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Abstract

Economic model predictive control, where a generic cost is employed as the

objective function to be minimized, has recently gained much attention in model

predictive control literature. Stability proof of the resulting closed-loop system

is often based on strict dissipativity of the system with respect to the objective

function. In this paper, starting with a continuous-time setup, we consider the

‘discretize then optimize’ approach to solving continuous-time optimal control

problems and investigate the effect of the discretization process on the closed-

loop system. We show that while the continuous-time system may be strictly

dissipative with respect to the objective function, it is possible that the resulting

closed-loop system is unstable if the discrete-approximation of the continuous-

time optimal control problem is not properly set up. We use a popular example

from the economic MPC literature to illustrate our results.

Keywords: Economic Model Predictive Control, Dissipativity, Stability,

Discretization, Direct Collocation

1. Introduction

Economic model predictive control (e-MPC), a model predictive control

(MPC) approach to the optimal control of systems has recently gained much
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popularity. The main difference between e-MPC and existing MPC approaches

is the nature of the objective function being optimized. While conventional

MPC approaches employ a positive-definite function that minimizes deviations

from desired set-point, the objective function in e-MPC is a generic cost that is

related to the economics of the system’s operation.

Two major techniques exist in the literature for designing digital controllers

for systems: the emulation method and the direct design method [1–3]. In the

emulation method, the controller design is done in the continuous-time domain

followed by a discretization of the controller. In the direct design methodology,

the digital controller is designed directly using a discretized model or a discrete

approximation of the system. While emulation methods do exist for MPC, most

standard MPC settings use a direct design that involves discretizing both the

system’s model and objective function.

Of great importance in the context of economic-MPC is the dissipativity of

the system with respect to the economic objective as this is one of the conditions

on which the stability proof for the closed-loop system is often based. It has

been shown [4, 5] that strict dissipativity of the system with respect to the eco-

nomic cost plays a central role in the stability proofs of the closed loop system.

It has also been shown in the economic-MPC literature that if a system is dissi-

pative with respect to the economic objective, then static equilibrium operation

of the system is optimal [5–7]. It is therefore important to know what happens

to the dissipativity property when the continuous-time setup is ‘discretized then

optimized ’ as done in the direct design method. Is it possible to have a dissi-

pative continuous-time setup and the discretized setup not dissipative? Under

what circumstances can these happen and how can we avoid them?

These are the questions we raise and attempt to answer in this paper. We

show that due to the approximate discretization of the underlying continuous-

time optimal control problem, it is possible to lose the system’s dissipativity

(with respect to the given economic objective) hence, possible loss of stability

of the closed-loop system. We also show that the conventional MPC scheme

(where the cost function is designed to be positive-definite) is immune to such
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behaviour.

This paper is structured as follows: Section 2 introduces the problem state-

ment. The effect of approximate discretization on a linear-quadratic optimal

control problem is discussed in Section 3. The effect of approximate discretiza-

tion is extended to direct transcription methods for solving optimal control

problems in Section 4 with the focus on direct collocation methods. Section 5

contains a popular example from e-MPC literature while Section 6 concludes

the paper.

2. Preliminaries

In this paper, we consider the continuous-time, finite horizon optimal control

problem

J∗T (x) = min
u
J(x,u) ,

∫ T

0

lc(x(t), u(t)) dt

subject to


ẋ(t) = f(x(t), u(t)) ∀t ∈ [0, T ]

x(t) ∈ X, u(t) ∈ U , ∀t ∈ [0, T ]

x(0) = x0, x(T ) = xs

(1)

where x0 is the initial condition and the pair (xs, us) that satisfies

lc(xs, us) = min
x,u
{lc(x, u) | f(x, u) = 0, x ∈ X, u ∈ U} (2)

is defined as the optimal static equilibrium. The constraint sets X ⊆ Rn, U ⊂

Rm with X× U assumed compact. This optimal control problem is at the core

of model predictive control of systems where (1) is carried out in a receding

horizon manner. The cost function lc(x(t), u(t)) here is assumed generic. The

direct design approach to solving (1) is to discretize it by the use of exact or

approximate discretization methods, and then optimize.

As stated in section 1, dissipativity of a system with respect to the given

cost function is important in the context of e-MPC as the stability proof of the

optimal controlled system often relies on this property. Hence, given a ‘dissi-

pative’ continuous-time setup that is approximately discretized, it is imperative
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to know if dissipativity is preserved. A review of the literature on preservation

of dissipativity shows that most of the work done is on finding supply rates

for which the discretized system (controller) is passive while some viewed dis-

sipativity preservation as preservation of positive-realness of the system [8–11].

However, dissipativity of the system as applied in e-MPC is with respect to a

given running (stage) cost. Hence, given a continuous-time system that is dissi-

pative with respect to a given supply rate, we seek to find out if this dissipativity

is preserved in the discretized setup and in cases where the explicit discretized

form is not available, how discretization affects the closed-loop system’s stability.

For analysis purpose, we consider linear systems with quadratic running

costs without restrictions on the definiteness of the cost. The origin is taken to

be the optimal static equilibrium. The use of a linear-quadratic setup makes for

ease of checking the dissipativity condition.

Definition 1. Consider the continuous-time system

ẋ = Acx+Bcu (3)

and the running cost

lc(x, u) = xTQcx+ uTRcu+ 2xTScu (4)

System (3) is said to be dissipative [12, 13] with respect to running cost (4) if

there exists a quadratic storage function, V (x) = xTPcx where Pc = PTc such

that for all x ∈ X, u ∈ U,

ẋTPcx+ xTPcẋ ≤ lc(x, u). (5)

This is implied by the existence of a Pc = PTc such that the Linear Matrix

Inequality (LMI) ATc Pc + PcAc −Qc PcBc − Sc
BTc Pc − STc −Rc

 ≤ 0 (6)

is feasible. If (6) holds with strict inequality, the system is said to be strictly-

dissipative with respect to the running cost.
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Definition 2. The discrete time system

xk+1 = Axk +Buk (7)

is said to be dissipative [5, 13, 14] with respect to the stage cost

ld(xk, uk) = xTkQxk + uTkRuk + 2xTk Suk (8)

if there exists a quadratic storage function xTk Pdxk where Pd = PTd such that

for all xk ∈ X, uk ∈ U and k ≥ 0,

xTk+1Pdxk+1 − xTk Pdxk ≤ ld(xk, uk) (9)

This is implied by the existence of a Pd = PTd such that the LMIATPdA− Pd −Q ATPdB − S

BTPdA− ST BTPdB −R

 ≤ 0 (10)

is feasible. If (10) holds with strict inequality, the system is said to be strictly-

dissipative.

We note that compactness of the constraint set and continuity of the quadratic

storage function imply lower boundedness of the storage function, which is re-

quired for dissipativity to hold. Hence, Pc and Pd can be non-negative, provided

the storage function remains lower bounded [4, 5, 15–17].

Assumption 2.1. The continuous-time system (3) is dissipative with respect

to the running cost (4).

3. Effect of sampling Period on First Order Approximation

In this section, we analyse the effect of the approximate discretization of

optimal control problem (1) when the dynamics is linear and the cost function

is quadratic. We note that there are established methods of computing the

exact discrete equivalent of (1) when dealing with a linear-quadratic setup [18,

19]. Hence while one may not necessarily use an approximate method in the

linear-quadratic case, analysing the effect of approximate discretization in the
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linear quadratic case will help understand the observed behaviour in the generic

case. We start with the exact discretization method under the assumption of

piecewise-constant inputs and take its first order approximation. This gives an

explicit form of the discrete setup in terms of the continuous-time setup hence

analysis linking both can be easily made.

Consider the continuous-time system (3) and running cost (4). Define

Φ(t) = eAct ,Γ(t) =

∫ t

0

eAcηBc dη.

Given a sampling time ts > 0, let (7) and (8) in Definition 2 be obtained by the

exact discretization of (3) and (4) (under the assumption of piecewise-constant

inputs i.e., zero-order-hold (ZOH)) such that:

A = Φ(ts) = Inx + Acts +
1

2!
A2

ct
2
s +

1

3!
A3

ct
3
s + . . .

B =

∫ ts

0

eActBc dt = Bcts +
1

2!
AcBct

2
s +

1

3!
A2

cBct
3
s + . . . Q S

ST R

 =

∫ ts

0

ΦT (t) 0

ΓT (t) Inx

Qc Sc

ST
c Rc

Φ(t) Γ(t)

0 Inx

 dt

(11)

where nx is the number of states. Expanding the discrete cost from (11) in

powers of ts yields the series expansion;

Q = Qcts +
1

2
(QcAc +ATc Qc)t

2
s + . . .

R = Rcts +
1

2
(STc Bc +BTc Sc)t

2
s + . . .

S = Scts +
1

2
(ATc Sc +QcBc)t

2
s + . . .

(12)

Taking the first order approximation of (11) and (12) gives

A = Inx + Acts, B = Bcts, Q = Qcts, R = Rcts, S = Scts.

where it is assumed that ts is in the set of all sampling periods that preserve

stabilizability and detectability of the system. Substituting for {A,B,Q,R, S},

the dissipativity inequality (10) can be written in terms of the continuous-time

setup as [
(I+AT

c ts)Pd(I+Acts)−Pd−Qcts (I+AT
c ts)PdBcts−Scts

((I+AT
c ts)PdBcts−Scts)T BT

c tsPdBcts−Rcts

]
≤ 0.
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Dividing through by ts and rearranging yields[
PdAc+AT

c Pd−Qc PdBc−Sc

BT
c Pd−ST

c −Rc

]
≤ −ts

[
AT

c PdAc AT
c PdBc

BT
c PdAc BT

c PdBc

]
(13)

If there exists Pd that makes (13) feasible for a given ts, then dissipativ-

ity of the system using this approximation is preserved. Furthermore given

{Ac, Bc, Qc, Rc, Sc}, an interval bisection approach can be applied to find val-

ues of ts for which a feasible Pd exists.

We now describe an algorithm for finding possible values of ts for which a

Pd exists that guarantees feasibility of (13).

Algorithm 3.1.

1. Since the sampling time cannot be negative, set the lower bound on ts as 0

and the upper bound as
tr
4

where tr is the rise time of the continuous-time

system. This upper bound on ts is chosen to ensure that there are at least

4 samples per rise time of the open-loop system [2].

2. Apply interval bisection to find the maximum ts for which a symmetric Pd

exists such that (13) is feasible. This is tu, the upper bound on the set of

ts that preserve dissipativity of the first order approximation.

3. Set the upper bound on ts as tu and apply interval bisection to find the

minimum ts for which a symmetric Pd exists such that (13) is feasible.

This is tl, the lower bound on the set of ts that preserve dissipativity of

this first order approximation.

Remark 1. It is possible that the set of sampling periods for which a symmetric

Pd that satisfies (13) is not connected. Hence it is good practice to search, using

Algorithm 3.1 iteratively by setting random ts ∈ (0, T ] as the upper bound in the

algorithm, till possible dissipativity-preserving ts have been found.

Remark 2. This algorithm is for the first order approximation of (11) under

zero-order-hold. It is possible that no ts exists that preserves dissipativity un-

der this approximation. This does not however imply that the discretized setup

cannot be dissipative. Indeed it is expected that when the system is under zero-

order-hold, for ts ∈ (0, T ], the discretized setup should be dissipative since the
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discretized setup under ZOH is an exact representation of the continuous-time

setup.

Next, we show that while it is possible that no ts exists that preserves dissi-

pativity when using an indefinite running cost (under first order approximation),

dissipativity is always preserved with the use of a positive (semi)definite running

cost.

Lemma 3.2. Consider (3). If

Qc Sc

STc Rc

 ≥ 0, then Pc = 0 satisfies (6) i.e (3)

is guaranteed to be dissipative with respect to (4).

Proof. By substituting Pc = 0 into (6) , we have

−

Qc Sc

STc Rc

 ≤ 0 (14)

which holds since

Qc Sc

STc Rc

 ≥ 0.

Theorem 3.3. Consider the continuous-time system (3) with running cost (4).

Then its discrete-time version (7) and (8) is always dissipative irrespective of

the sampling time ts when using the zero-order-hold discretization method or its

first order approximation provided

Qc Sc

STc Rc

 ≥ 0.

Proof.

First order approximation

The discretized setup is dissipative if there exists Pd and ts pair for which (13)

is feasible. Using Lemma 3.2, existence of Pd that satisfies this condition can

be confirmed by substituting Pd = 0 into (13) which yields−Qc −Sc
−STc −Rc

 ≤ −ts
0 0

0 0

 = 0. (15)

This is satisfied since

Qc Sc

STc Rc

 ≥ 0 irrespective of the value of ts.

Exact discretization
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Let Ae and Be represent the exact discretization of Ac and Bc respectively using

(11). LMI (10) can then be rewritten asATe PdAe − Pd ATe PdBe

BTe PdAe BTe PdBe

 ≤
 Q S

ST R

 . (16)

However, from (11), the exact discretized cost retains the definiteness of the

continuous-time cost. Hence, the right-hand-side of (16) is positive semi-definite

and there exists at least one Pd (Pd = 0) that satisfies (16) and ensures dissipa-

tivity of the discrete-time setup.

Remark 3. Theorem 3.3 further shows the inherent robustness of the classical

LQR (with a positive (semi)definite running) cost to discretization errors that

could have resulted from sampling the system i.e., the dissipativity property is

not lost through discretization. This does not however imply that the transient

performance will not be affected by discretization errors.

A common notion in sampled-data theory is that if the sampling period,

ts, is sufficiently small such that terms in t2s and higher in (11) and (12) can

be neglected, then a first order approximation of the exact ZOH discretization

approximates the exact ZOH discretization quite well and can be used in place

of the full discretization [20–22]. However, while this holds in the case of a

positive semi-definite cost, there is no guarantee that it holds when the cost

function is indefinite as in the case of economic MPC.

3.1. Example

We conclude this section by using an example to illustrate the results ob-

tained in this section. The origin is the optimal static equilibrium and the

closed-loop behaviour of the system is simulated using a variable step-size or-

dinary differential equation (ODE) solver, ode45, in Matlab with the relative

and absolute error tolerances of 10−3 and 10−6 respectively.

We consider the system (3) with

Ac =

 0 1

−2 −5

 , Bc =

0

1
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and running cost (4) with

Qc =

0 0

0 0

 , Rc = 0.1, Sc =

1

1


The continuous time system is strictly dissipative with respect to the given cost

function. On running Algorithm 3.1, it was observed that for sampling periods

satisfying 0.4385 ≤ ts ≤ 1.262 and 0 < ts ≤ 0.08 the dissipativity of the system

is preserved using the first order discrete approximation. The behaviour of the

closed-loop system using different sampling periods (with a constant horizon T )

when the controller is computed using MPC approach is simulated and shown

in Figure 1. As shown, the closed-loop system is stable for sampling periods

for which dissipativity is preserved (ts = 0.5 and ts = 0.05) and unstable for

ts = 0.1 which is outside the set of sampling intervals for which dissipativity is

preserved.

0 20 40 60 80
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0

1

2

x
1

Time step

 

 

t s = 0 .5

t s = 0 .1

t s = 0 .05

0 20 40 60 80
−10
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x
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Time step

0 20 40 60 80
−40

−20

0

20

40

u

Time step

 

 

t s = 0 .5

t s = 0 .1

t s = 0 .05

Figure 1: Comparison of the effect of different sampling periods using an initial condition

x(0) = [2, 1] with a terminal equality constraint, x(T ) = xs.
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4. Effect of Direct Transcription Method

The general direct method approach to solving optimal control problems of

form (1) is the use of direct transcription methods. The basic idea in direct

transcription is to approximate the infinite-dimensional problem (1) as a finite-

dimensional nonlinear programming (NLP) problem of the form

min
z
{f(z) | b(z) = 0, c(z) ≥ 0} (17)

where z is a finite-dimensional vector representing the optimization degrees of

freedom and f , b and c, all differentiable functions [23]. The resulting NLP is

then solved using NLP solvers. Variants of this method exist in literature [23–31]

however, we will consider only the direct collocation approach in this paper. In

this approach, the optimal control problem (OCP) is fully discretized by param-

eterizing the control and state profiles using piecewise polynomial functions over

M finite elements, t0 < t1 < . . . . < tT where the mesh size, hi = ti − ti−1 and

for equidistant meshes, h =
T

M
. The coefficients of these polynomial functions

are then treated as optimization variables (z), with the degree of the functions

depending on the number of collocation points used, details of which can be

found in [23, 32].

Of importance in direct collocation approach to solving (1) is whether the

returned solution converges (and at what rate it converges) to the true solu-

tion of the optimal control problem (1). While we do not attempt to give any

theoretical proof, we show that the returned solution from the resulting opti-

mization problem, when using direct methods, may not converge to the true

solution of the optimal control problem if the cost function is indefinite or non-

convex. This is in contrast to the convex cost case where convergence to the true

solution can be shown, for different direct solution methods [33–38]. We also

note however that no general convergence proof for direct collocation methods

of solving constrained optimal control problems exists in the literature.

We consider the linear-quadratic Example 3.1 again. To implement the di-

rect collocation method, we use the Matlab-based Imperial College London
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Optimal Control Software (ICLOCS) [39] to transcribe the OCP and solve the

resulting NLP using IPOPT [40], an interior point-based optimization algo-

rithm. ICLOCS uses Lobatto IIIA methods (which are implicit Runge-Kutta

methods) for collocation and the user has the option of selecting either trape-

zoidal (a second order Lobatto IIIA method) or Hermite-Simpson (a fourth order

Lobatto IIIA method) discretization methods. The trapezoidal method param-

eterizes the state profiles using piecewise quadratic polynomials and the control

profile with piecewise linear polynomials while the Hermite-Simpson method

parameterizes the state profiles using cubic piecewise polynomials and control

profile with quadratic piecewise polynomials.

The optimal control problem is defined as

min
u

∫ 25

0

lc(x(t), u(t)) dt

s.t


ẋ = Acx+Bcu.

x(0) = x0, x(25) = 0

−10 ≤ x ≤ 10, −10 ≤ u ≤ 10.

(18)

We note that the continuous time system is strictly dissipative with respect to

the given cost function. The meshes have been chosen to be equidistant with

the mesh size equal to the sampling interval, ts = 0.5.

The optimal control problem (18) is solved in a receding horizon manner

and the first element of the optimal input sequence from (18) is applied to

the continuous-time system at each time instant. The closed-loop behaviour

of the system is then simulated using a variable step-size ODE solver, ode45,

in Matlab. We compare the behaviour of the closed-loop system when (18)

is solved using the trapezoidal (TR), Hermite-Simpson (HS) and first order

approximation (described in section 3) discretization schemes. As shown in

Figure 2, only the first order approximation scheme resulted in an asymptotically

stable closed-loop system with TR yielding an oscillatory closed-loop behaviour

and HS not converging to the origin.

With ts ≤ 0.4, the HS method resulted in an asymptotically stable closed-
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Figure 2: Comparison of the different discretization methods using an initial condition x(0) =

[2, 1]. ts = 0.5.

loop system while for ts < 0.2 the TR method resulted in an asymptotically

stable closed-loop system. However, with any of these sampling intervals, the

first order approximation setup loses stability with Algorithm 3.1 showing that

the discretized setup is only dissipative for sampling periods within the intervals

0 < ts ≤ 0.08 and 0.4385 ≤ ts ≤ 1.262. This is a linear system and yet

different closed-loop performances result from different discrete approximations

of (18) with a non-convex cost despite the fact that the continuous-time system is

strictly dissipative with respect to the cost function. One could expect similar or

even more complex behaviours with nonlinear systems. When unstable closed-

loop trajectories like those in Figure 2 are observed, it is usually assumed that

the system is not dissipative with respect to the cost function especially when

the system is nonlinear and it may not be easy to verify dissipativity of the

continuous-time setup.

4.1. Rotating the Running Cost

The concept of ‘rotated’ stage cost is quite established in e-MPC literature

for proving stability of the closed loop system in discrete-time setting. The
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rotated stage cost is defined as a function of the original cost and the storage

function (assuming the system is strictly-dissipative). By showing that

1. The rotated cost is positive-definite provided the system is strictly dissi-

pative with respect to the original cost function

2. Replacing the original cost with the rotated cost in the optimal control

problem yields the same optimal input sequence,

the stability of the closed loop system is established [4, 5, 17] by treating the

optimal rotated cost function as a Lyapunov function. However, while this

equivalence between the rotated and original cost functions (and hence stability)

is proven for discrete-time systems, the examples given are usually continuous-

time systems. In what follows, we show that though this equivalence also holds

for the continuous-time case, there is no guarantee that it holds for the discrete

approximation if the discretization is not properly done i.e., while the rotated

cost function will result in an asymptotically stable closed-loop system, the

original cost function can result in an unstable closed-loop system.

Let us assume a differentiable storage function V (x) in Definition 1. Then

system (3) is strictly dissipative with respect to running cost (4) if

dV (x)
dt < lc(x(t), u(t))− lc(xs, us).

The rotated cost is defined as

Lc(x(t), u(t)) = lc(x(t), u(t))− dV (x)
dt − lc(xs, us)

which is positive-definite by definition. Replacing lc(·, ·) with Lc(·, ·) in (1) ,

J̃(x,u) ,
∫ T

0

Lc(x(t), u(t)) dt

=

∫ T

0

(lc(x(t), u(t))− dV (x)

dt
) dt− lc(xs, us)

=

∫ T

0

(lc(x(t), u(t)) dt−
∣∣∣∣T
0

V (x)− lc(xs, us)

=

∫ T

0

(lc(x(t), u(t)) dt + V (x(0))− V (x(T ))︸ ︷︷ ︸
independent of u

− lc(xs, us)︸ ︷︷ ︸
constant, from (2)

(19)
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Since the difference between J in (1) and J̃ in (19) is independent of the op-

timization variable (u) and both optimal control problems are subject to same

constraints, it can be concluded that optimal control problems (1) and (19) have

equivalent solution sets. Hence stability of the closed-loop system can be proven

by showing that J̃ is a Lyapunov function for the closed-loop system.

We revisit the example in (18). A storage function V (x) = xTPcx where

Pc =

6 1

1 0.5

 exists for which the continuous-time setup is dissipative. The

time-derivative of V (x) can be easily computed to get the rotated cost, Lc(·, ·),

before discretization. Since the rotated cost is positive-definite, the trajectory

obtained from the direct collocation is guaranteed to converge to the true solu-

tion of the optimal control problem. Closed-loop trajectories of the system using

the second order Lobatto IIIA method are shown in Figure 3. As shown, while
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Figure 3: Closed loop trajectories based on trapezoidal discretization using original and ro-

tated (subscript r) costs from initial condition x(0) = [2, 1].

the rotated cost yields a stable closed-loop system, the original cost resulted in

an unstable closed-loop system, using the same mesh size of 0.5.

While, for this particular example, a smaller mesh size could have resulted

in a stable closed-loop trajectory for the trapezoidal discretization using the
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original cost function, we note that the use of ts = 0.5 is not the main problem

as with this same mesh size, the rotated cost function yielded a stable closed-

loop system. Rather, the problem is the non-convexity of the cost function. If a

storage function is known, perhaps the cost can be rotated before optimization is

carried out. However, in the general case, the storage function is only assumed

to exist. Moreover, though knowledge of the real value of a storage function

is not essential for the asymptotic stability proof, it will be good practice as

observed in this example to search for a storage function and rotate the stage-

cost before setting up the optimization problem, especially when approximating

a continuous-time OCP.

5. Economic MPC Example

Having seen the possible pitfalls associated with solving the OCP (1) when

the cost function is non-convex, we consider a popular example from e-MPC

literature. The model considered is that of an isothermal continuous stirred

tank reactor [4, 16] with the dynamical equations

ċa =
u

VR
(caf − ca)− krca

ċb =
u

VR
(cbf − cb) + krcb

(20)

where VR=10 l is the volume of the reactor, caf =1 mol l−1 and cbf =0 mol l−1

are the feed concentrations with the rate constant, kr =0.4 l mol−1 min−1. The

input u is the feed flow-rate. The states of the system are the molar concentra-

tions of ca and cb and are constrained to x1, x2 ∈ [0, 1] with the input constraint

set U = {u ∈ R : 0 ≤ u ≤ 20}.

The economic objective of the process, based on price of product x2 and a

separation cost assumed directly proportional to the feed flow-rate [16], is given

as

le(x, u) = 30− 2ux2 + 0.5u (21)

The optimal static equilibrium of the process with respect to this economic

objective is x∗s =
[
0.5 0.5

]′
, u∗s = 4. This example has been considered in
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different economic-MPC [4, 16, 41–43] and approximated economic-MPC [44]

literature. In all these literature, the system was said to be non-dissipative

with respect to the cost function and that the closed-loop system cannot be

asymptotically stable unless the cost function is regularized. We note however

that no rigorous dissipativity analysis of the system has been carried out.

5.1. Approximated economic MPC

Using the approximated e-MPC approach in [44], local information about

the system is obtained from the second-order expansion of the system at its

static equilibrium. The linear system is obtained as

Ac = ∂ẋ
∂x

∣∣∣∣
xs

Bc = ∂ẋ
∂u

∣∣∣∣
us

The Hessian of the running cost is also obtained as

H =

Qc Sc

STc Rc

 = ∂2L(x,u,λ1,λ2)
∂z2

∣∣∣∣
zs

where L(·, ·, ·, ·) is the Lagrangian of the steady-state optimization problem,

z = [x u] and λi, i = 1, 2 are the Lagrange multipliers of the equality constraints

in the steady-state optimization problem. The local system can then be written

in form of (3) as:

˙̃x = Acx̃+Bcũ (22)

where x̃ = x− xs, ũ = u− us,

Ac =

−0.8 0

0.4 −0.4

 , Bc =

 0.05

−0.05


and running cost (4)

l(x̃, ũ) = x̃TQcx̃+ ũTRcũ+ 2x̃TScũ (23)

with

Qc =

0 0

0 0

 , Rc = 0, Sc =

1

0
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Though the Hessian is indefinite, a feasible Pc =

26.84 6.84

6.84 6.84

 was found that

satisfies LMI (6) which implies that the continuous-time local approximation is

locally dissipative around the static equilibrium hence static equilibrium oper-

ation of the local system is optimal.

Using the first order discrete approximation discussed in Section 3 and run-

ning Algorithm 3.1, it was discovered that no sampling period is able to preserve

the dissipativity of the system when using the first order approximation. How-

ever, using an exact discretization method (ZOH) and ts = 0.1, the discretized

setup was found to be locally dissipative.

Figure 4 shows the closed-loop trajectories of the local system from an initial

state x0 = [1 0.1] when discretized using a sampling time ts = 0.1. As shown,

the first order approximated setup is unstable as anticipated since no sampling

period is able to preserve the dissipativity of the system. The exact-discretized

system is in contrast asymptotically stable as shown.
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Figure 4: Comparison of closed-loop trajectories of the system using first order approximation

and exact ZOH discretization.
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5.2. Closed-loop Behaviour of the Full System

Having considered the local behaviour of the system around the optimal

static equilibrium and observed that the continuous-time system is locally dis-

sipative with respect to the cost function around the static equilibrium, we now

consider the real nonlinear system and objective function as defined in (20) and

(21). The optimal control problem was set up with the system’s dynamics de-

scribed by (20) and the running cost by (21). The approximate discretization

was obtained with direct collocation using a second order Lobatto IIIA method

and the closed-loop behaviour of the system is simulated using a variable step-

size ODE solver, ode45, in Matlab. The time horizon, T = 20 remains fixed

in all simulations with the terminal constraint x(T ) = xs. The behaviour of

the closed-loop system is considered in the case when the mesh size, h, is the

same as the sampling interval, ts, and when they are different. As shown in

Figure 5, with ts = 0.5, h = 0.1, the closed loop system is asymptotically stable

as against the unstable response obtained using ts = h = 0.5. Once again, no

regularization of the cost function has been done here. The difference in both

closed-loop trajectories is the way in which the discrete approximation was car-

ried out. We note that the closed-loop system was not asymptotically stable for

any value of ts chosen to be equal to h.

6. Conclusion

The effects of discretization of optimal control problems employing economic

objective functions have been investigated in this paper. Starting with the

explicit first order approximation of an exact discretization scheme, we showed

the effect of the sampling period and discretization method on dissipativity

(hence stability of the closed-loop system) when moving from a continuous-

time setup to a discrete-time setup. The importance of incorporating a storage

function (when available) was also highlighted. A popular example from the

economic MPC literature was used to illustrate these results.
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Figure 5: Closed-loop trajectories of the system with ts = h = 0.5 (dashed) and ts = 0.5, h =

0.1 (solid) from an initial condition x(0) = [2, 1].
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