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Abstract

The injection (creation) process of a straight screw dislocation is compared atomistically with elastodynamic continuum theory. A
method for injecting quiescent screw dislocations into a crystal of tungsten is simulated using non-equilibrium molecular dynamics.
The resulting stress fields are compared to the those of elastodynamic solutions for the injection of a quiescent screw dislocation.
A number of differences are found: a plane wave emission is observed to emanate from the whole surface of the cut used to create
the dislocation, affecting the displacement field along the dislocation line (z), and introducing displacement field components
perpendicular to the line (along x and y). It is argued that, in part, this emission is the result of the finite time required to inject
the dislocation, whereby the atoms in the cut surface must temporarily be displaced to unstable positions in order to produce the
required slip. By modelling this process in the continuum it is shown that the displacements components normal to the dislocation
line arise from transient displacements of atoms in the cut surface parallel to x and y. It is shown that once these displacements are
included in the elastodynamic continuum formulation the plane wave emission in uz is correctly captured. A detailed comparison
between the atomistic and continuum models is then offered, showing that the main atomistic features can also be captured in the
continuum.

c© 2016 Published by Elsevier Ltd.
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1. Introduction

The creation of dislocations is a key step in the evolution of the plastic response of a material [1]. In many
low strain rate applications, the density of dislocations is understood to increase via mechanisms such as Frank-
Read sources[2]. At higher strain rates or under intense loading, as in shock loading [3] or nano-indentation [4]
respectively, alternative dislocation generation mechanisms such as homogeneous nucleation might come into play
[5]. Heterogeneous nucleation of dislocations at crack tips, grain boundaries or second phase particles [6] may also
be a significant source of dislocations.

Dynamic Discrete Dislocation Plasticity (D3P) has recently been introduced to model plasticity at very high strain
rates through the creation and movement of dislocations using the time-dependent elastic fields of elastodynamics
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Cut y = 0, x > 0 x = 0, y > 0
Boundary condition uz(x, 0, t) = B
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Mapping x 7→ y,−y 7→ x x 7→ −y, y 7→ x

Table 1: Elastodynamic field components for a quiescent screw dislocation that is injected at t = 0 along x = 0 and y = 0, for two different positions
of the cut surface (either along the positive x or y axes). All the rest of field components are zero by construction[10]. Here µ is the shear modulus,
b is the slowness of transverse waves, B = |B| is the magnitude of the Burgers vector, r2 = x2 + y2, σyz and σxz are the non-zero stress components,
and uz is the displacement field. The branch cut of arctan(a) is assumed to be at Re[a] < 0 (i.e., the negative x-axis). Here ‘mapping’ refers to the
coordinate change to pass from the in-column cut convention to the other column’s cut convention.

[7, 8]. This paper considers the elastodynamic injection of straight screw (and edge) dislocations. Dislocations are
‘injected’ into the elastodynamic continuum as dipoles either at designated sources or randomly to simulate homoge-
neous nucleation. This is the closest one can get in a two dimensional model of dislocation dynamics, such as D3P,
to the reality of dislocation nucleation, which always involves the formation of loops or half-loops. The question
addressed in this paper is how the injection of a straight dislocation in an elastodynamic continuum maps onto the
same process in a crystal with a discrete atomic structure. For this purpose it is simpler to consider a straight screw
dislocation involving anti-plane strain. Although the question arose only because D3P is a two-dimensional treatment
it is nevertheless surprisingly interesting and revealing about the dynamics of dislocation nucleation in reality.

In an elastic continuum dislocations are usually modelled as Volterra defects involving a surface or ‘cut’ of vanish-
ing thickness on either side of which the elastic displacement field changes discontinuously by the Burgers vector B.
When the cut terminates inside the continuum a dislocation exists along the line bounding the cut. In this way the core
of a Volterra dislocation has vanishing width because it is a mathematical line, and the elastic fields are singular at the
core where they diverge to infinity. The injection of a Volterra dislocation is normally assumed to be instantaneous
[9], and modelled using a boundary condition of the type (cf.[10]):

uz(x, 0, t) =
B
2

H(x)H(t) (1)

where B = |B| and H(·) is the Heaviside step function. Eqn.1 describes a screw dislocation that is injected at t = 0 in
position (x, y) = (0, 0), with the dislocation line is along the z-axis; this problem was originally solved by Gurrutxaga-
Lerma et al.[10]. This boundary condition specifies that the cut or discontinuity be placed along the positive x-axis;
the position of the cut is a priori entirely arbitrary, and other options and conventions may adopted. For instance, table
1 summarises the elastodynamic field components for the case of the cut along the positive x-axis, and that in which
the cut is given along the positive y-axis. As can be seen, each case can be recovered from the other by appropriate
mapping of the coordinates x and y.

In an atomistic model of injecting a screw dislocation there are at least three significant points of departure from
the continuum model that has just been outlined. First, the finite separation of atoms in a crystal ensures that the cut,
across which the Burgers displacements of B/2 arise, has a finite thickness. Secondly, as the relative displacement
across the cut varies from zero to B during the finite time of the injection process, the bonding across the cut is altered
significantly and this gives rise to additional stress waves emanating from the cut not described in table 1. Thirdly,
the core has a finite width and the elastic fields do not diverge to infinity at the core. As will be seen in the next
section, the injection a screw dislocation into a crystal merely by replicating the displacements indicated by eqn.1 is
non-trivial.

Section 2 describes the difficulties of using eqn.1 as a method for injecting a screw dislocation in a crystal, and
how it has to be modified to make it work when the medium displays translational symmetry. The results for the
atomistic injection of a screw dislocation are discussed in section 3. Section 4 revisits the elastodynamic description
of the instantaneous injection of a straight screw dislocation, described as a Volterra dislocation. In light of the
results presented in section 3, section 5 is devoted to a more detailed study of the way distinct core structures and
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non-instantaneous injection processes can be modelled in the continuum, offering analytic solutions for the case of
an instantaneously injected ramp-like core screw dislocation, and a gradually injected Volterra screw dislocation;
further features observed in the atomistic simulations but not in the continuum are also modelled. Both continuum
and atomistic developments are compared in section 6.

By convention, most continuum derivations assume that the cut is along the x-axis (cfr.[11, 1]); in sections 4 and
5 this convention is maintained, and the cut is applied along the positive x-axis. However, the atomistic simulations
in section 3 assume the cut is placed along the positive y-axis.

2. Injection of a screw dislocation into a crystal using molecular dynamics

2.1. Crystal structure
Tungsten was selected for this molecular dynamics study because it is almost elastically isotropic, which makes

it suitable for comparison with the isotropic elastodynamic theory of [7]. It possesses a body centred cubic (BCC)
crystal structure with lattice parameter d = 3.16Å. The most common screw dislocation Burgers vector B is 1

2 〈111〉
with magnitude B. The core structure of 1

2 〈111〉 BCC screw dislocations are non-planar and topologically complex
[12, 13], but since reproducing the exact core structure is not of interest in this article, this does not hinder the
comparison with the continuum results. In order to simulate an infinitely long screw dislocation the z-axis is aligned
with the [111] direction in the crystal. fig.1a shows the crystal lattice viewed in projection along this [111] direction.
The smallest rectangular repeat cell contains 5 atoms and is defined by the translation vectors

t1 =
[√

2d, 0, 0
]

= [a, 0, 0] (2)

t2 =
[
0,
√

6d, 0
]

= [0, b, 0] (3)

t3 =

0, 0, √3d
2

 = [0, 0, c]. (4)

(5)

A cylindrical slab of atoms of thickness 7c and radius Rs = 75d, with its axis along z, was created, resulting in a BCC
lattice containing approximately 214, 000 atoms.

2.2. Molecular dynamics specifications
A Finnis–Sinclair potential for tungsten [14, 15] was used in constant energy MD simulations, initially at 0K. In

this study, using a thermostat was decided against in order not to disturb the particles’ trajectories and a damping
layer controlled the temperature rise following dislocation injection (cf. section 2.2). Time integration was performed
using a Velocity Verlet algorithm [16] with a timestep ∆t = 0.5 fs which was deemed to adequately strike the balance
between energy conservation and available simulation time.

Periodic boundary conditions were imposed along the cylinder axis to simulate an infinitely long dislocation
line. The slab thickness of 7c is sufficient to ensure that atoms do not interact with their own periodic images [14].
“Damping boundary conditions” were applied, perpendicular to the cylinder axis in a boundary layer of thickness Rd

as shown in fig.1b, to minimise reflections of elastic waves at the cylindrical surface and to mimic a cylinder with
infinite radius. Therefore, the physical region for observation of the elastic fields is limited to the central part of the
simulated cylinder with boundary effects visible in the boundary layer. The damping is achieved by adding a viscous
term F(k)

d in the Newtonian equation of motion to all atoms k in the outer annulus of the cylinder of thickness Rd:

F(k)
d = −C

(
rd

Rd

)2

v(k) (6)

where rd is the distance of atom k from the undamped region, C is a positive constant and v(k) is the velocity of
the particle [17]. This functional form ensures a smooth transition between the forces on particles in the undamped
and damped regions. In this work C = 100Nsm−1 and Rd = Rs/4 where chosen. This value of C was found to
maximise the rate of energy dissipation; increasing it further causes reflections at the boundary between the damped
and undamped regions.
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Figure 1: (a) Atomic structure of BCC crystal viewed in projection along the [111] direction. The three (111) lattice planes in each d/2[111] crystal
period are coloured red, green and blue. a and b are the lengths of the smallest orthogonal translation vectors t1 and t2 parallel to [101̄] and [12̄1]
respectively. (b) Cross section of the cylindrical slab used in MD simulations, showing the damped boundary layer of width Rd in red. The distance
of an atom in the damped layer to the undamped region is rd .

This damping boundary condition comes with an additional advantage, as it reduces the need for a computationally
expensive surface equilibration. The equilibrated system, in which the screw dislocation is to be injected, has been
relaxed using the damping mechanism described above up to a point where the largest force magnitude on any particle
in the system is just less than 1.6×10−3eV/ Å. The particles on which the largest forces act are found at the outermost
boundary of the cylinder where the damping is strongest and therefore do not interfere with the dynamics of the
elastodynamics fields in the undamped central region of the cylinder (cf. fig.1b). Without the damping boundary
layer, this would not be sufficiently low to avoid elastic waves propagating in from the boundary. However, including
the boundary layer, these unwanted displacement and stress waves are absorbed and their magnitude is insignificant
compared to equivalent elastic fields due to the injected dislocation. This was confirmed in trial runs in which a
constant energy MD simulation was performed with the equilibrated structure as initial positions and no propagation
from the outermost boundary into the central region of the cylinder was seen.

2.3. Dislocation injection into crystals

By the injection of a screw dislocation into a crystal we mean the atomistic equivalent of the continuum boundary
condition in eqn.1, and the evolution in time of the subsequent elastic fields, which are the atomistic equivalents of
the equations shown in table 1 for the continuum representation. In this section, methods to inject a straight screw
dislocation along the axis of an infinitely long crystal cylinder are discussed.

2.3.1. Direct application of equation 1 in a BCC crystal
In the continuum representation of the injection process, eqn.1, a cut is defined on the half-plane x = 0, y > 0,

and a displacement is introduced along z of ±B/2 at all points on either side of the cut from y = 0 to y = ∞. All
this happens instantaneously at t = 0. The only displacements involved at t = 0 are therefore confined to planes
infinitesimally close to and on either side of the cut: the rest of the continuum has not yet been affected by these
displacements. The application of eqn.1 to introduce a 1

2 [111] screw dislocation along the axis of a cylindrical BCC
crystal could therefore proceed as follows:
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(a) Instantaneous injection

Figure 2: Schematic illustrations of the displacements associated with the instantaneous introduction of a 1
2 [111] screw dislocation in the region

y > 0. The crystal is viewed in projection along [12̄1]. The red, green and blue lines are the traces of (111) atomic planes, the colours reflecting
the stacking sequence of these planes. The broken black line is the mathematical cut plane passing between two adjacent atomic (101̄) planes.
Notice that on the far left and far right the crystals are in perfect registry. There are just two faults caused by the instantaneous injection of a screw
dislocation, one on either side of the cut plane. The displacements shown by the arrows have magnitude

√
3d/4.

1. Identify a mathematical plane passing midway between the two adjacent atomic (101̄) planes with the largest
area (which defines x = 0), extending along [12̄1] (i.e. along y > 0) from the cylinder axis to the surface of the
cylinder, and along the entire length of the cylinder.

2. Displace all atoms in the first (101̄) plane on one side of the cut by 1
4 [111], and all atoms in the first (101̄) plane

on the other side of the cut by − 1
4 [111].

3. Fix the positions of these displaced atoms far from the cylinder axis, and then allow the positions of all other
atoms to evolve according to molecular dynamics protocols set out in sections 2.2

The displacements ± 1
4 [111] applied to atoms in the adjacent (101̄) half-planes on either side of the cut introduce

(101̄) stacking faults in the crystal structure on either side of the cut, where the fault vectors are both 1
4 [111]. This is

illustrated schematically in Fig. 2. The cut has become a planar defect consisting of a fault extended over four (101̄)
half-planes. If a different cut plane normal to [111] is chosen the character of the planar defect also changes. These
faults are absent in the continuum.

At t = 0 the elastic field of the dislocation has not been created. However the dislocation is nascent because a
Burgers circuit enclosing the axis of the cylinder and passing through the two stacking faults will yield the Burgers
vector B = 1

2 [111]. During the subsequent molecular dynamics at t > 0 the attempt to eliminate the extended
planar defect that the cut has become drives the introduction of the elastic field of the dislocation. At t = 0 the
total displacement across the cut is everywhere equal to B. But at t > 0 this begins to change near the cut plane of
the cylinder. Here the crystal begins to accommodate the coexistence in a slab centred on the cut of relative atomic
displacements amounting to B on one side of the axis and no such displacements on the other side. The two stacking
faults in fig.2 have to be eliminated far from the dislocation line to return the crystal to an almost perfect state. In
principle this is possible because the total fault vector is a lattice translation vector, i.e. 1

2 [111]. In practice it may
be very difficult when there are just two faults because the atomic displacements involved are too large. Indeed, this
method is found not to yield the elastodynamic fields expected from the equivalent continuum description.

The failure of the direct application of eqn.1 described above can be understood by considering the crystal struc-
ture. As shown in fig.2, the instantaneous injection of a screw dislocation in the BCC crystal disrupts the stacking
sequence near the cut plane. It was found that this creates a potential barrier for the lattice planes in the immediate
vicinity of the cut-plane which impedes the reformation of the perfect lattice on both sides of the cut-plane, remov-
ing the stacking fault. This in turn suggests that in a BCC structure, screw dislocations along 〈111〉 type directions
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(a) Gradual injection I
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(d) Gradual injection completed

Figure 3: Schematic illustrations of the displacements associated with the gradual introduction of a 1
2 [111] screw dislocation in the region y > 0,

analogous to fig.2. In (d) the perfect lattice has reformed across the cut plane but the planes in its vicinity still cause stacking faults. This
configuration can be obtained by two equivalent methods. One can build up the displacement jump B across the cut plane as a function of time
shown in the time sequence (a), (b), (c) and (d). Alternatively, one can spread the Burgers vector displacement on either side of the cut across a
wider region by manually setting up configuration (d) and use this as the initial configuration. It is suggested that although there are more faults in
(d) than in fig.2 it is easier to eliminate the faults far from the dislocation line because the atomic displacements required are smaller.
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with Burgers vector magnitude c can only be achieved in a scheme which preserves the stacking sequence of the
lattice planes. This can be achieved in two completely equivalent ways. Firstly, the displacement jump can be built
up gradually to a magnitude B over a timespan τ0, allowing the atoms immediately adjacent to the shifted planes to
adjust their positions at every step in the process as shown in the schematic time sequence show in figs.3b, 3c and
3d. Alternatively, the configuration in fig.3d can be set up by spreading the displacement by the Burgers vector on
either side of the cut across a wider region L0. It is clear that both methods are completely equivalent. Whichever
is employed, the configuration obtained in fig.3d makes it more likely that the faults will be eliminated far from the
dislocation line because the atomic displacements required are smaller in magnitude, though larger in number. The
injection parameters L0 or τ0 introduce a degree of arbitrariness into the atomistic model that is absent in the contin-
uum. Nevertheless there is a clear physical argument these to be finite in an atomistic model. The gradual injection
mechanism was chosen for this work.

Finally, an apparently much simpler procedure to introduce a screw dislocation into the cylindrical crystal is the
following. As before, identify the mathematical half-plane passing midway between the two adjacent atomic (101̄)
planes with the largest area, extending along [12̄1] from the cylinder axis to the surface of the cylinder, and along the
entire length of the cylinder. This half-plane is designated the cut plane. Displace the first atomic (101̄) plane on one
side of this cut by 1

2 [111]. In this case all the displacement associated with the Burgers vector is applied to just one
atomic half-plane. However, this method will not generate the screw dislocation owing to the translational symmetry
along [111], which is maintained by the use of periodic boundary conditions along this direction. The displacement by
all atoms in the (101̄) half-plane by a lattice translation vector parallel to [111] renders the cylindrical crystal invariant!
The displacement associated with the Burgers vector has to be distributed over two adjacent (101̄) half-planes to break
the translational symmetry along [111] and create the driving force to introduce the elastic field of the dislocation.

The case of an edge dislocation is briefly discussed in Appendix B.

2.3.2. Resolving the instantaneous character of the continuum boundary condition
It is not surprising that the instantaneous character of the injection mechanism proposed in the continuum solution

is impossible to reproduce in an atomistic simulation. The aim of formulating the injection of dislocations in an
elastodynamic framework was to preserve causality, however this reformulation is built on a boundary condition
which by itself is non-local as it requires an instantaneous shift of a half-plane of atoms all the way along the entire
cut-plane. A ramp function

R(t) =


0 t < 0
t
τ0

0 ≤ t ≤ τ0

1 t > τ0

(7)

was chosen to inject a dislocation in a time interval τ0. This functional form for R(t) proved successful in removing
the stacking fault across the cut plane and was used to produce the results presented below, in which the displacement
discontinuity was achieved by gradually and simultaneously moving half-planes of atoms up whilst moving half-
planes on the other side of the cut-plane down. A temporal ramp width of τ0 = 0.5ps was chosen. This value of τ0
corresponds to an injection velocity of ∼ 10%ct, indicating that elastodynamic effects are expected to be significant.
A schematic of this mechanism is shown in figs.3b, 3c and 3d, from which it is obvious that this injection procedure
will send an elastic wave through the system. This wave extends all the way along the cut plane, contrary to the
elastostatic picture in which perfect lattice positions are assumed away from the dislocation core and stresses are
inversely proportional to the distance from the core. This elastostatic configuration will reappear in the elastodynamic
formulation as t → ∞.

3. MD results

This section will show that the method proposed above to inject screw dislocations into a crystal works. In
addition, the evolution in time of the stress and displacement fields in the atomistic model will be compared with
those of the continuum results provided in table 1 for the case of the cut along the positive y-axis.

The ultimate test of whether a screw dislocation has been injected into the crystal is to check that the stress and
displacement fields converge after sufficient time to the known static elastic fields [10]. Fig.5 shows this convergence;
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(a) σyz(x, y, t) stress field component, from table 1.
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(b) σxz(x, y, t) stress field component, from table 1.
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Figure 4: Elastodynamic stress and displacement fields of an injected, quiescent screw dislocation with the cut along the positive y-axis. Plots for
tungsten at t = 7ps, with ct = 2890m/s. Notice that the system represented here is an infinite, boundless continuum. At 7ps the shear waves have
reached 200Å away from the core; the static limit will be reached at t → ∞, at which point the whole space will be occupied by the field of the
dislocation.
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Figure 5: Stress and displacement fields in the MD simulations after 140ps. Note the qualitative agreement with the corresponding continuum
results given in figure 4. The ux and uy displacement fields, which are identically zero in the continuum results, vanish in the long-time limit. From
(c) it can be seen that the system is under hydrostatic compression attributed to the misfit at the dislocation core.
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Figure 6: Stress and displacement fields for an injected screw dislocation simulated by molecular dynamics after 3.5ps on a cross-sectional (111)
lattice plane. The displacement field uz in (d) shows the displacements spreading from the cut. The stresses introduced by the injection mechanism
at the damped/undamped boundary layer are also visible. In (c) and (e) the distinction between the longitudinal and transverse wave fronts can be
seen most clearly.
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it also indicates that the boundary conditions imposed in the MD simulations were able to simulate a dislocation in an
infinite medium in the long time limit.

Transverse wave-fronts are clearly visible in fig.6 also in agreement with the continuum solutions shown in fig.4.
These transverse waves travelled at an observed velocity of 2600 ± 300m/s, in reasonable agreement with the exper-
imentally observed value of 2890m/s [18]. Given that the Finnis-Sincair many-body potential used is fitted to the
elastic constants of tungsten, which dictate the longitudinal and transverse wave velocities, good agreement is to be
expected. Finally, the stress and displacement field magnitudes throughout the whole time sequence from 1 − 140ps
agree well with their continuum counterparts.

The spreading of the uz displacement field away from the cut is seen clearly in fig.6d. This feature is missing in
the elastodynamic solution given in table 1. This emission was predicted in section 2.3.2, and ascribed to the gradual
nature of the injection process, during which the atoms in the vicinity of the cut plane are forced to occupy non-lattice
positions. In section 4, it will be shown that albeit hitherto overlooked, the elastodynamic solution for a suddenly
injected Volterra dislocation also entails an emission term in uz, the magnitude of which (B/2) is comparable to the
one observed in fig.6d. The elastodynamic emission is described as a planar longitudinal wave front. This is not
the case in the molecular dynamics simulations, where the amplitude of the emission is seen to oscillate, most likely
due to the gradual injection mechanism and discreteness effects. Despite this, the continuum satisfactorily shows the
presence of such transverse emission. Further atomistic effects, such as a weakening of the emission in the environs
of the surface, can be attributed to size effects that the continuum description, for dislocations in infinite media, does
not account for.

Fig.6 shows transient ux, uy and hydrostatic pressure fields. These transients are a result of the initial atomic misfits
introduced around the cut. The continuum elastodynamic formulation does not display these transients because the
concept of misfit is not applicable to the continuum. The magnitudes of both ux and uy components are significantly
less than the Burgers vector, suggesting that the misfit components parallel to x and y around the cut are relatively
small. This limits the magnitude of the normal stress components associated, so that the elastodynamic fields are
eventually dominated by uz. The atomistic simulations therefore reveal a new feature of the injection of a screw
dislocation, namely that the transient displacements fields are three-dimensional, as opposed to their one-dimensional
character in the continuum formulation.

Further evidence that the displacement and stress fields in the atomistic simulation that are absent in the elastody-
namic continuum solutions are not the product of displacements in uz can be found in fig.6e, where the emission in ux

is seen to propagate at the longitudinal speed of sound, which does not feature in the elastodynamic description of a
screw dislocation whatsoever [10]. The radii of the the longitudinal and transverse wavefronts are estimated from fig.6
to be ∼ 74Å and ∼ 34Å at 3.5ps. The ratio between the widths of these two emission bands approximately matches
the ratio between the observed longitudinal and transverse speeds of sound (5700m/s and 2600m/s respectively).

4. Revisiting the injection of a screw dislocation in an elastodynamic continuum

In light of the MD results, the continuum field solutions derived in [10] are revisited in this section. But first, the
standard elastodynamic derivation is reviewed [10]. The governing equation of the elastodynamic continuum is the
Navier-Lamé equation, built on the principle of conservation of linear momentum; it is given by [19]

(Λ + µ)u j,i j + µui, j j = ρui,tt (8)

where Λ and µ are Lamé ’s first and second constants, and ρ is the material density. The comma denotes differentiation,
the subscript t denotes time, ui is the displacement field, and Einstein’s summation convention is assumed except
ui,tt = ∂2ui/∂t2. This equation must be combined with appropriate boundary conditions to describe the injection
process.

Consider the Cartesian basis shown in fig.7; the infinitely long screw dislocation is parallel to the z-axis. The only
component of the displacement vector that is not zero is uz. Therefore eqn.8 reduces to

uz,xx + uz,yy = b2uz,tt (9)

where 1/b = ct =
√
µ/ρ is the transverse speed of sound in the material—and b the corresponding transverse slowness

of sound.
11
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z

x

y

Figure 7: Coordinate system for the continuum modelling of the infinite straight screw dislocation.

The introduction of the necessary displacement jump at time of injection t = 0 is achieved by imposing the
boundary condition

uz(x, 0, t) =
B
2

H(x)H(t) (10)

where B is the magnitude of the Burgers vector and H(·) is the Heaviside step function. It must be noted that this
prescribes a cut surface along the positive x-axis, unlike the MD simulations presented in section 2, where the cut
was placed along the positive y-axis. This is done to follow the usual continuum mechanics convention, where the
cut is usually placed along the x-axis (vid.[11, 1]), but it does not prejudice the comparison between continuum and
atomistic results, as the cut surfaces can be obtained by performing the following change of coordinates, x 7→ −y,
y 7→ x, as was described in table 1.

The solution procedure is the one originally outlined in [9]: the governing equation (eqn.9) is transformed em-
ploying the following Laplace transform in time:

ûz(x, y, s) =

∫ ∞

0
uz(x, y, t)e−stdt (11)

followed by the two-sided Laplace transform in x:

Uz(λ, y, s) =

∫ ∞

−∞

ûz(x, y, s)e−λsxdx (12)

which results in the following differential equation in the compounded Laplace space:

β2s2Uz(λ, y, s) =
∂2Uz

∂y2 (13)

where β2 = b2 − λ2. Assuming Uz → 0 as y→ ∞, the general solution is:

Uz(λ, y, s) = C(λ, s)e−sβy (14)

By transforming the boundary condition (eqn.10), the form of Uz can be found:

Uz(λ, y, s) =
B

2λs2 e−sβy (15)

12
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Figure 8: Integration path for eqn.16. The path for x > 0 has been faded for clarity.

The resulting stress field components due to the injection of a screw dislocation are given in table 1 (see [10] for
details).

In the elastodynamic formulations of [10], [20], and [9] the displacement components were obtained by integration
of the strain field components in real space. It is instructive to consider instead the direct inversion of Uz in eqn.15.
The inversion in the spatial variable is as follows:

ûz =
1

2πi

∫ i∞

−i∞

B
2λs

e−s(βy−λx)dλ (16)

Eqn.16 prescribes an integration along the imaginary axis. It can be rewritten into a forward Laplace transform by
employing the Cagniard-de Hoop technique. This requires distorting the integration path to

τ = βy − λx (17)

Recalling that β2 = b2 − λ2, and solving for λ to obtain:

λ± =
−τx ± iy

√
τ2 − b2r2

r2 (18)

where r =
√

x2 + y2. Rewriting this as

λ± = −X ± iY, where X =
τx
r2 , Y =

y
√
τ2 − b2r2

r2 (19)

It is found that X = −Re[λ] and Y = ±Im[λ] are related as follows:(X
x

)2

−

(
Y
y

)2

=
b2

r2 , (20)

which is the equation of a hyperbola, see fig.8.
For y > 0, the λ+ branch is in the upper half plane (Im[λ] > 0), and the λ− branch in the lower half plane

(Im[λ] < 0). The branches for which Re[λ] < 0 (i.e., the left half plane) describe values of x > 0, and the branches
for which Re[λ] > 0 (i.e., the right half plane) describe those for which x < 0. Notice that these are all reversed for
y < 0. Here the y > 0 case is discussed in detail.

13



/ Journal of the Mechanics and Physics of Solids 00 (2016) 1–27 14

The intersection of the hyperbola with the real axis is its vertex; it can be found by setting Im[λ±] = Y = 0. This
occurs only when τ = br. Thus, the vertex ‘A’ is found at

λA = −
bx
r
.

As λ+ varies from λA towards the asymptote of the corresponding λ+ branch, the value of τ varies from τ = br for λA to
τ = +∞ when λ+ → λB, where point ‘B’ in fig.8 represents the asymptotic value of the hyperbola branch as |λ+| → ∞.
This is the same for both x > 0 and x < 0. In the same way, the changes in the value of λ− along the corresponding
hyperbola branch entail variations in τ from τ = br at point ‘A’ to τ = +∞ at point ‘C’, where |λ−| → ∞; equally, this
applies both for the x > 0 and x < 0 branches. Thus, the hyperbolic paths in the λ-plane map into a path along the real
axis of the τ-plane, with τ ∈ [+br,∞). It must be noted that when x = 0, X = 0 and both hyperbola branches collapse
onto the imaginary axis; in that degenerate case τ = βy. The path along these hyperbola branches is referred to as the
Cagniard path.

The integrand in eqn.16 has branch cuts starting at λ = ±b. The branch cuts are placed along the real axis at
Re[λ] ∈ (−∞,−b]∪ [b,∞), as shown in fig.8. Note that |λA| < b ∀x, y > 0; thus the hyperbola never crosses the branch
cuts as defined here. For convenience, the points λ→ −i∞, λ→ +i∞ and λ = 0 will be called, respectively, ‘D’, ‘O’
and ‘E’ as shown in fig.8.

The integrand in eqn.16 has a simple pole at λ = 0. This renders the integral in eqn.16 ill-defined because the
integration contour can be defined in a number of ways. Stam (1990) [21] examined a mathematically analogous
case arising when studying the radiation from a uniformly distributed load. For that case, Stam defined three different
contours of integration depending on whether x > 0, x < 0 or x = 0, each avoiding the pole at λ = 0 in a different
way depending on the value of x. Inspired by Feynman’s propagator of a complex scalar field (cfr.[22]), a simpler
approach is taken here, by displacing the pole an amount ε ∈ R along the real axis as shown in fig.8. In this case, as
ε → 0, the desired solution is recovered, and as guaranteed by the Sokhotski-Plemelj theorem, the integrals along the
imaginary axis are guaranteed to exist in the sense of Cauchy principal values [23].

The resulting integrals can then be evaluated by considering a closed contour of integration Γ formed by the
hyperbola branches, the imaginary axis, and two arcs of circumference of radius R → ∞ for closure, as shown in
fig.8. For x > 0, the resulting contour of integration is simply connected, so by Cauchy’s theorem, the integral over
such closed contour Γ is zero. For x < 0, the pole at λ = ε leaves a residue. Thus, it is found that (using a positive
clock-wise contour convention):

IΓ = lim
ε→0

[IAC + ICD + IDO + IOE + IEB + IBA] =

0 x > 0
2πi · limε→0 Res[λ = ε] x < 0

(21)

where each integral is described in the following.
First, the integrals along the Cagniard path are

IAC + IBA = lim
ε→0

B
4πis

∫ ∞

rb

[
1

(λ− + ε)
∂λ−
∂τ
−

1
(λ+ + ε)

∂λ+

∂τ

]
e−sτdτ (22)

where ∂λ±
∂τ

represents the Jacobian of the transformation of the integration variable from λ± to τ. Invoking Schwarz’s
reflection principle, one can show that

IAC + IBA = −
B

2πis

∫ ∞

rb
Im

[
1
λ+

∂λ+

∂τ

]
e−sτdτ (23)

The integrals ICD and IEB can be proven to vanish at R→ ∞ as required by the Laplace transforms (cf.[9, 21]).
Finally, invoking the Sokhotski-Plemelj formula[23] for ε → 0,

IDO + IOE = P
∫ i∞

−i∞

B
4πis

1
λ

e−s(βy−λx)dλ (24)

As for the residue, it can be computed as follows

lim
ε→0

2πiRes[λ = ε] = 2πi lim
ε→0

[
lim
λ→ε

(λ − ε)
B
2s

1
λ − ε

e−s(y
√

b2−λ2−λx)
]

= 2πi
B
2s

e−sby (25)
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Figure 9: The uz displacement field showing the emissions.

Thus,

P
∫ i∞

−i∞

B
4πis

1
λ

e−s(βy−λx)dλ =
B

2πis

∫ ∞

rb
Im

[
1
λ+

∂λ+

∂τ

]
e−sτdτ +

B
2s

e−sbyH(x) (26)

Where the Cauchy principal value on the left hand side of the equation represents ûz. The H(x) accounts for the fact
that the pole’s residue only acts for x > 0.

The case for which y < 0 results in an analogous construction, but the signs of λ± are swapped, so in order to keep
the clock-wise positive circulation criterion one must invert the sign of the residue. Thus,

ûz =
B

2πis

∫ ∞

rb
Im

[
1
λ+

∂λ+

∂τ

]
e−sτdτ + sign(y)

B
2s

e−sbyH(x) (27)

This must be now be inverted in time. The pole’s contribution can be found immediately by inspection:

iresidue = sign(y)
B
2

H(t − by)H(x)H(−t + br) (28)

where H(−t + br) has been added to account for the fact that since it is part of the hyperbolic branching, the pole only
acts for t ≡ τ ∈ [+br,∞).

The other integral can also be obtained immediately by inspection. Invoking the Bromwich integral, its time
inverse will be

iCagniard =
1

2πi

∫
Br

dsesτ
[

B
2πis

∫ ∞

rb
Im

[
1
λ+

∂λ+

∂τ

]
e−sτdτ

]
=

1
2πi

∫
Br

dsesτ
[

B
2πis

∫ ∞

0
H(τ − br)Im

[
1
λ+

∂λ+

∂τ

]
e−sτdτ

]
=

=
1

2πi
H(t − br)Im

[
1
λ+

∂λ+

∂t

]
(29)

This can be shown to yield:

uz(x, y, t) =
B
2π

arctan

 −tx

−y
√

t2 − b2 (
x2 + y2)

 H(t − br) + sign(y)
B
2π

H(t − by)H(x)H(−t + br) (30)

As stated above, here the cut is placed along the x-axis. Since in the MD simulations the cut will typically be placed
along the y-axis, it is more convenient to express the fields by swapping x 7→ −y, y 7→ x (as shown in table 1), i.e., as

uz(x, y, t) =
B
2π

arctan

 −ty

x
√

t2 − b2 (
x2 + y2)

 H(t − br) + sign(x)
B
2π

H(t − bx)H(−y)H(−t + br) (31)
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In either case, the pole introduces a wave emission along the cut surface, propagating outwards in the direction
perpendicular to it; this wavefront, emitted from the cut surface and in parallel to it, corresponds with the emission
reported in the MD simulations of section 2. The emission can be appreciated in fig.9, which shows the uz field for
the cut along the positive y-axis.

The justification for the emission is found in the boundary condition given by eqn.10: were the solution to lack the
emission term and consist only of the radial term obtained from the Cagniard path, then the boundary condition would
only be satisfied for x < t/b, rather than for all x > 0 (i.e., along the whole cut surface). The emission is the occurs
because of the presence of the pole at λ = 0, which does not appear when deriving the stress fields (vid.[10, 9]), so
it does not affect the stress field components. Furthermore, upon the injection of a dipole, the emission term of one
dislocation ought to cancel with the other’s. However, as was shown in fig.6, the emission is present in the atomistic
injection process, and produce unexpected features in the stress fields, which can only be understood in terms of the
many simplifications introduced in modelling the injection process in the continuum.

The fundamental assumptions of this model, which Gurrutxaga-Lerma et al. (2015) [10] showed to converge
to the traditional, time-independent fields of screw dislocations [1], are two: (1) that the core is infinitely thin—
and can therefore be modelled via the H(x) Heaviside step function in eqn.10; and (2) that the injection occurs
instantaneously—and can therefore be modelled via the H(t) Heaviside function in eqn.10. These two assumptions are
justified within the D3P framework they were developed for: an infinitely thin core, albeit unrealistic, is a reasonable
assumption if only the long-range interactions are required to account for plasticity (cf.[1]); the sudden injection is
reasonable if the injected dislocation is used as a device to model injections from crack tips and surfaces, reversals of
motion, or dislocation monopoles [7].

However, neither are exactly true in an atomistic representation of dislocations. In the following section, various
ways of representing the boundary condition in eqn.10 in a molecular dynamics (MD) simulation are discussed, and
its implications for continuum model is analysed.

5. Advanced continuum models of the injection of a screw dislocation

The MD simulations presented in section 3 display a series of characteristics missing in the original derivation of
the fields of an injected, quiescent screw dislocation given in section 4. As has been discussed in section 3, these must
be attributed to atomistic effects missed in the continuum description of an injection.

Firstly, no strong singularities in the elastodynamic fields are observed at the wave fronts. This is likely because
in the atomistic simulations the displacement across the cut has to be accumulated gradually over time, from zero to
the final Burgers vector of the screw dislocation; as has been explained in section 2.3.2, the dislocation is not injected
otherwise.

Secondly, that the emission along the cut surface in the uz displacement field is present in both the MD and the
elastodynamic descriptions, but as can be observed in figs.6e and 6f, there is also an emission in ux and uy missed in
the latter. The emission in ux clearly propagates at the longitudinal speed of sound (see fig.6e), whilst the emission in
uy propagates at the lower transverse speed of sound (see fig. 6f). This suggests that the atomistic injection induces
atomic displacements along the cut surface both in uy and ux, which are not present in the continuum description given
in section 4.

In this section, it is argued that both features can in fact be accounted for employing more sophisticated de-
scriptions of the injection process in the elastodynamic continuum. The classical continuum account of an injection,
provided in section 4, is based on the boundary condition given by eqn.10. This condition describes the sudden injec-
tion of a screw dislocation the core of which is modelled as a Volterra discontinuity with no spatial width. As has been
highlighted by the molecular dynamics simulations, both the sudden injection assumption and the lack of a core width
are unrealistic. Provided that adequate boundary conditions are introduced, it will be shown that the main features
observed in the MD simulations can be modelled in the continuum, and therefore interpreted as such.

5.1. Ramping up the injection of screw dislocation

A more accurate description of the injection process, as highlighted by the MD simulations, can be achieved by
ramping up the injection of the screw dislocation.
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Following eqn.51, the governing equation is:

uz,xx + uz,yy = b2uz,tt

The usual boundary condition (sudden injection), is:

uz(x, 0, t) =
B
2
· H(x) · H(t)

meaning that for x > 0 (i.e., the cut) and for t > 0 a displacement of magnitude B is imposed. The molecular dynamics
have shown that in the atomistic description, the disregistry cannot be imposed instantaneously.

Albeit the continuum description has no way of identifying this feature—i.e., the continuum will not detect this
feature , it can still model it by ‘ramping up’ the injection in time as follows

uz(x, 0, t) = B · H(x) · R(t) (32)

where, as a first approach approximation, R(t) is given by equation 7. This boundary condition will gradually inject
a partial dislocation into the system, up to the magnitude of the Burgers vector. The core structure, however, remains
infinitely thin.

5.1.1. Solution to the ramped injection
This problem can be solved analytically. Using the standard solution method described for instance in [7, 10], two

successive Laplace transforms are applied over the governing equation 51 to obtain

Uz(λ, y, s) = C(s, λ)e−sβy (33)

where C(s, λ) is obtained from transforming the boundary condition, in this case eqn.32:

Lx{Lt{BH(x)R(t)}} = BLx{H(x)}Lt{R(t)} (34)

where
Lx{H(x)} = λs

Lt{R(t)} =

∫ ∞

0
R(t)e−stdt =

∫ τ0

0

t
τ0

e−stdt +

∫ ∞

τ0

e−stdt

=
1 − e−sτ0

s2τ0
(35)

So
Uz(λ, y, s) =

B
λs3τ0

(1 − e−sτ0 )e−sβy (36)

The presence of the pole at λ = 0 suggest that, as in section 4, an emission term will be present in uz as required to
satisfy the boundary condition for all values of x across the cut surface. Since that case was already mathematically
studied in 4, here for simplicity, consider σxz = µuz,x. Its transform:

Σxz =
µB
τ0s2 e−sβy −

µB
τ0s2 e−s(βy+τ0) (37)

Both terms are of the same form, only that the second one entails a time delay, due to the τ0 in the kernel.
Using Cagniard-de Hoop, one can invert the first term in the right hand side of eqn.37 as follows. Let:

σ̂xzI =
1

2πi

∫ i∞

−i∞

µB
τ0

1
s

e−s(βy−λx)dλ (38)

17



/ Journal of the Mechanics and Physics of Solids 00 (2016) 1–27 18

Defining τ = βy − λx and distorting the integration path, leading to

σ̂xzI =
µB

2πτ0

1
s

∫ ∞

0
H(τ − rb)Im

[
∂λ+

∂τ

]
e−sτdτ (39)

So the Bromwich integral is

σxzI =
1

2πi

∫
Br

µB
2πτ0

(
1
s
·

∫ ∞

0
H(τ − rb)Im

[
∂λ+

∂τ

]
e−sτ

)
estds (40)

Define

f (t) = H(t − rb)Im
[
∂λ+

∂t

]
(41)

Then by properties of the Laplace transform the stress field can be obtained as the following convolution:

σxzI =
µB

2πτ0

∫ t

0
f (τ)H(t − τ)dτ (42)

The second term is obtained in the same way, only that the τ0 imposes a delay factor throughout:

σxzI =
µB

2πτ0

∫ t−τ0

0
f (τ)H(t − τ)dτ (43)

The convolution is immediate; for τ < rb the integrand it is zero. For τ > rb the integrand is just Im
[
∂λ+

∂t

]
because

H(t − τ) = 1 throughout as guaranteed by the integration limit. Thus

σxzI =
µB

2πτ0

y
√

t2 − b2r2

r2 H(t − br) (44)

Whereby, compounding the solution,

σxz =
µB

2πτ0

y
√

t2 − b2r2

r2 H(t − br) −
y
√

(t − τ0)2 − b2r2

r2 H((t − τ0) − br)

 (45)

The asymptotic limit of this expression when t → ∞ is the same as that of a sudden injection (i.e., the quasi-static
field), and when τ0 → 0, it matches the sudden injection solution provided in table 1. It is worth noticing that the base
solution (eqn.44) is the antiderivative in time of the suddenly injected dislocation’s field, whereas the actual solution
(eqn.45), where the second term is incremented in time via the t − τ0 factor, is the discretised approximation of a
derivative. Thus, in the τ0 → 0 limit, σxy is, the definition of a derivative in time, and one that matches the sudden
injection’s field.

The solution to σxz and all other stress, displacement and strain components is obtained similarly. In particular,
the displacement field entails that the emission term becomes ramp-like:

uzemission (x, y > 0, t) =
B

2πτ0
((t − by)H(t − by) − (t − τ0 − by)H(t − τ0 − by)) (46)

The displacement emission along the cut surface does not introduce strong spatial gradients other than for an very thin
discontinuity between t = by and t − τ0 = by. This is in fact already accounted for in the analytic forms of the stress
fields provided above.

It is clear that the sudden injection (given in eqn.10) displays a square root singularity at the injection front, which
is not present in the ramped up injection. This defines the ramped up injection as a smoother process, in agreement
with the molecular dynamics simulation where no strong discontinuities at the injection fronts are observed. In all
cases the elastodynamic fields are almost identical to the sudden injection’s for short timescales (i.e., τ0 < 1ps), as is
shown in fig.10a and 11b. However, the ramped injection cannot by construction display any emission from the cut
plane in ux and uy, unlike what was shown in the MD simulation. Hence, further considerations are needed.
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(a) Ramped injection
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(b) Sudden injection

Figure 10: Injection of a screw dislocation. Notice the lack of singularities at the injection front for the case of the ramped injection.

5.2. Spreading out the core

Ramping up the injection helps in understanding the lack of strong singularities at the injection fronts observed in
the molecular dynamics simulations, but it does not reproduce any of the additional features observed in them.

The Volterra dislocation’s core invoked so far has no width, which is not representative of atomistic reality; for
instance, it is well-known that the core of screw dislocations in BCC materials is non-planar [24, 12]. Even before
achieving such detailed resolution, more sophisticated continuum models such as the Peierls-Nabarro model [25, 26]
already assume the core has a finite width. As a first approximation to help in building understanding of what a finitely
wide core would entail in this context, rather than employing the more sophisticated Peierls-Nabarro description, a
simple spread out ramp core of width δ will be employed here, where the function R(x) describes its spatial width as
follows

R(x) =


0 x < −δ/2
x/δ + 1/2 −δ/2 < x < δ/2
1 x > δ/2

, (47)

whereby the boundary condition is now

uz(x, 0, t) =
B
2

R(x)H(t) (48)

A general formulation for the solution of this problem, reliant on the Cagniard-de Hoop technique, can be found in
[27]. The procedure itself is analogous to the one employed in section 5.1 for the solution of the ramped dislocation
that, for brevity, it will not be reproduced here.

One can verify that, for instance

σyz =
µB
2δπ

tanh−1


√

t2 − b2
(
(δ/2 + x)2 + y2

)
t

 · H
(
t − b

(
(x + δ/2)2 + y2

)1/2
)

− tanh−1


√

t2 − b2
(
(x − δ/2)2 + y2

)
t


 · H

(
t − b

(
(x − δ/2)2 + y2

)1/2
)

(49)

This field has the right asymptotic behaviour both when δ→ 0 and when t → ∞. The same process, applied to the
The resulting σyz field component is shown in fig.11a. As was advanced in the previous section, the injection of a

spread out core does not bear any singularities at the front — it is a smooth process, with no emission along the cut
surface. Were the injection to be ramped with R(t) defined rather than sudden with H(t), the solution would be the
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(b) Sudden injection, Volterra core

Figure 11: σyz stress field component at t = 7ps for tungsten, for the case of a spread out core with a sudden injection.

following:

σyz =
µB

4δπτ0

[√
4t2 − b2 (

d2 + 4dx + 4
(
x2 + y2)) +

√
4t2 − b2 (

d2 − 4dx + 4
(
x2 + y2))

−2t tanh−1


√

t2 − b2
((

d
2 + x

)2
+ y2

)
t

 − 2t tanh−1


√

t2 − b2
((

x − d
2

)2
+ y2

)
t


+

(
−

√
4(t − τ0)2 − b2 (

d2 + 4dx + 4
(
x2 + y2)) +

√
4(t − τ0)2 − b2 (

d2 − 4dx + 4
(
x2 + y2))+

2(t − τ0) tanh−1


√

(t − τ0)2 − b2
((

d
2 + x

)2
+ y2

)
t − τ0

 − 2(t − τ0) tanh−1


√

(t − τ0)2 − b2
((

x − d
2

)2
+ y2

)
t − τ0





It can be shows that this kind of injection still entails an emission along the cut surface in the uz but, again by
construction, fails to capture the additional emissions in uy and ux. It follows that the main characteristic of the
atomistic injection that these models fail to capture is the emission in uy and ux along the slip surface. This can
be attributed to the failure of the continuum models so far to adequately model the structure of the injected core.
In the molecular dynamics description, the dislocation is injected gradually by slipping a half plane of atoms with
respect to another along the cut surface until the required Burgers vector wide disregistry is achieved. In doing so, the
atomic plane will be translated along non-lattice positions; this transient mismatch will cause a temporary stacking
fault in the atomic planes, which is translated in the appearance of atomic displacements exerted upon the nearby
atomic rows. The result is the sudden emission along the cut surface observed in molecular dynamics. Because
the continuum description provided hitherto assumes the cut is performed along perfectly flat surfaces, this emission
remains missing.

This effect can only be observed a priori employing atomistic effects. It highlights that the unidimensional core
description provided by infinitely thin cores or ramp cores employed here and, by extension, by more sophisticated
models as would be the dynamic Peierls-Nabarro model, miss in-plane core effects. This does not mean that one
cannot model some of the latter ad hoc, by explicitly forcing an emission along the cut surface, in the positive half
space. This is done in the following section.
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5.3. The emission along the cut surface

The additional in-plane emissions in ux and uy along the cut can be regarded as the result of the injection process,
which in the atomistic case is performed by slipping an atomic plane with respect to another along the cut surface.
Since this process is gradual, the sliding atoms at the interface will temporarily find themselves in non-equilibrium
lattice positions, thereby experiencing a net force of displacement both in the ux and uy components observed in the
atomistic simulations. Once the final, lattice position is reached, these additional displacements should disappear, as
is suggested by the molecular dynamics: once the injection is completed, the emissions in ux and uy vanish, whilst
that in uz, the only one predicted in the continuum, remains.

This process can be modelled in the continuum as well. Following the atomistic simulations presented in section
2, the process can be modelled by considering transient displacement boundary conditions in ux and uy, such that they
gradually increase to a certain maximum displacement ∆ to then decrease and vanish once the atomic planes have
reached a fully lattice position.

Although the specification of these displacement boundary conditions are a matter of atomistic detail, the process
can be approximated faithfully by modelling it as a sinusoidal displacement. For instance, if the injection takes place
over a time step of magnitude τ0, for ux this could be

ux(0, y, t) =

∆x sin
(

2πt
τ0

)
0 < t < τ0

2

0 t > τ0
2

(50)

where ∆x is the amplitude of the maximum displacement. This displacement is applied everywhere across the cut
surface, and it is like introducing an edge dislocation in the first quarter period and then removing it in the second
quarter period. An analogous boundary condition can be introduced for uy.

The resulting mathematical problem can be tackled in a number of ways. Here, as a first approach approximation,
the in-plane emissions are modelled as sudden steps of magnitude ∆x and ∆y in ux and uy respectively, which are
applied on the whole cut surface. For a more general form of ux and uy such as that given in eqn.50, the convolution
theorem for Laplace transforms can be applied to find the solution [28]. Still, the fundamental feature of these
solutions, namely the emission along the cut surface, can be captured by considering the simple

5.3.1. Emissions in ux

Given the governing equations (q.v.[28])

φ,xx + φ,yy = a2φ,tt (51)
ψ,xx + ψ,yy = b2ψ,tt,

the emission along the cut surface can be modelled, as a first approach approximation, as resulting from the application
of a sudden distributed displacement along the positive y-axis.

For simplicity, the general problem of an arbitrary distributed displacement with both ux and uy non-zero compo-
nents can in principle be solved as the superposition of two problems: one consisting on a distributed ux displacement
of a certain magnitude ∆x with an accompanying uy = 0; and one consisting of a distributed uy displacement of a
certain magnitude ∆y with an accompanying ux = 0. As a first approach approximation, the applied displacements are
applied suddenly but their effect remains constant. It is then easy to cancel their effect by applying at a later time, a
displacement of opposite magnitude. A more sophisticated approach would provide a time-dependent description of
the magnitude of these displacements, reflecting the atomistic displacements the actual injection process entails.

Thus,

ux(x = 0, y, t) = ∆xH(y)H(t), (52)
uy(x = 0, y, t) = 0 (53)

where ∆x is the magnitude of the applied displacement, and such that

ux = φ,x − ψ,y, uy = φ,y + ψ,x (54)
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Define the following Laplace transforms:

f̂ (x, y, s) = Lt{ f (x, y, t)} =

∫ ∞

0
f (x, y, t)e−stdt (55)

F(x, λ, s) = Ly{ f̂ (x, y, s)} =

∫ ∞

−∞

f̂ (x, y, s)e−λsydy (56)

Applying these transforms to the governing eqn.51, their solution in Laplace space is the usual

Φ(x, λ, s) = Cφ(λ, s)e−sαx (57)
Ψ(x, λ, s) = Cψ(λ, s)e−sβx (58)

where α2 = a2 − λ2 and β2 = b2 − λ2, and where the value of Cφ and Cψ can in principle be found from the boundary
conditions.

Applying the same transforms to the boundary conditions eqns.52 and 63,

Ux(0, λ, s) =
∆x

λs2 = −sαCφ − sλCψ (59)

and
Uy(0, λ, s) = 0 = sλCφ − sβCψ (60)

This leads to the following system of equations:(
−sα −sλ
sλ −sβ

)
·

(
Cφ

Cψ

)
=

(
∆
λs2

0

)
, (61)

The solution to this system of equations is detailed in the Appendix A. There, it is shown that for the ux displacement
the solution takes the form of

ux =

∫ t

0
Im

[
αβ∆x

λ+(αβ + λ2
+)
∂λ+

∂τ

]
a

H(τ − ra)H(t − τ)dτ +

∫ t

0
Im

[
λ+∆x

αβ + λ2
+

∂λ+

∂τ

]
b

H(τ − rb)H(t − τ)dτ

+ sign(y)∆xH(t − ax) (62)

where λ+ =
−τy+ix

√
t2−a2r2

r2 .
The two integrals in eqn.62 describe displacement fields radiated from the origin at x = 0, y = 0; crucially

however, the last term describes an emission of magnitude ∆x perpendicular to the cut surface, and propagating at the
longitudinal speed of sound. This shows that a displacement boundary condition in ux entails a longitudinal emission,
in agreement with what was observed in the molecular dynamics simulations in section 2. If at some time t = τ0 > 0
an additional boundary condition such as ux(x = 0, y, t) = −∆xH(y)H(t−τ0) were applied, the resulting wave emissions
would cancel each other. This would represent the cut surface reaching its lattice position again. Otherwise, as was
suggested above, one may use the solutions derived here to, by convolution in the spatial Laplace transform (vid.[28]),
reach a solution for any other boundary condition in ux. In either case, an emission will be present.

The same kind of derivation may be applied for a uy displacement step. In that case, the boundary conditions
would be

ux(x = 0, y, t) = 0 (63)
uy(x = 0, y, t) = ∆yH(y)H(t) (64)

One will reach, through analogous means, an emission term along the cut, of the form

uyemission = sign(y)∆yH(t − bx) (65)

which propagates outward from the cut surface at the transverse speed of sound. The solution also consists of a term
radiating from the origin, which is not reproduced here due to its length. Both radial terms over ux and uy are emitted
from the core at x = 0, y = 0.
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6. Comparison between MD results and advanced continuum models

Reconsider now the comparison between the MD simulation results and the advanced continuum models outlined
in section 5. By assuming that the dislocation can be represented by a jump, sudden or spread over a localised region
of space in the uz displacement component alone, the continuum model will invariably miss additional features that
can only be captured in the atomistic simulations: in this case, that if a dislocation is to be generated anew, the atoms
in the slipped region will take a finite time to reach their lattice position, and meanwhile will experience out-of-plane
displacements (or forces) that entail that the core of the screw dislocation can only be properly represented through
boundary conditions both in uz, as it is usually done, and in ux and uy. As has been shown in section 5.3, even the
simple assumption that there exists a homogeneous distributed displacement applied over the cut surface is able to
reproduce the basic feature observed in the atomistic case: an outward radiation from the slipped surface both in ux

and uy. A more sophisticated description ought to take into account the variation in time of the magnitude of such
applied components, which should be motivated by the way the injection takes place.

However, as they stand the continuum models presented in section 5 do not predict stress emissions of the magni-
tude showcased by the atomistic simulations, as seen in fig.6b. These stress waves emerge due to the non-instantaneous
nature of the injection mechanism and disappear again after the atoms near the cut-plane have rearranged themselves
back into lattice positions. Given that the gradual injection inevitably gives rise to these stress bands near the cut-
plane in a real lattice structure, it can be concluded that these atomic rearrangement stresses are physical rather than a
shortcoming of the MD simulation. From fig.6 it can be seen that the magnitude of these stress bands are comparable
to the stresses at the dislocation core. Due to their extended nature throughout half the system, it is to be expected
that these stress waves will dominate the transient behaviour of the elastodynamic fields, which cause reflections and
disturb the system considerably compared the continuum predictions. Only once these waves have been dissipated by
the damping layer, observed for t > 50ps, does the system recover elastic fields in good agreement with the continuum
equivalent. These stress waves seem to correspond to the ux and uy displacements, which can be seen to be highly
non-planar at the same locations, and suggest that their modelling in section 5.3 as planar waves is insufficient, and
more sophisticated models will be needed to produce an appropriate continuum representation of this effect. In the
molecular dynamics simulations, attempts were made to minimise the magnitude of these stress bands by varying the
core shape and thickness of the fixed region. None of these injection attempts resulted in a screw dislocation and even
if one were to be successful, the stress bands would still be present and only their magnitude would be reduced.

Thus, the continuum model can successfully reproduce the most relevant features of the atomistic models. An
adequate modelling of the core (see sections 5.1.1 and 5.2) has been shown to induce a smoother injection, thereby
helping understand the lack of strong singularities in the atomistic simulations. The emission in uz has been shown
to be present in the continuum description of injection process (see section 4). The additional emissions in ux and
uy have been modelled as sudden applied displacements over the cut surface, leading to emission terms that, as is
observed in the molecular dynamics, propagate at the longitudinal and transverse speed of sound respectively, and are
more or less of constant magnitude. The simplified modelling of these emissions explains why the continuum fails to
predict corresponding emissions in stress, and suggest that the evolution of the core structure and the cut surface as the
injection takes place requires a three dimensional treatment of the screw dislocation’s core, involving displacement
boundary conditions in uz and also in ux and uy.

7. Conclusions

This article shows that injection of screw dislocations in MD simulations can only be achieved by a gradual
injection process in order to satisfy their associated topology. Comparison with the corresponding elastodynamic
description of the injection of straight screw dislocations has highlighted a number of common features, but also a
number of discrepancies. Firstly, the predicted divergences at the elastodynamic fields wave fronts were not observed
in the MD simulation. Secondly, an emission along the entire cut plane in both displacement and stress fields was
observed. Finally, the in-plane displacement field components were shown not to vanish as a result of in-plane atomic
rearrangements in the vicinity of the cut plane.

Crucially, the elastodynamic model assumes that the injection is instantaneous, and that the dislocation’s core
structure is infinitely thin and unidimensional (i.e., dependent on a single displacement component). The conse-
quences of these assumptions explain all the discrepancies between the atomistic and elastodynamic models. First,
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an instantaneous injection entails a strong discontinuity at the injection fronts, but upon deriving the elastodynamic
fields of a screw dislocation the Burgers vector of which is gradually built up in time, it was shown that the injection
becomes a smooth process. This brings the MD simulations and continuum descriptions in better agreement with one
another. Further to this, assigning the core a finite width also resulted in a smoother injection. Second, the emission
along the entire cut plane was shown to be a hitherto overlooked feature of the out-of-plane displacement component,
the magnitude of which was shown to be comparable to that observed in the MD simulations.

Finally however, neither the emission in the out-of-plane component nor the smoother injection process could
explain the presence of non-zero in-plane displacement components. These were attributed to the atomistic injection
process, where the atomic planes along the cut surface must be displaced through non-lattice positions before the
final, Burgers vector wide lattice position is achieved. These non-lattice positions induce in-plane displacements that,
as was observed in the MD simulations, vanish once the injection is complete, but that meanwhile will manifest as
emissions affecting both the in-plane displacement components and the corresponding stress field components.

By showing that these emissions cannot be explained by providing the continuum core with a finite width, nor by
making the injection process gradual, this article has highlighted the need for a fully three-dimensional model of the
core of an injected dislocation. As a first approach approximation, the problem of a distributed in-plane displacement
applied over an elastodynamic half-space has been solved, showing that modelling the emissions in ux and uy as the
result of a distributed displacement applied over the cut surface leads to emissions that have all the adequate features.
Thus, this work has highlighted the truly three-dimensional nature of the core of a screw dislocation by means of
exploring its injection process. Albeit the injection can be modelled in the continuum as a Volterra dislocation that
is suddenly injected into the system (as had been proposed by Markenscoff (1980) [9] and Gurrutxaga-Lerma et al.
(2015) [10]), in-plane effects are missed in this description, and can only be found, as was done here, by proper study
of the atomistic effects involved in the injection of a screw dislocation.

The elastodynamic framework presented here can therefore be used to interpret the atomistic effects described
in this work: the additional core effects have been modelled as additional displacement disturbances arising from
the injection process, and explained as such. This process can only properly be described by employing atomistic
simulations, and would otherwise be missed in the continuum description of the injection of a screw dislocation.
Thus, as has been shown in this article, one can envision a multiscale hierarchical approach whereby the atomistic
simulations of the injection can be employed to inform the elastodynamic description of the injection. This approach
enables the inherently atomistic features of dislocation injection processes to be incorporated into a continuum theory
in order to benefit from the much greater length and time scales inherent to a continuum description.
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Appendix A

The solution to the system of equations given in eqn.61 is

Cφ = −
β∆x

λs3(αβ + λ2)
(66)

and
Cψ = −

∆x

s3(αβ + λ2)
(67)

Thus, the Ux displacement field is given by

Ux =
αβ∆x

λs2(αβ + λ2)
e−sαx +

λ∆x

s2(αβ + λ2)
e−sβx (68)

Invert first the spatial variable:

ûx =
1

2πi

∫ i∞

−i∞

[
αβ∆x

λs2(αβ + λ2)
e−sαx +

λ∆x

s2(αβ + λ2)
e−sβx

]
esλysdλ (69)

Two terms, one for each of the addends in the integrand, can be distinguished: a longitudinal contribution (depending
on α and a), and a transverse contribution (depending on β and b).

Consider the longitudinal term first, for it is the most mathematically challenging:

ûxa =
1

2πi

∫ i∞

−i∞

αβ∆x

λs(αβ + λ2)
e−s(αx−λy)dλ (70)
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As was done in section 4, this integral can be inverted by distorting the integration path along the imaginary axis
to the Cagniard path given by

τ = αx − λy (71)

whereby

λ± =
−τy ± ix

√
t2 − a2r2

r2 (72)

The inversion can then be performed via Cagniard-de Hoop. The distorted path entails a hyperbola along the
λ-plane, which can be closed at infinity with the imaginary axis. However, as in section 4, it is clear that the integrand
has poles that require further considerations.

Specifically, the integrand has simple poles for
1. λ = 0
2. αβ + λ2 = 0, which renders

λ = ±
ab

√
a2 + b2

The simple pole at λ = 0 can be dealt with using the same considerations used in section 4: it will be displaced by
a −ε quantity, and treated as a residue in the ε → 0 limit.

The second simple pole cannot generally be avoided, but its contribution can be computed invoking the theorem
of the residues, and it is only relevant for τ > ab/

√
a2 + b2r.

Thus, for the x > 0 branch:∮
Γ

= −

∫
Cagniard

+

∫
R→∞

+P
∫ i∞

−i∞
= 2πi ·

[
lim
ε→0

Res [λ = −ε] + Res
[
λ =

−ab
√

a2 + b2

]]
(73)

The contribution of the pole at λ = 0 can then be found as follows

2πi lim
ε→0

Res [λ = −ε] = 2πi
∆x

s
lim
ε→0

[
lim
λ→−ε

(λ + ε)
αβ

(λ + ε)(αβ + λ2)
e−s(αx−λy)

]
= 2πi

∆x

s
e−sax (74)

The second residue is found to vanish:

Res
[
λ =

ab
√

a2 + b2

]
= lim

λ→ ab√
a2+b2

[
αβ∆x

λs(αβ + λ2)
e−s(αx−λt) ·

(
λ −

ab
√

a2 + b2

)]
= 0 (75)

The inversion of the contribution due to the Cagniard path distortion follows the usual rules of the Cagniard-de Hoop
method:

ûxCagniard =
1

2πi

∫ ∞

ra
Im

[
αβ∆x

λs(αβ + λ2)
∂λ+

∂τ

]
a

e−sτdτ (76)

whereby, by inspection, the inversion in time renders

uxCagniard =

∫ t

0
Im

[
αβ∆x

λ(αβ + λ2)
∂λ+

∂τ

]
a

H(τ − ra)H(t − τ)dτ (77)

The contribution due to the pole at λ = 0 does not required such sophisticated analysis. By properties of the Laplace
transform, it is immediate that

uxλ=0 = sign(y)∆xH(t − ax) (78)

where sign(x) accounts for the reversal in the value of the residue for values of y < 0. This produces the desired
emission along the cut surface; the Cagniard term accounts for local effects produced at the core of the dislocation
(x = 0, t = 0), which radiate outwards.

The transverse term in β has no pole at λ = 0; thus, it will not contribute to the emission along the surface or, to
put it otherwise, the emission along the cut surface lacks a transverse wave term, but still has a pole at λ ± ab

√
a2+b2

.
Equally however, the residue of this pole vanishes. Thus, its inversion can be performed along the τ = βx − λt path,
which immediately renders

uxb =

∫ t

0
Im

[
λ∆x

αβ + λ2

∂λ+

∂τ

]
b

H(τ − rb)H(t − τ)dτ (79)

The same procedure, and analogous analysis, may be followed for solving the uy boundary value problem.
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Appendix B

The injection of an edge dislocation can also be modelled employing a similar approach to that of the screw
dislocations: a B = 1

2 [111] edge dislocation was modelled in a tungsten cylindrical crystal, with the cylinder axis
along [101̄]. To inject a B = 1

2 [111] edge dislocation, three (111) half-planes instantaneously are removed. The

cut is therefore a void of width
√

3d
2 along [12̄1] from the axis to the surface of the cylinder. During the subsequent

MD relaxation the void closes through the mutual attraction of its faces, and the field of an edge dislocation in an
otherwise perfect cylindrical BCC crystal is created. The displacement and stress fields converge qualitatively at long
times to the continuum results. In fig.13 it can be seen that the stress and displacement fields spread from the cut.
The remaining part of the paper will focus on the continuum description of the injection of a screw dislocation; the
equivalent formulation for the injection of an edge dislocation will be treated in a separate contribution.
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Figure 12: Stress and displacement fields calculated by MD 140ps after the injection of an edge dislocation.
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Figure 13: Stress and displacement fields calculated by MD 3.5ps after the injection of an edge dislocation.
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