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Abstract—The Fisher-Snedecor F distribution was recently
proposed as an accurate and tractable composite fading model
in the context of device-to-device communications. The present
work derives the product of the Fisher-Snedecor F composite
fading model, which is useful in characterizing fading effects in
numerous realistic communication scenarios. To this end, novel
analytic expressions are first derived for the probability density
function, the cumulative distribution function and the moment
of the product of N statistically independent, but not necessarily
identically distributed, Fisher-Snedecor F random variables.
Capitalizing on these expressions, we derive tractable closed-form
expressions for channel quality estimation of the proposed model
as well as the corresponding outage probability and average bit
error probability for binary modulations. The offered results
are corroborated by extensive Monte-Carlo simulation results,
which verify the validity of the derived expressions. It is shown
that the number of cascaded channels affects considerably the
corresponding performance, as a variation of over an order of
magnitude is observed across all signal-to-noise ratio regimes.

I. INTRODUCTION

It has been shown extensively that multipath fading and
shadowing are two of the most important factors that must
be taken into account when characterizing wireless commu-
nication channels in both conventional and emerging commu-
nications [1]. Based on this, several statistical models have
been proposed and utilized for the modeling of multipath
fading, such as the Nakagami−m, the κ-μ, the η-μ and the
α-μ fading distributions [2]–[4]. Similarly, there are differ-
ent fading distributions that aim to model the shadowing
phenomena. The most suitable one is the log-normal dis-
tribution, while the gamma distribution is an approximate
substitute of log-normal distribution and has bee used exten-
sively owing to its mathematical tractability [1]. Combining

the simultaneous effects of multipath fading and shadowing
phenomena has led to the formulation and derivation of a
range of so-called composite fading distributions, such as
the K-distribution, κ-μ shadowed, κ-μ/gamma, η-μ/gamma,
and α-μ/gamma, κ-μ/inverse gamma, η-μ/inverse gamma,
and extended generalized-K (EGK) distributions [5]–[14].
However, although these composite models are capable of
providing adequate characterization of the incurred fading
phenomena, quite often their mathematical representation is
inconvenient or even intractable. This impacts considerably
the formulation of important statistical metrics such as the
probability density function (PDF), the cumulative distribu-
tion function (CDF), and the moment generating function
(MGF), which enable the evaluation of technical performance
metrics of interest, such as the symbol error probability,
channel capacity, and outage probability (OP). Based on the
above, considerable efforts have been made on evaluating
the performance of the aforementioned types of multipath
fading and composite fading models in different scenarios
of interest [15]–[24]. In this context, the authors in [15]
introduced a useful general product distribution, known as
N∗Nakagami-m. As in the case of composite fading models,
this fading distribution has physical meaning and it arises as
a result of the product of N statistically independent, but
not necessarily identically distributed (i.n.i.d.), Nakagami-m
random variables (RVs). Likewise, Trigui et al. introduced
the N∗generalized-K distribution, which is formed as the
product of N statistically i.n.i.d. generalized-K RVs [16].
Also, the authors in [17] extended this further, developing the
N∗generalized Nakagami-m (GNM) distribution (N∗GNM
distribution), which represents the product of N statistically
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i.n.i.d. GNM RVs. Finally, the authors in [18] introduced the
cascaded Weibull, which was generated by the product of
i.n.i.d. Weibull RVs.

Capitalizing on the above contributions, numerous investi-
gations have been carried out during the past years in the con-
text of conventional and emerging communication systems.
For example, the performance of multihop-intervehicular com-
munication systems with regenerative and non-regenerative
relaying over N∗Rayleigh fading channels was investigated
in [19]. Likewise, the authors in [20] analyzed the OP
performance of single carrier and multi-carrier systems over
N∗Nakagami-m fading channels under radio frequency im-
pairments. Also, the product of N i.n.i.d. squared generalized-
K (KG) RVs is considered in [21], whereas useful statistical
metrics of the double-generalized Gamma distribution, were
derived in [22] and were used in the analysis of transmit an-
tenna selection systems in vehicle-to-vehicle communications.
In the same context, the PDF and CDF of the ratio of two
i.n.i.d. α-μ RVs [4] and their applications in spectrum sharing
networks were presented in [23]. In [24], the performance of
the product of two i.n.i.d. α-μ (so-called α-μ/α-μ) distribu-
tions was analyzed, while a relationship between the α-μ/α-μ
distribution and the EGK distribution [12] was reported.

It is recalled that a new composite fading distribution,
known as the Fisher-Snedecor F distribution, was recently
proposed in [25]. In this composite fading model, the scattered
multipath components follow a Nakagami-m distribution,
while the root-mean-square (rms) signal is weighted by an
inverse Nakagami-m RV. It was shown that this model pro-
vides accurate characterization of multipath/shadowing con-
ditions in numerous communication scenarios of interest,
such as device-to-device communications. Motivated by this
and based on the above, the present work derives the basic
statistics of the product of FisherSnedecor F RVs, it proposes
the cascaded Fisher-Snedecor F fading model and it applies
the offered results in the analysis of such systems. Specifically,
the contributions of this work are listed below:

• We derive novel closed-form analytical expressions for
the PDF, CDF, MGF and moments of the product of
Fisher-Snedecor F variates.

• We employ the derived statistics to analyze the perfor-
mance of cascaded fading channels.

• We derive the channel quality estimation index (CQEI)
for the proposed model and analyze its properties.

• Novel closed-form expressions are deduced for the OP
and the average bit error probability for binary modula-
tions.

To the best of our knowledge, these results are currently
unprecedented in any literature and given their fundamental
nature, they will find use in many areas of mathematical and
statistical research. Also, the validity of the offered analytic
results is verified through comparisons with respective results
from Monte-Carlo simulations.

The reminder of this paper is organized as follows: Section
II introduces the necessary preliminary information related
to the Fisher-Snedecor F composite fading model. Then,

Section III derives the major statistics of the product of the
Fisher-Snedecor F RVs, while novel theoretical and practical
results on the cascaded Fisher-Snedecor F fading channels are
provided in Section IV. Respective numerical results for the
considered measures are presented in Section V, while some
closing remarks conclude the paper in Section VI.

II. PRELIMINARIES

The received signal in a Fisher-Snedecor F fading channel
is composed of separable clusters of multipath in which the
scattered waves have similar delay times, with the delay
spreads of different clusters being relatively large. In addition
the rms power of the received signal is subject to random
variations induced by shadowing. Based on this, the received
signal envelope, R, can be represented as

R2 =

m∑
n=1

A2I2n +A2Q2
n (1)

where m denotes the number of clusters, while In and Qn

are independent Gaussian random variables which represent
the in-phase and quadrature phase components of the cluster
n, with E[In] = E[Qn] and E[I2n] = E[Q2

n] = σ2, and E[·]
denoting statistical expectation. In the above expression A
is a normalized inverse Nakagami-m random variable, with
E[A2] = 1, such that

fA(α) =
2(ms − 1)ms

Γ(ms)α2ms+1
e−

ms−1

α2 . (2)

where ms represents the scale parameter of the distribution.
Based on the above assumptions and following the same
methodology as in [25], the new SNR PDF for the Fisher-
Snedecor F fading distribution can be expressed as

fR�
(r) =

2mm�

� ((ms� − 1)Ω�)
ms

�

B(m�,ms�)

× r2m�−1

(m�r2 + (ms� − 1)Ω�)
m�+ms

�

, ms� > 1 (3)

which models multipath fading as a Nakagami-m process
and shadowing as an inverse Nakagami-m process. In the
above expressions, m� and ms� are physical parameters which
represent the fading severity and shadowing parameters, re-
spectively, Ω� = E[r2] is the mean power, and B(·, ·) is the
beta function [26, Eq. (8.384.1)]. The PDF in (3) includes
the case of Nakagami-m distribution as ms� → ∞ and its
subsequent special cases, such as Rayleigh (m� = 1) and
one-sided Gaussian (m� = 1/2).

During the past years, the Meijer’s G-function has been
widely used to evaluate several performance metrics of interest
in wireless communication systems, such as OP, bit/symbol
error probability and channel capacity. The main reason is that
it assists in the derivation of tractable analytic expressions,
which can be computed straightforwardly since it is a stan-
dard built-in function in well-known mathematical software
packages such as MAPLE, MATHEMATICA and MATLAB.



It is recalled that the Meijer’s G-function represents a
complex contour integral with gamma function, namely [27,
Eq. (8.2.1.1)]

Gu,n
p,q

[
z

∣∣∣∣a1, a2, · · · , apb1, b2, · · · , bq

]

=
1

2πj

∮
L

u∏
i=1

Γ(bi + s)
n∏

i=1

Γ(1− ai − s)

q∏
i=u+1

Γ(1− bi − s)

p∏
i=n+1

Γ(ai + s)

z−sds,

(4)

where 0 ≤ u ≤ q, 0 ≤ n ≤ p, ai and bi may be complex.
The contour L runs from c − j∞ to c + j∞ such that the
poles of Γ(bi + s), i = 1, · · · , u, lie to the left of L and the
poles of Γ(1 − ai − s), i = 1, · · · , n, lie to the right of L.
It is also worth highlighting that when bi → ∞, the Meijer’s
G-function in (4) can be expressed as [27, Eq. (8.2.2.12)]

lim
|bi|→∞

1

Γ(bi)
Gm,n

p,q

[
bix

∣∣∣∣a1, a2, · · · , apbi, bm, · · · , bq

]

= Gm−1,n
p,q−1

[
x

∣∣∣∣ a1, a2, · · · , ap
bi+1, bm, · · · , bq

]
. (5)

III. PRODUCTS OF FISHER-SNEDECOR F VARIATES

Next, we derive the product of N Fisher-Snedecor F
variates.

Definition 1 (N∗Fisher-Snedecor F distribution): We de-
fine the distribution of the product, X , of N i.n.i.d. Fisher-
Snedecor F RVs R�, for 1 ≤ � ≤ N , R� ∼ F(m�,ms� ,Ω�),
i.e.,

X �

N∏
�=1

R�. (6)

as N∗Fisher-Snedecor F distributions.
Theorem 1 (Moments): The sth moment of X is given by

E[Xs] =

N∏
�=1

(
m�

(ms
�
−1)Ω�

)− 1
2 s

B(m�,ms�)
B

(
m� +

1

2
s,ms� −

1

2
s

)
.

(7)

Proof: The sth order moment of X around the origin can
be found using

E[Xs] =

N∏
�=1

E[Rs
� ] =

N∏
�=1

∫ ∞

0

rs fR�
(r)dr. (8)

By substituting (3) into (8) and using [26, Eq. (3.194.3)],
yields the sth moment of X , which completes the proof.

Lemma 1 (Probability Density Function): The PDF of X
is given by (9), at the top of the next page.

Proof: The PDF of X in (6) can be formulated as [28]

fX(x) =
1

x

1

2πj

∮
L

E[Xs]x−sds, (10)

Fig. 1: Cascaded fading channels scenarios: (a) Keyhole, (b)
amplify-and-forward relay, (c) diffraction.

where L represents an appropriate contour. To this effect, by
inserting (7) into (10), using [26, Eq. (8.384.1)], and carrying
out some algebraic manipulations, the PDF of X can be
rewritten as

fX(x) =
1∏N

�=1 Γ(m�)Γ(ms�)

1

x

1

2πj

∮
L

x−s (11)

×
N∏
�=1

Γ(m� + 0.5s)Γ(ms� − 0.5s)

(
m�

(ms� − 1)Ω�

)− 1
2 s

ds.

(12)

Making the change of variable t = s/2 in (11) and using (4)
yields the PDF of X , which completes the proof.

It is noted that when ms� → ∞, and using [27, Eq.
(8.2.2.14)], along with applying an N -fold limit operation
using (5), the PDF in (9) reduces to the PDF of the
N∗Nakagami-m distribution, as given in [15, Eq. (4)].

Corollary 1 (Cumulative Distribution Function): The CDF
of X can be derived as (13), at the top of the next page.

Proof: Using (9) and [27, Eq. (2.24.2.2)] yields the CDF
of X . To this effect, when ms� → ∞, eq. (13) reduces to the
CDF of N∗Nakagami-m distribution in [15, Eq. (7)].

Corollary 2 (Moment generating function): The MGF of X
can be expressed as (14), at the top of the next page.

Proof: The MGF of a RV Z is defined as

MZ(s) �

∫ ∞

0

exp (−sγ)fγ(γ)dγ. (15)

Substituting (9) into (15) and then using [27, Eq. (2.24.8.1)],
thus equation (14) is obtained. Also, as ms� → ∞, (14)
reduces to the MGF of the N∗Nakagami-m distribution in
[15, Eq. (3)].

In what follows, the above results are used in the analysis
of N∗Fisher-Snedecor F cascaded fading channels.



fX(x) =

2x−1GN,N
N,N

[
x2

∏N
�=1

(
m�

(ms
�
−1)Ω�

) ∣∣∣∣1−ms1 , 1−ms2 , · · · , 1−msN

m1,m2, · · · ,mN

]
∏N

�=1 Γ(m�)Γ(ms�)
. (9)

FX(x) =

GN,N+1
N+1,N+1

[
x2

∏N
�=1

m�

(ms
�
−1)Ω�

∣∣∣∣1−ms1 , 1−ms2 , · · · , 1−msN , 1
m1,m2, · · · ,mN , 0

]
∏N

�=1 Γ(m�)Γ(ms�)
. (13)

MX(x) =

GN,N+2
N+2,N

[
4
s2

∏N
�=1

m�

(ms
�
−1)Ω�

∣∣∣∣
1
2 , 1, 1−ms1 , 1−ms2 , · · · , 1−msN

m1,m2, · · · ,mN

]
√
π
∏N

�=1 Γ(m�)Γ(ms�)
. (14)

IV. CASCADED FADING MODELS

Several realistic wireless transmission scenarios correspond
to cascaded fading effects. Some of these cases are illustrated
in Fig. 1. As shown in the first scenario, Fig. 1(a), when
the source node S and the destination node D are separated
by a large distance (d >> r) and are surrounded by many
moving and stationary obstacles, the transmitted signal can
propagate only through an electromagnetically small aperture,
known as a keyhole. The keyhole acts as a source node to
the next keyholes, which renders the overall communication
channel subject to cascaded fading effects. Likewise, Fig. 1(b)
demonstrates the propagation in amplify-and-forward (AF)
wireless relay networks, where an AF relay node is essentially
a keyhole. As such, the received signal at the relay node will
be forwarded to the next relay node until the transmitted signal
reaches the destination node. Finally, Fig. 1(c) depicts wireless
propagation via diffracting wedges, such as rooftops or street
corners. The rooftop or the street corner essentially acts as
a multiplier for a large number of statistically independent
diffracted rays.

A. Performance of N∗Fisher-Snedecor Cascaded Channels

Without loss of generality, consider a digital communication
system that operates over an N∗Fisher-Snedecor F fading
channel and in the presence of additive white Gaussian noise
(AWGN). In this system, the source node S and the destination
node D are located far apart and cannot communicate with
each other directly due to constraints such as power constraints
and channel fading effects. In this case, the communication
can be established through multiple AF-relay nodes, as shown
in Fig. 2. The information signal generated by the source node
is sent to the next relay node, i.e., R1. Then, the relay node
R1 forwards it to the next relay node R2 and this process
continues until the information signal reaches the destination
node D. To this effect, the instantaneous signal-to-noise ratio
(SNR) per symbol at the receiver’s antenna is given by:

γ =

(
Es

N0

)
X2, (16)

Fig. 2: Cascaded fading channels constructed by AF-relay
nodes.

where Es and N0 represent the average transmitted energy
per symbol and the single-sided AWGN, respectively. Based
on this, the corresponding average SNR can be expressed as

γ̄ =

(
Es

N0

)
E[X2] =

(
Es

N0

) N∏
�=1

Ω�. (17)

Corollary 3 (Probability Density Function): The PDF of the
instantaneous SNR γ is given by (18), at the top of the next
page.

Proof: After performing a simple transformation of RVs
with the aid of (16) and (17), the PDF of γ can be obtained
via

fγ(γ) =
fX

(√
γ
γ̄

∏N
�=1 Ω�

)

2
√

γγ̄∏
N

�=1 Ω�

, (19)

where fX(·) is defined in (9). This concludes the proof.
Corollary 4 (Cumulative Distribution Function): The CDF

of the instantaneous SNR γ can be expressed as (20) at the
top of the next page.

Proof: After performing a simple transformation of RVs
with the aid of (16) and (17), the CDF of γ can be obtained
via

Fγ(γ) = FX

⎛
⎝
√√√√γ

γ̄

N∏
�=1

Ω�

⎞
⎠ , (21)

where FX(·) is defined in (13). This completes the proof.



fγ(γ) = γ−1

GN,N
N,N

[
γ
γ̄

∏N
�=1

(
m�

(ms
�
−1)

) ∣∣∣∣1−ms1 , 1−ms2 , · · · , 1−msN

m1,m2, · · · ,mN

]
∏N

�=1 Γ(m�)Γ(ms�)
. (18)

Fγ(γ) =

GN,N+1
N+1,N+1

[
γ
γ̄

∏N
�=1

(
m�

(ms
�
−1)

) ∣∣∣∣1−ms1 , 1−ms2 , · · · , 1−msN , 1
m1,m2, · · · ,mN , 0

]
∏N

�=1 Γ(m�)Γ(ms�)
. (20)

Mγ(s) =

GN,N+1
N+1,N

[
1
γ̄s

∏N
�=1

(
m�

(ms
�
−1)

) ∣∣∣∣1, 1−ms1 , 1−ms2 , · · · , 1−msN

m1,m2, · · · ,mN

]
∏N

�=1 Γ(m�)Γ(ms�)
. (22)

Corollary 5 (Moments Generating Function): The MGF of
the instantaneous SNR γ is given by (22), at the top of the
next page.

Proof: Substituting (18) into (15) and then using [27, Eq.
(2.24.8.1)], yields (22), which completes the proof.

Corollary 6 (Moments): The k-th moment of the instanta-
neous SNR γ is given by

μk = E[γk] = γ̄k

N∏
�=1

Γ(m� + k)Γ(ms� − k)

Γ(m�)Γ(ms�)

(
ms� − 1

m�

)k

.

(23)

Proof: The proof follows immediately with the aid of
(18) and [27, Eq. (2.24.2.1)].

B. Channel Quality Estimation Index

The channel quality estimation index (CQEI) is an effective
measure that provides insights on the amount of fading of at
certain SNR values. It is defined as the ratio of the variance
of the instantaneous received SNR γ to the cubed mean of
the received SNR γ [29], namely

CQEI =
Var[γ]

(E[γ])
3 . (24)

With the help of (23), the CQEI in (24) for the case of
N∗Fisher-Snedecor fading channels is expressed as follows:

CQEI =
1

γ̄

⎧⎨
⎩

N∏
�=1

(
1 + 1

m�

)(
1− 1

ms
�

)
(
1− 2

ms
�

) − 1

⎫⎬
⎭ . (25)

Fig. 3 illustrate the behavior of the CQEI as a function
of the average SNR γ̄. It is observed that the effect of N
on the CQEI for fixed values of m and ms. It is clear that
as N increases, the CQEI increases and thus, the system
performance degrades.
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Fig. 3: CQEI versus γ̄ for i.i.d. N∗Fisher distributions with
m = 2.5, ms = 2.5, and N = 2, 4, 6, 8, 10.

C. Outage Probability (OP)

The OP is the probability that the instantaneous output SNR
γ falls below a certain specified threshold γth, that is

Pout = Pr[0 ≤ γ ≤ γth] =

∫ γth

0

fγ(γ)dγ = Fγ(γth). (26)

It is evident that the OP over N∗Fisher-Snedecor cascaded
fading channels is readily obtained using the corresponding
CDF in (20).

D. Average Bit Error Probability (BEP)

The average BEP, P b, of a digital communication system
is given by

P b =

∫ ∞

0

Pe(γ)fγ(γ)dγ, (27)

where Pe(γ) denotes the conditional error probability. For the
case of binary modulations, Pe(γ) is given by

Pe(γ) =
1

2Γ(b)
Γ(b, aγ), (28)



P b =

∫ ∞

0

γ−1Γ(b, aγ)GN,N
N,N

[
γ
γ̄

∏N
�=1

(
m�

(ms
�
−1)

) ∣∣∣∣1−ms1 , 1−ms2 , · · · , 1−msN

m1,m2, · · · ,mN

]

2Γ(b)
∏N

�=1 Γ(m�)Γ(ms�)
dγ. (29)

P b =

GN+2,N
N+1,N+2

⎡
⎣ a∏

N

�=1

(
m

�

(ms
�
−1)

) γ̄
∣∣∣∣1−m1, 1−m2, · · · , 1−mN , 1

ms1 ,ms2 , · · · ,msN , 0, b

⎤
⎦

2Γ(b)
∏N

�=1 Γ(m�)Γ(ms�)
. (30)

where Γ(·, ·) is the complementary incomplete gamma func-
tion [26, Eq. (8.350.2)], whereas, a and b are modulation-
dependent parameters given in Table I. Hence, by substituting
(18) and (28) into (27) yields (29), at the top of the next
page. To this effect, the average BEP in (29) can be derived
in a closed-form with the aid of [27, Eq. (8.4.16.2)], [27, Eq.
(2.24.1.1)], and [27, Eq. (8.2.2.14)], yielding, (30), at the top
of the next page.

V. NUMERICAL RESULTS AND DISCUSSIONS

This section presents some illustrative numerical exam-
ples for the derived performances metrics of the N∗Fisher-
Snedecor fading model. Also, respective Monte-Carlo simu-
lation results are provided to validate the correctness of the
analytic results. To this end, a tight agreement is observed
between the analytical and simulated curves in all examined
cases.

TABLE I: VALUES OF a AND b IN (28) FOR DIFFERENT

BINARY MODULATION SCHEMES.

Constellation a b

BPSK 1
1

2

DBPSK 1 1

BFSK 1

2

1

2

NBFSK 1

2
1

Fig. 4 illustrates the effect of the number of cascaded
channels N on the OP performance for N = 1, 2, 3, 4. Also,
heavy shadowing conditions are considered i.e., ms� = 0.5
with fading severity m� = 3.5 and γth = 0 dB. For low
SNRs values, it is clear that as the number of cascaded fading
channel increases, the OP performance improves. On the other
hand, at high SNRs values, the OP performance improves
when the number of cascaded fading channels decreases. This
stems from the inherent characteristics of the keyhole effect
and provides interesting insights of realistic communications
scenarios.

Likewise, Fig. 5 demonstrates the average bit error proba-
bility for N∗Fisher-Snedecor F channels with N = {2, 4}
is plotted. As expected, the average bit error probability
improves as the number of cascaded channels decreases. For
example, a target average BEP of 10−3 is achieved at about
13 dB for the case of two cascaded channels and at about
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10-4
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10-2

10-1

100

Fig. 4: OP performance as a function of average SNR γ̄ for
N = {1, 2, 3, 4} with heavy shadowing for m� = 3.5 and
γth = 0 dB.
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Fig. 5: Average BEP for 4-QAM performance as a function of
average SNR per bit for N = {2, 4} under different shadowing
conditions for m� = 3.5.

22 dB for the case of four cascaded channels. This shows
a considerable variation of nearly 10 dB, which verifies the
need for accurate modeling of realistic fading conditions.



VI. CONCLUSION

The present work derived novel closed-form expressions for
the product of N Fisher-Snedecor F variates which were then
extended to the basic statistical measures of the N∗Fisher-
Snedecor F cascaded fading model. These expressions were
then used to derive the channel quality estimation index for
the proposed model as well as the outage probability and the
average bit-error-probability under such fading conditions. It
was shown that the effect of the number of cascaded channels
on the system performance is significant since the incurred
OP and ABEP variations are at least one order of magnitude.
The same also holds for the incurred multipath fading and
shadowing conditions as even slight variation of the severity
of them has a considerable effect on the system performance
across all signal to noise ratio regimes. This verifies the call
for accurate characterization and modeling of realistic fading
conditions, which will assist largely in the efficient and robust
design of future communication systems for versatile and
demanding wireless applications of interest.
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