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 23 

Abstract 24 

Many complications of pregnancy have their pathophysiological roots in the early stages 25 

of placentation. Impaired trophoblast invasion and deficient remodelling of the maternal 26 

spiral arteries are a common feature. While malperfusion of the placenta may underpin 27 

cases of fetal growth restriction and early-onset pre-eclampsia, the mechanistic links to 28 

spontaneous miscarriage, pre-term labour and premature rupture of the membranes are 29 

less obvious. Here, we speculate that formation of a well-developed cytotrophoblastic 30 

shell at the maternal-fetal interface is crucial for pregnancy success. Initially, 31 

extravillous trophoblast cells differentiate from the outer layer of the shell in contact 32 

with the endometrium. Impaired development may thus contribute to reduced invasion 33 

and deficient remodelling. In addition, the extent of the shell influences the timing and 34 

spatial configuration of onset of the maternal arterial circulation.  A thin and 35 

fragmentary shell results in premature and disorganised onset, leading to spontaneous 36 

miscarriage. In less severe cases it may predispose to haemorrhage at the interface and 37 

formation of intrauterine haematomas. If pregnancy continues, these haematomas may 38 

act as a source of oxidative stress, promoting senescence and weakening of the 39 

membranes, and stimulating inflammation in the uterine wall and premature 40 

contractions. Formation of the shell is dependent on proliferation of cytotrophoblast 41 

progenitor cells during the first weeks after implantation, when the developing placenta 42 

is supported by histotrophic nutrition from endometrial glands. Hence, we propose the 43 

fitness of the endometrium prior to conception, and the peri-conceptional dialogue 44 

between the endometrium and the trophoblast is critical for avoidance of later 45 

complications of pregnancy. 46 

47 
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 48 

Introduction 49 

The placenta is key to a successful pregnancy and the life-long health of the offspring 50 

(1). In the human, placentation is a highly invasive process and more complex than in 51 

most other mammalian species. At the time of implantation the conceptus embeds into 52 

the superficial endometrium, and during the first and early second trimesters a sub-53 

population of trophoblast cells, the extravillous trophoblast, migrate in large numbers 54 

into the wall of the uterus. Under normal conditions these cells reach as far as the inner 55 

third of the myometrium, a phenomenon referred to as ‘deep placentation’ (2). The 56 

invasion is associated with remodelling of the maternal spiral arteries, a process in 57 

which the smooth muscle and elastic material in the walls of the vessels is replaced by 58 

inert fibrinoid material (3). As a result, the vessels dilate, and remodelling ensures a 59 

constant high volume, low velocity maternal blood flow to the placenta (4). Deficiencies 60 

in deep placentation and arterial remodelling have been linked to a spectrum of 61 

complications of pregnancy (2, 5).  Whilst it can be appreciated how some 62 

complications, such as growth restriction, early-onset pre-eclampsia and late 63 

spontaneous miscarriage, may arise through differing degrees of malperfusion of the 64 

placenta, it is more difficult to envisage a mechanistic link with pre-term rupture of the 65 

membranes and pre-term labour. Uteroplacental ischaemia has been invoked in the 66 

causation of the latter, with the suggestion of activation of the renin-angiotensin system 67 

in the fetal membranes (6).  68 

 69 

Here, we propose an alternative hypothesis to link the pathophysiology of this spectrum 70 

of placentally-related complications of pregnancy. Central to the hypothesis is the 71 
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correct formation of the cytotrophoblastic shell, the layer that represents the interface 72 

between the maternal and placental tissues during early pregnancy. 73 

 74 

The cytotrophoblastic shell 75 

Initial growth of the placenta is prolific, and considerably in advance of that of the 76 

embryo. Shortly after implantation the chorionic sac is covered over its entire surface by 77 

a mass of developing villi, each consisting of a core of mesodermal cells and a bilaminar 78 

trophoblastic epithelium composed of an outer layer of syncytiotrophoblast and an 79 

underlying layer of progenitor cytotrophoblast cells. The syncytiotrophoblast is absent 80 

at the distal ends of the villi where they make contact with the decidua, and instead the 81 

cytotrophoblast cells form an elongated mass of cells referred to as a cytotrophoblast 82 

cell column. At their furthest extent these columns make contact with the decidua 83 

basalis, and in doing so spread laterally and merge with neighbours to form the 84 

cytotrophoblastic shell.  85 

 86 

One of the most comprehensive descriptions of the shell was provided by Hamilton and 87 

Boyd (7), who had the opportunity to study 37 specimens ranging from 11-12 days to 90 88 

days post-fertilisation (embryonic crown-rump length of 60 mm). These authors 89 

described the shell as being ‘thick’ at 14-18 days, ‘attenuated’ at 20-30 days, and 90 

‘markedly thinned’ from the 10 mm stage, 37-38 days post-fertilisation, onwards.  We 91 

have been able to review some of the same specimens from day 26 onwards contained 92 

within the Boyd Collection. At 26 days, the shell extends across the placental bed and 93 

continues beneath the decidua capsularis, forming an almost complete layer, 5-10 cell 94 

thick, that constitutes the fetal-maternal interface around the implanted conceptus 95 

(Figure 1). Anchoring villi attaching to the placental side of the shell by 96 
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cytotrophoblastic cell columns are numerous at this stage, and closely approximated 97 

together. By day 40 post-fertilisation, the shell is variable in thickness, remaining 98 

several cells thick where cell columns are attached, but gradually reducing to a single 99 

cell layer in the intervals between the columns (Figure 2). Expansion of the chorionic sac 100 

means that the distance between the cell columns increases, and so in later specimens, 101 

the shell becomes discontinuous, persisting only where cell columns are attached (7-9). 102 

In the intervals, fibrin is laid down at the fetal-maternal interface, generating Nitabuch’s 103 

stria. Later in gestation, the remnants of the shell and Nitabuch’s stria are incorporated 104 

into the developing basal plate (10). 105 

 106 

The cells of the shell are derived from the proliferative zone at the proximal end of the 107 

cytotrophoblast columns (Figure 3). Many studies have shown that mitotic figures and 108 

immunohistochemical markers of cell division are only seen in cytotrophoblast cells 109 

either in contact with the villous basement membrane or within a few cell layers of it 110 

(11, 12), leading to the concept that this represents a stem cell niche (13). Cytologically 111 

the cells appear undifferentiated, and their cytoplasm contains only a small amount of 112 

endoplasmic reticulum and Golgi bodies (14). As the cells move away from the basement 113 

membrane they undergo differentiation involving Notch signalling pathways (15), and 114 

enter a post-mitotic state (16). Glycogen progressively accumulates within the 115 

cytoplasm, and consequently the cells often appear conspicuously pale in histological 116 

sections as the deposits are eluted during routine fixation. Intermediate filaments 117 

become abundant, and numerous desmosomes link the cells (14). The amount of 118 

endoplasmic reticulum increases, and extracellular matrix material begins to be seen in 119 

the interstices between the cells. The columns and the shell are continuous with one 120 

another (Figures 1 and 3), and cells within the shell retain a similar rounded 121 
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morphology surrounded by matrix-type fibrinoid (17). More extensive deposits of 122 

fibrinoid are seen at the interface between the shell and the maternal tissues, where 123 

they form an irregular and commonly incomplete layer referred to as Nitabuch’s stria 124 

(Figure 3). This marks the future plane of separation of the placenta at the time of 125 

delivery. 126 

 127 

At present, the factors regulating cytotrophoblast cell proliferation are not fully 128 

understood, but two facets of the intrauterine environment during the first trimester are 129 

thought to be important. First, is the histotrophic support from the endometrial glands. 130 

The endometrial glands deliver carbohydrate and lipid-rich secretions into the 131 

intervillous space during early pregnancy (18), and these secretions contain powerful 132 

mitogenic growth factors, including epidermal and fibroblast growth factors (19). 133 

Application of such growth factors to first trimester villus explants results in increased 134 

proliferation of the cytotrophoblast population (20, 21). Indeed, in many species there is 135 

evidence that the trophoblast is able to signal to the glands and upregulate the 136 

expression of growth factors (22), and in this way stimulate its own development. 137 

Experimental evidence for such a mechanism operating in the human is lacking, 138 

although the key components appear to be in place (23). In addition, it is well-139 

recognised that the gland cells adopt a characteristic hypersecretory morphology during 140 

early pregnancy, the Arias-Stella reaction (24).  On the placental side, it is notable that 141 

the proliferative cells in the putative stem cell niche at the proximal end of the column 142 

immunoreact positively for the fibroblast growth factor receptor 2, and signalling from 143 

this receptor enhances expression of CDX2 and ELF5 (13). These genes encode two 144 

transcription factors that are essential for stem cells of the trophoblast lineage.  145 

 146 
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Second, a low oxygen concentration prevails within the developing placenta during early 147 

pregnancy (25), and this may favour proliferation of the cytotrophoblast progenitor 148 

cells (26).  There may well be interactions between the two facets, for the levels of CDX2 149 

and ELF5 drop sharply at the end of the first trimester (13), coinciding with the 150 

transition from histotrophic to haemotrophic nutrition and a three-fold rise in intra-151 

placental oxygenation (25). Some proliferation may continue in the niche at the 152 

proximal end of a column, but the implication is that the proliferative potential of the 153 

trophoblast is greatly reduced during the second and third trimesters. 154 

 155 

The importance of the cytotrophoblastic shell in normal pregnancy 156 

The integrity of the shell is critical during the early stages of pregnancy for several 157 

reasons. It provides anchorage to the extracellular matrix of the maternal endometrium 158 

(9), but it is primarily its functions relating to onset of the maternal arterial circulation 159 

to the placenta that are the focus of this review. Firstly, it is the source of the extravillous 160 

trophoblast cells that are involved in the remodelling of the spiral arteries. Cells towards 161 

the outer surface of the shell undergo a partial epithelial-mesenchymal transition to 162 

form interstitial trophoblast cells (9, 27, 28). This transition is associated with a marked 163 

change in their morphology, for they adopt a spindle-like shape with a dark-staining 164 

nucleus (Figure 4) (8, 12). This transition is possibly induced by the higher oxygen 165 

concentration within the decidua with which they are in contact (25, 29), but may also 166 

be initiated by hormones and cytokines released by the decidual cells. Interstitial 167 

trophoblast cells migrate through the decidua and into the inner third of the 168 

myometrium where they fuse to form multinucleated trophoblast giant cells (30).  169 

Interstitial trophoblast are particularly numerous surrounding the spiral arteries, and 170 

their presence appears to be essential for vascular remodelling (8, 31). Increased rates 171 
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of apoptosis and reduced invasiveness of these cells have both been invoked as reasons 172 

for deficient remodelling of the arteries in cases of growth restriction and pre-eclampsia 173 

(12), but it is equally possible that a reduced supply of cells from the shell, and 174 

ultimately from the progenitor niche at the proximal end of the cytotrophoblast cell 175 

columns, might also contribute. 176 

 177 

Secondly, when the advancing margin of the shell penetrating the decidua basalis 178 

encounters the distal portion of a spiral artery, trophoblast cells migrate down the 179 

lumen of the artery as endovascular trophoblast (8). These cells retain their rounded 180 

morphology and appear identical to those of the shell, although they do show 181 

immunoreactivity for CD56 that is not seen within the shell (31). The magnitude of this 182 

migration is sufficient to virtually occlude the spiral arteries during the first six weeks of 183 

pregnancy, restricting any flow into the intervillous space to a seepage of plasma 184 

through the network of narrow intercellular clefts (32). The clefts gradually expand and 185 

coalesce over the next few weeks, until free flow of arterial blood is established around 186 

10-12 weeks of pregnancy (25, 33). Restriction of maternal arterial inflow is essential 187 

during early pregnancy to protect the developing embryo from exposure to the oxygen 188 

in the maternal circulation, and free radical-mediated oxidative teratogenesis (34, 35). 189 

Development of the shell assists by providing a source of endovascular trophoblast cells 190 

over a broad area, ensuring there is a sufficient supply to plug any maternal vessels 191 

encountered by the expanding placenta irrespective of their precise location. This will 192 

be the case in the central region of the implantation site where the shell is thickest (2). 193 

Towards the periphery the shell is thinner, and so the opportunity for plugging of the 194 

spiral arteries is less in these areas (Figure 5A). Hence, onset of the maternal circulation 195 

is seen preferentially in the periphery, and results in locally high levels of oxidative 196 
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stress as the villi display very limited antioxidant defences at this stage of development 197 

(36). This stress is thought to induce villus regression and formation of the smooth or 198 

free membranes of the definitive placenta, and may be considered physiological as it 199 

occurs in all ongoing pregnancies.  200 

 201 

Once the shell becomes fragmented from 40 days post-fertilisation (8 weeks of 202 

pregnancy) onwards, the source of extravillous trophoblast cells must be principally 203 

from the remnants located where the distal ends of cell columns make contact with the 204 

decidua (Figure 2A). This spatial rearrangement will have little impact on plugging of 205 

the arteries, as onset of the maternal circulation begins progressively from around this 206 

time (35). Equally, interstitial trophoblast will continue to flow from the cell columns 207 

and migrate through the endometrial stroma, homing in on the spiral arteries. Although 208 

the cell columns shorten as gestation advances, cytotrophoblast cells remain 209 

proliferative in the proximal progenitor niche until at least 16-20 weeks of pregnancy 210 

(12). The number of cell columns may increase during pregnancy through subdivision of 211 

the early anchoring villi, possibly facilitated by the faster expansion of the developing 212 

basal plate in comparison to the chorionic plate (10). In addition, branching 213 

morphogenesis of the villous trees may bring further villi into contact with the shell, 214 

establishing new points of attachment (9). 215 

 216 

Impaired development of the cytotrophoblastic shell and complications of 217 

pregnancy 218 

While developmental differences in the extent of the shell are related to local variations 219 

in the timing of the onset of the maternal circulation in normal pregnancies, gross 220 

impairment of its development is associated with the pathology of spontaneous 221 
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miscarriage. In 70% of these cases the shell is thin and fragmentary, leading to deficient 222 

endovascular trophoblast migration and incomplete plugging of the spiral arteries 223 

across the entire placental bed (37, 38) (Figure 5B). Onset of the maternal circulation is 224 

precocious and spatially disorganised, with massive entry of maternal blood resulting in 225 

overwhelming placental oxidative stress and secondary degeneration of the villous 226 

tissue (36). This effect is independent of the trophoblastic karyotype, and so we must 227 

look beyond the conceptus for a cause. 228 

 229 

Normal pregnancy and miscarriage represent opposite poles of pregnancy outcomes, 230 

but is it possible that other placentally-related complications of pregnancy are 231 

associated with intermediate degrees of development of the cytotrophoblastic shell? 232 

Spiral arterial remodelling is also deficient in cases of growth restriction, and even more 233 

so in those with accompanying pre-eclampsia when obstructive arterial lesions may also 234 

be present (2, 39, 40), but to a lesser extent than what is observed in early pregnancy 235 

failure. These vascular changes likely also reflect reduced trophoblast invasion into and 236 

around the arteries, and so it might be expected that arterial plugging was less extensive 237 

in these placentas during early pregnancy. Consequently, onset of the maternal 238 

circulation may have been abnormal, both temporally and spatially. Currently, no data 239 

are available to support or refute this hypothesis, and future prospective studies are 240 

required to test the concept. However, the fact that placentas from pregnancies 241 

complicated by growth restriction often display irregular margins and excessive villous 242 

regression provides some circumstantial support (41).  243 

 244 

Besides influencing timing of the onset of the maternal circulation, the extent of 245 

development of the shell may impact on the integrity of the maternal-fetal interface and 246 
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the adhesion between the two sets of tissues (9). The regression of around two-thirds of 247 

the original villous mass of the early placenta creates an area of mechanical weakness in 248 

the periphery where the spiral arteries are unplugged, leading potentially to bleeding 249 

between the developing membranes and the decidua basalis at the end of the first 250 

trimester (Figure 5B). This phenomenon is known clinically as threatened miscarriage, 251 

and is the most common complication of human pregnancy. 252 

 253 

Sub-chorionic haematomas are well defined on ultrasonic examination as crescentic 254 

hypoechogenic areas between the placental membranes and the decidua. If the 255 

haematoma expands to the basal plate of the definitive placenta it can lead to full 256 

detachment of the placenta and a full miscarriage, which is observed in around 10% of 257 

the cases within 48 hours of the first bleeding episode (42, 43). In the 90% of 258 

pregnancies that continue, there is a 1.9-3.7 increased risk of premature rupture of the 259 

membranes and pre-term delivery (43).  The mechanistic link has not been fully 260 

determined, but it has been postulated that if the pregnancy continues the clot of blood 261 

lying against the membranes causes local oxidative stress (42). In particular, the 262 

presence of free Fe2+ ions may stimulate the formation of the highly aggressive hydroxyl 263 

ion through the Fenton reaction (44). Chronic exposure to reactive oxygen species can 264 

cause cellular senescence, and this has recently been put forward as the final common 265 

pathway for weakening and premature rupture of the membranes in response to 266 

various stimuli (45). In addition, senescent cells secrete a cocktail of pro-inflammatory 267 

cytokines (46), and this may lead to the induction of a sterile inflammatory response 268 

within the uterus that results in pre-term delivery (47). Changes in maternal levels of 269 

placental specific proteins (48, 49), and also of inflammatory cytokines (50) and 270 
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markers of oxidative stress (51) in women presenting with a threatened miscarriages 271 

support this concept.  272 

 273 

If considered from the viewpoint of development of the cytotrophoblastic shell it is to be 274 

expected that the two sets of pathologies, namely early pregnancy failure, growth 275 

restriction and pre-eclampsia on the one hand, and pre-term premature rupture of the 276 

membranes and pre-term delivery on the other should show epidemiological 277 

associations, and also links to events during early pregnancy. This is indeed the case 278 

(43).  279 

 280 

Future directions 281 

Human early pregnancy is a difficult period to research, and development of the 282 

cytotrophoblastic shell that we propose to be critical is occurring before and shortly 283 

after pregnancy is manifested clinically. Data from other species indicate that the 284 

signalling dialogue between the conceptus and the endometrium is essential for 285 

upregulation of the secretion of growth factors that stimulate trophoblast proliferation, 286 

and hence likely formation of the cytotrophoblastic shell (22). Although recent data for 287 

the human indicate the importance of the endometrial secretome for implantation (52, 288 

53), the full composition of the gland secretions and their impact during early pregnancy 289 

are not known. Uterine flushing at this time may not be ethical, and in any case may not 290 

accurately reflect the activity of the glands within the placental bed where local 291 

trophoblast interactions may influence gland activity. The derivation of endometrial 292 

organoids that faithfully replicate the transcriptomic profile of the glands and which 293 

respond to pregnancy hormones by upregulating expression and secretion of uterine 294 

milk proteins opens an important avenue for new research in this area (54, 55).  295 
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 296 

Overall conclusion 297 

Each of the ‘Great Obstetrical Syndromes’ has many potential causes, some of which will 298 

be unrelated to trophoblast invasion, such as those of genetic or infective origin, 299 

whereas others will be associated with a failure of deep placentation. Focussing on 300 

formation of the cytotrophoblastic shell takes us one step earlier in the establishment of 301 

the pathophysiology of the latter cases, for the extravillous trophoblast differentiate 302 

from the surface of the shell abutting the maternal tissues. An insufficient pool of 303 

progenitor extravillous trophoblast cells within the shell will result in reduced 304 

endovascular invasion and inadequate plugging of the spiral arteries. At its extreme this 305 

can result in miscarriage (37, 38), but we speculate that less severe impairment may 306 

lead to intrauterine haematomas at the maternal-fetal interface. Such haematomas may 307 

render the membranes vulnerable to senescence and premature rupture, or stimulate 308 

inflammation in the myometrium and enhanced uterine contractility. Deficient 309 

interstitial extravillous invasion may also result in a reduced extent of arterial 310 

remodelling, leading to early-onset pre-eclampsia or growth restriction alone depending 311 

on the severity.  312 

 313 

The principal implication of viewing the pathophysiology of these syndromes in this way 314 

is that formation of the shell, and in particular proliferation within the progenitor cell 315 

niches at the proximal ends of the cytotrophoblast cell columns, become of paramount 316 

importance. At present, little is known regarding the control of cytotrophoblast 317 

proliferation, but the unique first trimester intrauterine environment appears to be 318 

essential. Mitogenic factors secreted by the glands are likely to be critical (22, 23, 41), 319 

possibly in combination with the prevailing low oxygen concentration. Hence, some 320 
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cases of these syndromes may have their pathological roots in impaired endometrial 321 

function during the peri-conceptional period and early pregnancy, a view supported by 322 

genetic analyses of chorionic villus samples from women who went on to develop pre-323 

eclampsia (56, 57). Further studies are required to test the hypothesis, but if proved 324 

correct then ensuring optimal endometrial function prior to conception should become 325 

a public health priority. 326 

 327 
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Figure 1. Photomicrograph of a 26 day post-fertilisation placenta-in-situ specimen 495 

(H710) illustrating the cytotrophoblastic shell (CS) forming the maternal-fetal interface. 496 

The main illustration is taken from the area marked by the box on the low-power insert, 497 

towards the margin of the implantation site and the junction of the decidua basalis and 498 

decidua capsularis. Note the spaces (asterisk) within the shell that communicate with 499 

the intervillous space and the maternal vasculature. CCC, cytotrophoblast cell column. 500 

Stain, Masson’s trichrome. Scale bar = 0.5 mm. 501 

 502 

Figure 2. Photomicrographs of a 40 day post-fertilisation placenta-in-situ specimen 503 

(H673) illustrating the variable thickness of the cytotrophoblastic shell (CS) at this stage 504 

of gestation. A) At points of attachment of cell columns (asterisks) the shell remains 505 

thick, but in intervening areas it is very thin (arrows). B) Higher power view of the 506 

central area shown in A), illustrating the gradual reduction in thickness of the shell with 507 

increasing distance from a cell column. Stain, Masson’s trichrome. Scale bars; A = 0.5 508 

mm, B = 100 µm. 509 

 510 

Figure 3. Photomicrograph of a 26 day post-fertilisation placenta-in-situ specimen 511 

(H710) illustrating how cells from a cytotrophoblast cell column (CCC) feed into the 512 

cytotrophoblastic shell (CS). Cytotrophoblast cells proliferate in a progenitor niche 513 

(asterisk) at the proximal end of a cytotrophoblast cell column, extending from an 514 

anchoring villus (AV). The columns spread laterally at their distal ends and merge with 515 

neighbours to form the shell. Note the deposition of fibrin (Nitabuch’s stria) (arrowed) 516 

between the shell and the decidua (D). Stain, Masson’s trichrome. Scale bar = 50 µm. 517 

 518 

 519 
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Figure 4. Photomicrograph of a 26 day post-fertilisation placenta-in-situ specimen 520 

(H710) illustrating the differentiation and migration of interstitial extravillous 521 

trophoblast cells from the shell. The cytoplasm of the cells within a cytotrophoblast cell 522 

column (CCC) and the cytotrophoblastic shell often appears empty as the high glycogen 523 

content is eluted during routine fixation. Cells near the maternal surface of the shell 524 

undergo a partial epithelial-mesenchymal transition, becoming darker staining and 525 

spindle-shaped (black arrow), and invade into the maternal tissues (white arrows) 526 

Immunostaining for cytokeratin 7 on equivalent age sections (insert) confirms the 527 

spindle-shaped morphology of many of the invading trophoblast cells. Stain, Masson’s 528 

trichrome. Scale bar = 100 µm. 529 

 530 

Figure 5. In normal pregnancies (A), extravillous trophoblast cells originating from the 531 

cytotrophoblast shell invade into the mouths of the maternal spiral arteries during the 532 

first trimester, preventing full arterial inflow into the intervillous space. Formation of 533 

the shell and plugging of the arteries is least in the periphery of the developing placenta 534 

where some inflow may occur, causing villus regression and formation of the smooth 535 

membranes. In pathological pregnancies (B), the cytotrophoblast shell is poorly 536 

developed. In the most severe cases this leads to early onset of the maternal arterial 537 

circulation to the placenta and miscarriage. If the pregnancy continues, there will be 538 

deficient spiral arterial remodelling due to inadequate extravillous trophoblast invasion. 539 

There may also be bleeding at the maternal-fetal interface and formation of an 540 

intrauterine haematoma (red), which may induce senescence in membranes and their 541 

premature rupture or an inflammatory response in the placental bed, increased uterine 542 

contractility and premature delivery. Adapted from (58).  543 
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