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Abstract 

 1. Saltmarsh conservation management often involves livestock grazing to 

maximise plant diversity and provide suitable breeding habitat for over-wintering 

coastal birds. The effect of grazing on invertebrates is rarely quantified, but results 

from limited studies of terrestrial and coastal grasslands demonstrate greater 

abundance and species richness in un-grazed grassland. 

2. The impact of short sward (< 8 cm) cattle grazing on the ground dwelling 

invertebrate community was assessed on an English inter-tidal upper salt marsh 

using pitfall traps. Abundance, species richness, functional group structure, 

abundance of coastal specialists, environmental factors that influence invertebrate 

habitat choice and food web composition were compared for grazed and un-grazed 

marsh.  

3. In total, 90000 invertebrates were sampled. Predatory, zoophagus and 

detritivorous Coleoptera were significantly more abundant on the un-grazed marsh. 

In contrast, predatory Hemiptera and Araneae were significantly more abundant on 

the grazed marsh. Sheet weaver spiders were significantly more abundant on the 

grazed marsh, foliage running hunters and space web builders more abundant on 

the un-grazed marsh. Most inter-tidal coastal specialist species exhibited clear 

habitat preference for the grazed marsh. Total species richness was not significantly 

different between grazing treatments. 
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4. RDA analysis showed that two environmental variables influenced by grazing 

intensity, soil temperature and vegetation height, significantly explained the 

composition of invertebrate functional groups. Larger bodied invertebrates 

dominated the un-grazed food web. 

5. We conclude that both short sward cattle grazed and un-grazed saltmarsh 

habitat should be maintained to maximise invertebrate abundance and diversity 

and provide suitable habitat for coastal specialists. 

Key words Araneae, biodiversity, body size, Coleoptera, Hemiptera, food web, 

insects, pitfall, prey capture method, spiders. 

Introduction 

European salt marshes are highly productive and were traditionally managed as 

agricultural livestock grazing land (Bouchard et al., 2003; Doody, 2008). Grazing is 

still common place within the salt marshes of North West Europe and is often 

maintained with the twin conservation aims of maximising plant and bird diversity 

(Chatters, 2004; Milsom et al., 2000). It is well known that intermediate grazing 

pressure maximises plant diversity on Northern European marshes (Adam, 1990; 

Bakker et al., 1993).  Birds, however, show a variable response to grazing intensity 

as each species exhibits a particular habitat preference (Daan et al., 2002; Bouchard 

et al., 2003). Salt marshes are also an important coastal habitat for both highly 

specialised inter-tidal invertebrates (Pétillon et al., 2005), certain Red Data Book 

(RDB) listed or Biodiversity Action Plan (BAP) species (Alexander et al., 2005; Webb 

et al., 2010) and other invertebrates common to grasslands.  

The effects of saltmarsh grazing management on invertebrate diversity and 

abundance are poorly understood. Previous saltmarsh invertebrate studies have 

tended to focus on the zonation of particular groups, especially carabid beetles and 

spiders, with marsh elevation. Irmler et al. (2002) and Finch et al. (2007) both found 

that species richness of carabid beetles and Araneae increased with distance above 

mean high tide. British carabid and Staphylinidae saltmarsh communities have also 

been well documented (Hammond, 2000; Luff & Eyre, 2000). Most studies report 
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higher invertebrate species richness and abundance in un-grazed systems for both 

salt marshes and other grasslands (Bakker et al., 1993; Gibson et al., 1992a; Morris, 

2000; Kruess & Tscharntke, 2002). Pétillon et al. (2007) found that although this 

was true for spiders, for Coleoptera species richness was higher on grazed marsh. 

Short sward, livestock grazed marshes provide a suitable habitat for inter-tidal 

coastal specialist species (Andresen et al., 1990). 

We define invertebrate coastal specialists as those species that are only found in 

inter-tidal or estuarine habitats. These species are habitually or physiologically 

adapted to cope with tidal inundation and variable salinity. Some species, such as 

the saltmarsh spider Pardosa purbeckensis avoid flooding by moving vertically in tall 

vegetation, but if submerged in saline water they survive longer than related 

terrestrial wolf spiders (Pétillon et al., 2011). Another saltmarsh spider, Arctosa 

fulvolineata, withstands submersion by entering a hypoxic coma (Pétillon et al., 

2009). Some invertebrate species can osmoregulate in saline environments, 

controlling the water balance within their bodies (Williams & Hamm, 2002). Other 

marine invertebrates take advantage of plastron respiration (Flynn & Bush, 2008). 

Terrestrial invertebrates that occur in habitats likely to flood are often opportunists 

able to migrate horizontally to higher ground, enter a dormant stage underwater or 

reproduce rapidly to take advantage of flood free periods (Adis & Junk, 2002).  

Livestock grazing reduces above-ground biomass and vegetation height, causes a 

rapid turnover of plant material via the production of fresh leaves, reduces plant 

litter build up and has direct effects on plant species composition and structure via 

preference or avoidance of particular plant species by livestock  (Adam, 1990; Bos, 

2002). Sheep provide a uniform short sward whereas cattle, as more selective 

feeders, often produce a more ‘tussocky’ sward (Adam, 1990; Lambert, 2000). With 

high stocking density cattle can however produce a short, even sward of high 

quality forage, attractive for feeding geese, or provide variable structure, suitable 

for breeding birds (Bakker, 1989; Bos, 2002). In contrast, either in historically un-

grazed or abandoned upper salt marshes tall unpalatable grasses, such as Elytrigia 

athericus dominate (Bakker et al., 1993; Van Wijnen & Bakker, 1997; Bakker et al., 

2002). Livestock grazing also impacts upon abiotic marsh characteristics. Short 
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grazed vegetation leads to greater and more variable soil temperatures than un-

grazed grassland (Curry, 1994). Cattle disturbance generally results in a 

topographically variable soil surface whereas sheep evenly compact it, but both can 

lead to waterlogged ground with high soil salinity (Lambert, 2000). Grazing 

herbivores also return nutrients to the soil via dung input (Bakker et al., 1993). 

Abundance and diversity of terrestrial invertebrate fauna is greatest on un-grazed 

marshes, with a food web dominated by detritivores, as tall vegetation and 

increased litter layer depth increase available niches, food provision and provide 

cover from predators (Adam, 1990; Curry, 1994). The grazed marsh invertebrate 

food web is dominated by warmth seeking inter-tidal coastal specialists and 

phytophagus individuals dependent upon particular plant species (Andresen et al., 

1990; Bakker et al., 1993). If grazing intensity is very high phytophagus 

invertebrates also decline (Meyer et al., 1995). The marsh invertebrate food web 

can be characterised using functional groups (Blondel, 2003), in our study different 

trophic categories. ‘Bottom-up’ processes such as resource limitation or ‘top-down’ 

processes such as population limitation by predators can be studied using a 

functional group approach (Chen & Wise, 1999). Few studies have looked at the 

response of saltmarsh invertebrate functional groups to grazing. Meyer et al. (1995) 

described how the European saltmarsh invertebrate food web differed with sheep 

grazing intensity but most studies focus on either the macro-invertebrate 

community of the lower marsh (Salgado et al., 2007) or American saltmarsh food 

webs (Zimmer et al. 2004). As the marshes of North America differ from European 

marshes in terms of productivity, dominant plant species, effect of livestock grazing 

upon plant species richness and invertebrate community (Bazely & Jeffries, 1986; 

Adam, 1990; Ford & Grace, 1998; Garbutt & Boorman, 2009), it is difficult to relate 

North American food web studies to European marshes. 

Coleoptera communities are affected by moisture, temperature, salinity, vegetation 

height, trampling and soil compaction (Lassau et al., 2005; Pétillon et al., 2008; 

Hofmann & Mason, 2006; Morris, 2000). Spider species assemblages are 

particularly sensitive to moisture, vegetation height and vegetation structure 

(Bonte et al., 2000; Uetz et al., 1999; Bell et al., 2001; Pétillon et al., 2008). In a 



  

 
5 

 

Californian saltmarsh a positive relationship was found between plant species 

richness, vegetation tip height diversity and spider family richness due to increased 

potential of nesting and web building sites (Traut, 2005). Hemiptera, phytophagus 

Auchenorrhyncha leafhoppers in particular, increase in abundance and diversity 

with greater plant diversity, vegetation height and structural complexity 

(Biedermann et al., 2005). E. atherica invasion of salt marshes, characteristic of un-

grazed marshes, correlates to an increase in non coastal spider species leading to 

an overall increase in biodiversity but a decrease in abundance of coastal specialist 

species (Pétillon et al., 2005; Pétillon et al., 2010). Spider coastal specialists may 

decline as E. atherica stands tend to create drier more terrestrial conditions than 

other saltmarsh vegetation. Un-grazed inland salt meadows also exhibited a lower 

abundance of coastal specialist spider species than grazed meadows (Zulka et al., 

1997). 

The existing evidence suggests that un-grazed marshes may provide suitable habitat 

for a diverse invertebrate community, but that cattle grazed marshes with a 

uniform short sward may support a narrower range of saltmarsh specialist species. 

Prey selection within food webs may be influenced by body size of invertebrates; 

however, no published work has been carried out relating saltmarsh food web 

structure to body size of invertebrates. This study aims to assess the impact of 

grazing on abundance, diversity and functional group structure of the entire ground 

dwelling invertebrate community using pitfall sampling. Specifically addressing how 

grazing influences: abundance, species richness and functional group structure of 

Coleoptera, Hemiptera and Araneae; abundance and functional group structure of 

all other invertebrates; abundance of invertebrate coastal specialists; 

environmental factors that influence invertebrate habitat choice; and saltmarsh 

food web in relation to functional group and body size. The three main orders 

focused on within this study, Coleoptera, Hemiptera and Araneae, were chosen as 

they are well studied, easy to identify to species level, include important predators, 

often include larger bodied individuals and are used as bio-indicators of grassland 

ecosystem health (Biedermann et al., 2005; Pearce & Venier, 2006). 
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Methods  

Site description 

The salt marshes of the Ribble estuary cover around 2000 ha in total. The study 

area, Crossens Marsh (53⁰ 41’ 15” N, 2⁰ 57’ 4” W), is located on the southern edge 

of the Ribble estuary in North-West England and is part of the Sefton Coast Special 

Protection Area managed by Natural England, the statutory conservation body. The 

marsh was historically un-grazed but was split into two management types over 40 

years ago, un-grazed and cattle grazed (Figure 4.1). The grazed marsh is 

characterised by predominantly Festuca rubra saltmarsh NVC community (SM16d) 

and the un-grazed marsh by Elytrigia repens saltmarsh (SM28; Rodwell, 2000). E. 

repens replaces E. atherica on UK west coast. The grazed part of the marsh covers 

517 ha and is uniformly grazed by around 100 bullocks from late May to early 

October, approximately 0.2 cattle per hectare, and provides a consistent short 

sward (< 8 cm) for overwintering pink-footed geese (Anser brachyrhynchus) to feed. 

Small herbivores such as field voles are also present, particularly on the un-grazed 

marsh.  

 

Figure 4.1 Crossens Marsh field site with fence line marking boundary between un-grazed 

vegetation on the left, dominated by a tall sward (20 – 30 cm) of Elytrigia repens, and consistently 

short cattle grazed vegetation on the right (< 8 cm). 
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Experimental design 

All experimental units were selected within the high marsh zone where numerous 

creeks are present but tidal inundations are relatively rare, limited to around eight 

events a year on high equinox tides. A paired experimental design was used with six 

experimental units of approximately 10 m x 10 m set up on each side of a 600 m 

long section of the fence line, 100-150 m apart, in a ‘mirror image’ formation, giving 

six grazed (G1-G6) and six un-grazed (U1-U6) units (Figure 4.2). Each experimental 

unit was located between 20 m and 50 m from the fence line to ensure an 

adequate buffer zone and checked for standard elevation within ±10 cm. All 

measurements were carried out within these experimental units.  

G1

Grazed

Un-grazed

Fence line (600 m)
20 m ‘buffer’ zone

G2

G3

G4

G5

G6

U6

U5

U4U2

U3

U1

30 m

 
 
Figure 4.2 Experimental design at Crossens Marsh, G1–G6 were grazed experimental units, U1-U6 

were un-grazed units. 

 

Soil and vegetation characteristics 
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Soil samples were collected during September 2009 from the top 15 cm of soil to 

measure salinity and pH. Soil was sieved to 2 mm and a sub sample of 10 g was 

taken from each sample and shaken with 25 ml of deionised water (1:2.5 dilution 

factor). A Hanna pH209 pH meter was used to measure pH and a Jenway 4520 

Conductivity meter to measure electrical conductivity (mS cm-1) as a proxy for 

salinity (Douaik, Van Meirvenne & Tóth, 2007). Samples to determine bulk density 

and soil organic matter content were collected during September 2009 using intact 

soil cores of 3.8 cm diameter and 15 cm depth. Cores were dried at 105 ⁰C for 72 

hours and the dry mass divided by the volume of the core to calculate bulk density. 

Loss-on-ignition was used to estimate organic matter content (Ball, 1964). Soil 

moisture content and temperature were recorded at six locations within each 

experimental unit during September. Soil conductivity was measured in direct volts 

using a Delta T Theta Meter HH1 (four probes of 6 cm) and converted to percentage 

soil moisture content using a calibration suitable for organic soils. Soil temperature 

was measured using a digital thermometer (single 11 cm probe). 

Plant species richness and percentage cover were estimated by eye during July 

2009 in five 1 m x 1 m quadrats placed 3 m apart within each experimental unit. 

Within each quadrat a 25 cm x 50 cm corner was allocated and above-ground living 

vegetation collected. Plant litter was collected separately from the same area. One 

root core of 5 cm diameter and 10 cm depth was also taken per quadrat and 

washed to remove all soil. Above-ground vegetation, litter and roots were all dried 

at 80 °C for 24 hours and weighed to give indicators of above-ground live plant 

biomass, litter biomass and below-ground root biomass respectively. Vegetation 

height was measured in May and September at ten random positions within 1 m of 

each pitfall trap with a custom made drop disc of 20 cm diameter, 10 g mass. 

Vegetation height diversity was also calculated. All plant nomenclature follows 

Stace (2010). 

Ground dwelling invertebrates - pitfall traps 

Pitfall traps were used to sample ground dwelling invertebrates in spring and 

autumn. The traps were put in place for 28 days from 5th May to 2nd June 2009 and 
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for 30 days between 4th September and 9th October 2009 (excluding 5 days where 

traps were removed due to high tides). Six pitfall traps per experimental unit were 

set up in two lines of three, 5 m apart. Each trap consisted of a plastic cup (80 mm 

diameter x 105 mm deep) a third full with a 50/50 mix of ethylene glycol and water, 

recommended for preservation of invertebrates (Schmidt et al., 2006), with a drop 

of washing up liquid to break the surface tension. Each trap was pushed into a hole 

made by a soil auger until they were flush with the soil surface.  A rain hat was 

placed over each trap and set at 3 cm from the ground. A wire basket of 5 cm mesh 

size was also placed over each rain hat and pegged down to prevent interference by 

cattle. Pitfalls were emptied and replaced with new ethylene glycol mixture half 

way through the spring and autumn sampling periods to aid preservation of 

invertebrates. The contents of the pitfalls were preserved in 70 % Industrial 

strength methylated spirits (IMS).  

Invertebrate classification - functional groups & coastal specialists 

All invertebrates caught in the pitfall traps from Coleoptera, Hemiptera and 

Araneae were identified to species level, all other invertebrates were identified to 

family or order level. All invertebrates were also classified according to the 

following functional groups: predatory, zoophagus (predatory and scavenging), 

phytophagus (herbivore or granivorous), detritivore (feed on detritus and 

associated decomposer community of fungi and bacteria) (Kreeger & Newell, 2000), 

or an additional category ‘not assigned’ on the basis of species, family or order level 

information (Table A4.1). Invertebrate species authorities listed in Table A4.1. 

Spiderlings were excluded from the analysis as they were only counted in 

September. Larvae belonging to all other groups were assigned a functional group 

where possible. Araneae are all predators but were further grouped by prey 

capture method as proposed by Uetz et al. (1999).  

Coastal specialist carabid beetles were defined by Luff (1998), Araneae by Harvey et 

al. (2002). Nationally scarce invertebrates associated with coastal saltmarsh were 

defined by Buglife – The Invertebrate Conservation Trust (Alexander et al. 2005), 

these species are not necessarily coastal specialists but are nationally scarce 
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invertebrates only found in particular habitats. The UK distribution of coastal 

specialist species were also checked using the National Biodiversity Network 

interactive map (http://data.nbn.org.uk/imt, 2011). Invertebrate nomenclature 

follows Duff (2008) for Coleoptera and Fauna Europea (2004) for Araneae, 

Hemiptera and all other groups. 

Statistical Analysis – soil and vegetation characteristics 

Differences between grazing treatments for soil and vegetation characteristics were 

analysed using linear mixed effects models (lme) analysed by ANOVA using R 

v.2.12.1 (2010 As lme (salinity ~ grazing, random = ~1|block/grazing). This approach 

was used to enable the raw data to be analysed accounting for replication at the 

level of the experimental unit or block (n=6). Vegetation height diversity for the 

grazed and un-grazed marsh was calculated from the Coefficent of variance (CoV; 

Standard Deviation/Mean*100) of each set of ten heights from around each pitfall. 

Statistical Analysis – ground dwelling invertebrates 

For each of the twelve experimental units, the contents of the six pitfalls within 

each unit were pooled to give a total invertebrate count per unit. As trends in 

invertebrate community composition appeared similar between the May and 

September sampling periods the data were combined to give one measure of 

abundance to represent the year 2009. At the level of the experimental unit (n=6) 

differences in functional group abundance and species richness, within Coleoptera, 

Hemiptera, Araneae and all other invertebrate groups, between grazed and un-

grazed treatments were tested for statistical significance using Wilcoxon matched 

pairs test, Genstat v.10 (Payne et al., 2007). Box plots were produced using Minitab 

v.15 Statistical Software (2007). 

Statistical Analysis – relationship between environmental variables and functional 

group occurrence 

Linear direct gradient analysis (RDA) was carried out to examine the relationship 

between all environmental variables listed in Table 4.1 (mean at unit level), and the 

distribution of pitfall functional groups and prey capture methods from the six 
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grazed and six un-grazed experimental units of the salt marsh. ‘Species’ data were 

entered into the analysis in the form log transformed count data (total for 

experimental unit) of functional groups or Araneae prey capture methods, RDA 

scaling was focused on inter-species correlations and centred by species, grazing 

treatment of each unit was included in the final RDA triplot but was not used to 

influence the analysis. The significance of environmental variables was tested using 

automatic forward selection (Monte Carlo test, 500 permutations). All multivariate 

analysis was carried out in Canoco v.4.5 (Ter Braak and Šmilauer, 2003). 

Food web analysis 

The most abundant groups of invertebrates on the grazed or un-grazed marsh (≥ 1% 

of total abundance on one marsh type) were used to create a food web for the salt 

marsh based on taxonomy, functional group, body size and prey selection 

preferences. Body size was divided into three size classes based on body length, 

large (≤ 30 mm), medium (≤ 20 mm) and small (≤ 10 mm). Body size was 

determined for Coleoptera (Unwin, 1988), Hemiptera (Burrows, 2009; Bantock & 

Botting, 2010), Araneae (Jones-Walters, 1989) and other invertebrates (Chinery, 

1986; Tilling, 1987). Food web prey preferences, both for particular invertebrate 

groups and body size, were based on Lövei & Sunderland (1996), Clough et al. 

(2007), Rickers (2005) and Landis & Werf (1997) for predatory beetles and 

Hemiptera; Nyffeler (1999), Jones-Walters (1989) and Enders (1975) for spiders; 

Dias & Hassal (2005) for woodlice and sand hoppers. 

Results 

Soil properties and vegetation characteristics 

Soil bulk density, percentage moisture content and temperature were all 

significantly higher on the grazed marsh; soil pH was significantly higher on the un-

grazed marsh (Table 4.1). Plant species richness; percentage cover of Agrostis 

stolonifera, Glaux maritima, Puccinellia maritima and Triglochin maritima; and 

below-ground plant biomass were all significantly greater on the grazed marsh. 

Percentage cover of Elytrigia repens, above-ground plant biomass, litter biomass, 
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vegetation height in May and September were all significantly higher on the un-

grazed marsh. Soil salinity, soil organic matter content, percentage cover of Festuca 

rubra and vegetation height diversity were not significantly different between 

grazing treatments. 

Invertebrate summary 

This study captured nearly 90,000 ground dwelling invertebrates, around two thirds 

on the un-grazed marsh. Predators were one and a half times more abundant on 

the grazed than the un-grazed marsh, but not significantly so, 19 % and 9 % 

respectively of the total invertebrate count per grazing treatment. Zoophagus 

invertebrates were three times more abundant on the un-grazed marsh (Wilcoxon; 

w = 0, d.f. = 5, p < 0.05) and phytophagus individuals were equal between 

treatments, both groups only accounted for 1 - 3 % of total count per treatment. 

There were twice as many detritivores on the un-grazed than the grazed marsh, 78 

% compared to 55 % of the total. There were twice as many not assigned 

invertebrates on the grazed marsh, 23 % to 9 % on the un-grazed. Coleoptera 

accounted for 6 %, Hemiptera 1 % and Araneae 9% of the total invertebrate count. 

For Coleoptera, Hemiptera and Araneae combined species richness was not 

significantly different between grazing treatments. 

Abundance, species richness and functional group structure of Coleoptera 

Coleoptera were around three times more abundant and significantly more species 

rich (Wilcoxon; w = 0, d.f. = 5, p < 0.05, Table 4.2) on the un-grazed marsh. 

Predatory,  Zoophagus and Detritivorous Coleoptera were all significantly more 

abundant on the un-grazed marsh (Test statistics for each: Wilcoxon; w = 0, d.f. = 5, 

p < 0.05; Figure 4.3a). The most abundant species on the un-grazed marsh were 

zoophagus Bembidion iricolor (14 % of total Coleoptera), predatory Cantharis rufa 

(14 %) and predatory Cordalia obscura (11 %). The most abundant species on the 

grazed marsh were zoophagus Bembidion aeneum (20 %), not assigned Brundia 

marina (14 %) and C. rufa (14 %).  
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Table 4.1 Soil properties and vegetation characteristics measured from the grazed and un-grazed 

marsh. Sampling depths are presented alongside treatment means ± standard errors, ANOVA 

results (n = 6), number of replicate samples per experimental unit and month sampled. For 

vegetation height, for each of the 6 replicates per treatment the mean of 10 measurements was 

used in the analysis. For vegetation height diversity, CoV = coefficient of variance. 

 Depth 
(cm) 

Grazed Un-grazed  Reps Month 

Soil       
Salinity (mS cm-1) 0-15 4.2 ± 0.4 3.4 ± 0.3 ns   3 Sept.  
pH 0-15 7.6 ± 0.1 7.9 ± 0.1 *   3 Sept.  
Bulk density (g cm-3) 0-15 0.8 ± 0.0 0.7 ± 0.0 * 3 Sept.  
Organic matter content (%) 0-15 7.4 ± 0.7 6.3 ± 0.4 ns   3 Sept.  
Moisture content (%) 0-6 52.6 ± 0.1 44.5 ± 1.2 *  6 Sept.  
Temperature (⁰C) 0-11 14.9 ± 0.1 14.2 ± 0.0 *  6 Sept.  

Vegetation       
Plant species richness (species m-2) n/a 6.6 ± 0.3 3.7 ± 0.2 *   5 July  
% cover       

Agrostis stolonifera L. n/a 20.0 ± 5.3 0.0 ± 0.0 * 5 July  
Elytrigia repens L. n/a 0.7 ± 0.5 58.0 ± 6.0 ** 5 July  
Festuca rubra L. n/a 25.4 ± 4.7 31.2 ± 5.4 ns   5 July  
Glaux maritima L. n/a 6.0 ± 1.4 0.0 ± 0.0 **  5 July  
Puccinellia maritima Parl. n/a 28.3 ± 5.7 0.0 ± 0.0 *  5 July  
Triglochin maritima L. n/a 11.3 ± 2.4 3.2 ± 2.8 *  5 July  

Above ground biomass (kg dwt m-2) n/a 0.3 ± 0.0 0.7 ± 0.1 *  5 July  
Litter biomass (kg dwt m-2) n/a 0.0 ± 0.0 0.3 ± 0.0 * 5 July  
Below ground biomass (kg dwt m-2) 0-10 3.4 ± 0.2 1.0 ± 0.1 ***   5 July  
Vegetation height (cm) n/a 8.1 ± 0.5 29.2 ± 0.8 ***   6 May  
Vegetation height (cm) n/a 8.2 ± 0.4 19.2 ± 0.7 ***   6 Sept.  
Vegetation height diversity (CoV) (%) n/a 31.5 ± 4.6 29.9 ± 3.2 ns 6 May 
Vegetation height diversity (CoV) (%) n/a 29.1 ± 3.7 32.6 ± 3.8 ns 6 Sept. 

Significant differences between grazing treatments indicated by *(p < 0.05), **(p < 0.01) and ***(p < 
0.001). Non significant results recorded as ns (p > 0.05).   
 

 

Abundance, species richness and functional group structure of Hemiptera 

Hemiptera were around five times more abundant on the grazed than the un-

grazed marsh but total species richness did not differ (Table 4.2). Predatory 

Hemiptera were significantly more abundant on the grazed marsh (Wilcoxon; w = 0, 

p < 0.05, Figure 4.3b), phytophagus Hemiptera did not differ with grazing. On the 

grazed marsh the predatory shore bug Salda littoralis accounted for 67 % of total 

Hemipteran abundance. Phytophagus aphids accounted for 18 % of total 

abundance on the grazed marsh, 61 % on the un-grazed marsh.  
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Table 4.2 Invertebrate species richness comparison between grazed and un-grazed marsh; 

Coleoptera, Hemiptera and Araneae combined, separated into orders and at a functional group or 

prey capture method level. Species richness data are shown by treatment medians ± inter-quartile 

range, n = 6 in all cases. 

 

Invertebrate group Functional group / prey capture 
method 

Grazed Un-grazed  

Coleoptera, Hemiptera, 
Araneae 

All 51.0 ± 6.8 60.5 ± 7.3 ns 

Coleoptera All 28.0 ± 6.5 37.0 ± 1.5 * 
Coleoptera Predatory 10.0 ± 3.5 13.0 ± 1.5 ns 
Coleoptera Zoophagus 8.0 ± 0.8 9.0 ± 0.8 ns 
Coleoptera Phytophagus 5.0 ± 1.5 5.0 ± 1.5 ns 
Coleoptera Detritivore 3.0 ± 0.8 7.0 ± 2.8 ns 
Coleoptera Not assigned 2.0 ± 0.0 2.0 ± 0.0 ns 
Hemiptera All 6.0 ± 1.5 5.5 ± 2.5 ns 
Hemiptera Predatory 2.0 ± 0.0 1.0 ± 0.8 ns 
Hemiptera Phytophagus 4.5 ± 1.8 4.0 ± 1.5 ns 
Araneae All / Predatory 17.5 ± 1.8 20.0 ± 2.3 ns 
Araneae Foliage running hunter 0.5 ± 0.0 1.0 ± 0.0 ns 
Araneae Ground running hunter 4.5 ± 1.0 6.0 ± 0.8 ns 
Araneae Space web builder 0.0 ± 0.0 1.0 ± 0.0 * 
Araneae Sheet weavers 12.7 ± 0.5 12.0 ± 0.8 ns 

Significant differences between grazing treatments indicated by *(p < 0.05), non significant results as 
ns (p > 0.05), Wilcoxon Matched-Pairs test. 

 

Abundance, species richness and prey capture methods of Araneae 

As an entirely predatory group Araneae were significantly more abundant on the 

grazed marsh (Wilcoxon; w = 0, d.f. = 5, p < 0.05, Figure 4.4a) but species richness 

did not differ (Table 4.2). Foliage running hunters were significantly more abundant 

on the un-grazed marsh (Wilcoxon; w = 0, d.f. = 5, p < 0.05, Figure 4.4b). Ground 

running hunter abundance was not significantly different between the grazed and 

un-grazed marsh. Space web builders were more abundant on the un-grazed marsh 

(Wilcoxon; w = 0, d.f. = 5, p < 0.05). Sheet weavers were significantly more 

abundant (Wilcoxon; w = 0, d.f. = 5, p < 0.05) but not more species rich on the 

grazed marsh. The grazed marsh was numerically dominated by two sheet weaver 

Linyphiidae species, Erigone longipalpis (42 % of total Araneae for grazing 

treatment) and Oedothorax fuscus (21 %). The wolf spider P. purbeckensis (9 %) 

were also common on the grazed marsh. The un-grazed marsh was characterised by 

the Linyphiidae Allomengea scopigera (39 %) and P. purbeckensis (20 %).  
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Abundance and functional group structure of other invertebrates 

For all other invertebrates total abundance was twice as high on the un-grazed 

marsh. Zoophagus invertebrates, all harvestmen, were significantly more abundant 

on the un-grazed marsh (Wilcoxon; w = 0, d.f. = 5, p < 0.05, Figure 4.5a). Predatory 

(all parasitoid wasps), phytophagus, detritivore and not assigned functional groups 

did not differ significantly with grazing treatment (Figure 4.5a, 4.5b). Even though 

the abundance of all detritivores did not differ between grazing treatments their 

composition did. On the un-grazed marsh Orchestia gammerella (68 %) and 

woodlice (23 %) were most abundant. On the grazed marsh Collembola (69 %) and 

O. gamerella (30 %) were common. Of particular interest within the not assigned 

category are the Tipulidae, these were caught fifty times more frequently on the 

grazed marsh. 

Abundance of coastal specialist species 

Coastal specialist ground beetles, Bembidion minimum and Dicheirotrichus gustavii, 

rove beetle B. marina and nationally scarce saltmarsh shore bug Saluda opacula 

were found predominantly on the grazed side of the marsh (Table A4.1). As were 

Araneae coastal specialist species Silometopus ambiguus and E. longipalpis.  The 

coastal spider P. purbeckensis was found almost equally on both the grazed and the 

un-grazed marsh. The carabid B. iricolor was recorded mainly on the un-grazed side. 

Even though D. gustavii and S. opacula show clear habitat preferences they are only 

found in low numbers compared to the other coastal specialist species listed. Three 

species, B. marina, S. ambiguus and E. longipalpis were sampled in greater 

abundances in G5, the most saline experimental unit, than any of the other units. 
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Figure 4.3 Coleoptera (a) and Hemiptera (b) abundance from grazed (grey bars) and un-grazed 

(white bars) salt marsh characterised by functional group: PRE = predatory; ZOO = zoophagus; PHY 

= phytophagus; DET = detritivore; NOT = not assigned. Significant differences between grazing 

treatment indicated by *(p < 0.05), non significant results as ns (p > 0.05), Wilcoxon matched pairs 

test.  
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Figure 4.4 Araneae abundance from grazed (grey bars) and un-grazed (white bars) salt marsh 

characterised by functional group (a): PRE = predatory and further classified by prey capture 

method (b): FRH = foliage running hunter; GRH = ground running hunter; SWB = space web 

builder; SW = sheet weaver. Significant differences between grazing treatment indicated by *(p < 

0.05), non significant results as ns (p > 0.05), Wilcoxon matched pairs test. 
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Figure 4.5 All other invertebrates (not Coleoptera, Hemiptera or Araneae) abundance from grazed 

(grey bars) and un-grazed (white bars) salt marsh characterised by functional group: a) PRE = 

predatory; ZOO = zoophagus & PHY = phytophagus; b) DET = detritivore & NOT = not assigned. 

Significant differences between grazing treatment indicated by *(p < 0.05), non significant results 

as ns (p > 0.05), Wilcoxon matched pairs test. 
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Environmental factors that influence invertebrate habitat choice 

The RDA triplot (Figure 4.6) shows a visual interpretation of the relationship 

between eight environmental variables, selected by Monte Carlo forward selection, 

and the distribution of functional groups or prey capture methods. Axis 1 explained 

79 % of the variation in functional group or prey capture method occurrence, axis 1 

and 2 combined explained 89 % of the variation. The Monte Carlo test for all axes 

was significant for three environmental variables; temperature (positively 

correlated with axis 1: F-ratio = 23.73, P < 0.01), vegetation height (negatively 

correlated with axis 2: F-ratio = 3.59, P < 0.05) and salinity (positively correlated 

with axis 2: F-ratio = 2.38, P < 0.05), all other environmental variables either 

correlated with these three or did not describe a significant proportion of the 

variation in functional group occurrence. Grazing intensity was clearly separated 

out by axis 1, with all grazed experimental units positively associated with and all 

un-grazed units negatively associated with axis 1. Predatory, zoophagus, and 

detritivorous Coleoptera were all negatively associated with axis 1, as were foliage 

running hunters, space web builders and zoophagus and phytophagus other 

invertebrates. Predatory Hemiptera and sheet weaving spiders were positively 

associated with axis 1. Phytophagus Hemiptera and ground running hunter spiders 

were negatively associated with axis 2, not assigned Coleoptera and other 

detritivores were positively associated with axis 2. 

Food web analysis 

Large detritivores, mainly Orchestia and woodlice, accounted for 71 % of all the 

invertebrates sampled on the un-grazed marsh, 17 % on the grazed marsh (Figure 

4.7). Small detritivores, predominantly collembola, accounted for only 6 % on the 

un-grazed marsh compared to 38 % on the grazed marsh. Large crane flies were 

more numerous on the grazed marsh (7 %). Small flies and mites were abundant in 

both grazing treatments. Large and medium predatory beetles accounted for 6 % of 

all invertebrates on the un-grazed marsh, 2 % on the grazed marsh. Medium 

hunting spiders were present in equal proportions on both marsh types (2 %). Small 

Linyphiidae were much more abundant, both in total and proportional abundance, 
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on the grazed marsh (13 %) compared to the un-grazed marsh (3 %). Predatory 

shore bugs were only present on the grazed marsh (2 %).  
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Figure 4.6 RDA triplot showing the relationship between eight environmental variables and the 

distribution of sixteen functional groups and prey capture methods. Environmental variables were 

selected by forward selection (Canoco v.4.5; Monte Carlo test, 500 permutations); the three 

significant ones, temperature, vegetation height and salinity are shown in bold. Grazed 

experimental units (G1-G6) are displayed as grey circles, un-grazed units (U1-U6) as white circles.  
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GRAZED

UN-GRAZED

S flies (12%)

S DET Collembola (38%)

L DET Orchestia (17%)

S PHY aphids (1%)

S mites (3%)

L Crane flies (7%)

L DET Orchestia (53%)

L DET Woodlice (18%)

S DET Collembola (6%)

S mites (1%)

S flies (8%)

S PRE Shore bugs (2%)

L PRE beetles (2%)

S PRE Linyphiidae (13%)

M PRE hunting spiders (2%)

S PRE Linyphiidae (3%)

L PRE beetles (5%)

M PRE hunting spiders (2%)

M PRE beetles (1%)

 

Figure 4.7 Ground dwelling invertebrate food web for cattle grazed and un-grazed salt marsh. 

Body length of invertebrates: L (large ≤ 30 mm), M (medium ≤ 20 mm), S (small ≤ 10 mm). 

Functional group of invertebrates: DET = detritivore, PHY = phytophagus, PRE = predatory (L PRE 

beetles also include zoophagus beetles). Invertebrate abundance is expressed as percentage of 

total invertebrates per grazing treatment.  

 

Discussion 

Overview 

This study focused on the impact of cattle grazing on the abundance, diversity and 

functional group structure of the entire ground dwelling saltmarsh invertebrate 

community. Our results indicate that overall invertebrate abundance was greater 

on the un-grazed marsh. This finding is in line with evidence from other grassland 

and saltmarsh systems (Andresen et al. 1990; Bakker et al. 1993; Morris 2000). 

Coastal specialist abundance was greatest on the uniformly short sward cattle 

grazed salt marsh. European saltmarsh conservation often involves livestock grazing 

to improve plant diversity and provide a suitable habitat for over-wintering 
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breeding birds and invertebrate coastal specialists. Here we argue that un-grazed 

areas of marsh also have a conservation value in their own right. As well as higher 

invertebrate abundance the functional structure of the un-grazed marsh is also 

different from the grazed marsh, with many large predators and detritivores 

present.  The grazed marsh was characterised by high plant species richness, short 

vegetation, limited plant litter and warm compact soil prone to water-logging. The 

un-grazed marsh was dominated by E. repens, leading to a deep plant litter layer 

and drier less compact soil than the grazed marsh.  Vegetation height diversity did 

not differ between grazing treatments. 

Coleoptera, Hemiptera & Araneae 

Coleoptera abundance and species richness was much higher on the un-grazed 

marsh. This may be due to reduced physical disturbance of the habitat. Duffey 

(1975) showed that even moderate trampling by humans of five treads a month, to 

simulate cattle treading, reduced Coleoptera abundance by 82 % after a year 

compared to an un-trampled control. Coleoptera also lack submersion resistance 

(Rothenbücher & Schaefer, 2006), relevant as un-grazed marshes are drier habitats 

than grazed marshes due to plant litter build up and reduced waterlogging. Large 

and medium sized predatory, zoophagus and detritivorous beetles were very 

abundant on the tall un-grazed marsh, in contrast small predatory Hemiptera 

preferred the short, moist vegetation of the grazed marsh. Large invertebrates 

favour the un-grazed marsh as birds select larger invertebrates when feeding so tall 

vegetation is likely to provide cover from this type of predation, small predatory 

invertebrates prefer the grazed marsh due to reduced competition from larger 

invertebrate predators (Enders, 1975; Lassau et al., 2005). Detritivorous beetles are 

associated with the un-grazed marsh due to the availability of greater amounts of 

plant detritus than the grazed marsh. 

Overall spider abundance was greater on the grazed marsh due to the 

predominance of small sheet weaving Linyphiidae spiders. Foliage running hunters 

and space web builders were more abundant on the un-grazed marsh. Ground 

running hunters were slightly more abundant on the un-grazed marsh. These 
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differences can largely be explained by structural differences between the two 

marsh types. Erigone atra, Oedothorax fuscus, Oedothorax retusus and Savignya 

frontata, all active Linyphiidae aeronauts, are found in much greater numbers on 

the grazed marsh than the un-grazed marsh, partly due to their ability to disperse 

into open or disturbed habitats, such as grazed land, where competition from larger 

invertebrate predators is low (Bell et al., 2001; Gibson et al., 1992b). Prey 

availability and preference for wetter habitats may also explain why Linyphiidae 

prefer the grazed marsh. Erigonine Linyphiidae, around half the sheet weavers 

sampled from the grazed marsh, are less than 2 mm long and feed on Collembola 

and small flies, an abundant food source on the grazed marsh (Enders, 1975; Figure 

4.6). Another sheet weaver, Hypomma bituberculatum, was very abundant on the 

grazed marsh, it survives submersion in fresh water (Harvey et al., 2002) and can 

therefore compete with other spider species in waterlogged plots. The comb spider 

Robertus lividus, a space web builder, was found only on the un-grazed marsh 

where litter levels were greatest as in Harvey et al. (2002). The foliage running 

hunter, Clubiona stagnatilis, was more abundant on tall un-grazed marsh. The most 

common ground running hunter species, P. purbeckensis, did not show a clear 

habitat preference but two other Lycosids, Pardosa pullata and Pirata piraticus 

were more abundant on the un-grazed marsh. It is worth noting that the use of 

pitfall traps to sample ground dwelling invertebrates will lead to under 

representation of certain spider groups, such as orb weavers, dependent upon the 

vertical structure of upper foliage layers. 

 Other invertebrates 

Previously mentioned predatory groups, Coleoptera, Hemiptera and Araneae were 

often closely associated with a particular marsh type. In contrast, all other 

predatory invertebrates, parasitoid wasps, were equally abundant between grazing 

treatments. Parasitoid wasps are a diverse group providing a key ecosystem service 

in the regulation of insect populations (Fraser et al., 2008), as active fliers this group 

was less influenced by ground level environmental variables. Zoophagus 

invertebrates were significantly more abundant on the un-grazed marsh. Dennis et 

al. (2001) found that in upland grasslands most harvestmen tended to prefer un-



  

 
25 

 

grazed or sheep grazed to cattle grazed swards. The crane flies, Tipulidae, were 

much more abundant on the grazed marsh, in line with Cole et al.’s findings (2010) 

from grazed uplands. Large detritivores such as woodlice and the sand hopper, O. 

gammerella, were much more abundant on the un-grazed marsh due to the high 

level of plant detritus available as combined food source and shelter. Small 

detritivores such as Collembola were most abundant on the grazed marsh as in 

Meyer et al. (1995). They are able to proliferate here as they can survive anoxia in 

water-logged habitats by utilising passive drifting, a dormant egg stage and plastron 

respiration (Marx et al., 2009). 

Abundance of coastal specialist species 

For carabid inter-tidal coastal specialists B. minimum and D. gustavii the grazed 

marsh provided a more suitable habitat than the un-grazed marsh, as in Pétillon et 

al. (2007; 2008). The rove beetle B. marina also preferred the grazed marsh. In 

contrast, B. iricolor was more abundant on the un-grazed marsh. The Hemipteran 

nationally scarce invertebrate Saldula opacula was only present on the grazed 

marsh. For Araneae, coastal Linyphiidae specialists, E. longipalpis and S. ambiguuus, 

were much more abundant on the grazed marsh, as in Pétillon et al. (2005; 2007). 

Conclusion 

Soil temperature, bulk density and moisture content were higher on the grazed 

marsh. Plant species richness and below-ground root biomass were greater on the 

grazed marsh. Percentage cover of E. repens, above-ground plant biomass and litter 

biomass, were all significantly higher on the un-grazed marsh. Management of salt 

marshes for the conservation of invertebrates should aim to strike a balance 

between preserving maximum invertebrate diversity and abundance and 

maintaining a habitat suitable for coastal specialists.  Un-grazed salt marshes 

provide a suitable habitat for an abundant and diverse invertebrate community, but 

cattle grazed marshes with short swards support a greater abundance and diversity 

of nationally scarce saltmarsh or inter-tidal coastal specialist species. The saltmarsh 

food web also differs markedly with grazing intensity. The un-grazed marsh is 

dominated by large detritivores and predatory beetles; the grazed marsh by smaller 
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detritivores and Linyphiidae spiders adapted to open or disturbed habitats. Grazing 

intensity influences two key drivers of invertebrate habitat choice, vegetation 

height and soil temperature, via vegetation removal and soil compaction. Particular 

species, functional groups or coastal specialists respond differently to these 

variables. Therefore, the provision of both un-grazed and short sward cattle grazed 

habitat is important to salt marsh invertebrate conservation management. 
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4.9 Appendix 

Table A4.1. Total counts of all invertebrates sampled from grazed ‘G’ and un-grazed ‘U’ marsh. 

Order, family, species, species authority and common name are listed alongside functional group, 

prey capture method and coastal specialist information in the ‘Group’ column (evidence for 

functional group assignment from list of superscript numbers). Order: COL = Coleoptera, HET = 

Heteroptera, HOM = Homoptera (Heteroptera and Homoptera both sub-orders of Hemiptera), 

ARA = Araneae, HYM = Hymenoptera, OPI = Opilones, PUL = Pulmonata, LEP = Lepidoptera, HAP = 

Haplotaxida, COLL = Collembola, ISO = Isopoda, AMP = Amphipoda, ACA = Acarina, DIP = Diptera, + 

includes larvae, L = larvae only. Group: PRE = predatory, ZOO = zoophagus, PHY = phytophagus, 

DET = Detritivore (DET (S) = scavenging, DET (F) = fungivorous), NOT = not assigned, FRH = foliage 

running hunter, GRH = ground running hunter, SWB = Space web builder, SW = Sheet weaver, CS = 

coastal specialist, N = notable species associated with salt marsh. Invertebrate nomenclature 

follows Duff (2008) for Coleoptera and Fauna Europea (2011) for all other invertebrates. 

Order Family Species Species authority Common 
name 

Group G U 

COL Staphylinidae Tachinus rufipes Linnaeus,1758 Rove beetle PRE1* 0 30 
COL Staphylinidae Tachyporus 

nitidulus 
Fabricius, 1781 Rove beetle PRE1 0 2 

COL Staphylinidae Tachyporus pusillus Gravenhorst, 
1806 

Rove beetle PRE1 0 5 

COL Staphylinidae Amischa analis Gravenhorst, 
1802 

Rove beetle PRE1 0 3 

COL Staphylinidae Cordalia obscura Gravenhorst, 
1802 

Rove beetle PRE1 14 394 

COL Staphylinidae Oxypoda 
brachyptera 

Stephens, 1832 Rove beetle PRE1* 33 56 

COL Staphylinidae Oxypoda procerula Mannerheim, 
1830 

Rove beetle PRE1* 2 3 

COL Staphylinidae Stenus palustris Erichson, 1839 Rove beetle PRE1* 2 0 
COL Staphylinidae Stenus fulvicornis Stephens, 1833 Rove beetle PRE1 0 1 
COL Staphylinidae Stenus bimaculatus Gyllenhal, 1810 Rove beetle PRE1 0 1 
COL Staphylinidae Stenus canaliculatus Gyllenhal, 1827 Rove beetle PRE1 1 1 
COL Staphylinidae Stenus clavicornis Scopoli, 1763 Rove beetle PRE 0 5 
COL Staphylinidae Stenus juno Paukull, 1789 Rove beetle PRE1 2 7 
COL Staphylinidae Stenus brunnipes Stephens, 1833 Rove beetle PRE1* 3 54 
COL Staphylinidae Lathrobium 

fulvipenne 
Gravenhorst, 
1806 

Rove beetle PRE1 9 173 

COL Staphylinidae Lathrobium 
geminum 

Kraatz, 1857 Rove beetle PRE1* 5 125 

COL Staphylinidae Sunius propinquus Brisout, 1867 Rove beetle PRE1* 0 1 
COL Staphylinidae Othius laeviusculus Stephens, 1833 Rove beetle PRE1* 4 0 
COL Staphylinidae Gabrius osseticus Kolenati, 1846 Rove beetle PRE1 0 1 
COL Staphylinidae Philonthus 

carbonarius 
Gravenhorst, 
1802 

Rove beetle PRE1 13 0 

COL Staphylinidae Philonthus cognatus Stephens, 1832 Rove beetle PRE1 2 4 
COL Staphylinidae Philonthus 

umbratilis 
Gravenhorst, 
1802 

Rove beetle PRE1 2 0 

COL Staphylinidae Quedius fuliginosus Gravenhorst, 
1802 

Rove beetle PRE1 0 1 

COL Staphylinidae Quedius levicollis Brullé, 1832 Rove beetle PRE1* 45 45 
COL Staphylinidae Quedius semiaeneus Stephens, 1833 Rove beetle PRE1* 0 1 
COL Staphylinidae Ocypus 

aenocephalus 
De Geer, 1774 Rove beetle PRE1* 0 1 

COL Staphylinidae Xantholinus linearis Olivier, 1795 Rove beetle PRE1 4 1 
COL Staphylinidae Xantholinus 

longiventris 
Heer, 1839 Rove beetle PRE1 7 89 

COL Coccinellidae Anisosticta Linnaeus,1758 Lady bird PRE2 2 0 
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novemdecimpunctat
a 

COL Coccinellidae Coccinella 
undecimpunctata 

Linnaeus,1758 Lady bird PRE2 16 0 

COL Staphylinidae Tasgius globulifer Geoffroy, 1785 Rove beetle PRE3* 1 26 
COL Staphylinidae Tasgius ater Gravenhorst, 

1802 
Rove beetle PRE3* 0 1 

COL Cantharidae+ Cantharis rufa Linnaeus,1758 Soldier beetle PRE2 176 533 
COL Carabidae Loricera pilicornis Fabricius, 1775 Ground beetle ZOO4 25 4 
COL Carabidae Clivina fossor Linnaeus,1758 Ground beetle ZOO4 0 4 
COL Carabidae Dyschirius globosus Herbst, 1784 Ground beetle ZOO4 0 2 
COL Carabidae Trechus 

quadristriatus 
Schrank, 1781 Ground beetle ZOO4 0 1 

COL Carabidae Bembidion lampros Herbst, 1784 Ground beetle ZOO4 0 1 
COL Carabidae Bembidion varium Olivier, 1795 Ground beetle ZOO4* 20 3 
COL Carabidae Bembidion assimile Gyllenhal, 1810 Ground beetle ZOO4* 17 269 
COL Carabidae Bembidion 

minimum 
Fabricius, 1792 Ground beetle ZOO4* (CS) 64 4 

COL Carabidae Bembidion aeneum Germar, 1842 Ground beetle ZOO4 246 267 
COL Carabidae Bembidion iricolor Bedel, 1879 Ground beetle ZOO4* (CS) 13 517 
COL Carabidae Pterostichus niger Schaller, 1783 Ground beetle ZOO4 3 162 
COL Carabidae Pterostichus minor Gyllenhal, 1827 Ground beetle ZOO4* 20 148 
COL Carabidae Pterostichus nigrita Paykull, 1790 Ground beetle ZOO4 0 2 
COL Carabidae Pterostichus diligens Sturm, 1824 Ground beetle ZOO4 0 126 
COL Carabidae Olisthopus 

rotundatus 
Paykull, 1790 Ground beetle ZOO4 9 5 

COL Carabidae Agonum 
marginatum 

Linnaeus,1758 Ground beetle ZOO4 2 0 

COL Carabidae Agonum viduum Panzer, 1796 Ground beetle ZOO4 0 1 
COL Carabidae Dicheirotrichus 

gustavii 
Crotch, 1871 Ground beetle ZOO5 (CS) 32 1 

COL Carabidae Demetrias 
atricapillus 

Linnaeus, 1758 Ground beetle ZOO4 1 0 

COL Carabidae Amara communis Panzer, 1797 Ground beetle PHY4 0 18 
COL Carabidae Harpalus rufipes De Geer, 1774 Ground beetle PHY4 0 5 
COL Carabidae Harpalus affinis Schrank, 1781 Ground beetle PHY4 1 0 
COL Staphylinidae Carpelimus 

corticinus 
Gravenhorst, 
1806 

Rove beetle PHY1 0 1 

COL Chrysomelida
e 

Chrysolina 
staphylaea 

Linnaeus, 1758 Leaf eater PHY2 1 15 

COL Chrysomelida
e 

Phaedon 
armoraciae 

Linnaeus, 1758 Leaf eater PHY2 0 2 

COL Chrysomelida
e L 

  Leaf eater PHY2 3 10 

COL Apionidae Protapion fulvipes Geoffroy, 1785 Weevil PHY6 4 0 
COL Erirhinidae Notaris scirpi Fabricius, 1793 Weevil PHY7 8 6 
COL Helophoridae Helophorus 

brevipalpis 
Bedel, 1881 Water beetle PHY8 64 18 

COL Hydraenidae Ochthebius 
dilatatus 

Stephens, 1829 Aquatic beetle PHY9 72 24 

COL Byturidae Byturus ochraceus Scriba, 1790 Fruit beetle PHY10 12 5 
COL Staphylinidae Omalium caesum Gravenhorst, 

1806 
Rove beetle DET1 0 3 

COL Staphylinidae Micropeplus 
staphylinoides 

Marsham, 1802 Rove beetle DET (F)1 0 3 

COL Staphylinidae Ischnosoma 
splendidum 

Gravenhorst, 
1806 

Rove beetle DET (F)1 5 39 

COL Staphylinidae Sepedophilus 
marshami 

Stephens, 1832 Rove beetle DET (F)1 0 71 

COL Staphylinidae Atheta graminicola Gravenhorst, 
1806 

Rove beetle DET (F)1 1 0 

COL Staphylinidae Atheta triangulum Kraatz, 1856 Rove beetle DET (F)1 2 0 
COL Staphylinidae Atheta (other)  Rove beetle DET (F)1 3 15 
COL Staphylinidae Anotylus rugosus Fabricius, 1775 Rove beetle DET1 2 3 
COL Leiodidae Catops morio Fabricius, 1787 Fungus beetle DET (S)6 0 8 
COL Cryptophagid

ae 
Atomaria atricapilla Stephens, 1830 Fungus beetle DET (F)11 0 1 

COL Cryptophagid
ae 

Atomaria fuscata Schöenherr, 1808 Fungus beetle DET (F)11 0 1 

COL Lathridiidae Corticaria Marsham, 1802 Mould beetle DET11 1 7 
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punctulata 
COL Lathridiidae Corticarina minuta Fabricius, 1792 Mould beetle DET11 0 2 
COL Staphylinidae Lesteva sicula heeri Fauvel, 1871 Rove beetle DET (S)12 0 5 
COL Staphylinidae Lesteva 

longoelytrata 
Goeze, 1777 Rove beetle DET (S)12 1 0 

COL Hydrophilidae Cercyon impressus Fabricius, 1775 Water beetle DET13 0 2 
COL Hydrophilidae Megasternum 

concinnum 
Marsham, 1802 Water beetle DET13 17 111 

COL Hydrophilidae Sphaeridium 
scarabaeoides 

Linnaeus,1758 Water beetle DET13 1 0 

COL Ptiliidae Ptenidium Sp.  Feather 
beetle 

DET (F)13 0 1 

COL Ptiliidae Acrotrichis Sp.  Feather 
beetle 

DET (F)13 2 67 

COL Staphylinidae Brundinia marina Mulsant & Rey, 
1853 

Rove beetle NOT (CS) 172 111 

COL Staphylinidae Mocyta fungi  Gravenhorst, 
1806 

Rove beetle NOT 58 25 

COL Carabidae L     NOT 32 3 
COL Staphylinidae 

L 
   NOT 0 108 

HET Nabidae Stalia major Costa, 1841 Damsel bug PRE14 0 1 
HET Nabidae Nabis lineatus Dahlbom, 1851  Damsel bug PRE14 0 3 
HET Dipsocoridae Ceratocombus 

coleoptratus 
Zetterstedt, 1819  PRE11 0 13 

HET Saldidae Saldula opacula Zetterstadt, 1838  Shore bug PRE15* (N) 28 0 
HET Saldidae Saldula pallipes Fabricius, 1794 Shore bug PRE15* 4 0 
HET Saldidae+ Salda littoralis Linnaeus, 1758 Shore bug PRE16 638 2 
HOM Cicadellidae Aphrodes albifrons  Linnaeus, 1758 Leaf hopper PHY17 0 1 
HOM Cicadellidae Aphrodes bicinctus  Schrank, 1776 Leaf hopper PHY17 1 5 
HOM Cicadellidae Arthaldeus 

pascuellus  
Fallen, 1826 Leaf hopper PHY17 5 1 

HOM Cicadellidae Psammotettix 
putoni 

Then, 1898 Leaf hopper PHY17 12 0 

HOM Cicadellidae Conosanus 
obsoletus 

Kirshbaum, 1858 Leaf hopper PHY17 6 3 

HOM Cicadellidae Streptanus sordidus Zetterstedt, 1828 Leaf hopper PHY17 7 0 
HOM Cicadellidae Macrosteles 

viridigriseus 
Edwards, 1922 Leaf hopper PHY17 5 0 

HOM Delphacidae Javesella dubia Kirschbaum, 1868 Leaf hopper PHY17 1 2 
HOM Delphacidae+ Javesella pellucida Fabricius, 1794 Leaf hopper PHY17 0 29 
HOM Stenorrhynch

a 
  Aphids only PHY17 173 102 

HET Miridae Megaloceraera 
recticornis 

Geoffroy, 1785 Mirid bug PHY15 0 1 

HOM Cicadellidae L Cicadellidae larvae   PHY17 66 5 
ARA Clubionidae Clubiona stagnatilis Kulczynski, 1897 Foliage spider PRE 

(FRH)18 
3 25 

ARA Gnaphosidae Micaria pulicaria Sundevall, 1831 Ground spider PRE 

(GRH)18 
0 15 

ARA Lycosidae Trochosa ruricola De Geer, 1778 Wolf spider PRE 
(GRH)18 

12 49 

ARA Lycosidae Pardosa 
purbeckensis 

Cambridge, 1895 Wolf spider PRE (GRH) 

18 (CS) 
454 515 

ARA Lycosidae Pardosa pullata Clerck, 1757 Wolf spider PRE 
(GRH)18 

2 22 

ARA Lycosidae Pirata piraticus Clerck, 1757 Wolf spider PRE 
(GRH)18 

5 73 

ARA Tetragnathida
e 

Pachygnatha clercki Sundevall, 1823 - PRE 
(GRH)21 

73 153 

ARA Tetragnathida
e 

Pachygnatha 
degeeri 

Sundevall, 1830  - PRE 
(GRH)21 

106 1 

ARA Theridiidae Robertus lividus Blackwall, 1836 Comb spider PRE 
(SWB)18 

0 153 

ARA Linyphiidae Walckenaeria 
nudipalpis 

Westring, 1851 Money spider PRE  
(SW)18 

0 1 

ARA Linyphiidae Walckenaeria 
vigilax 

Blackwall, 1853 Money spider PRE 
(SW)18 

33 9 

ARA Linyphiidae Walckenaeria incisa Cambridge, 1871 Money spider PRE 
(SW)18 

1 0 
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ARA Linyphiidae Walckenaeria kochi Cambridge, 1873 Money spider PRE 
(SW)18 

21 37 

ARA Linyphiidae Walckenaeria 
acuminata 

Blackwall, 1833 Money spider PRE 
(SW)18 

0 83 

ARA Linyphiidae Hypomma 
bituberculatum 

Wider, 1834 Money spider PRE 
(SW)18 

243 58 

ARA Linyphiidae Oedothorax fuscus Blackwall, 1834 Money spider PRE 
(SW)18 

1086 13 

ARA Linyphiidae Oedothorax retusus Westring, 1851 Money spider PRE 
(SW)18 

156 9 

ARA Linyphiidae Silometopus 
ambiguus 

Cambridge, 1905 Money spider PRE 
(SW)18(CS) 

273 15 

ARA Linyphiidae Savignia frontata Blackwall, 1833 Money spider PRE 
(SW)18 

242 104 

ARA Linyphiidae Araeoncus humilis Blackwall, 1841 Money spider PRE 
(SW)18 

1 0 

ARA Linyphiidae Erigone dentipalpis Wider, 1834 Money spider PRE 
(SW)18 

1 0 

ARA Linyphiidae Erigone atra Blackwall, 1833  Money spider PRE 
(SW)18 

177 1 

ARA Linyphiidae Erigone longipalpis Sundevall, 1830 Money spider PRE 
(SW)18 
(CS) 

2213 9 

ARA Linyphiidae Leptorhoptrum 
robustum 

Westring, 1851 Money spider PRE 
(SW)18 

10 4 

ARA Linyphiidae Centromerita 
concinna 

Thorell, 1875 Money spider PRE 
(SW)18 

0 26 

ARA Linyphiidae Bathyphantes 
approximatus 

Cambridge, 1871 Money spider PRE 
(SW)18 

6 9 

ARA Linyphiidae Bathyphantes 
gracilis 

Blackwall, 1841 Money spider PRE 
(SW)18 

70 27 

ARA Linyphiidae Bathyphantes 
parvulus 

Westring, 1851 Money spider PRE 
(SW)18 

0 7 

ARA Linyphiidae Tenuiphantes tenuis Blackwall, 1852 Money spider PRE 
(SW)18 

67 143 

ARA Linyphiidae Palliduphantes 
tenuis 

Cambridge, 1871 Money spider PRE 
(SW)18 

0 1 

ARA Linyphiidae Allomengea 
scopigera 

Grube, 1859 Money spider PRE 
(SW)18 

25 1010 

HYM Parasitic 
Hymenoptera 

  Parasitoid 
wasp 

PRE19 623 615 

OPI    Harvestmen ZOO19 1 68 
PUL    Snail PHY19 7 78 
LEP    Moth larvae PHY19 21 22 
HAP Enchytraeidae   Pot worm DET20 147 0 
COLL    Springtail DET19 13857 3391 
ISO    Woodlice DET (S)19 76 9539 
AMP Talitridae Orchestia 

gammarella 
Pallas, 1766 Sandhopper DET (S)19 6133 2777

3 
ACA    Mite NOT 1168 563 
HYM Formicidae   Ant NOT 18 4 
DIP Tipulidae+   Crane fly NOT 2461 56 
DIP Other Diptera    NOT 4078 4087 
DIP Limoniidae L    NOT 29 0 
DIP Stratiomyidae 

L 
   NOT 48 3 

DIP Ephaedridae L    NOT 29 0 
DIP Scatophagida

e L 
   NOT 48 0 

DIP Other fly 
larvae     

   NOT 281 37 

Duff, A.G. (2008) Checklist of Beetles of the British Isles 
(http://www.coleopterist.org.uk/checklist2008%20AH.pdf) 
Fauna Europea (2004) http://www.faunaeur.org/about_fauna_standards.php  
* refers to functional group assigned on the basis of conspecifics. 
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