger binding energy
than the biexciton [21,25], while the experimental studies
report that the biexciton peak occurs at lower energies than
the trion peak in photoluminescence spectra (i.e., that the
biexciton has a larger binding energy). The theoretical results
are reported for a freestanding monolayer; any screening by
the substrate and environment would further exacerbate the
disagreement with experiment.

The ground-state wave function of a system of distinguish-
able particles is nodeless, and so DMC provides exact solutions
to Mott-Wannier models of excitonic complexes. Hence the
disagreement with experiment regarding the binding energies
of biexcitons in 2D semiconductors could only arise for one or
more of the following four reasons: (i) the 2D Mott-Wannier
model with the Keldysh interaction between charge carriers
is incorrect or incomplete; (ii) the parameters (band effective
masses and r, values) used in the model are incorrect; (iii) the
exciton that remains after exciton recombination in a biexciton
is not in its ground state [27]; or (iv) the experimental spectra
have been misinterpreted or the peaks have been misclassified.

As explained in Sec. III D, there should be an additional
contact interaction between charge carriers; however, the
Mott-Wannier model with the Keldysh interaction apparently
provides a good description [21,25] of the energies of excitons
and trions, and there is no obvious reason to believe that contact
interactions should be more important in a biexciton than in
a trion or exciton. Moreover, it is unlikely that the contact
interactions could be responsible for the threefold difference

PHYSICAL REVIEW B 96, 075431 (2017)

between the theoretical and experimental biexciton binding
energies.

The second possibility is that the Mott-Wannier model is in
principle correct, but the band effective masses and in-plane
susceptibilities used in the model are incorrect. These are
taken from ab initio calculations, which might not provide
a sufficiently accurate description of the electronic band
structure. However, as shown in Sec. V B 2, the different mass
ratios and in-plane susceptibilities reported in the literature
do not significantly affect the binding energy; in fact the mass
ratios and in-plane susceptibilities would need to be in error by
more than an order of magnitude to explain the difference with
experiment. Finally, if inappropriate model parameters are
responsible for the disagreement with experiment regarding
the biexciton binding energy, it is not clear why the Mott-
Wannier model with the same parameters apparently provides
a good description of excitons and trions.

We believe that the exciton that remains after exciton
recombination in a biexciton is unlikely to be in an excited
state, because the parent biexciton is in its nodeless ground
state, which strongly overlaps with the product of the ground
states of the two daughter excitons.

The misclassification of the experimental results may
offer at least a partial explanation of the disagreement. By
considering the behavior of the photoluminescence emission
intensity, it has been argued that the observed peaks do indeed
correspond to trions and biexcitons [15,16]. However, another
possibility is that they could correspond to charge-carrier
complexes involving donor or acceptor ions. In particular, the
energies required to remove excitons from donor-bound biex-
citons (see Sec. V F) are similar to the experimentally observed
“biexciton” binding energies. If donor-bound biexcitons are
responsible for the experimentally observed “biexciton peak”
then we might expect the intensity of the peak to depend
strongly on the doping of the sample. It is possible that other
large charge-carrier complexes could also contribute to the
spectra.

None of these options offers an entirely satisfactory expla-
nation of the discrepancy. Further experimental and theoretical
modeling work is required in order to understand the excitonic
properties of 2D semiconductors.

2. Sensitivity of binding energies to effective masses and in-plane
dielectric susceptibility

In Table V we compare the DMC binding energies of
biexcitons with distinguishable particles for a variety of
effective masses and in-plane screening lengths obtained by
different first-principles methods. Since a range of masses is
reported in the literature, we have taken the average of the
reported masses that were supposedly obtained using the same
method. The different model parameters in the literature lead
to a spread of about 1 meV in the theoretical binding energies.

The sensitivities of the exciton total energy and the trion
and biexciton binding energies to the model parameters are
reported in Table VI. The energies depend relatively weakly
on the in-plane permittivity r,; the errors arising from the
uncertainty in the effective mass almost certainly dominate
errors arising from the uncertainty in r,. The sensitivity of
the exciton energy to the effective masses is an order of

075431-13



PHYSICAL REVIEW B 96, 075431 (2017)

E. MOSTAANI et al.

9'8C L'ST QLM

[$9] ¥T ‘[+9] 0¢ (1)$'8T 9'6C [S9+9] 0¢ (44 €8T $'6¢C (€£)$'8¢ (©)$°6¢C 9'6C SM

(AISE 9°¢e [€9] st ‘[911 0€ ‘[+1]1 S1-071 ‘[8] 9¢ “[29] ¥€ 9T I'¢e 8°¢¢ (©r¢e (©)0v¢ gee iSM

(€)6°0T 9'CC [19] st (@o'1¢ ST QIO

[o1] 0€¢ (©)8°'LT ¥'yE [09°01] 0€ |14 9'LT 78T (©LLe (©¥'8c S [EINY

(©)9'1¢ 6'7€ l6s] ¢v “[111 (SDO8T “[8ST1] OF 9T 87¢ L'€E (©)0ce (©)8°¢¢ 0°s¢ ISON

“dxg [e2l OWId  (6v) DA “dxg (92 A [6clHH [8TLZl AS €2l OWId  [1zlowa  (6v) 'ba  DANL
(AQw) tM_mN ‘U9 "puIq UOLI) dANISOJ (Adw) 9 K319u0 Jurpurq uoLn aANe3oN

681 €YSH— QLM

861 0T [s1lzcs ($)Loc (©)c oz 00T 0St— 1'19%— LOSM

1€ 9'¢€T [¥1] S+ “[£S1 0L-59 ‘[91] S9 (9)6°¢T (©)¢¢T ¥'€T 00S— 6'TIS— SM

(2ad! PEl L'S8¢— QLON

6L1 ¥'81 [osl oz = (S)¢ 61 ©L L1 67T OLY— € Ehs— ENUA

1T ST [ssl 09-0% ‘[eT] 0L (©)Lce (©)Lee $'€T ors— S9pS— ENUA

[62] HH [8T°LT] AS “dxg [€2] DN [12] OIWa (st) ‘ba [92] A (Lv) ba DANL

(Adw) XX7 £310u0 Surpuiq uooxalg

(AQW) X7 ud 30} "Xq

Juowradxe Y uostredwos ojeordwod Kew yorym ‘sojdures 1oke[-maJ pue y[nq ur Judwaguelre 3uryoels Hg
1dope sopun[[aIIp a3 Jey) AON ‘(6%) Pue (84) "SbF Jo 1y oy AJen[eAd 01 A J[qQEL, Ul P[Oq UI UMOYS * pue ‘Yus ‘*us Jo san[ea 9y} asn am x[duwod yoed 10, "SPOYIdW (A ) [BUONIBLIEA PUE
‘(AS) TeUOnELIBA O1ISBYO0)S ‘(HH) sotuowirey [eouaydsiodAy ‘OINId ‘DINA £q paureiqo ainjeral| Ay ul pajiodar sanfea yaim s)nsal ano aredwod op “(02 = 3) wnnoea ut papuadsns
SOAINLL TeAejouow Juarelip 10J soponred o[qeysm3unsip yPim (X Pue _¥X) suoln pue (XX) SUOJIOXAIq JO SaI3Ioud Juipuiq pue (X) SUOIOXD JO $AI310ud [210], ‘Al A19V.L

075431-14



DIFFUSION QUANTUM MONTE CARLO STUDY OF ... PHYSICAL REVIEW B 96, 075431 (2017)

TABLE V. Comparison of electron and hole effective masses and T ]
r. values obtained by different ab initio methods in the literature
[many-body G W calculations, and density functional theory either in _ Z:ﬁ: gi 8:2 i
the local density approximation (LDA) or using the Perdew-Burke- — 2:2’ g 2(1)'4
Ernzerhof (PBE) or Heyd-Scuseria-Ernzerhof (HSE06) exchange- ——eho=1 i
correlation functionals]. Where multiple results are available using a —-hho=1
given method, we have taken the average of the published results. The i
reported r, values and effective masses are not necessarily obtained
using the same method. We assume that the materials are suspended i
in vacuum, i.e., that € = €. The effective masses are reported in units
of the bare electron mass m,. The binding energies EYy are calculated .
using Eq. (48). The effective masses and r, values shown in bold are 6 8

used to evaluate the binding energies reported in Tables IV and VII.

FIG. 16. PDF gxx(r) of a biexciton with distinguishable particles
interacting via the logarithmic interaction plotted against interparticle

Effective masses

TMDC Method me/mgy my/mo re (A) E%y (meV) separation at two different electron-hole mass ratios o.
GW [6] 0.35 0.428 38.62 [6] 23.5
MoS LDiO[‘;V%E ]70] 8285 82?6 ;ggé 511] zgg reported in Table V and/or the r, value would have to be an
(ON)) ,00— . . . . . . . . .
order of magnitude smaller. While there is still appreciable
PBEIS[;ﬁg’[?S_]M] 8:;0 8215 ;ggg {2]3 I 2231 61 uncertainty in the ab initio effective mass and r, values, it
‘ ‘ ’ ’ seems very unlikely that both density functional theory and
GW [76] 0.38 044 51.71[20] 18.0 many-body GW calculations would be in error by more than
MoSe,  GoWolSI 070 055 5171(26] 18.7 an order of magnitude.
LDA [3,67,68] 0.59 0.686 39.79 [71] 23.7
PBE [3,23,72,77] 0.546 0.643 53.16 [23] 18.1 5 PDF
GoW, [5] 0.69 0.66 73.61[23] 13.4 ) s
MoTe, LDA [68] 0.64 078 73.61[23] 15.5 InFig. 16, we show the PDFs of biexcitons with distinguish-
PBE [77] 0.575 0.702 73.61 [23] 134 able particles interacting via the logarithmic interaction for
GW [76] 027 032 37.89[26] 23.4 two different mass ratios, 0 = 0.4 and o = 1. The long-range
GoW, [5] 044 045 37.89[26] 241 biexciton wave function is relatively independent of the mass
WS, LDA [3.67,68] 0312 0422 32.42[71] 277 ratio. However, at short range the electron-hole PDF shows a
PBE [3.23,72,77] 0.328 0.402 40.17 [23] 2.6 peak near the separ'ation that c.orresponds to the minimum of
GW [76] 029 034 45.11[26] 20.0 the Born-Oppenheimer potential-energy surface, which gets
GoWo [51] 0'53 0'52 45'11 [26] 20 '8 more pronounced at extreme mass ratios. As expected, the
WSe> AO [3067 68] 0'3 p 0' 476 3 4'72 [71] M 6. : physical size of the biexciton is a low multiple of r.
PBE [3 ’23 ’72] 0‘3 1 0' 428 47' 57 23] 19'4 Figure 17 presents the electron-hole and electron-electron

contact (r = 0) PDFs for a biexciton. Notice that ggfy &~ 2g$.
WTe, LDA [3] 0.325 0.460 49.56([71,78]  18.9 Fits to the contact PDFs can be evaluated using the program
PBE [79] 0307 051 49.56([71.78] 193 supplied as Supplemental Material [53].

. S . . C. Trions
magnitude larger than the sensitivity of the trion binding

energy, which is in turn an order of magnitude larger than the
sensitivity of the biexciton binding energy. To account for the
3040 meV disagreement with experiment over the biexciton b I,
binding energy the effective masses would have to be more Ey- -y Zi,.i aij(1 —x)""y (49)

The binding energies of negative trions are presented in
Fig. 18. We have fitted the function

than an order of magnitude larger than the ab initio values Ry 1+ Zi’ j bij(1 —x)i2yi

TABLE VI. Sensitivity of binding energies to the three parameters that characterize the Mott-Wannier-Keldysh model of excitonic complexes
in 2D semiconductors suspended in vacuum. The derivatives are evaluated using the effective mass and in-plane permittivity parameters reported
in bold for different TMDCs in Table V. m is the bare electron mass.

f q P apb aFb apb
9Ex 9Ex 9EX IERy IEYy IERy Y- Iy OBy
Ime dmy ry dme dmy ry dme dmy Ay

TMDC (meV/myg) (meV/my) (meV//D\) (meV/my) (meV/my) (meV/A) (meV/my) (meV/myg) (meV/A)

MoS, —240 —160 10 1.2 5.4 —0.56 10 9.2 —0.72
MoSe, -210 —160 9.9 1.4 4.3 —-0.53 8.8 8.7 —-0.70
WS, -310 —-220 9.5 2.1 6.7 —0.56 13 12 —0.70
WSe, —240 —180 73 1.6 5.1 —0.41 10 9.6 —0.52
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FIG. 17. Electron-hole contact PDF of a biexciton with distin-
guishable particles against rescaled susceptibility. The black line
indicates twice the exciton electron-hole contact PDFE. The inset
shows the electron-electron contact PDF. These data were presented
in Ref. [25], and are shown here for completeness.

where x =o0/(1 +0), y =r./(r« +aj), and the {g;;} and
{b;;} are fitting parameters, to the DMC trion binding energies.
Equation (49) satisfies the limiting behavior described in
Appendix B 2, has 31 free fitting parameters, and the fractional
error in the fit to our DMC data is everywhere less than 1%.
Positive trion binding energies can be obtained by charge
conjugating the corresponding negative trion. The program
included in the Supplemental Material [53] can be used to
evaluate Eq. (49). The resulting trion binding energies for
various TMDCs are shown in Table IV. It can be seen
that, in contrast to the biexciton binding energies, the trion
binding energies are in excellent agreement with the available
experimental results. As shown in Table VI, trion binding
energies are significantly more sensitive to the effective mass
values than biexciton binding energies; nevertheless, the ab
initio effective masses would need to be in error by an
implausibly large amount to change the trion binding energies
by more than a few meV. Binding-energy results in the limit
of large r,, where the interaction is of logarithmic form, are
given in Sec. V G.

Figures 11(a) and 11(b) present the electron-hole and
electron-electron contact PDFs of trions. The fitting functions
can be found in the program supplied as Supplemental
Material [53].

D. Donor/acceptor-bound excitons

We present the binding energies of donor-bound excitons
in Fig. 19. For o 2 1, the binding energy is close to zero. In
this region, the calculations were especially difficult, since the
complex tends to unbind very easily. Therefore, during the
wave function optimization, the cutoff lengths for the Jastrow
factor were fixed at small values, to force the complex to be
bound. In the limit 0 — oo, the complex is expected to be
unbound (see Appendix B 3), which is consistent with our
results. Indeed, over a broad range of large electron-hole mass
ratios and large r, values, the DMC binding energy of the
donor-bound exciton is either zero or extremely small, such
that the binding energy cannot easily be resolved in DMC
calculations. The following 50-parameter fitting formula has a
fractional error that is mostly less than 2% in fits to our DMC

PHYSICAL REVIEW B 96, 075431 (2017)
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FIG. 18. (a) DMC binding energies of trions with distinguishable
particles against rescaled susceptibility r./(a; + r). (b) DMC bind-
ing energies of trions with distinguishable particles against rescaled
mass ratio o/(1 4+ o). (c) DMC binding energies of trions with
distinguishable particles against rescaled susceptibility and rescaled
mass ratio. These data were presented in Ref. [25], and are shown
here for completeness.

data:

4 2
ESy =1 =01 = )| > ayx'y’ — <Zbky"> Vx
k=0

ij
(50)

In this expression x = o /(1 + o) and y = r../(aj + r.), while
the {a;;} are fitting parameters. Our fitting function can be
evaluated using the program in the Supplemental Material
[53]. We summarize our theoretical predictions for the binding
energies of donor/acceptor-bound excitons in various TMDCs
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FIG. 19. (a) DMC binding energies of donor-bound excitons with
against rescaled susceptibility r./(aj + r.). (b) DMC binding ener-
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FIG. 20. Electron-hole contact PDF of a donor-bound exciton.
The solid lines were obtained using the fitting function reported in
the Supplemental Material [53].

in Table VII. Binding-energies in the limit of large r,,
where the interaction is of logarithmic form, are given in
Sec. VG.

We have also calculated the electron-hole contact PDFs of
donor-bound excitons, which are presented in Fig. 20. Our
results confirm that the contact PDFs decrease to zero as 0 —
o0, as expected, because the light hole becomes unbound in
this limit. Contact PDFs can be evaluated using the program
supplied as Supplemental Material [53].

E. Donor/acceptor-bound trions

Figure 21 presents the binding energies of donor-bound
trions. We have devised the following 30-parameter fitting
formula:

Eloy (L= aix'y) +bo(1 = »)v*5 — biJ/x]
R;’; 1 +Zz} c,»jx’yl

)

(51
which includes the correct divergence as o — oo and appro-
priate square-root behavior for the heavy-hole limit 0 — 0
(see Appendix B4). The {a;;}, {b;}, and {c;;} are fitting
parameters. The fractional error in the fit to our DMC data
is less than 3%. The program in our Supplemental Material
[53] can be used to evaluate Eq. (51). Binding-energy results

TABLE VIIL. As Table IV (using the r, values and effective masses shown in bold in Table V), but for donor atoms (D), acceptor atoms
(A”), donor-bound excitons (D*X), acceptor-bound excitons (A~X), donor-bound trions (D°X), acceptor-bound trions (A°X), donor-bound
biexcitons (DT XX), and acceptor-bound biexcitons (A~ XX). The binding-energy results are our theoretical predictions using Egs. (50), (51),
and (52), while the energies of donor and acceptor atoms are calculated using Eq. (47) with infinite hole and electron masses, respectively.
Note that the binding energy is defined with respect to dissociation into the most energetically favorable products, which do not always include

an exciton; see the definitions in Sec. III C.

Energy (meV) Binding energy (meV)
T™MDC Epo Epo EB+X E/b\—x Elgox Eiﬂx EB"’XX EZ—XX
MoS, —638.5 —670.1 7.2 2.7 324 31.7 51.8 48.0
MoSe, —636.8 —659.3 6.5 3.2 31.5 31.1 50.8 48.1
MoTe, —447.8 —443.9 3.9 4.6 17.9 18.0 324 329
WS, —606.8 —633.6 6.2 2.7 32.0 31.5 48.6 45.3
WSe, —542.3 —563.6 5.5 2.6 27.5 27.1 434 40.8
WTe, —519.0 —562.1 79 1.6 26.1 25.3 44.0 38.8
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FIG. 21. (a) DMC binding energies of donor-bound trions with
distinguishable particles against rescaled susceptibility r./(ag + r.).
(b) DMC binding energies of donor-bound trions with distinguishable
particles against rescaled mass ratio o/(1 + o). (c) DMC binding
energies of donor-bound trions with distinguishable particles against
rescaled susceptibility and rescaled mass ratio.

in the limit of large r,, where the interaction is of logarithmic
form, are given in Sec. V G.

Table VII reports theoretical binding energies for donor-
bound trions with biexciton energies for several real materials.
The binding energy of a donor-bound trion is slightly larger
than the binding energy of a free biexciton. This leads us
to expect two lines close together in the absorption/emission
spectra of TMDCs, one corresponding to biexcitons, and
another at slightly larger energy corresponding to donor-bound
trions.

Contact PDFs for donor-bound trions have been extracted
from our QMC data and are presented in Fig. 22 and in the
Supplemental Material [53].
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FIG. 22. Electron-hole contact PDFs of a donor-bound trion
complex. The inset shows electron-electron contact PDFs. The
solid lines were obtained using the fitting function reported in the
Supplemental Material [53].

F. Donor/acceptor-bound biexcitons

Donor-bound biexciton binding energies have also been
calculated and are presented in Fig. 23. A 38-parameter fitting
formula similar to that of a donor-bound trion [Eq. (51)] was
used:

E]%*’XX _ a- y)[Z[’j aijxiyf — b0ﬁ+ b]x3/2]

R; - L+ cjxiyl

where x = o/(1 +0) and y = r,/(aj + r.), while the {a;;},
{b;}, and {c;;} are fitting parameters. This gives a fractional
error of less than 3% everywhere when fitted to our DMC data.
Equation (52) can be evaluated using the program supplied as
Supplemental Material [53]. We summarize our theoretical
predictions for the binding energies of donor/acceptor-bound
biexcitons in various TMDCs in Table VII. Binding-energy
results in the limit of large r,, where the interaction is of
logarithmic form, are given in Sec. V G.

The behavior of a donor-bound biexciton in the limit of
heavy electrons is discussed in Appendix B 5. In the limit
of heavy holes (¢ — 0), this complex consists of three fixed
positive particles and two light electrons and thus the question
arises of how the three fixed, positive charges are positioned
with respect to each other. The most natural position that three
positive particles would assume is an equilateral triangle. To
check whether this assumption is correct we first determined
how the Born-Oppenheimer potential energy changes if we
distribute the three positive charges in the corners of equilateral
triangle and then vary the triangle side. Figure 24 shows the
case of r,./a; = 1 as an example. After finding the side length
that minimizes the Born-Oppenheimer potential energy, we
changed the position of one of the positive particles (fixing
the remaining two) and again observed the effect on the
Born-Oppenheimer potential energy. Figure 25 presents the
results, which clearly show that the equilateral triangle is
a local minimum of the Born-Oppenheimer potential-energy
surface.

Closely related to donor-bound biexcitons are five-catrier
complexes known as charged biexcitons or guintons (XX, i.e.,
e~e"e~h™h™). In molybdenum and tungsten dichalcogenides
these consist of two distinguishable holes with opposite spin
and valley indices, and three distinguishable electrons that

. (52)
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FIG. 23. (a) DMC binding energies of donor-bound biexcitons
with distinguishable particles against rescaled susceptibility r, /(ag +
r,). (b) DMC binding energies of donor-bound biexcitons with distin-
guishable particles against rescaled mass ratio /(1 + o). (¢) DMC
binding energies of donor-bound biexcitons with distinguishable
particles against rescaled susceptibility and rescaled mass ratio.

differ in either their spin or their valley indices; see Fig. 1(a).
The binding energy of a quinton is defined as the energy
required to splititinto a free exciton and a free trion [80]. Other
possible large complexes are donor-bound double-negative
excitons (D7X, i.e.,, DTe"e~e"h™), donor-bound quintons
(D°XX, i.e., DTe~e~e~h*h™), and even donor-bound double-
negative biexcitons (D~XX, ie., De"e~e"e h*h'). For
molybdenum and tungsten dichalcogenides there are no further
possibilities; we have exhausted the possible neutral or singly
charged complexes that can be constructed from up to four
distinguishable electrons, up to two distinguishable holes, and
zero or one donor ions. Any larger charge-carrier complexes
in molybdenum or tungsten dichalcogenides inevitably either
include indistinguishable particles or involve the much larger
energies required to excite holes in the lower spin-split
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FIG. 24. Born-Oppenheimer potential energy of a complex of
three positive, fixed ions and two electrons, with the positive ions
placed at the corners of an equilateral triangle. Example for r, /ag; = 1.

valence bands. In Table VIII we present our DMC binding-
energy results for quintons and the other large complexes.
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FIG. 25. (a) Born-Oppenheimer potential energy of a complex of
three positive, fixed ions and two electrons. We fix two of the ions
and change the position of the third one. Example for r./a; = 1.
(b) Vertex of the triangle of fixed, positive charges in greater detail.
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Donor-bound double-negative biexcitons appear to be unstable
to dissociation into free excitons plus donor-bound double-
negative excitons, and hence are not included in Table VIII.
As with donor-bound biexcitons, the energies required to
remove excitons from the larger complexes such as quintons
are relatively close to the experimentally observed biexciton
binding energies.

Figure 26 presents the contact PDFs of a donor-bound
biexciton, which are also reported in the Supplemental
Material [53].

G. Complexes with the logarithmic interaction

‘We have also studied complexes of distinguishable particles
interacting with the purely logarithmic form of Eq. (14). The
binding energies are presented in Fig. 27. The lines shown
in Fig. 27 were obtained using Egs. (47), (48), (49), (50),
(51), and (52). To convert from excitonic units to logarithmic
units we multiply the fitting function by R7/Eo = r./ (2ag) =

2.5 K(a)
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FIG. 26. (a) Electron-hole contact PDFs of a donor-bound biex-
citon. For comparison, the black line indicates twice the exciton
contact PDF. (b) Electron-electron and (c) hole-hole contact PDFs
of a donor-bound biexciton. The solid lines were obtained using the
fitting function reported in the Supplemental Material [53].
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TABLE VIII. Binding energies of larger charge-carrier com-
plexes in different TMDCs. Binding energies are presented for
quintons (XX™), which dissociate into excitons (X) and negative
trions (X7); donor-bound double-negative excitons (D~X), which
dissociate into excitons (X) and negative donor ions (D7); and
donor-bound quintons (D°XX), which dissociate into excitons (X)
and donor-bound trions (D°X). The binding energies were evaluated
using the effective mass and in-plane permittivity parameters reported
in bold in Table V. The fitting functions of Egs. (49) and (51) were
used to evaluate the energies of negative donor ions and donor-bound
trions.

Binding energy (meV)

TMDC XX~ DX DYXX
MoS, 58.6(6) 84.4(4) 61.6(6)
MoSe, 57.04) 57.9(2) 56.909)
MoTe, 33.8(3)

WS, 57.4(3) 59.2(4) 58.2(6)
WSe, 52.5(7) 51.3(4) 51(1)
WTe, 47.5(3)

y/(2 — 2y) and take the limit that r, — oo, i.e., that y — 1.
For complexes that have been studied previously, our results
are in good agreement with earlier exact calculations [19].

VI. CONCLUSIONS

In summary, we have discussed the different types of
biexcitons and trions that can be observed in molybdenum
and tungsten dichalcogenides. Furthermore, we have presented
statistically exact DMC binding-energy data for biexcitons, tri-
ons, donor/acceptor-bound trions, and donor/acceptor-bound
biexcitons in 2D semiconductors, including an analysis of
extreme mass ratios. We have shown that biexcitons with
indistinguishable charge carriers are unstable at experimen-
tally relevant electron-hole mass ratios. Our calculations
have used the effective interaction between charge carriers

0.35¢ XX v DX  D*XX |]

o X~ D*X

o
[N
=}

o
-
[$)]

o
-
o

Binding energy of complexes
with logarithmic interaction (Eg)

°
o
)

0'08.0 0.2 0.4 0.6 0.8 1.0
gl/(1+0)

FIG. 27. DMC binding energies of negative trions (X™), biexci-
tons (XX), donor-bound excitons (D*X), donor-bound trions (D°X),
and donor-bound biexcitons (DTXX). Particles in the complexes
interact via the logarithmic interaction. The X~ data were presented
in Ref. [19], and are shown here for completeness.
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TABLE IX. Character table for the irreps of the extended point group D},. The superscript (£) denotes the transformation under the o,
operation and ' denotes representations with nontrivial transformation under translation.

Dy, E 21 2C; 21Cs 212C; 90, o 210, 285 2185 21285 9:C}
AF 1 1 1 1 1 1 1 1 1 1 1 1
AF 1 1 1 1 1 ~1 1 1 1 1 1 -1
AT 1 1 1 1 1 ~1 —1 -1 -1 —1 —1 1
Ay 1 1 1 1 1 1 —1 —1 —1 —1 —1 —1
E* 2 2 —1 —1 —1 0 2 2 —1 -1 -1 0
E- 2 2 —1 —1 —1 0 -2 -2 1 1 1 0
E 2 —1 —1 2 —1 0 2 —1 —1 2 -1 0
El 2 —1 —1 2 —1 0 -2 1 1 -2 1 0
E} 2 —1 2 —1 —1 0 2 —1 2 -1 -1 0
ES 2 -1 2 -1 -1 0 -2 1 -2 1 1 0
ES 2 -1 -1 -1 2 0 2 -1 -1 -1 2 0
ES 2 -1 -1 -1 2 0 -2 1 1 1 -2 0

arising from screening effects in such materials. We have
also presented contact PDF data that allow the investigation
of additional contact interaction energies between charge
carriers in 2D semiconductors within first-order perturbation
theory. Our work provides a complete reference for the
interpretation of spectral lines in photoabsorption and pho-
toluminescence experiments on monolayer TMDCs in terms
of a model of charge carriers moving within the effective mass
approximation.

A broad range of theoretical works on 2D biexciton
binding energies show excellent quantitative agreement with
each other, but an enormous, threefold disagreement with
experiment. By contrast, for trions there is good agreement
between theory and experiment. We have considered and
discounted various possible deficiencies in the theoretical
models of charge-carrier complexes. We believe that the most
likely explanation for the disagreement with experiment is a
misinterpretation or misclassification of experimental optical
spectra. In particular, we note that the energies required to
remove excitons from donor-bound biexcitons are similar to
the binding energies of experimentally observed biexcitons,
suggesting that larger charge-carrier complexes could be
responsible for the observed peak ascribed to biexcitons.

ACKNOWLEDGMENTS

We acknowledge support from the European Research
Council synergy grant Hetero2D, the United Kingdom’s
Engineering and Physical Sciences Research Council (EP-
SRC), and the European Graphene Flagship project. M.S. was
funded by the EPSRC doctoral training centre “NoWNANO”
(Grant No. EP/G03737X/1) and the EPSRC standard grant
“Non-perturbative and stochastic approaches to many-body
localization” (Grant No. EP/P010180/1), and R.J.H. was
funded by the EPSRC doctoral training centre “Graphene
NOWNANO” (Grant No. EP/L01548X/1). Computer re-
sources were provided by Lancaster University’s High-End
Computing Cluster. This work made use of the facilities
of N8 HPC provided and funded by the N8 consortium
and EPSRC (Grant No. EP/K000225/1). R.M. is grateful
for financial support from MEXT-KAKENHI Grant No.

17H05478, support by FLAGSHIP2020, MEXT for computa-
tional resources, and Projects No. hp170269 and No. hp170220
at the K-computer. We acknowledge useful discussions with
I. Aleiner, A. Tartakovski, M. Potemski, and T. Heinz. All
relevant data present in this publication can be accessed at
http://dx.doi.org/10.17635/lancaster/researchdata/164.

APPENDIX A: CHARACTER AND PRODUCT TABLES FOR
THE D}, SYMMETRY GROUP

Character and product tables for the D}, symmetry group
of TMDCs are given in Tables IX and X.

APPENDIX B: MOLECULAR ANALOGIES AND
BEHAVIOR OF BINDING ENERGIES AT EXTREME
MASS RATIOS

1. Biexcitons

In the limit that the hole mass is large, a biexciton resembles
a 2D H, molecule, and we may use the Born-Oppenheimer
approximation [22]. The leading-order biexciton total energy
is given by the minimum of the Born-Oppenheimer potential
energy U (r), where r is the exciton-exciton separation, plus the
harmonic zero-point energy of the exciton-exciton vibrations.

TABLE X. Product table of the extended point group D%,. The
relevant classification of the irreps according to C; = {/,0,}, denoted
by the superscript & in Table IX, is included for a given product by
using + ® + =+, + ® — = —, and — ® — = + and noting that all
irreps in a given direct sum have the same C; classification.

® Al A, E E| E, E}

AL A A, E E| E, E}

Ay Ay A E E| E, E}
EEEA®AGE E,®E E| & E} E| @ E}
E|E|E, E,®E, A®A®E, E&E, E @ E}
E,E}E, E|®E, E®E, A ®AGE, EQE,
E,E;E, E|®E, E®E) EQE, A ®AQE]
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Higher-order corrections to the energy arise from vibrational
anharmonicity.

Consider a biexciton in which the charge carriers inter-
act via the Keldysh interaction. Let U(r/ay) be the Born-
Oppenheimer potential energy in Rydberg units for the
case that the electron mass m, is finite but the hole mass
my 1s infinite. Then, at finite electron and hole masses,
the Born-Oppenheimer potential is U (r) = U(r/ap) Ry where
Ry = mee*/[2(4me)*h*] = (me/w)R; is the Rydberg and
ag = 4meh?/(mee®) = (1/me)a; is the Bohr radius. Note that
U(r/ap) does not depend on the electron or hole mass.

Near the minimum of the potential ry,;, we may write

1
U(r) ~ Upin + 5U;,:m(r — Fmin)®
1lmy+m
= Unin + 5 h S @ —rw)?. (B

where (m. + my)/2 is the reduced mass of the two exci-
tons, Unin = UninRy is the minimum of potential, =
4

" Ry/ad is the second derivative of the potential at the
minimum, and

o= 2Uin — 22Ryur,r/11n ' (B2)
my + me ay(my + me)
The resulting ground-state energy in the harmonic approx-
imation is

E ~ Upin + fiw/2

b
my ¥

"
~ [umm + um—’"} R? (B3)
where we have used my >> m. in the last step. This suggests
that a suitable fitting function for the binding energy of a
biexciton with small o = m./my is a polynomial in powers
of /0. Similar conclusions hold for the case where the
interaction between the charge carriers is logarithmic.

In the limit of heavy holes, the total energies of biexcitons
with distinguishable and indistinguishable holes are identical,
because exchange effects become negligible as the heavy holes
localize. Hence a biexciton with indistinguishable holes must
be bound when the hole mass is sufficiently large. Likewise,
a biexciton with indistinguishable electrons has the same total
energy as a biexciton with distinguishable electrons in the limit
that the electron mass is large.

2. Negative trions

In the limit of heavy holes (o0 — 0), a negative trion
resembles a 2D H™ ion. The leading-order correction to the
energy of an infinite-hole-mass negative trion is therefore
due to the reduced-mass and mass-polarization perturbative
corrections encountered in atomic physics, each of which gives
a contribution to the energy that is linear in the electron-hole
mass ratio o.

In the limit of heavy electrons (o — ©0), a negative trion
resembles a charge-conjugated 2D H;’ ion, and hence one
can use the Born-Oppenheimer and harmonic approximations,
as was done in Appendix B 1. The binding energy near the
extreme mass limit varies as the square root of the mass ratioo .

PHYSICAL REVIEW B 96, 075431 (2017)

3. Donor-bound excitons

A donor-bound exciton in the limit of heavy holes is a
charge conjugate of a negative trion with heavy electrons, and
therefore will have a binding energy that varies as the square
root of the mass ratio o.

In a donor-bound exciton with heavy electrons, the positive
donor ion and the heavy electron overlap, so the light hole is
unbound. Therefore the binding energy in this limit is zero.

4. Donor-bound trions

The Born-Oppenheimer potential energy curve of a donor-
bound trion with a heavy hole is the same as that of a biexciton,
but this time the reduced mass is simply equal to the exciton
mass. The binding energy varies as the square root of the mass
ratio o.

Now consider a donor-bound trion with two heavy electrons
and a light hole. If the hole is very much lighter than the
electrons then the hole will be extremely delocalized and
will see the positive donor ion and two electrons (D7) as a
fixed, negative point charge; the system therefore resembles
an acceptor atom in which the hole is bound to a fixed,
negative point charge. Hence Epox & Ep- + Eao in this limit,
where E 5o is the energy of an acceptor atom. In addition, if
the electron mass is very much larger than the hole mass,
the exciton ground-state energy is Ex = Eao. The binding
energy of a donor-bound trion in the limit that the hole is
much lighter than the electron mass is therefore EBOX = Epo +
Ex — Epox = Epo — Ep-, which is the electron affinity of a
donor atom. Note that the electron affinity of a donor atom is
equal to the binding energy of a negative trion in the limit of
large hole mass.

The exciton Rydberg goes to zero in the limit that the hole
mass goes to zero; hence the binding energy of a donor-bound
trion in excitonic units goes to infinity as the hole-to-electron
mass ratio goes to zero (0 — 00).

5. Donor-bound biexcitons

A donor-bound biexciton with two heavy holes resembles
a trihydrogen cation (H3 ). This molecular ion is an important
component of the interstellar medium [81], and it is known that
the protons in Hi form an equilateral triangle. In Sec. VF we
verify that 2D donor-bound biexcitons with heavy holes also
adopt an equilateral triangular structure, and we calculate the
bond length by minimizing the Born-Oppenheimer potential
energy.

Consider a donor-bound biexciton with two heavy electrons
and two light holes. The binding energy of a donor-bound
biexciton in the limit that the holes (hf{ght) are much lighter

than the electrons (e};avy) is

b _ _ _ _
ED+XX - EDJrehez\vyeheavyhlJirghl ED+eheavyeheavyhﬁgmhrargm
X Epo — Ep+, (B4)

which is the hole affinity of an acceptor atom (in the limit of
large electron mass, DTe~e™ acts like a fixed negative point
charge). Note that the hole affinity of an acceptor atom is equal
to the binding energy of a positive trion in the limit of large
electron mass.
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