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Abstract 
 
In their paper “Do bilinguals automatically activate their native language when they are not 
using it?”, Costa, Pannunzi, Deco, and Pickering (Cognitive Science, 2016) proposed a 
reinterpretation of Thierry and Wu’s (2004, 2007) finding of native language-based (Chinese, 
L1) ERP effects when they tested Chinese-English late bilinguals exclusively in their second 
language (English, L2). Using simulations in a 6-node Hebbian learning model (three L1 
nodes, three L2 nodes), Costa and colleagues suggested that form overlaps in L1 between 
otherwise unrelated words create a persistent relationship between their L2 translations. In 
this scenario, words in the nascent L2 lexicon overlapping in their L1 translations would 
become linked during learning because of the form overlap in L1; once the L2 words are 
learned, the direct link between them would be sufficient to generate robust apparently ‘L1-
mediated’ priming without requiring any activation of L1 translations. Costa et al. contend 
that links between L2 words remain beyond the learning phase, even after links to L1 
representations have been severed, and thus that their model affords an alternative account 
to (but not a rebuttal of) Thierry & Wu’s claim of language non-selective activation –or 
automatic activation of translation equivalents– in late bilinguals. In this response, we build 
on Costa et al.’s original simulation code, showing that it can only reproduce L1-independent 
priming when implementing the L1 disconnection in their particular way. By contrast, when 
severing inter-language connections bi-directionally, their model fails to retain any sizeable 
influence of L1 form overlap on L2 activations. The model is not the theory, however, and we 
discuss several issues that would need to be addressed in further attempts to model 
language non-selective activation in late bilinguals. 
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Introduction 
 
When bilinguals use their second language, are they able to completely avoid accessing 
their native language? After decades of reports of cross-language effects in bilinguals (e.g., 
De Groot et a., 1991; Brysbaert, 1998; Van Hell and Dijkstra, 2002; Duyck, 2005; Duyck et 
al., 2007), Thierry and Wu (2004, 2007) demonstrated that late Chinese-English bilinguals 
automatically and unconsciously activate native translation equivalents when reading L2 
English words using event-related potentials (ERPs) in an experimental context entirely 
uncontaminated by L1 Chinese. On each trial participants read or heard two English words 
presented in a sequence, like ‘train’ and ‘ham’, and reported whether or not these words 
were related in meaning. Half of the word pairs had a hidden relationship through Chinese 
translations: For instance, ‘train’ and ‘ham’ translate into huo che and huo tui, in Mandarin 
Chinese, and thus share their first syllable. Although bilingual participants failed to 
consciously detect this link and although no sign of it was found in their reaction times or 
accuracy data, ERP data revealed the priming effect that one would expect if they had 
accessed the translation of the English words in their native language Chinese. Thierry and 
Wu (2004, 2007) thus concluded that late bilinguals automatically and unconsciously access 
L1 translation equivalents when processing L2 words (see also Wu and Thierry, 2010a; 
2012a, 2012b; Spalek et al., 2012; Wu et al., 2013). 
 
In a paper built around a Hebbian learning model, Costa et al. (2016) recently suggested an 
alternative explanation: rather than revealing ongoing contributions of L1 to L2 processing, 
Thierry & Wu’s findings may simply reflect a particular way that L1 shaped L2 at a much 
earlier stage during the L2 learning process. Given that huo che and huo tui sound the same 
in Mandarin, then maybe their lexical representations will tend to be activated at the same 
time in Mandarin, and because neurons that fire together wire together, huo che and hui tui 
will become linked. And then their respective translations in English, ‘train’ and ‘ham’, will 
also end up becoming linked to one another, within L2. Thus, one might not actually need to 
access L1 to get L2 effects that look like they arise from L1 overlap. 
 
Costa et al.’s (2016) proposal offers an intriguing alternative explanation for Thierry and 
Wu’s findings, and the choice to implement it as a computational model brings a laudable 
rigor to their approach. We were curious about some of Costa et al.’s modelling decisions 
and how much the simulated results may depend on such implementation details. We also 
wondered how their approach might be extended to better approximate experimental tasks 
used when testing human participants, such as semantic judgements. Therefore, we wrote 
to the authors who kindly shared with us the original code they used for their simulation. The 
present paper deals with three issues relating to Costa et al.’s approach: (1) we provide a 
detailed account and small extension of Costa et al.’s model, finding that, when L1 and L2 
are actually bidirectionally disconnected, it fails to provide a convincing alternative for our 
empirically observed phenomenon; (2) we discuss some limitations of Costa et al.’s 
approach to simulating bilingual language development (abrupt disruption of the links 
between L1 and L2, lack of consideration for unlearning); (3) we introduce three further 
conceptual issues that are important to situating any such model in the wider context of 
bilingual language use (what we know about bilingual lexical access, the communicative 
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function of language, and bilingual diversity). Even though learning a second language may 
lead to links existing between L1 lexical forms to be inherited by L2 representations, 
language non-selective access (i.e., activation of native language translation equivalents) in 
late bilinguals remains the most parsimonious account of what happens in the mind of late 
(Chinese-English) bilinguals when they are exposed to second language words, whether 
spoken or written. 
 
 
 
1. The model as conceived and tested by Costa et al. 
 
1.1. Architecture 

The model contains six nodes, each representing one word. Three nodes represent words in 
L1 {trainM, hamM, appleM} and three represent words in L2 {trainE, hamE, appleE}. Every node 
is connected to every other node, with a weight initialized as 0. To represent L1 phonological 
overlap between trainM and hamM, however, the weight of the connection between them is 
initialized as cPh (see Table 1 for parameter descriptions). Following a standard convention in 
Hebbian networks, where nodes are assumed not to carry over activation between 
timesteps, connections from each node to itself are maintained at zero. 
 
Table 1 - Parameters of Costa et al.’s model1  
 

Parameter  
Implemented 

value Description 
max(τ) 30000 Number of training trials 
Ω 6000 Asymptotic scaling constant 

(learning drops off as a function of  
2/(1+exp(τ /Ω))) 

𝜈H 40 Input activation for the L2 target word 
𝜈H2 15 Input activation for the L1 translation word 
𝜈VL 4 Input activation for all other words 

Δ𝜈 2 Variability in input activation 
cPh 0.12 Connection weight imposed between  

phonologically similar words in L1 

αL 0.001 Learning rate 
ΘL 20 Threshold for learning and the mean of a sigmoidal 

function to scale weight changes 
βL 6 Standard deviation for a sigmoidal function to scale weight 

changes 

 

                                                        
1 The values listed here are those effectively implemented in the simulation of Costa et al., see Costa, 
A., Pannunzi, M., Deco, G. and Pickering, M. J. (2017), Corrigendum for: Do bilinguals automatically 
activate their native language when they are not using it?. Cogn Sci. doi:10.1111/cogs.12577 
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1.2. Activation 

Activation begins with a vector of external inputs to nodes {trainM, hamM, appleM, trainE, 
hamE, appleE}, with values reflecting the parameters {𝜈H, 𝜈H2, 𝜈VL}. For example, when cuing 
the English word train, the nodes {trainM, hamM, appleM, trainE, hamE, appleE} would take 
input values of {𝜈H2, 𝜈VL, 𝜈VL, 𝜈H, 𝜈VL, 𝜈VL}, respectively. On each trial, this input vector is 
increased by a vector of uniformly distributed random values, with values between 0 and Δ𝜈; 
the initial activation of each node is thus simply its noisy net input. Thereafter, the initial 
activation of each node i at each time step t is assumed to be the sum of all of the other 
nodes j in the network at the previous time step, times the weight of their connections to that 
node wij. 
 

𝑎+, =.𝑤+0𝑎0,12	 

 
Activation then continues to spread until the network settles into a stable state. For any 
vector of initial activations, At0, and matrix of weights, W, this stable state At∞ is assumed to 
be approximated by minimizing the error for an implied set of equations: 
 
 

𝐴56 = 𝑙𝑠𝑞𝑟((𝑊 − [𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦	𝑚𝑎𝑡𝑟𝑖𝑥]), −𝐴) 
 

1.3. Learning 

For each trial, τ in 1: max(τ), after the network has settled, the weights of all connections wij, 
into each node i that has exceeded an activation threshold, ΘL, are modified according to the 
following equation: 
 

𝑤+0KL2 = 𝑤+0K + N𝑥~𝑈(0, 𝛼S)T × 𝑛𝑜𝑟𝑚𝑐𝑑𝑓N𝑎0K, 𝜇 = 𝛩S, 𝜎 = 𝛽ST × N1 − 𝑤+0KT × ^
2

1 + 𝑒
K
_
` 

 
The first component of this equation specifies that the old weight should serve as the basis 
for the new weight. The next component specifies that the amount of the weight change 
should be scaled according to a uniformly distributed random number in the range [0, αL]. 
The next component specifies that the amount of the weight change should be scaled 
according to a [0,1] sigmoidal transformation of the sending node’s activation (implemented 
as the probability of observing a value less than aj in a normal distribution with mean ΘL and 
standard deviation βL, e.g., resulting in a value of .5 when aj = ΘL, and .9772 when ai = 
ΘL+2*βL). The next component specifies that any weight should asymptote around a 
maximum value of 1. The final component specifies that weight changes should be scaled 
such that they will be very large when training begins, before asymptoting toward zero (e.g., 
for Ω = 6000, on training trials τ= {1, 10000, 20000, 30000}, this component would scale any 
weight change by {.9999, .3177, .0689, .0134}); assuming that the 30,000 training trials 
represent the Thierry & Wu’s participants’ pre-experiment exposure to English, this 
component implements an assumption that they would learn new English translations of 
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Mandarin words 100 times more slowly as college students than they did when beginning to 
learn English as children. 
 
Thus, the learning rule specifies that weight changes should only occur when the receiving 
node is active above some threshold, but also be greater when the sending node is more 
active. Although the learning rule allows for randomness in the extent of a weight increase, it 
nonetheless specifies that connection weights can never decrease; any temporary co-
activation of two nodes is assumed to form a connection between them that will persist 
forever. The rule also specifies that connection strengths have some upper limit beyond 
which they cannot remain, perhaps reflecting a biological saturation point. And finally, the 
rule further specifies that weight changes must decelerate as the system ages, enforcing 
something like a ‘critical period’. 
 
 

1.4. Simulations 

1.4.1. Training. Exactly replicating Costa et al.’s implementation, the network was initialized 
as specified above, and trained for 30,000 trials. On each trial, one L2 word was randomly 
selected as the target (thus each L2 word was trained approximately 10,000 times); its node 
received 𝜈H units of input activation, its L1 translation received 𝜈H2 units of activation, and all 
other nodes received 𝜈VL units of input activation. The settling state of the network was then 
estimated as described in 1.2, and connections were modified as described in 1.3, producing 
a trained network with connections as depicted in Fig. 1a. 
 
1.4.2. L1-intact simulation (Fig. 1a). Replicating Costa et al.’s L1-intact simulation, as the 
network’s 30,001st trial, one L2 word was randomly selected as the target and activated just 
as previously specified for training: its node received 𝜈H units of input activation, its L1 
translation again received 𝜈H2 units of activation, and all other nodes received 𝜈VL units of 
input activation. The settling state of the network was then estimated as described above, 
with the resulting activation of each node recorded (as the basis for Costa et al.’s Figure2b), 
but no further weight changes were applied. This testing procedure was applied 8000 times, 
so each L2 word was tested approximately 2,667 times. 
 
1.4.3. L1-‘disabled’ simulation (Fig. 1b). Replicating Costa et al.’s L1-disabled simulation, 
first, all connections to L1 nodes from L2 nodes (L2 à L1) were set to 0, implementing a 
restriction such that an L2 word cannot directly activate its L1 translation, nor any other L1 
word. Critically, however, in Costa et al.’s L1-disabled simulation, L1 words continued to be 
fully activated and all connections to L2 from L1 (L1 à L2) remained intact (i.e. not set to 0); 
we worry that some readers may have misunderstood these important details when Costa et 
al. described their simulation as having “removed all L1 representations” (p12) and 
“restricted activation to only one language” (p13), thereby “removing any on-line influences 
between L1 and L2,” (p7) and having effectively “turned the model monolingual” (p13).  

Then the testing procedure continued exactly as in the L1-intact simulation and Costa et al.’s 
L1-disabled simulation. As the network’s 30,001st trial, one L2 word was randomly selected 
as the target and activated just as previously specified for training: its node received 𝜈H units 
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of input activation, its L1 translation again received 𝜈H2 units of activation, and all other nodes 
received 𝜈VL units of input activation. The settling state of the network was then estimated as 
described above, with the resulting activation of each node recorded (as the basis for Costa 
et al.’s Figure 2b), but no further weight changes were applied. This testing procedure was 
applied 8000 times, so each L2 word was tested approximately 2,667 times. 
 

1.4.4. Our L1-disabled simulation (Fig. 1c). First, all L2 à L1 connections were set to 0, 
implementing a restriction that an L2 word cannot directly activate its L1 translation, nor any 
other L1 word. In our simulation, though, all L1 à L2 connections were also set to 0, 
implementing a corresponding restriction that an L1 word cannot directly activate its L2 
translation either (nor any other L2 word).  

Then the testing procedure continued exactly as in Costa et al.’s L1-disabled simulation, 
except that in our simulation the L1 translation received only 𝜈VL units of input activation (on 
the assumption that 𝜈VL represents a resting level of activation for all nodes) instead of the 
full 𝜈H2 units of activation applied in Costa et al.’s L1-disabled simulation. Thus, as the 
network’s 30,001st trial, one L2 word was randomly selected as the target and activated: its 
node received 𝜈H units of input activation, and all other nodes (including its L1 translation) 
received 𝜈VL units of input activation. The settling state of the network was then estimated as 
described above, with the resulting activation of each node recorded (as the basis for Costa 
et al.’s Figure 2b), but no further weight changes were applied. This testing procedure was 
applied 8000 times, so each L2 word was tested approximately 2,667 times. 
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Figure 1 – Schematic of the cross-linguistic pattern-completion model as implemented in Costa et al.’s L1-
connected simulation (A), their L1-disconnected simulations (B), and our L1-fully-disconnected simulation 
(C). Line thickness approximates connection strength on a logarithmic scale, completely omitting connections of 
weight 0. Overlays depict activation flow through major connections supporting ‘ham’ over ’apple’. Panels A and 
B are identical because Costa et al.’s L1 disconnection only removed connections from L2 to L1, which never 
actually developed in the first place. 
 

1.5. Results 

Results of our simulations are presented in Figure 2. As they should, our Panels A-D closely 
resemble Panels A-D in Costa et al. ’s Figure 2. They are, after all, generated from the same 
code, using the same set of parameters. As in Costa et al. ’s simulations, they demonstrate 
that the model learns its connections through experience (Fig. 2a), and although the model 
does not associate the English words ‘train’ and ‘ham’ when it is first initialized (Fig. 2b; 
Cohen’s d < 0.01 for the difference between ‘ham’ and ‘apple’ activations), its experience-
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driven learning leads it to activate the English word ‘ham’ more than the English word ‘apple’ 
when prompted by the English word ‘train’ (Fig. 2c; Cohen’s d = 0.37). As illustrated in 
Figure 1a, activating ‘train’ and ‘huo che’ in the L1-intact simulation activates ‘ham’ via a set 
of L1-dependent pathways (‘huo che’ à ‘huo tui’ à ‘ham’, ‘huo che’ à ‘ham’, and ‘huo che’ 
à ‘train’ à ‘ham’) as well as an L1-independent pathway (‘train’ à ‘ham’). And as in Costa 
et al.’s L1-disabled simulation, these same pathways (Fig. 1b) continue to activate the 
English word ‘ham’ when activating the English word ‘train’ and its Mandarin translation, 
despite the connection from the English word ‘train’ to its Mandarin translation having been 
severed (Fig. 2d; Cohen’s d = 0.37).  

However, Costa et al.’s central claim was not merely that learned associations cause the 
English words ‘train’ and ‘ham’ to become co-activated, but rather that such co-activation 
could emerge entirely from learned associations within English, and thus that the empirical 
observation of a co-activation would not constitute evidence that late bilinguals activate their 
L1 when processing words in their L2. Therefore, the critical test of Costa et al.’s theoretical 
claim is a test that they did not conduct: What happens to the English word ‘ham’ when we 
activate the English word ‘train’, but, as illustrated in Figure 1c, we (1) refrain from activating 
its Mandarin translation and, crucially, (2) sever connections both to L1 from L2 and to L2 
from L1? Fig. 2e shows that, under these conditions, the phenomenon that Thierry & Wu 
claimed as evidence for necessary L1 activation essentially disappears (Cohen’s d = 0.046). 
Without activating L1, and without allowing L1 to activate L2 and L2 to activate L1, the 
difference between the activations of the English words ‘ham’ and ‘apple’ is quite minimal, 
even in a model that was specifically designed to produce such a difference. 
 

 
 
Figure 2 – Simulation results. (a)-(d) replicate results those reported by Costa et al. (2016). (a) Connection 
strength to train grows over 10,000 training trials. (b) Pre-training L2 lexical activation. (c) Post-training L2 lexical 
activation. (d) Post-training L2 lexical activation, after severing just L2àL1 connections, as in Costa et al.’s L1-
“disabled” simulation. (e) Post-training L2 lexical activation, after severing all between-language connections, as 
in our L1-disabled simulation. 
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One may argue that our L1-disabled simulation still shows some hint of an effect: in Figure 
2E, the mean activation of ham (4.98) is about 3% larger than the mean activation of apple 
(4.82). But this difference is very weak, and if Costa et al.’s model allows for reasonable 
signal-to-noise ratios, that difference could hardly have enabled several replications of the 
effect (e.g., Wu & Thierry, 2010a; Wu & Thierry, 2012a; 2012b; Wu et al., 2013). Thus, 
although a fully disconnected implementation of Costa et al.’s model can lead to lasting L1-
based associations between L2 words without persistent L1 activation, any such L1 
associations would be far subtler than its proponents have claimed. 
 
 
2. Suggestions for simulation improvements 
 
The model is not the theory, however, and it is possible that slight adjustments of Costa et 
al.’s model, or a different implementation of the same basic ideas would generate stronger 
L2-based effects of L1-derived associations. Therefore, it is important to consider some of 
the model’s motivating ideas, which it would necessarily share with any alternative 
implementation. 
 

2.1. Incorporating mechanisms for unlearning 

One curious aspect of Costa et al.’s simulation is that the model stopped learning 
immediately after disconnecting L1 from L2. What would happen if the model continued to 
modify its connections based on experience in its L1-disconnected state? Would the claimed 
connections within L1 persist, or would they fade away? The answer appears to rest on 
aspects of the model that lack both strong theoretical and computational support. Most 
important among these is the model’s implementation of Hebbian weight increases as its 
sole basis for synaptic changes. Hebbian learning is a family of approaches that are elegant, 
neurally plausible, work on strictly local information, and have proven extraordinarily 
successful at unsupervised associative learning. Many recent advances in machine learning, 
for instance, employ learning rules that can be considered part of the Hebbian family. As 
such, the selection of some Hebbian learning rule may seem like a simple, theory-neutral 
approach, even though it actually implements a very strong assumption: the model can only 
learn through excitatory connections, only ever strengthening them. Elsewhere, mechanisms 
for reducing association weights are common to most computational modelling frameworks 
(e.g. Rescorla & Wagner, 1972; Rumelhart & McClelland, 1986; Oppenheim, Dell & 
Schwartz, 2010), and researchers have long recognized their value in Hebbian learning 
systems (e.g. Hopfield, 1982), specifically increasing a system’s stable storage capacity. 
Such association reduction can be implemented in many ways (e.g. unlearning, weight 
decay, weight normalization), but all solve the same basic problem arising from the Hebbian 
weight-strengthening rule: whenever two patterns overlap, a Hebbian network queried with 
part of one will complete both patterns. If any node is erroneously activated, continued 
association learning will add that node to the pattern, snowballing until any node will activate 
the entire network, thus catastrophically failing to recover any individual pattern (in biological 
networks, such activation might correspond to a seizure).  
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In fact, Costa et al.’s simulation of learning of L1-mediated associations within L2 provides a 
snapshot of such a snowballing effect in progress; only its hard-coded critical period function 
prevents its 30,000 training trials from resulting in a superposition catastrophe, where it 
would be unable to distinguish between train and ham2. Like other Hebbian systems, Costa 
et al.’s model could thus benefit from incorporating some mechanism for unlearning, but 
doing so would entirely eliminate its account of Thierry & Wu’s data, because such functions 
would stabilize the network by unlearning precisely the kinds of spurious associations that 
underlie the account. Thus, omitting of a mechanism for unlearning may seem like a mere 
simplification, but it is in fact crucial to Costa and colleagues’ theoretical account, and any 
similar account would need to make the same omission.   
 
 
2.2. Incorporating more gradual L1 disconnection 

It is difficult to conceptualise a real life equivalent of Costa et al.’s abrupt testing method —
suddenly dismissing connections from L2 to L1 and probing the state of the obliterated 
network. Although lesioning a connection is a common way to assess its contributions, 
Costa et al.’s proposal goes further, claiming not only that L2-internal links may contribute to 
L1-based effects, but that their inter-lingual lesioned network may actually represent an 
unimpaired late bilingual’s normal state. At the least, it seems rather implausible that a 
simulation abruptly lesioning L1 representations can provide a realistic account of 
unimpaired bilinguals’ transition from an earlier to a later stage of L2 acquisition.  
 
Note that the need for more gradual L1 disconnection is not a mere implementational detail, 
because it should clearly interact with any implemented unlearning mechanism, reducing 
and eliminating Costa et al’s hypothesised within-L2 connections. In fact, Costa et al. 
themselves suggest that, if the connections underlying their effect are “not refreshed 
regularly, [they] may disappear via [an unimplemented mechanism for] depotentiation” (p15). 
Thus, although both their and our simulations suggest that a within-L2 basis for the effect 
may briefly persist after abruptly severing L1« L2 connections, even according to Costa et 
al.’s own account, it requires regular ‘refreshing’ via normally intact L1« L2 connections. As 
L1« L2 connections gradually weaken, they thereby lose their ability to refresh 
hypothesised within-L2 connections via their stated Hebbian learning mechanisms, and thus 
reduce their ability to account for Thierry & Wu’s empirical findings. In other words, even 
according to Costa et al.’s own internal logic, one can only account for L1-based effects 
without L1« L2 connections if those connections are usually intact.  
 
 
3. Broader conceptual issues 
 
3.1. Post-hoc ad-hoc modelling 

Although model-building rarely happens in a vacuum, without consideration of empirical 
data, there is a process that distinguishes theory-driven cognitive modelling from results-
                                                        
2 this can be verified by e.g., increasing Ω from 6000 to 15000, or by simply running the 
model with its originally published set of parameters. 
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driven AI.  The first step aims to characterise the goal of a process (Marr’s, 1981, 
“computational theory” level), and this is perhaps why cognitive models usually focus 
characterising performance on particular tasks with well-defined inputs and outputs. Costa et 
al’s approach clearly fails to define a task (simulating effects during semantic judgements 
without a semantic layer; more on this below), and it is not immediately clear what challenge 
the modelled system might be trying solve by storing direct excitatory links between 
unrelated words within a language.  

The second step is to implement a guess about specific architectures and algorithms that 
the mind might use to achieve its processing goal.  For instance, if we assume the model’s 
goal is to associate strongly activated L2 words with their strongly activated L1 translations, 
using Hebbian learning to build these associations might be a reasonable approach.  What 
is not clear is why such association-building processes should also apply to weakly3 co-
activated words within a language, or why such associations should always increase and 
never decrease.  One might argue that there is considerable evidence for within-language 
excitatory lexical associations, but that argument misses a crucial point: those within-
language lexical associations tend to be based on distributional information and transitional 
probabilities, as might be modelled using a simple recurrent network (e.g. Elman, 1991; 
Chang et al., 2006) to predict upcoming words in a sequence.  The kind of within-language 
lexical association that Costa et al. claim, on the other hand, seems to exist only to artificially 
account for Thierry and Wu’s data. 

 

3.2. Compatibility with empirical data 

In Costa et al.’s original model, after L2 is fully acquired, L2-to-L1 connections are no longer 
available whilst L1-to-L2 connections remain active. This would imply either (a) unbalanced 
connections between two lexica, with stronger links from L1-to-L2 than from L2-to-L1 or (b) 
language-selective access in an integrated lexicon when reading in L2 but not when reading 
in L1. Neither of these scenarios is compatible with empirical data to date (for reviews, see 
Brysbaert & Duyck, 2010; Dijkstra & van Heuven, 2002; Grainger et al. 2010; Kroll & 
Dijkstra, 2002; Kroll et al., 2010). Furthermore, a fully disconnected implementation of Costa 
et al.’s model also implies either (c) two separate lexica, or (d) one integrated lexicon with 
entirely language-selective lexical access. However, neither of these options can account for 
the classic cross-language orthographic/phonological neighbourhood effect (see, e.g. Dirix 
et al., 2017). Although L2 words with several orthographic neighbours in L1 may end up 
linked in L2 through learning, under the fully-disconnected model they should not compete 
for selection because their word forms do not overlap in L2. Hence, although it is reasonable 
to assume that L2 words may become linked during L2 acquisition because of links between 
representations existing in L1, partial or full disconnection of L1 would introduce new 
inconsistencies with a wider array of empirical data. 
 

                                                        
3 In fact, Costa et al.’s model includes a ‘learning threshold’ parameter, ΘL, to reduce its learning of 
weak associations. Increasing this threshold, ceteris paribus, produces a model that learns to 
associate translations without learning within-L2 connections. 
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3.3. Omission of semantic representations 

Returning to the original human data, recall that it was generated in the context of a 
semantic judgement task. Costa et al.’s model, however, omits a fundamental aspect of 
language which not only seems highly relevant to the behavioural task but which would likely 
elicit very different results: Semantics. For example, the L2 word 'ham' would become validly 
associated with words like 'cheese' and ‘toast’ as a learner of English reads sentences like 
'he likes ham and cheese on toast”. It is thus likely that –in the course of learning English– 
words like 'ham' will become associated with words like ‘toast’ and ‘cheese’ more than with 
‘train’ because of the lack of semantic association between the former and the latter. Indeed, 
semantically unrelated English words that overlap in their corresponding Chinese 
translations would hardly ever see the link between them reinforced during learning as 
regards meaning acquisition or use, and the effect produced should therefore be much 
weaker than that of valid and useful within-L2 associations (just like the barely noticeable 
effect in our new L1-fully-disabled simulation). In our empirical investigations, however, the 
form overlap effect was about half the size of the semantic relatedness effect (e.g., ~1 vs ~2 
µV in Thierry and Wu, 2007) rather than a small fraction of it. 
 
In other words, even though a computational model can be built to simulate connections 
between pools of neurons on the exclusive basis of form relationship across languages or 
lexical representations, such a model bears no obvious relationship to language learning in 
real-life circumstances without taking into account semantic links between words. Thus, it is 
difficult to imagine how the connection between 'train' and 'ham', once disconnected from L1, 
would remain as strong as that between words such as 'wood' and 'carpenter', which also 
have a form overlap through L1 (mu tou – mu jiang) but are strongly related semantically in 
both languages. It thus seems highly likely that word meaning interacts with form overlap 
between words during learning, a finding that stands in contrast with the lack of interaction 
observed empirically (see in particular, Thierry and Wu, 2007). This point is particularly 
relevant considering the fact that most of the experiments conducted by Wu and Thierry 
involved semantic tasks (i.e., relatedness judgement). A model solely aimed at simulating 
form overlap effects is thus, at best, incomplete, and seems inappropriate as an account of 
empirical data obtained in an experimental testing context centred on semantic processing. 
 
 

Conclusion 

In sum, although Costa et al. (2016) propose an intriguing account of Thierry and Wu’s 
(2004, 2007) L1 effects in late bilinguals’ L2 comprehension, we find their explanation 
untenable for the following reasons: (i) A model of semantic judgements that lacks semantic 
representations is, at best, incomplete; (ii) The mere fact that Hebbian learning could lead to 
acquiring certain associations does not imply that it must; (iii) Testing the model after 
completely –as opposed to partially– severing the links to and from L1 virtually abolishes any 
effect of form overlap in L1; and, finally, (v) The fact that unlearning would eliminate the 
hypothesised within-L2 connections, unless they were regularly reinforced via intact L1« L2 
connections, implies that disconnection cannot be the normal state.  
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