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Testing the New Economic Geography's wage equation: 

a case study of Japan using a spatial panel model 

 

This paper estimates the parameters of the wage equation of the new economic geography (NEG) 

using a newly developed spatial panel model. The results show that wage rate variation across 

different prefectures in Japan can be explained by market potential, which is a key variable in NEG 

theory, whilst controlling for variation in labour efficiency. Spatial heterogeneity is particularly 

important in the context of Japan in part because of its complex physical geography and the spatial 

distribution of its principal urban centres. The paper considers the challenges associated with 

representing the spatial relationships between prefectures describing and implementing different 

approaches to measuring transport costs. 

Keywords: new economic geography, agglomeration, spatial panel model 

 

1. Introduction 

The New Economic Geography (NEG) has emerged since the early 1990s and been recognized by 

economists and some geographers as a new genre of theory which explains the formation of economic 

agglomerations in geographical space (Krugman, 1991a, 1991b; Fujita et al., 1999). Krugman, the 

initiator of the New Economic Geography, attempted to internalize the idea of pecuniary externality, 

deriving from Marshall’s threefold classification (1920, p271) which was proposed to explain the 

agglomeration phenomena of spatial economic activities, into a normative economic model upon 

which the demand and supply mechanism operates. Under the mechanism of general equilibrium, the 

key features of the New Economic Geography are to explain the spatial phenomena of economic 

activities and to explore the stability of the equilibrium, by deriving and analyzing sets of nonlinear 

equations. 

However in order to derive sets of equations, these theoretical models have to be constructed using 

rather unrealistic assumptions and omitting certain factors known to be relevant in the real world. It 

was just recently that empirical economists and quantitative geographers started to test the theoretical 

frameworks against real data and estimate some of the basic parameters (Roos, 2001; Head and Mayer, 

2003; Redding and Venables, 2004; Mion, 2004; Hanson, 2005; Kiso, 2005; Brakman et al. 2006; 

Fingleton, 2006, 2008, 2011; Baltagi et al., 2014). One of the most successful equations tested by 

researchers is the wage equation. This equation which illustrates the subtle relationship between 

nominal wage levels and market potential is the core element of the new economic geography and is 

widely used in studying different levels of spatial aggregation. 

Drawing on a socio-economic panel dataset at the prefecture level for Japan from 1977 to 2006 not 

previously analysed, one of the major aims of this research is to estimate key parameters of the wage 

equation and test whether market potential is a significant variable in explaining wage variation across 

Japan. In addition, given the topographic characteristics of Japan, we contemplate whether the 

mountainous landscape can be reflected in the process of estimation through the specification of the 

transport cost variable, an essential component of market potential which makes real geography 

matter. Spatial dependence is a fundamental property of data collected across spatial units particularly 

where unit boundaries are arbitrarily drawn. The importance of this property when fitting spatial 

econometric models is now well established and in this research we incorporate a model for spatial 

dependence (Anselin, 1988; Haining, 2003; Arbia, 2014). Finally, following Fingleton (2011), 

endogeneity between nominal wage and market potential will be allowed for in the estimation process.   
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2. The NEG model 

     The NEG model (Fujita et al., 1999, Ch4) is built on the Dixit-Stiglitz monopolistic competition 

model (Dixit and Stiglitz, 1977) with the introduction of the transport cost variable, which ensures 

spatial relationships are incorporated. The NEG model features increasing returns to scale production 

technology internal to micro-economic agents, imperfect competition market structure, and multiple 

equilibria within which the spatial agglomeration or dispersion of economic agents are determined 

endogenously. In essence, the model reduces to several simultaneous non-linear equations, of which 

the wage equation is, as Head and Mayer (2003) stress, one of the most essential equations deriving 

from NEG.  

     Fujita et al. (1999) consider an economy with two sectors, agriculture and manufacturing. The 

agricultural sector is perfectly competitive and produces a single, homogeneous good, whereas the 

manufacturing sector provides a large variety of differentiated goods. The perfectly competitive 

agricultural sector is the counterpart to the action taking place in the increasing returns, imperfectly 

competitive manufacturing sector. The wage equation set out in Fujita et al. (1999, Ch4) is given as 

follows:  
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where 
M

rw is the nominal wage rate in the manufacturing sector (M) of region r, sY is total income in 

region s, 
M

rsT is transport cost in the manufacturing sector between regions r and s, sG is the price 

index in region s,  is the elasticity of substitution between any two varieties of manufacturing 

goods, and rP is the market potential of region r. 

     The wage equation gives the manufacturing wage where manufacturing firms in each region break 

even, given the income levels and price indices in all regions and the costs of shipping into these 

regions. For the purpose of simplification, assume that the price indexes in all regions are similar. 

Then the wage equation implies that the nominal wage rate in region r has a propensity to be higher if 

incomes (demands) in region r and the neighboring regions (with low transport costs) are high. This is 

because firms are capable of paying higher wages if they have good access to a large market. This 

kind of economic relationship is generally recognized as a backward linkage (Hirschman, 1958). 

3. Methodology 

3.1 The KKP spatial panel model  

     Early papers estimating the wage equation were limited to cross-sectional analyses (see for 

example, Hanson, 2005; Kiso, 2005). There is nothing inappropriate in using a single cross-sectional 

regression if the model is correctly specified. However, such an approach has its limitations, 

especially in modeling spatial-unit specific heterogeneity. Recent developments in NEG empirics 

however show that this approach has been replaced by spatial panel data modelling (see for example, 

Fingleton 2011; Baltagi et al. 2014). Two of the most significant advantages of  spatial panel models 

relative to cross sectional models are their ability to control for heterogeneity and spatial dependence, 

arising from the artificial delineation of spatial unit boundaries and spatial interaction effects (Hsiao, 

2003; Baltagi 2008; Elhorst, 2014).  

     A new panel data model (Kapoor, Kelejian, and Prucha, 2007) which allows for cross-sectional 

spatial dependence and time dependencies in the disturbance term is used in this research (hereafter 

referred to as the KKP model). The fundamental specifications of the KKP model are as follows: 
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     In each time period t = 1,…,T the data are generated according to the following model: 

)()()( tutXtY NNN                                               (2) 

where )(tYN  denotes the 1N vector of observation on the dependent variable across the N spatial 

units in period t, )(tX N  denotes the KN   matrix of observations on exogenous regressors in 

period t (which may contain the constant term),   is the corresponding 1K  vector of regression 

parameters, and )(tuN  denotes the 1N  vector of disturbance terms. Kapoor et al. specify their 

model conditional on the realized values of the regressors and so view )(tX N , t = 1,…,T as matrices 

of constants. A widely used approach to modeling spatial dependence was suggested by Cliff and Ord 

(1973, 1981). Kapoor et al (2007) follow their approach to modeling the disturbance process in each 

period by specifying the following first order spatial autoregressive process: 

)()()( ttuWtu NNNN                                              (3) 

where NW  is an NN   spatial weights matrix of known constants which does not involve t,   is a 

scalar autoregressive parameter, and )(tN  is an 1N  vector of innovations in period t.  (The name 

“innovations” is given by Kapoor et al, 2007) Stacking the observations in (2) and (3) we get

NNN uXY                                                      (4) 

NNNTN uWIu   )(                                             (5) 

where 
''' )](),...,1([ TYYY NNN  , 

''' )](),...,1([ TXXX NNN  , 
''' )](),...,1([ Tuuu NNN  , and 

''' )](),...,1([ TNNN    where ' denotes matrix or vector transpose. 

To allow for the innovations to be correlated over time, the following error component structure for 

the innovation vector N  is assumed: 

NNNTN vIe   )(                                               (6) 

where, Te is a T by one vector of ones, N  represents the vector of unit specific error components, 

and )]'(),...,1([ '' Tvvv NNN   contains the error components that vary over both the cross-sectional 

units and time periods. In scalar notation, Equation (6) can be expressed as: 

NitNiNit v ,,,                                                                                                                                    (7) 

The following assumptions are made. 

Assumption 11: (a) ),0(~ 2

, vNit iidv  ,  (b) ),0(~ 2

,  iidNi , and (c) the processes }{ ,Nitv  and

}{ ,Ni are independent.  Assumption2: (a) All the diagonal elements of NW  are zero, (b) 1 , and 

(c) The matrix NN WI   is non-singular, hence invertible. 

In light of (6) or (7) it follows that Assumption 1 implies 0)( , NitE   and
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1 the original assumption1 in full is in Kapoor et al, 2007, pp100 
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The innovations Nit, are autocorrelated over time, but are not spatially autocorrelated across units. In 

matrix notation we have 0)( NE   and the variance-covariance matrix of N is 
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Where 
222

1  Tv   and  TTT eeJ '  is a TT  matrix of unit elements. 
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The matrices NQ ,0 and NQ ,1  are symmetric, idempotent, and orthogonal to each other 

Kapoor et al. (2007, p102-110) defines three sets of generalised moment estimators for 
2, v and 

2

 ,  

or equivalently for 
2, v and 

2

1 . Once the parameters in the variance-covariance matrix of N  are 

estimated, then a spatially feasible generalised least squares procedure can be applied to estimate the 

regression parameters  . 

3.2  Estimation of the wage equation 

     The wage equation links the nominal wage of a region to its market potential, which was defined 

inside the square bracket of (1). Head and Mayer (2006) augment the simple wage equation of Fujita 

et al (1999) by adding a labour efficiency variable to the micro-assumptions of NEG. The extended 

wage equation is written: 

rtrt

M

rt APw 

1

                                                                                                                               (9) 

rtA : labour efficiency level in region r at time t 

The time subscript is introduced into (9) in order to capture changes in regional shares of the 

country’s supply of workers in the manufacturing sector and in the competitive economic sector 

overall which will affect sY , sG and therefore rP  over time. According to NEG theory, manufacturing 

workers will migrate from low to high real wage areas, so these shares will vary over time. In the long 

run, the economic landscape will end up in several possible equilibria.  

By taking the natural log of both sides of equation (9), the empirical wage equation with a 

disturbance term can now be written: 

rtrtrt

M

rt ubAbPw  01 lnln
1

ln


                                                                                      (10) 

rtu  is the disturbance term and 0b is the constant term. The key parameter of equation (10) is 

(here denoting the elasticity of substitution). However,   also appears in the power terms of 
M

rsT and

sG in the calculation of market potential. The estimating procedure will require an iterative approach. 
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Firstly, the researcher will assume a value of   for constructing the value of market potential of each 

region over different time periods. The model is then run to obtain an estimated value of  . If the 

estimated value of   is very different from the starting value, re-define a new value of   which is 

closer to the estimate at the previous step. After several iterations, the estimated value of  will 

converge. 

     In terms of how to implement the KKP model in the estimation of the wage equation, one essential 

point needs to be addressed further: the endogeneity issue involved in the estimation process. The 

KKP model is based on an assumption that regressors are exogenous. However, when we re-examine 

the wage equation (1), we notice that the nominal wage rate for the manufacturing sector is closely 

related to the total income in each region, which is one of the major components used to construct 

market potential. This implies the regressor, market potential, is endogenous. 

The KKP model allowing for endogeneity between dependent and independent variables is 

generalised by Fingleton (2008, p548-549). The estimation process involves the use of an 

instrumental variable (IV) approach, and is given the acronym FGS2SLS (feasible generalized spatial 

two stage least squares). 

3.3 The fixed-effects panel model with spatially autoregressive disturbances 

In the estimation of the wage equation, we also consider a fixed effects panel model with spatially 

autoregressive disturbances. Unlike the random effects KKP panel model which models the 

unobserved individual effects as a random variable, the fixed effects model actually estimates each of 

the unobserved individual effects (dummies). The model is run by using the Matlab software with 

routines provided by Elhorst (2010). The estimation method is maximum likelihood. The model 

specification is as follows: 

NNNTNN uIeXY   )(                                                                                                         (11) 

NNNTN uWIu   )(  

where 
''' )](),...,1([ TYYY NNN  , 

''' )](),...,1([ TXXX NNN  , 
''' )](),...,1([ Tuuu NNN  , and 

''' )](),...,1([ TNNN   , N  is a 1N  vector representing the unobserved fixed effects, 
Te  is a 

1T  vector of ones, NW  is an NN   spatial weight matrix of assumed constants which does not 

involve t,   is a scalar autoregressive parameter, )(tuN  denotes the 1N  vector of disturbance 

terms in period t, )(tN  is an 1N  vector of innovations2 in period t. 

The estimated results of the fixed effects panel model will serve as counterparts to those of the 

KKP panel model. It is worth mentioning that the fixed effects panel model cannot take account of the 

endogenous relationship between the wage rate and the market potential. Hence, the regressors and 

disturbances are not orthogonal. In this case, the estimated parameters may be biased (Greene, 2011).  

4. Data and measuring market potential 

4.1 Wage data 

     In the wage equation of Fujita et al., (1999), wage means the nominal wage rate in the 

manufacturing sector. The nominal wage rate in the manufacturing sector for Japan can be found in 

the Basic Survey on Wage Structure conducted by the Minister's Secretariat (including the Statistics 

and Information Department) of the Ministry of Health, Labour and Welfare (See Appendix). Wage 

                                                           
2 The term innovation, was used in the KKP model, but these are often referred to as the error term in 

econometric textbooks.  For the moment we call them innovations for the convenience of making the direct 

comparison with the specification of the KKP model. 
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data are surveyed annually, so it is feasible to build up a panel set covering several time periods. In 

this research, a thirty year panel dataset ranging from 1977 to 2006 will be used to estimate the key 

parameters of the NEG model. 

In order to explore the wage data and in particular, the spatial pattern of the data, we conduct a 

mapping of the wage data for the manufacturing sector in 2000 (see figure 1). The wage in the 

manufacturing sector in Tokyo-to is the highest in Japan3. The average wage in Tokyo is 6290.99 

thousand yen per year, while in the prefectures with lower wages, such as Aomori in the north of 

Japan, manufacturing workers only earn 3007.40 thousand yen per year. The wage pattern shows that 

the comparatively richer prefectures are located along the coastline of the Pacific Ocean between 

Kanto and Kansai. In the southern part of Japan, particularly Kyushu island, wages are again 

generally low, although Fukuoka is an exception with a comparatively high average wage. 

 

 

Figure 1 Wage in the manufacturing sector in 2000 (per capita).  

4.2 Measuring market potential 

     Market potential is composed of three components, sY ,
M

rsT , sG . sY means total income in 

prefecture s. It reflects the purchasing power in each prefecture. The total taxable income of each 

prefecture collected by the tax office of the Ministry of Internal Affairs and Communications is used 

to measure sY . It is possible to use another data set for sY , namely the total residents’ income of each 

prefecture published by the Economic and Social Research Institute of the Cabinet Office. However, 

total residents’ income suffers from a data consistency problem. Before 1996, the data were surveyed 

and tabulated according to SNA68 (System of National Accounts 68). After 1996, the Japanese 

government adopted a new standard namely SNA93 (System of National Accounts 93). It proves to 

                                                           
3 See Figure1a  Japanese prefectures in Appendix 
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be difficult to construct a consistent panel data set of total residents' income across two accounting 

systems4.   

     The second component, 
M

rsT , means transport costs for manufactured goods between prefecture r 

and prefecture s. Transport costs can be measured either by traveling time or distance. According to 

previous empirical papers of NEG ( See for example Mion, 2004; Hanson, 2005), distance data are 

most widely used due to their availability. In many cases, researchers assume a geometric centre for 

each region or state, and then calculate the crow flight distance. The approach is to use the minimum 

distance between two geometric centres. 

     However, since more than 70% of the land of Japan is covered by mountains, and the economic 

hubs of prefectures are mostly located along the coastline, it is particularly inappropriate to assume 

the majority of economic activity happens in the geometric centre of a prefecture. In addition, it is 

important to consider how the mountainous landscape of Japan affects the transportation route 

network. Using the crow flight distance as a measure of transport costs, it is possible to introduce 

considerable bias since real transportation networks must reconcile with the topography of Japan. On 

the other hand transportation networks in the real world, like road systems, are too complex to analyze. 

For example, from one economic centre to another, there are many alternative roads which provide 

different distance measures between these two points. 

     One feasible and pragmatic measure of transport costs is to look at the railway network of Japan. 

Railway transportation in Japan is one of the most important means of passenger transport, especially 

for mass and high-speed travel between cities as well as for commuter transport in and around 

metropolitan areas. Among advanced economies, the relative share of railroads in total passenger 

transport in Japan is high. For example, there are more than 27,000 kilometers of rail lines 

crisscrossing Japan. In fiscal 2006, Japan’s railways carried 22.24 billion passengers5. In comparison, 

Germany has over 40,000 kilometers of railways, but in 2008 carried only 2.2 billion passengers per 

year6. 

      Figure 2 shows the railway network in Japan. Green lines delineate the borders of prefectures. 

Blue lines are the railway networks operated by the JR group. Grey lines are the rails owned by non-

JR private companies. Red lines (only a very few are shown on the map) are operated by local 

governments. As can be seen on the map, the railways cover every prefecture. Islands such as 

Hokkaido, Kyushu, and Shikoku, are linked with Honshu via railways. For instance, Hokkaido and 

Honshu are connected through the Seikan Tunnel, a 53.85km (33.46 mi) railway tunnel under the sea 

bed. 

     Transport costs between different prefectures will be measured by the traveling distance across the 

railway network between two economic centres. The economic centre of each prefecture is assumed 

to be the major railway station of each prefecture. Usually a city develops around its central railway 

station and radiates towards suburban areas. This phenomenon can be seen in many cases of urban 

development in Japan. The distance data for the railway network are available by using route planner 

in the search engine of Yahoo Japan. If there exists more than one route which links two stations, the 

criterion of route selection is based on minimum distance. 

                                                           
4 This issue was discussed with Prof Hiroki Tanaka of Doshisha University, Japan, who was once a researcher 

for the Economic and Social Research Institute of the Cabinet Office. Prof. Tanaka (personal communication) 

pointed out that total taxable income is unadjusted nominal data, and is not influenced by the change to the 

System of National Accounts, which makes it more suitable for 30 year panel research that spans the year 1996. 
5 “Annual Report of Rail Transport Statistics, 2008” by Ministry of Land, Infrastructure and Transport, Japan. 
6 “Rail transport in Germany” Wikipedia article 2008 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Figure 2 Railway network in Japan  (1999) 
(Source: the author using the database of JMC997 of Mapinfo) 

     Admittedly, economic flows from one prefecture to another may happen through all sorts of 

channels, but railway transportation certainly plays an essential role in accounting for the flows 

between the major economic centres of different prefectures. 

     In addition to inter-prefecture transport costs, consideration needs to be given as to how within-

prefecture transport costs are to be incorporated into determining market potential. According to the 

original NEG texts (Fujita et al,1999), within-prefecture transport costs are assumed to be unity 

(Approach1). This implies that there are no internal transport costs involved in the calculation of 

market potential within each prefecture. With this assumption, the total income of each prefecture, 

which reflects market size, would play a more important role in the calculation of its market potential, 

since it is not deflated by any measure of within-prefecture transport costs (eg. if 2 , then

11  ). Another approach was first suggested by Head and Mayer (2003). They propose an 

assumption that consumers are supposedly located evenly on a disk with area K  equal to the region 

in question, while manufacturing industries concentrate in the centre of the disk. In this setting, an 

average distance between the centre and consumers is calculated as 

5.0

3

2




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





K
 (Approach 2).   

     In order to have a better understanding of the implications of these two approaches to measuring 

internal transport costs  we simulate market potential under both. Market potential is calculated using 

the term in square brackets in (1). Calculations are simplified by not considering the effects of the 

price index of each prefecture. The price index is set equal to unity everywhere in Japan. This makes 

the definition of market potential closer to that suggested by Harris (1954) and enables us to see more 

clearly how different assumptions about internal transport costs influence the spatial pattern of market 

potential. The elasticity of substitution ( ) is assumed to be 2. The total income data used for the 

simulation are total residents’ income in 2000.  

     From Figure 3, it can be seen that the income of Tokyo-to is the highest in Japan, and is even 

double the income of its rich neighbours such as Saitama-ken, Chiba-ken and Kanagawa-ken. It is 

also evident that several prefectures show comparatively higher total income. These prefectures 

include Tokyo-to, Kanagawa-ken, Aichi-ken, and Osaka-fu. In Kyushu Island, Fukuoka-ken has the 

                                                           
7 JMC99 by Mizsui Zosen Systems Research Inc. Japan.  www.msr.co.jp/mapinfo/ 
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highest income compared with the other prefectures on the island. The total income of Hokkaido in 

the north end of Japan is comparatively higher than its neighbouring prefectures.  

 

Figure 3 Total residents’ income in 2000 

 

 

Figure 4 Thematic map of market potential in 2000 (Approach 1 2  1iiT ) 
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     Figure 4 is a thematic map of market potential with internal transport costs set to unity. Tokyo-to 

has the highest value (58290000). This value is almost double the value of the second highest, 

Kanagawa-ken (31819000). Osaka-fu of Kansai area has the third highest market potential (29782000). It 

is worth noting that prefectures around Tokyo-to generally have higher values of market potential. 

These prefectures are Saitama-ken, Chiba-Ken, and Kanagawa-ken. The only exception is 

Yamanashi-ken. This is partly because the economic development of Yamanashi-ken is strongly 

limited by its mountainous topography. For example, Mt. Fuji, the highest mountain of Japan 

(elevation 3776 m), is located in this prefecture. The total income of Yamanashi-ken (2530883 

million yen) is less than one tenth that of Kanagawa-ken (28530359 million yen). Also, Kofu station 

(the major railway station in Yamanashi-ken) is further from Tokyo station compared to other major 

stations surrounding Tokyo-to. This implies the purchasing power in Tokyo-to contributes less to the 

market potential of Yamanashi-ken since it is deflated by a higher transport cost. 

 

 

Figure 5 Thematic map of market potential (Approach 2 2  iiT
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) 

     Figure 5 is based on approach 2. Compared with Figure 4 which was created by applying the same 

parameters, but treating the internal transport costs as unity, certain parts of Figure 5 are not 

consistent with our general knowledge of the economic geography of Japan. For example, the market 

potential of Hokkaido is extremely low. Given the fact that Hokkaido has quite a significant amount 

of total residents’ income, it should have a certain level of market potential in its own right. Since the 

area of Hokkaido is much larger than most of the other prefectures of Japan, its internal transport 

costs (105.33km) are much higher. The total residents’ income of Hokkaido is deflated by a 

significantly larger denominator, which results in a smaller value for market potential. In addition, we 

find that the market potential of Shiga (2604245) is slightly higher than Kyoto (2574861). This again 

is contrary to our intuition, since the total residents’ income of Kyoto (7766092 million yen) is much 

higher than that of Shiga (4481507 million yen). This is due to the fact that the internal transport costs 

of Kyoto (25.55km) and Shiga (23.84km) are higher than the external transport cost between these 

two prefectures (10km). The geographical reality is that the economic centre, Otsu city, of Shiga 
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prefecture is located very close to the border between Shiga and Kyoto. That is why the railway 

transportation distance between Shiga and Kyoto is short. From this example, we conclude that if the 

internal transport costs are greater than the between-prefecture ones, a measurement bias will 

certainly appear in calculating market potential. This measurement issue of market potential is pointed 

out by Head and Mayer (2003) as well.  

The correlation coefficient between the two sets of market potential values  is 0.87 which suggests 

that the difference between these two approaches to measuring internal transport costs is not great. 

However, from Figure 5, we concluded that in certain cases, the second approach  introduces more 

prefecture-specific measurement error than the first approach Hence, in the following empirical work, 

especially estimating the wage equation, we adopt the first approach to measuring market potential8. 

In this scenario, the internal transport cost of a prefecture is treated as unity.  

In terms of the price index ( sG ) of the wage equation, we use the regional difference index of 

consumer prices9 (RDI) as a measure for each prefecture. It is worth mentioning that the price index 

data at the prefectural/regional level was not available in most previous research. The use of local 

prices releases us from dependence on Hanson’s (2005) auxiliary equilibrium conditions, conditions 

that rest on somewhat unrealistic assumptions. However, we are aware of that the use of RDI at 

prefecture level necessarily introduces the prices of non-tradeables, which produces some disjuncture 

with the assumptions of the NEG model (Fujita et al., 1999). Nevertheless, the prices of  many 

manufacturing items are reflected in RDI, so we think RDI is the second best proxy to the price index 

( sG ) . the Figure 6 is drawn on the basis of the regional difference index of consumer prices in 2000. 

The index of Tokyo-to is regarded as the base here, and indicates that the cost of living in Tokyo is 

the highest in Japan. The indices of other prefectures are less than 100. Generally, consumer prices in 

the southern part of Japan, including Shikoku island and Kyushu island, are lower than elsewhere in 

the country.  

 

                                                           
8 where there is no clear empirical evidence to support one approach to intra-area distance calculation over 

another then both might be implemented to assess the sensitivity of results. 
9  A short description of the index is abstracted in Appendix. 
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Figure 6  Regional difference index of consumer prices in 2000 

4.3 Data for labour efficiency 

     As noted above, it is possible to augment the original NEG model by incorporating a labour 

efficiency variable. In this research, two variables which reflect labour efficiency across the spatial 

units of Japan will be considered in the empirical models separately. The first labour efficiency 

variable is constructed based on the concept of the percentage of the prefectural population with a 

final degree of Bachelor or above (including MA and PhD). The variable is calculated by dividing the 

number of people in the prefectural population who got their final degree as Bachelor or above 

(including MA and PhD) by the total size of the prefectural population. The data are published in the 

report of the population census of Japan (Kokusei Chosa Hokoku). This variable is named EDU. The 

second labour efficiency variable is the local quotient of professional and skilled workers. This 

variable is named LQ. We use the number of professional and skilled workers10 and employee data as 

inputs to calculate the local quotient of each prefecture. Our assumption is that a region with a higher 

local quotient of professional and skilled workers reflects higher labour efficiency in that region. 

Table 1  Descriptive statistics of the panel data  

 

Wage1977-2006 LQ808590950005 EDU809000 Total taxable income1977-2006 

std 1042.5872 0.1116 0.0316 3999346600 

mean 3668.4529 0.955 0.0709 3148590370 

max 6783.9268 1.318 0.1929 26495845682 

min 1448.0772 0.741 0.0271 252353485 

Time 

periods 30 6 3 30 

Sample 

size 1410 282 141 1410 

 

5 The results of the empirical model fitting        

5.1 Empirical results for the wage equation of the NEG 

     Based on the KKP spatial panel framework, we estimate the wage equation of the NEG. In the first 

estimation of the wage equation (see equation 10), we assume that the elasticity of substitution ( ) is 

equal to two. According to the theoretical assumption that   is at least greater than one, assuming the 

value of   as two is a reasonable starting point. This value is used in the construction of the market 

potential variable. Market potential is composed of three elements: total income in each prefecture, a 

price index in each prefecture, and transport costs between prefectures. At this stage, the price index 

of each prefecture is not considered in the construction of the market potential. This simplification 

means we treat the price index as unity throughout Japan. The formula for market potential is now 

similar to Harris’s (1954) definition of market access.  

       
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1

1 
                                                                                                                  (12) 

For example, if   is equal to 2, equation (12) is the same as Harris’ market access.  

                                                           
10 “F2601 專門的技術的職業從事者數” According to the definition of professional and skilled workers, which 

was given by the Statistics Bureau of Japan, it includes natural science researchers, social science researchers, 

medical doctors, chartered accountants, professional electronic engineers, etc. 
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The regressor matrix ( NX ) contains two variables. The first variable is a constant term and the 

second is the log value of market potential (ln MP) for the 47 Japanese prefectures from 1977 to 2006. 

NY  is a vector which contains the log value of wages in the manufacturing sector of the 47 

prefectures from 1977 to 2006. The spatial weights matrix ( NW ) is a standardized contiguity matrix. 

The endogeneity issue surrounding wage and market potential in the wage equation has been 

discussed in section 3.2. In practice, we need to employ the instrumental variable (IV) technique to 

circumvent the inherent endogeneity problem. It has been widely suggested in the econometrics 

literature (see for example Davidson and Mackinnon, 1993, Greene, 2011) that under the assumption 

of weak exogeneity, the lagged value of the explanatory variable is a feasible candidate as an 

instrument. In this case, we use the log value of market potential from 1976 to 2005, with   assumed 

to be 2 and a constant vector of ones as instruments. 

The results for this analysis are shown in the second column of Table 2. The estimate of the 

regression parameter for ln MP equals the inverse value of the elasticity of substitution ( ). Hence, in 

the first estimation, we can calculate ̂  by taking the inverse value of the estimate. ̂  is equal to 4.16 

(95% confidence interval: 95.0)18.414.4Pr(  ) and is significant with t=10.95.  
*2R  is a 

measure of goodness of fit, which is calculated on the basis of the squared correlation between 

observed and fitted values. The high 
*2R  (0.7548) suggests that the spatial panel model fits the data 

well. However, the approximate 95% confidence interval for   is 4.14 to 4.18, which excludes the 

assumed value of 2  which was used to construct market potential. This indicates that it is 

probably more appropriate to assume elasticity is close to 4 for the purpose of re-constructing market 

potential for the following estimation. After a few iterations, the estimated elasticity of substitution 

(̂ ) converges to 4.88 and is significant with t=9.67. In this case, the estimated elasticity is equal to 

the assumed one. The calculated confidence interval is 95.0)91.486.4Pr(   .  The results are 

tabulated in the third column of Table 2. 

Table 2 FGS2SLS11 estimates for the NEG model  

 Assumed 

elasticity = 2 

Assumed 

elasticity = 4.88 

Assumed  

elasticity = 5 

Assumed 

Elasticity=5.55 

Estimate(t ratio) Estimate(t ratio) Estimate (t ratio) Estimate (t ratio) 

ln MP 0.2402 (10.95) 0.2048 (9.67) 0.1828 (9.34) 0.1799 (9.29) 

Constant 2.9842 (6.3) 3.7898 (8.36) 0.9548 (1.24) 0.6251 (0.77) 

  0.3655 0.3941 0.4037 0.4056 

2

v  0.0124 0.0130 0.0146 0.0148 

2

1  0.4341 0.4742 0.4482 0.4443 

                                                           
11 FGS2SLS (feasible generalized spatial two stage least squares) was discussed in section 3.2. Hereafter, we use 

FGS2SLS to represent the feasible generalized spatial two stage least squares estimator.  
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*2R  0.7548 0.7470 0.7458 0.8638 

Time 

periods 

30 30 30 30 

Sample 

size 

1410 1410 1410 1410 

 

In the following estimations, we adopt the original formula for market potential from Fujita et al, 

(1999, p.55). This formula was described in section 2. The only difference between this one and the 

one used in previous estimations lies in including the price index of each prefecture as one of the 

elements in the construction of market potential. Allowing for variation of prices reflects competition 

effects, which will be stronger in larger regions (where more varieties of manufactured goods are 

produced). Again, for the independent and dependent variables, it is still a 30 year panel data set with 

data ranging from 1977 to 2006 across the 47 Japanese prefectures. For the instrumental variables, we 

use the log value of market potential from 1976 to 2005 across the 47 prefectures and a constant 

vector of ones. In the first estimation, the market potential is constructed by assuming the elasticity of 

substitution to be 5. Following the logic of the previous estimations, we found the estimated elasticity 

of substitution ( ̂ ) converges to 5.55 with the estimated 95% confidence interval,

95.0)59.553.5Pr(   which includes the assumed elasticity value of 5.55 and is significant 

with t=9.29 (See the fourth and fifth columns of Table2). A high goodness of fit measure (0.86) shows 

that the wage equation through the KKP panel framework fits well to the Japanese spatial economic 

data.  

We now add a labour efficiency variable to the model as a control variable. Since the EDU data are 

only available every ten years, we have to reduce our panel to three time points (1980, 1990, and 

2000). The sample size is now reduced to 141. The dependent variable is the log of the wage in the 

manufacturing sector in 1980, 1990, and 2000. There are three independent variables including the log 

of market potential in 1980, 1990, and 2000, the log EDU in 1980, 1990, and 2000, plus a constant 

vector of ones. For the purpose of implementing instrumental variables estimation we use the 

following variables: the log of market potential in 1979, 1989, and 1999, the log EDU in 1980, 1990, 

and 2000, plus a constant vector of ones. The results are tabulated in the second column of Table 3. 

The major finding is that ln EDU is significant. The estimated coefficient for ln EDU can be 

interpreted as implying that a 1% increase in the proportion of the population awarded a Bachelor’s 

degree or higher will contribute a 0.58% increase to the wage in that prefecture. However, the 

estimated coefficient for ln MP is not significant. We also found the correlation coefficient between ln 

MP and ln EDU to be 0.74. The high degree of correlation might be explained by reference to the 

literature on spatial sorting of skills, which argues that more able workers tend to move to larger cities 

(Glaeser and Mar´e, 2001; Puga, 2010). From the modelling point of view, the high correlation 

between these two vectors means that model fitting will be affected by multicollinearity between 

these two independent variables. The main unwanted consequence of multicollinearity is that the 

variances of the least squares estimates of the parameters of the collinear variables are large (Kennedy, 

2003). We suspect that the lack of significance of the ln MP covariate is due to the large variance of 

the estimate created by this collinearity issue.  

In addition, we also conducted Sargan’s test of independence between the instruments and the IV 

residuals. The null hypothesis is that all instruments are exogenous. Sargan’s statistic is calculated in 

two steps. Firstly, regress IV residuals on all exogenous variables (the instrumental matrix). Secondly, 

obtain the 
2R  value from the first step regression model. The test statistic is 

2nRS  , which is 

distributed as 
2

rm , where m-r is the number of instruments minus the number of endogenous 

variables. n  denotes the size of sample. The calculated Sargan’s statistic (4.8362e-022) is too small 

to reject the null hypothesis, hence, these instruments are appropriate. 
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Table 3 FGS2SLS estimates for the NEG model with a labour efficiency variable 

 

 

Assumed elasticity = 5.55 Assumed elasticity = 5.55 

Estimate (t ratio) Estimate (t ratio) 

ln MP 0.0126    (0.58) 

95% C.I. = [0.0089,0.0163] 

0.1472    (7.10) 

95% C.I. = [0.1449,0.1495] 

ln EDU 

 

ln LQ 

0.5754   (10.83) 

95% C.I. = [0.5667,0.5841] 

 

 

0.2615    (1.36) 

95% C.I. = [0.2391,0.2839] 

Constant 9.1866    (9.05) 2.0304    (2.33) 

  0.5022 0.5092 

2

v  0.0029 0.0104 

2

1  0.0253 0.0726 

*2R  0.9473 0.8030 

Sargan’s 

statistic 

4.8362e-022 2.7451e-023 

Time 

periods 

3 6 

Sample 

size 

141 282 

      

     Since the correlation between ln EDU and ln MP is so strong, we think there might be other 

variables which can also be used to reflect labour efficiency across different spatial units. A feasible 

variable is the local quotient (LQ) for professional and skilled workers. The data for LQ are available 

every five years. The data used for the estimation are as follows: 

Dependent variable: log wage of manufacturing sector in 1980,85,90,95,00,05.  

Independent variables: [log MP in 1980,85,90,95,00,05; log LQ in 1980,85,90,95,00,05; constant] 

Instrumental variables: [log MP in 1979,84,89,94,99,04; log LQ in 1980,85,90,95,00,05; constant] 
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     The results are shown in the third column of Table 3. Compared with the results shown in the fifth 

column of Table 1, the estimate of the coefficient of ln MP is slightly smaller. This suggests that the 

newly introduced control variable, ln LQ, takes some explanatory power from ln MP. The coefficient 

of ln MP is now significant with a large t ratio (7.1). The estimate for ln LQ is also significant 

(although not as significant as that of ln MP) with the t ratio equal to 1.36 (P-value12=0.087). The 

calculated Sargan’s statistic is very small, which suggests the instrumental variables are appropriate. 

The goodness of fit ( 803.0*2 R ) indicates that the model fits the data well. So far the results from 

this estimation are satisfactory with the signs of the estimates consistent with the theoretical 

expectations as well as being significant. This means variation in the manufacturing wage in Japan is 

well explained by the market potential of NEG providing the heterogeneity in labour efficiency across 

different prefectures is controlled. 

     In the next estimation, we run a fixed effects panel model with spatially autoregressive 

disturbances. The fixed effects are calculated as the deviations from the mean intercept. By default the 

intercept is automatically added by the routine.  In addition to the automatically added intercept, the 

other input variables are defined as follows: 

Dependent variable: log wage of manufacturing sector in 1980,85,90,95,00,05. 

Independent variables:[ log MP in 1980,85,90,95,00,05;  log LQ in 1980,85,90,95,00,05] 

In the previous estimations (KKP random effects model), we know that the elasticity of 

substitution converges to 5.55. Hence, we take this value as a start point for the fixed effects model. 

The results are shown in the second column of Table 4.  

Table 4  ML estimates for the NEG model with LQ  

 Assumed elasticity 

= 5.55 

Assumed elasticity 

= 3 

Assumed elasticity 

= 1.55 

Estimate ( t ratio) Estimate ( t ratio) Estimate ( t ratio) 

ln MP 0.3181  (9.18) 

95% C.I. = 

[0.3141,0.3221] 

0.5364 (18.99) 

95% C.I. = 

[0.5349,0.5379] 

0.6457 (37.21) 

95% C.I. = 

[0.6448,0.6466] 

lnLQ 0.3605  (3.05) 0.4425 (3.66) 0.6384 (5.68) 

intercept -5.1377 (-13.77) -8.1175 (-8.12) -8.0543 (-39.74) 

  0.8909 (47.32) 0.7620 (22.29) 0.5710 (11.01) 

2R  0.7883 0.9350 0.9721 

Time 

periods 

6 6 6 

                                                           
12 The t ratio to P value conversion is calculated using the following website. 

http://www.danielsoper.com/statcalc3/calc.aspx?id=8 
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Sample 

size 

282 282 282 

Log 

likelihood 

460.78 477.23 511.42 

      

     The estimated coefficients for both ln MP and ln LQ are significant and signed in line with 

theoretical expectations. The estimated elasticity of substitution (1/0.3181=3.14) is smaller than the 

assumed value. The estimated spatial autoregressive parameter (  =0.8909; t=47.32) is significant  

indicating a significant spatial autoregressive process in the model’s disturbances. The 
2R  value 

(0.7883) shows that the model fits the data well. However, according to the calculated t-ratios, the 

fixed effects (not fully listed here), in general, are not significant at the   05.0  significance level. 

     In the next estimation, the elasticity is assumed to be 3. The empirical results are better than the 

previous ones (assumed elasticity=5.55) with a higher R-squared value (0.9350) and Log-likelihood 

value (477.23). However, the estimated elasticity (1/0.5364=1.86) is still too distant to the assumed 

value.  After several iterative processes, we found the elasticity of substitution converges to 1.55 

(1/0.6457=1.55) with a very large t-ratio (37.21).  The goodness of fit is 0.9721 and the Log-

likelihood value equals 511.42.  The spatial  autoregressive parameter   and the coefficient of ln LQ 

are both significant with large t-ratios. The only concern with this fixed effects model is that the 

majority of the fixed effects are not significant (See Table 1a Fixed effects and t-ratios  in Appendix) 

given a significance level 05.0 . This implies that fixed effects play little role in explaining the 

wage variation across Japanese prefectures. 

      When reviewing the estimated results from both the KKP model and the fixed effects panel model 

with a spatial autoregressive error process, we conclude that the KKP model is the more appropriate 

choice since it models the endogenous relationship between wages and market potential. In addition, 

the estimated coefficients for both ln MP and ln LQ are significant and signed in line with theoretical 

expectations. The goodness of fit is high (0.8030). On the other hand, the fixed effects panel model 

also fits the data well, and market potential proves to be a significant variable in explaining the wage 

variation across Japanese prefectures, but the convergent estimate of the elasticity of substitution 

(1.55) departs from that of the KKP model (5.55). This is not beyond our expectation since maximum 

likelihood estimation does not account for endogeneity  so that estimates are likely to be biased.  

     Finally, the structures of these two spatial panel models are quite different. The KKP model 

structure involves three levels or hierarchies. The first level is a linear regression. The disturbance 

terms of the linear regression contain the spatial autoregressive process. This is the second level of the 

model. From the innovations of the spatial autoregressive process, the individual random effects and 

the error terms which vary over time and space are specified. This is the third level of the model. 

However, the fixed effects model has only two levels. The first level is a linear regression with 

individual fixed effects. The spatial autoregressive process is specified in the second level from the 

disturbance terms of the regression model at the first level. Hence, due to these structural differences, 

we are reluctant to jump into the debate on random versus fixed effects preferring the results of these 

two models to speak for themselves.  

6. Conclusion 

This research has re-examined the wage equation using a new approach, namely a spatial panel 

model, a new panel dataset of Japanese prefectures across thirty years not previously analysed, and a  

novel measure of transport costs between prefectures which can reflect the topographic reality of 

Japan as it impacts on the movement of goods and people. Through inclusion of such a measure of 

transport costs, this research has attempted to respond to the criticism of NEG levelled by “proper 

economic geographers” (Martin and Sunley, 2010).  These economic geographers argue that NEG 
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“neglects real places” (Martin, 1999 p.77). Whilst their criticism of NEG extends well beyond how 

transport costs are handled, the work here suggests how it may be possible to enrich research within 

the NEG tradition drawing on the insights of “proper economic geographers” and in so doing achieve 

a measure of synthesis between these two areas of research.  

     The estimates of the elasticity of substitution (𝜎) range from 4.88 to 5.55 which are quite close to 

the estimated results (ranging from 4.9 to 7.6) of Hanson (2005) based on the cross sectional county-

level data (3075 counties) of the United States of America. Both estimates are statistically significant 

which indicate that the NEG’s concept of market potential provides a plausible explanation of wage 

variation at the prefecture or county level. Whether the success of the NEG’s wage equation can be 

used to explain local level variation in the case of data recorded for smaller spatial units and at what 

level the true spatial process of wage variation can be properly depicted, calls for further empirical 

analysis. 
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Appendix 

“The survey aims at obtaining a clear picture of the wage structure of employees in major industries 

i.e., wage distribution by type of employment, type of work, occupation, sex, age, school career, 

length of service and occupational career, etc.”13 Since wage data are collected following a detailed 

classification, the nominal wage rate for manufacturing industry per capita per year is calculated as 

follows:  

The nominal wage rate of manufacturing industry per capita per year14={[regular monthly cash 

income per male worker of manufacturing industry*12+Bonus(male worker of manufacturing 

industry)]*the number of male workers in manufacturing industry+ [regular monthly cash income per 

female worker of manufacturing industry*12+Bonus(female worker of manufacturing industry)]*the 

number of female workers in manufacturing industry}/[ the number of male workers in manufacturing 

industry+ the number of female workers in manufacturing industry]. 

The price index ( sG ) 

The Regional Difference Index of Consumer Prices (RDI) is an index that indicates the regional 

differences of the price level based on the average prices of Japan of goods and services purchased by 

households nationwide. The RDI is calculated from the result of the Retail Price Survey (RPS) (the 

Trend Survey and the Structural Survey ). The items to perform the calculation of the RDI (hereinafter 

“RDI items”) are the items used in the calculation of the CPI, except for the “imputed rent” and the 

“items surveyed only in Okinawa-ken”. (The Calculation method of the Regional Difference Index of 

Consumer Prices is downloadable from the website of the Statistics Bureau, Ministry of Internal 

Affairs and Communications, Japan)15  

                                                           
13 http://www.mhlw.go.jp/english/database/db-slms/dl/slms-04.pdf 
14The calculation method was further vindicated by Prof Eiichi Yamaguchi of Doshisha University 

  The original Japanese: {[きまって支給する現金給与額(男性労働者)*12+年間賞与その他特別給与額(男

性労働者)]* 男性労働者数+[きまって支給する現金給与額(女性労働者)*12+年間賞与その他特別給与額

(女性労働者)]* 女性労働者数}/[男性労働者数+女性労働者] 

15http://www.stat.go.jp/english/data/kouri/kouzou/pdf/estimation_e.pdf 
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Figure 1a  Japanese prefectures (source: Wikipedia) 

 

Table1a   Fixed effects and t-ratios  (Assumed elasticity = 1.55) 

1.Hokkaido -0.1668 (-0.82) 17.Ishikawa 0.0508  (0.25) 33.Okayama 0.0670  (0.33) 

2.Aomori 0.0288  (0.14) 18.Fukui 0.0658  (0.32) 34.Hiroshima 0.0758  (0.38) 

3.Iwate 0.0546  (0.27) 19.Yamanashi 0.1021  (0.50) 35.Yamaguchi 0.3041  (1.51) 

4.Miyagi -0.0347 (-0.17) 20.Nagano 0.0429  (0.21) 36.Tokushima 0.0484  (0.24) 

5.Akita 0.0555  (0.27) 21.Gifu -0.0511 (-0.25) 37.Kagawa 0.0936  (0.47) 

6.Yamagata 0.0224  (0.11) 22.Shizuoka -0.0135 (-0.06) 38.Ehime 0.1447  (0.72) 

7.Fukushima 0.0315  (0.15) 23.Aichi -0.1793 (-0.85) 39.Kochi -0.0195 (-0.10) 

8.Ibaraki 0.0549  (0.27) 24.Mie 0.1143  (0.55) 40.Fukuoka -0.0885 (-0.44) 

9.Tochigi 0.0977  (0.47) 25.Shiga 0.0385  (0.19) 41.Saga 0.1693  (0.85) 

10.Gumma 0.0678  (0.33) 26.Kyoto -0.0874 (-0.43) 42.Nagasaki 0.1947  (0.98) 

11.Saitama -0.3994 (-1.91) 27.Osaka -0.2883 (-1.38) 43.Kumamoto 0.0947  (0.48) 

12.Chiba -0.3116 (-1.50) 28.Hyogo -0.2035 (-0.99) 44.Oita 0.2131  (1.07) 

13.Tokyo -0.6741 (-3.23) 29.Nara -0.0859 (-0.43) 45.Miyazaki 0.1752  (0.88) 

14.Kanagawa -0.5282 (-2.56) 30.Wakayama 0.1811  (0.89) 46.Kagoshima 0.1089  (0.55) 

15.Niigata -0.0429 (-0.21) 31.Tottori -0.0063 (-0.03) 47.Okinawa 0.3161  (1.63) 

16.Toyama 0.0814  (0.40) 32.Shimane 0.0852  (0.42)   
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