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Abstract
Yarn-like carbon nanotube (CNT) fibres are a hierarchically-structured material with a variety of
promising applications such as high performance composites, sensors and actuators, smart
textiles, and energy storage and transmission. However, in order to fully realize these
possibilities, a more detailed understanding of their interactions with the environment is required.
In this work, we describe a simplified representation of the hierarchical structure of the fibres
from which several mathematical models are constructed to explain electro-structural
interactions of fibres with organic liquids. A balance between the elastic and surface energies of
the CNT bundle network in different media allows the determination of the maximum lengths
that open junctions can sustain before collapsing to minimize the surface energy. This
characteristic length correlates well with the increase of fibre resistance upon immersion in
organic liquids. We also study the effect of charge accumulation in open interbundle junctions
and derive expressions to describe experimental data on the non-ohmic electrical behaviour of
fibres immersed in polar liquids. Our analyses suggest that the non-ohmic behaviour is caused by
progressively shorter junctions collapsing as the voltage is increased. Since our models are not
based on any property unique to carbon nanotubes, they should also be useful to describe other
hierarchical structures.

Keywords: carbon nanotube fibres, carbon nanotubes, electrical conductivity, organic liquids,
non-ohmic effect, electro-structural phenomena, mathematical model

1. Introduction

Understanding the interactions between carbon nanotube
(CNT) fibres [1–4] and their surrounding environment is not
only interesting from a scientific standpoint but could also
lead to the development of the next generation of energy
transmission and storage materials [5–7], high-performance
multifunctional composites [8–12], and sensors and actuators
[12–16]. Those fibres, directly-spun from a chemical vapour
deposition (CVD) reactor [3, 17], or spun from solid arrays of

CNTs [4, 18], have highly porous yarn-like structures with
accessible specific surface areas ranging from 70 to
200 m2 g−1 [8, 17, 19]. These relatively high values of por-
osity mean that properties such as the electrical conductivity
and mechanical strength of the fibres are highly dependent on
the physical and chemical interactions with their environment.

In previous work [16, 19], we discussed the interactions
between direct-spun CNT fibres and several organic liquids.
We found that, on immersion, the liquids (i.e. acetone,
cyclohexane, cyclohexanone, ethanol, methanol, N-methyl-2-
pyrrolidone (NMP), and toluene) infiltrate the fibres, readily
filling interbundle pores; however, no evidence of intercala-
tion of liquid molecules inside the bundles was found. The
CNT fibres swelled slightly and became less electrically
conductive while immersed, but recovered their initial
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structure and properties when dried. This behaviour was
explained qualitatively by reasoning that the energetic cost of
generating more CNT-bundle/immersion-medium interface
(quantified by the bundle/medium surface energy, b m/γ ) is
always lower for the liquids tested than for CNT-bundle/air
interface. This means that junctions, formed by bundles bent
around obstacles to minimize the total surface energy, may no
longer be energetically stable and will spring apart to release
the stored elastic energy, resulting in a less interconnected and
more electrically resistive CNT network [19]. We also found
that if the infiltrating liquids are polar (i.e. acetone, ethanol,
methanol, cyclohexanone, cyclohexanol, NMP, and epoxy
resin), then the immersed fibres exhibit a non-ohmic effect in
which the electrical resistance of the fibre is modulated by an
applied electric field. The resistance change is not instanta-
neous and its rate depends (among other factors) on the
viscosity of the immersion medium. We attributed this effect
to the accumulation of charge at capacitive interbundle
junctions: as the electric field is increased, charge accumu-
lates in open junctions and electrostatic forces bring the
bundles closer together, partially reversing the effect of liquid
infiltration and thus improving the electrical conductivity of
the fibres. The absence of the non-ohmic effect in air and
nonpolar liquids (i.e. carbon tetrachloride, cyclohexane, and
toluene) was attributed to their smaller dielectric constants, rε ,
resulting in a tenfold reduction of the strength of electrostatic
forces [16].

In this paper, we build upon the qualitative models in our
previous work and develop them into simple, physically
motivated, mathematical models. We begin by finding
expressions for the balance of the elastic and surface energies
of a CNT fibre immersed in a medium of particular b m/γ , and
apply those to estimate the maximum stable length, Lmax0, of
open bundle junctions in the absence of electric fields. Having
found the dimensions of open bundle junctions, we model the
effects of electric fields on them, arriving at a way to estimate
the stable gap distance, deq, between bundles as a function of
applied voltage. We then use our knowledge of deq and the
hierarchical structure of our fibres to predict the functional
relationship between the applied voltage and the electrical
resistance of our fibres. Finally, we compare our predictions
from different models with experimental data in order to
obtain a deeper understanding of the principal structural
changes responsible for the non-ohmic effect.

2. Structure of direct-spun CNT fibres

The physical basis for the models to be constructed in the
following discussion is the hierarchical structure of direct-
spun CNT fibres. Such fibres are formed in a continuous
synthesis process, described in more detail elsewhere [3], by
pulling a nanotube aerogel out of the hot zone of a CVD
reactor and densifying the extracted material by spray appli-
cation of a volatile liquid. Depending on the specific synthesis
parameters, the fibres may be composed of a variety of
nanotubes, from large diameter few-wall tubes to almost

exclusively small diameter single-wall tubes [20, 21].
Nevertheless, all samples tested showed a similar behaviour
on immersion and removal from organic liquids and a non-
ohmic behaviour in polar ones [16]. Carbon nanotubes are
known to interact through van der Waals forces and to self-
assemble into axially aligned bundles or ‘ropes’ similar to the
one shown in figure 1(a). Tubes within a bundle are packed as
efficiently as possible to minimize surface energy. For rigid
cylinders of identical diameter, the best packing efficiency
would be given by a triangular lattice. CNTs, however, have
flexible walls and bundles are not usually composed of tubes
of the same diameter; this may cause nanotubes to polygonize
or collapse, as shown in figure 1(b), in order to minimize the
energy of the bundle [22, 23]. According to our previous
work, the space between individual nanotubes in a bundle
seems to be inaccessible for the liquids we have tested [19].

Ideally, CNTs should organize into a single, closely-
packed, giant bundle so as to minimize the interfacial surface
energy with the surrounding medium; however, this is not the
case in practice due to the slow kinetics of nanotube rear-
rangement during aerogel pull-out and densification, and the
presence of impurity particles. The aerogel is thus condensed
into a porous hierarchical bundle network, more similar to a
staple yarn than a mono-filament fibre [24], such as the one
depicted in figure 2. We have evidence that, in contrast to the
space between individual CNTs, these contiguous pores are
accessed by the immersion media used in previous studies
[19], and thus we base our models on structural changes at the
interbundle level. The number of bundles in a cross-section of
the fibre, Nb, can be estimated by comparing the cross-sec-
tional area of a single bundle to that of the whole fibre (taking
porosity into account):

N
D

D
(1)b

f

b

2

2
β=

where β is the packing efficiency (i.e. one minus the porosity)
and Db and D f are the diameters of the bundle and the fibre,
respectively.

Figure 1. Structure of CNT bundles: (a) transmission electron
microscope (TEM) image of a bundle of single-wall carbon
nanotubes (SWCNT); (b) schematics of the cross-sections of a
bundle of polygonized small diameter SWCNTs (top) and a bundle
of larger diameter partially and totally collapsed SWCNTs (bottom).
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The fibres used in the majority of our previous experi-
ments had diameters around 10 μm, a specific surface area of
75.6 m2 g–1, a porosity of 54%, and a density of ∼0.6 g cm−3.
They were composed of nanotube bundles with diameters in
the 20 to 30 nm range and elongated pores with diameters in
the 30 to 40 nm range [19]. Substituting the relevant numbers
into equation (1) gives an estimate of between 51 000 and
115 000 bundles in the cross-section of our fibres, which is
used later in section 5 in the calculation of the potential dif-
ference across an open junction between CNT bundles
in fibre.

3. Balance between surface and elastic energies

We now develop further our previously proposed qualitative
model of junctions opening and closing to minimize the
energy of the bundle network [19]. We visualize a closed
junction as two cylindrical bundles of diameter Db merging
into a single bundle of diameter D2 b that preserves the
volume. This is depicted in figure 3(a), where yellow stars
indicate positions where the bundles are fixed due to entan-
glements or other obstacles. Depending on the value of b m/γ ,
the specific bundle/medium energy, junctions of a particular
length will be either closed or open (see figure 3(b)). This
means that for each immersion medium there should be a
maximum junction length, Lmax0, beyond which all bundle
junctions are closed. In order to calculate Lmax0, we need to
understand the balance between the surface energy, US , and
elastic energy, UE . The surface energy can be estimated by:

( )U D L L2 2 (2)S b m b s c/πγ= +

where Ls is the length of the portion of the bundles that

remain separated, bending to bridge the gap distance, and Lc

is the length of the conjoined region (see figure 3(c)). In an
open junction, L 0c = and L Ls TOT= , the total length of the
junction. Since equation (2) was derived under the assump-
tion that the bundles are smooth, whereas in reality they are
composed of several nanotubes and may possibly have a
rough surface, it represents a lower bound on the surface area.
However, using such an assumption to calculate the specific
surface area of our fibres yields a value in good agreement
with experimental measurements (see appendix A). Thus, the
approximation of smooth bundles seems to hold, at least for
systems in which the liquids don’t intercalate inside the
bundles. Assuming the bundles to behave as solid beams,
which is valid for the small deflections of junctions with a
high aspect ratio, the elastic energy stored in a closed junction
can be estimated (see appendix B) as:

U
ED

S

(1 cos )

8
(3)E

b
4απ α

=
−

where α is the angle of curvature (see figure 3(c)), E is the
elastic modulus, and S is the separation between the neutral
axes of the bundles. For a given total length, L L LTOT s c= + ,
and a set of parameters ( b m/γ , E , Db, and S), the sum of
equations (2) and (3) can be numerically minimized as a
function of α to find the most energetically stable config-
uration (see appendix C). This can be used to estimate Lmax0

(i.e. the largest LTOT for which an open configuration gives
the minimum energy) for the different immersion media used
in this study.

Figure 2. Structure of the CNT bundle network in a direct-spun fibre:
(a) scanning electron microscope (SEM) image (top) and schematic
(bottom) of the network of CNT bundles that make up a fibre; (b)
SEM image (top) and schematic (bottom) of the cross-section of a
fibre. Closed interbundle junctions are highlighted in the schematics.

Figure 3. Energy balance model for the CNT bundle network (stars
represent entanglement points at which the bundles are fixed): (a)
CNT bundles in the fibre will tend to minimize the total energy of
the system; bending around obstacles increases elastic energy
whereas merging reduces surface energy. (b) Schematic illustrating
the possible stable configurations of a set of 3 bundles depending on
the specific interfacial energy, b m/γ , of the surrounding medium. (c)
A more detailed schematic of two bundles bending, with definitions
of the parameters used in equations (2), (3), (B.2), (B.3), (C.1),
and (C.2).
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For our numerical model, we used the values of b m/γ
determined in our previous paper [19]; D 30b = nm; S 60=
nm, corresponding to two bundles separated by a distance of
30 nm; and E 200= GPa, in accordance with the effective
elastic modulus when bending 20–30 nm diameter bundles
[25]. Table 1 lists the values of b m/γ and our calculations of
Lmax0 in various immersion media. The values of Lmax0 range
from 1.5 μm in air to 2.2 μm in NMP. Considering their
dependence on b m/γ , it is not surprising that they correlate well
with the previously reported increases in resistance upon
immersion [19].

In our first report of the non-ohmic effect, [16], we
compared the strength of the electrodynamic force due to
current flowing in the fibre, FL, to that of the electrostatic
force due to charge being accumulated at interbundle junc-
tions, FC . Using a conservative value of 50 nm for the junc-
tion length, we found that the electrostatic force was at least
three orders of magnitude stronger than the electrodynamic
force. Revising this calculation in accordance with our new
results we find that, for micrometre-sized junctions, the
electrostatic force is in fact at least four orders of magnitude
stronger:

F

F
2 10 (4)C

L
r

4ε≈ ×

where rε is the relative permittivity (i.e. the dielectric con-
stant) of the medium.

4. Behaviour of an open junction under an applied
electric field

Figure 4 shows our model of a junction under the effect of an
applied field. For each particular voltage, V , across the
junction a certain amount of charge will build up and the
bundles will bend until they reach an equilibrium distance,
deq, at which the electrostatic force is equal and opposite to
the elastic force resulting from bending the bundles. To
approximate the electrostatic force, we note that the junction
resembles a parallel plate capacitor, with deq being the
separation between the plates. The force for such a system is

given by:

F
A V

d2
(5)C

eq

2

2

ε=

where r0ε ε ε= is the permittivity of the medium and A is the
area of a plate—a parameter that can be approximated by
multiplying the length of the junction times the diameter of a
bundle: A LDb= . Since the average separation between
bundles (∼30 nm) is of the same order as the bundle diameter,
in our calculations we account for the curvature of the bundles
by adding a small constant to the actual deq we want to model
(see appendix D). For the bending force, one can model the
bundles as cantilevers bending under a force applied at the
middle from their fixed points (marked by stars in figure 4)
and their ends:

F
ED

L

3

20
(6)E

b
4

3

π δ
=

where δ is the deflection of the bundle at its endpoint and E is
the elastic modulus. Equating equations (5) and (6) while
making A LDb= and ( )d d /2eq0δ = − , where d0 is the
(curvature corrected) separation between bundles in the
absence of any electric field, yields:

( )ED d d d V L3 20 (7)b eq eq
3

0
2 2 4π ε− =

which can be solved for the equilibrium distance.
Equation (7) is cubic in deq and can be rewritten as:

( )f d d d d
V L

ED

20

3
0 (8)eq eq eq

b

3
0

2
2 4

3

ε
π

= − + =

to better show its structure. In figure 5, we plot ( )f deq for
junctions in acetone and air at several voltages, using the
same values for the bundle diameter (D 30b = nm), the elastic
modulus (E 200= GPa), and junction length (L 1= μm), as
in our previous calculations, and making d 350 = nm to
account for the curvature of two round bundles 30 nm apart
(see appendix D). This set of parameters (D 30b = nm,
E 200= GPa, d 350 = nm) constitutes our ‘standard’ junc-
tion and will be used in all our following calculations and
plots. The largest positive zeroes of function 8 (marked by
crosses in figure 5 for the case of acetone at applied biases of
0.3 V and 0.2 V) give us the values of deq of interest for our

Table 1. Values of Lmax0 for different immersion media.

Medium b m/γ [mJ m−2]a Lmax0 [μm]

Air 47.0 1.49
Ethanol 26.9 1.67
Methanol 25.5 1.69
Acetone 24.6 1.70
Toluene 20.0 1.80
Cyclohexanone 15.4 1.92
NMPb 9.6 2.16

a
Data from ref. [19].

b N-methyl-2-pyrrolidone.

Figure 4. Model of an open interbundle junction under the effect of
electrostatic force. As the voltage across the fibre is increased,
charge accumulation generates an electrostatic force that bends
bundles closer together. The equilibrium distance, deq, will be that at
which the electrostatic force is equal and opposite to the elastic force
resulting from bending the bundles.
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models. This can be understood by noting that the forces in
equations (5) and (6) come from the negative of the gradient
of the potential energy with respect to deq:

( )
U

ED d d

L

LD V

d

3

80 2
(9)

b eq b

eq

4
0

2

3

2π ε
=

−
−

When the function in equation (8) has two positive zer-
oes, the larger one corresponds to a minimum in the potential
energy (i.e. a point of stable equilibrium) whereas the smaller
one corresponds to a maximum in the potential energy (i.e. a
point of unstable equilibrium). The largest positive zero thus
gives the value of deq if junction is open. Increasing the
voltage across the junction shifts the function f (deq) upwards
along the y axis. For sufficiently high voltages, ( )f deq will

have no positive zeroes, as in the case for acetone at 0.4 V in
figure 5, and the junction is closed. When the function f (deq)
has a single positive zero, the potential energy function
(equation (9)) has an inflection point there. This marks the
critical voltage beyond which the electrostatic force will be
too strong to be opposed by the bending force; which can be

physically interpreted as the CNT bundles collapsing into a
closed junction.

Figure 6 shows the values of deq as a function of junction
voltage for standard junctions immersed in different media.
The dielectric constant of the immersion medium, rε , clearly
modulates the effects of voltage on the equilibrium distance:
for a given voltage, the higher the dielectric constant, the
stronger the electrostatic force between bundles and the more
they have to bend to oppose it. The change of ( )f deq when
varying voltage in nonpolar media (air and toluene in the
figure) is minimal compared with that in polar liquids (acet-
one, NMP). This behaviour could account for our observation
that the non-ohmic effect does not occur in nonpolar media
(i.e. the changes are too small and may be obscured by
heating and other effects).

It is possible to use the discriminant of equation (8) to
find a function for the maximum junction length that can
remain open at a certain voltage (see appendix E):

L V
Ed D

V
( )

45
(10)crit

b0
3 3

2

1/4⎛
⎝⎜

⎞
⎠⎟

π
ε

=

However, although this gives the correct dependence on
voltage for an open junction, it ignores the effect of surface
energy and thus indicates that L V( )crit will tend to infinity as
the voltage tends to zero. From our calculations in section 3,
we know that there is a finite upper bound for the length of an
open unpolarized junction immersed in a particular medium,
namely Lmax0. The values of Lmax0 for our standard junction
are listed in table 1. To incorporate our knowledge of the
effect of surface energy, we perform a change of variable to
V V V*= + and rewrite:

L V
Ed D

V V
( )

45 ( *)
(11)max

b0
3 3

2

1/4⎛
⎝⎜

⎞
⎠⎟

π
ε

=
+

where the constant V* satisfies L V L( *)crit max0= . This
change shifts the singularity of L V( )crit to negative values of
V (where it doesn’t affect our model since we are only
interested in the voltage difference, which can always be
written as a positive number) and allows us to recover
L L(0)max max0= . Figure 7 shows the values of L V( )max for
standard model junctions in air and acetone in the interval

Figure 5. Plots of the function given in equation (8) for a 1 μm long
‘standard’ junction (as defined in text) in different media and at
different voltages. The largest positive zeroes of the function
correspond to potential energy minima and give the values of deq for
our model. At high enough voltages, the function has a single or no
positive zeroes, indicating that the junction collapses to d 0eq = .

Figure 6. Values of deq as a function of voltage for 1 μm long
‘standard’ junctions in different immersion media.

Figure 7. L V( )max for standard junctions in air and acetone.
Horizontal lines indicate the values of Lmax0.
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0.0–0.5 V (horizontal lines indicate the values of Lmax0). It
can be seen that the effects of voltage are less strong in media
with a low dielectric constant, in a similar way as was shown
in figures 5 and 6, supporting the idea that electro-structural
effects are less noticeable in nonpolar media.

It is important to note that the models presented in this
section focus on a single isolated junction, ignoring the pre-
sence of neighbouring junctions. The electric field of neigh-
bouring junctions is expected to introduce discrepancies in the
functional relations we have presented, tending to become
less significant as the voltage increases. However, we believe
that the analysis of an isolated junction presented here will
provide sufficient information on the qualitative behaviour of
junctions under applied fields to proceed with the develop-
ment of our conduction models; any further refinements will
be the subject of future publications.

5. Models of junction conduction

Our approximate knowledge of the change of deq as a func-
tion of junction voltage allows us to explore the possible
electronic transport mechanisms at the junction and the origin
of the non-ohmic effect [16] in our fibres. We will consider
two possible conduction mechanisms: diffusive and tunnel-
ling conduction. If the electron transport were diffusive in
nature (i.e. following the Drude model), one would expect a
linear dependence of resistance on distance:

R
d

A
(12)D

eqρ
=

where ρ is the resistivity of the liquid. On the other hand,
tunnelling conduction would result in an exponential depen-
dence of the form [26]:

R e (13)T

deq

≈ λ

where λ is a characteristic length that depends on the
dielectric properties of the junction.

In order to compare these two models to the experimental
data, we must first estimate the potential difference across an
open junction. We assume that each bundle in the cross-
section of a fibre constitutes one of Nb parallel conducting
paths running across the fibre. For a sample of finite length,
each conducting path has a number, Nj, of bundle junctions
connected in series along it; of which, for simplicity, in this
first model we allow only one junction to be open and assume
the rest ( )N 1j − are closed. Under these assumptions, the
voltage across the open junction is given by:

( )
V V

N R I

N

1
(14)open sample

j closed sample

b
= −

−

where Vsample and Isample are, respectively, the voltage and
current through the entire fibre sample and Rclosed is the
resistance of a closed bundle junction. We used equation (14)
(taking R 3closed = MΩ, as reported for thick bundles [27],
and N 60 000b = ) to estimate Ropen and Vopen, the resistance

and voltage of the open junction, from R vs V data of real
samples immersed in acetone.

We then estimated deq values from a 1 μm standard
junction and used a tunnelling-like behaviour, as a function of
Vopen, of the form:

( )
R R R e (15)open A B

d Veq open

= + λ

to fit the data. In equation (15), RA and RB account for the
finite value of the resistance when deq= 0. Equation (15) was
successful in reproducing the resistive behaviour of samples
that had previously been cycled several times in the 0.5 mA to
2.0 mA current range to minimize hysteresis; which we
consider is related to permanent changes on the fibre as it
optimizes its structure [16]. Figure 8 shows experimental data
for 4 samples and the predictions obtained by fitting the
tunnelling model (black dashed lines), and the alternative
models yet to be discussed, to the data. We can see a rea-
sonably good fit, considering all of the simplifications made
in the preceding discussion. Moreover, equation (15) quali-
tatively describes the behaviour of resistance as a function of
voltage: which is a monotonically decreasing function with
positive curvature. The dashed grey lines in figure 8, on the
other hand, show the predictions of the diffusive model, i.e. a
linear decrease of Ropen as a function of deq, using the same
values of Nj as for the tunnelling fit. Even if the values of Nj

could be tuned to attempt a better fit, it is clear from the shape
of the curve, which is monotonically decreasing but with a
negative curvature, that the functional form could not cor-
rectly describe the resistance change of the fibres even qua-
litatively. We can therefore reject the diffusive transport
model as being the mechanism responsible for conduction at
open junctions. So far, it would seem that tunnelling con-
duction and the reduction of gap distances are responsible for
the non-ohmic effect, and we will now examine more closely
the consistency and physical reasonableness of the parameters
obtained from fitting equation (15) to the data.

Table 2 summarizes the fitting parameters of the relevant
models discussed in this work. Values of Nj in the range of
13–23 are in good agreement with previous reasoning about
the length of bundles and the number of junctions per con-
ductive path in a 1 cm long sample of fibre [16]. From
equation (15), we see that the resistance of a collapsed
junction, i.e. at d 0eq = , equals R RA B+ . Ideally, this value
should be the same as Rclosed , which we took to be 3MΩ. The
results from our model are about twice this value but remain
on the same order of magnitude. Considering the simplifica-
tions in our model, we take this to be a reasonably good
agreement, which could perhaps be further improved by
tuning the values of Nj and Rclosed. Moving to the next
parameter, we notice that the values of RB are not consistent;
changing by more than 2 orders of magnitude for samples of
essentially the same material. Further difficulties arise when
we examine the physical soundness of λ, the parameter that
describes the sensitivity of the tunnelling resistance to dis-
tance. For electrons tunnelling between two electrodes,

m0.25 e
2 2 1 1λ ħ φ= − − , where ħ is the reduced Planck’s
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constant, φ is the work function of the electrodes, and me is
the effective mass of the electron in the medium between the
electrodes. Typical values for λ through vacuum or solid
dielectrics are of the order of 0.05 nm [26]. The presence of a
liquid dielectric between the electrodes significantly reduces
the work function of the electrodes and allows for the gap to
be crossed by means of multiple tunnelling events through
intermediate states [28–30], effectively increasing λ by a
factor of ∼10. However, even after considering the
enhancement provided by the liquid, the values of λ required
to fit our experimental data seem rather large. Considering the
simplifications we have made in our model, it is possible that
we are overestimating the sensitivity of deq to V and that the
actual changes in distance are smaller than predicted by our
model. However it is useful to consider an alternative
mechanism that could produce similar macroscopic results

without requiring such extreme values of λ and provide more
consistent parameters.

So far, we have been focusing on describing the beha-
viour of a single standard, 1 μm long, junction and using our
models to fit the macroscopic behaviour of the whole sample;
a valid approach under the effective medium approximation,
developed to explain conduction in disordered materials and
random resistor networks [31–33]. Another approach to
examine our results is to account for the statistical distribution
of different possible lengths of junctions in a fibre. Since we
do not have any reason to suppose that there is a preferred
junction size, we will assume (in the absence of applied
voltage) a uniform distribution of junction sizes, from zero to
Lmax0 (1.7 μm for acetone). We know from equations (8) to
(11) that the effect of an applied potential difference is to
close all junctions longer than L V( )max . We will now assume

Figure 8. Experimental R vs V data of 4 CNT fibre samples immersed in acetone and predictions from 3 different models: tunnelling (dashed
black), diffusive (dashed grey), and the ‘statistical’ collapse of bundle junctions (solid grey). The reduced chi-squared calculations for the
tunnelling model exclude the last point in (a) and (c) where the model deviates significantly from the data.

Table 2. Fitting parameters for curves from figure 8.

Tunnelling model Statistical model

Sample Nj RA [MΩ] RB [Ω] λ [nm] Gi [mS] 1κ [ 10 4× − ] 2κ

1 23 6.8 17 2.53 0.61 3.4 0.12
2 14 6.4 6 2.54 1.08 5.6 0.05
3 18 6.3 160 2.98 0.64 6.0 0.19
4 13 6.1 2100 4.10 1.02 9.9 0.05
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that in a highly connected network, well above the percolation
limit as CNT fibres are, the increase in conductance (i.e. the
reciprocal of resistance) will be proportional to the number of
additional closed junctions gained when increasing the vol-
tage. Since we are assuming a uniform distribution of junction
lengths, the fraction of closed junctions is given by

1
L

L V( )
max

max

0θ = − , which, with aid of equation (11), can be

written as:

V

V V
1

*

*
(16)θ = −

+

where, as stated in section 4, V* satisfies L V L( *)crit max0= .
We can now write:

G G
V

V V
1

*

*
(17)i 1

2

⎛
⎝⎜

⎞
⎠⎟κ

κ
= + −

+

for the conductance, G, of the fiber. In equation (17), Gi

represents the ‘initial’ conductance at zero applied voltage, κ1
relates the fractional increase of closed junctions to that of
conductance, and κ2 scales the voltage applied to the fibre
down to the junction level. The solid grey lines in figure 8 are
the predictions from equation (17), where we used V* 102=
mV, which is the value for our standard junction in acetone,
and allowed Gi, 1κ , and 2κ to vary to fit the data. The resulting
fitting parameters are listed in table 2.

The statistical model is also able to reproduce the resis-
tive behaviour of the samples. On first glance, figure 8 may
appear to show that both of the models, statistical and tun-
nelling-based, are equally good at fitting the data. However, a
closer look at panels (a) and (c) reveals that the tunnelling
model deviates to a greater degree, especially at higher vol-
tages. The reduced chi-squared coefficients, 2χ , were calcu-
lated for both models, assuming an error of ±0.2% in the
measurements, and are displayed in figure 8. These coeffi-
cients show that both models tend to over-fit the data for
relatively small voltage ranges, as shown in panels (b) and
(d). For larger voltage ranges, shown in panels (a) and (c) –
where the calculation for the tunnelling model already
excludes the last data point due to its large deviation, 2χ
indicates that the model of junctions collapsing as the voltage
increases (the ‘statistical’ model) gives a more statistically
significant fit than the tunnelling model. The statistical model
requires only 3 parameters to be fitted to the data, one fewer
than the tunnelling model, which gives it an additional
advantage. Furthermore, the parameters used to fit the sta-
tistical model (listed in table 2) are more consistent than those
for the tunnelling one: with the less stable parameter, 2κ ,
changing by a factor of ∼4 within the samples, a minimal
difference when compared with the factor of 350 for RB in the
tunnelling model. The two proposed mechanisms are not
mutually exclusive and it is possible that both of them con-
tribute to the changes in resistance. However, based on the
previously listed advantages of the statistical model, and the
fact that it doesn’t require unphysically large values of tun-
nelling length ( )λ to fit the data, we consider that the pro-
gressive collapse of interbundle junctions described by the

statistical model is the dominant phenomenon in producing
the non-ohmic effect in our direct-spun CNT fibres.

6. Conclusions

Using simplified representations of the structure of yarn-like
carbon nanotube fibres, we have been able to construct a
series of models capable of predicting structural parameters
and describe experimentally observed electrical phenomena.
The model balancing elastic and surface energies (described
in section 3) provides a good explanation for previously
reported increases in resistance upon immersion of fibres in
organic liquids, [19], and gives predictions of the maximum
lengths of open interbundle junctions in such media, which
are subject to future experimental confirmation. The ‘statis-
tical’ model, presented at the end of section 5, explains the
resistance-voltage functional relationship of the non-ohmic
behaviour and points towards its principal structural cause:
the progressive collapse of open CNT bundle junctions as
voltage is increased. One of the main strengths of these
simple models is that they not only reproduce experimental
data, as many other curve fits may do, but give an insight on
the physics behind the observed phenomena. As the models
we constructed are not based on any property unique to car-
bon nanotubes, they should be useful to predict the electro-
structural behaviour of any other hierarchically-structured
network of conducting elements.
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Appendix A. Estimation of the fibre’s specific
surface area

An approximate value for the specific area (in square metres
per gram) of the fibre can be obtained from:

A
D N

10 (A.1)sp
b b

l

6π
ρ

= × −

where Db is the average bundle diameter (expected in nano-
metres), Nb is the number of bundles per cross section of fibre,

lρ and is the linear density of the fibre (in units of Tex = grams
per kilometre of fibre). Substituting D 30b = nm,
N 60 000b = , and 0.03lρ = Tex (a typical value for our
fibres) yields A 188sp = m2 g−1, which is of the same order of
magnitude as experimental results [8, 17, 19]. equation (A.1)
assumes the bundles to be solid, smooth cylinders and sug-
gests that the model proposed in section 3 is valid, at least for
the case when liquids do not intercalate within bundles.
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Appendix B. Strain energy in a junction

With reference to the schematic in figure 3(c), the strain
energy stored in the bent section of a cylindrical beam is
given by:

U
EI

l2
(B.1)E

2α=

where E is the elastic modulus, I is the second moment of
area of the cross-section of the beam, α is the angle of cur-
vature, and l is the length of the bent segment. Substituting
I D /64b

4π= and l rα= in (B.1) we obtain:

U
ED

r128
(B.2)E

b
4απ

=

where Db is the bundle diameter and r is the radius of cur-
vature. Now, for a given α, h r2 (1 cos )α= − and, for the
bundles to touch, h S /2= (see figure 3(c)). Combining the
last two relations and solving for r yields:

r
S

4(1 cos )
(B.3)

α
=

−

Substituting (B.3) in (B.2) and multiplying by 4 (there
are 4 bent sections in the junction) yields equation (3).

Appendix C. Minimizing the energy of a junction

C.1. Expressing UE in terms of α

The equations:

L r
S

2
2(1 cos )

(C.1)s α α
α

= =
−

L L L (C.2)c TOT s= −

can be used to put equation (2) terms of α and LTOT .

C.2. Energy minimization routine

Given LTOT , b m/γ , E , Db, and S we used a Matlab routine to
find the minimum energy configuration of the interbundle
junction. The algorithm first verifies whether L S /4TOT π⩾ ; if
not, the bundles in the junction are too short to touch each
other even if bent at a straight angle and the minimum energy
corresponds immediately to an open junction. If the junction
is longer than the minimum length, the algorithm looks for the
value of α, in the range /2minα α π⩽ ⩽ , that minimizes the
sum of equations (2) and (3) and compares such minimum
energy to that of an open junction (equation (2) with L 0c =
and L Ls TOT= ) to decide whether the minimum energy
configuration corresponds to an open or closed junction. The
angle minα is given by the numerical solution to the trans-
cendental equation L L( )s min TOTα = , see equation (C.1). For
angles smaller than minα , the value of Lc becomes negative,
meaning that the junction is too short to be closed with such a
small angle.

Appendix D. Accounting for the curvature of bundles
in the model for electrostatic force

CNT bundles have a round cross-section and the parallel plate
capacitor model assumes a flat surface; using the actual
separation between bundles as d0 would place the electric
charges too close together and certainly overestimate the
force. To partially mitigate this overestimation, we added a
distance a2 to the separation between bundles. The best way
to understand the meaning of a is to refer to the schematic of
figure D1 and notice that half of the projected area of the
bundle lies below the plane at a (measured from the tangent
plane) and the other half lies above; the factor of 2 comes
from the mirror symmetry of the junction. The value of a is
then given by:

a R 1
3

2
(D.1)

⎛
⎝⎜

⎞
⎠⎟= −

where R is the radius of the bundle.

Appendix E. Expression for Lcrit

The discriminant of the general cubic equation
ax bx cx d 03 2+ + + = is given by:

abcd b d b c ac a d18 4 4 27 (E.1)3 2 2 3 2 2Δ = − + − −

and can be used to determine the nature of the roots of the
equation. If 0Δ > , the equation has 3 real roots. If 0Δ < , the
equation has only 1 real root (the negative one in the case of
equation (8)). Equating (E.1) to zero and solving for L yields
equation (10). For a given set of parameters, if L Lcrit> then
the discriminant is negative and so is the only root of
equation (8), indicating that the bundles collapse to a closed
junction.

a

0 R/2 R

√3
R
/2

Figure D 1. Schematic of the cross-section of an ideally round CNT
bundle of radius R.
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