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ARTICLE

Akt and STAT5 mediate naïve human CD4+ T-cell
early metabolic response to TCR stimulation
Nicholas Jones 1, Emma E. Vincent 2,3, James G. Cronin 1, Silvia Panetti 1, Megan Chambers1,

Sean R. Holm1, Sian E. Owens 1, Nigel J. Francis 1, David K. Finlay 4,5 & Catherine A. Thornton1

Metabolic pathways that regulate T-cell function show promise as therapeutic targets in

diverse diseases. Here, we show that at rest cultured human effector memory and central

memory CD4+ T-cells have elevated levels of glycolysis and oxidative phosphorylation

(OXPHOS), in comparison to naïve T-cells. Despite having low resting metabolic rates, naive

T-cells respond to TCR stimulation with robust and rapid increases in glycolysis and

OXPHOS. This early metabolic switch requires Akt activity to support increased rates of

glycolysis and STAT5 activity for amino acid biosynthesis and TCA cycle anaplerosis.

Importantly, both STAT5 inhibition and disruption of TCA cycle anaplerosis are associated

with reduced IL-2 production, demonstrating the functional importance of this early meta-

bolic program. Our results define STAT5 as a key node in modulating the early metabolic

program following activation in naive CD4+ T-cells and in turn provide greater understanding

of how cellular metabolism shapes T-cell responses.
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T-cell memory is a fundamental feature of the adaptive
immune response, and enhanced responsiveness of mem-
ory cells is important for immunological protection.

Metabolic pathways (such as glycolysis and glutaminolysis) are
integrally linked to all aspects of immune responses, including
development, differentiation and immune effector function1–3. It
is also becoming apparent that individual metabolites play
important modulatory roles in the T-cell response4,5.

Work in human CD8+ T-cells has revealed a metabolic basis
for enhanced responses of CD8+ effector memory (EM) T-cells
upon antigen restimulation6. However, while it is clear that
activation via ligation of the T-cell receptor (TCR) initiates
important metabolic responses in CD4+ T-cells, whether these
metabolic responses are different in CD4+ EM and central
memory (CM) subsets compared to naïve (NV) CD4+ T-cells is
not well characterised, especially in humans. Human EM T- cells
migrate to an area of inflammation and rapidly induce effector
function whereas CM T-cells have limited effector function, but
can become EM T-cells on secondary stimulation7. While there is
some evidence that human CD4+ EM T-cells have increased
respiratory capacity8, the majority of the metabolic studies to date
have focused on CD8+ memory T-cell subsets6,9.

It has been shown that CD4+ T-cells undergo metabolic
reprogramming by translational remodelling upon long-term (48
h) activation10,11. Whilst understanding how T-cells adapt during
long-term activation is important, we also need to understand
how T-cell metabolism is governed early after activation and its
role in predisposing a successful immune response. Currently, the
early metabolic response, the key signalling nodes that regulate it
and the contribution it makes to T-cell function in activated
human CD4+ T-cell subsets has not been characterised.

Studies of human CD8+ T-cell metabolism show that the
transition from quiescent to activated T-cell is accompanied by
immediate increases in glycolysis in both NV and EM CD8+ T-
cells, though the increase in EM CD8+ T-cells is significantly
greater than that in NV CD8+ T-cells6,9. Whilst glucose is often
considered to be the primary fuel metabolised by T-cells upon
activation, other fuel sources, most notably glutamine, are
essential (e.g. to fuel the TCA cycle) to maintain energy homo-
eostasis and support cellular biosynthetic pathways12–14. Indeed,
glutaminase, an enzyme involved in glutaminolysis, has been
shown to promote murine T-cell differentiation towards the Th17
lineage whilst preventing Th1 development15.

Herein, we characterise the metabolic phenotypes of human
CD4+ NV, EM and CM T-cells. Importantly, we uncover
metabolic differences that are not homologous to human CD8+
T-cell subsets6. We show that NV CD4+ T-cells differ from their
CD8+ counterparts by rapidly engaging glycolysis (supported by
Akt activity) and oxygen consumption upon stimulation. We find
that TCR-induced NV CD4+ T-cells are heavily reliant on glu-
taminolysis to drive oxidative phosphorylation (OXPHOS) and
this is dependent on signal transducer and activator of tran-
scription 5 (STAT5). Importantly, we define STAT5 as a central
node in NV CD4+ T-cell metabolism, disruption of this pathway
and the metabolic program it supports impairs T-cell function
upon activation, demonstrating the fundamental importance of
this early metabolic response.

Results
EM and CM T-cells have heightened quiescent metabolism.
Quiescence is an important part of the T-cell life cycle and must
be tightly regulated to prevent autoimmune disorders. Therefore,
understanding how metabolism is regulated and controlled at rest
in CD4+ T-cells, especially the key subsets determined by antigen
experience, is important.

To determine the glycolytic activity of the CD4+ subsets in
quiescence, extracellular acidification rate (ECAR) was measured
using a Seahorse extracellular flux analyzer (Fig. 1a and
Supplementary Fig. 1a). There were no significant differences
between the resting (basal) ECAR of NV, EM and CM T-cells
(Fig. 1b); however, both memory populations had significantly
higher maximal ECAR in comparison to NV T-cells, indicating
greater glycolytic capacity (Fig. 1c).

To better understand why resting NV T-cells have reduced
glycolytic capacity in comparison to EM and CM T-cells, the
expression of key glycolysis enzymes were measured using
immunoblotting (Fig. 1d). Levels of GLUT1 (the main T-cell
glucose transporter16), hexokinase II (HKII), phosphofructoki-
nase (PFKP) and lactate dehydrogenase (LDHA) were increased
in both EM and CM populations compared to NV T-cells. Of
note is the elevated expression of the M2 isoform of pyruvate
kinase (PKM2) in EM and CM cells in comparison to NV cells.
PKM2 has reduced catalytic activity in comparison to the M1
isoform, preferential expression of PKM2 slows down the
conversion of phosphoenolpyruvate to pyruvate, thus allowing
the accumulation of upstream metabolites and reduced entry of
carbon into the TCA cycle17. These data demonstrate that CM
and EM CD4+ T-cell subsets have an enzymatic expression
profile that supports their glycolytic phenotype in comparison to
NV T-cells.

Alongside the glycolytic parameters (Fig. 1a), we measured
oxygen consumption rate (OCR) in all three subsets (Supple-
mentary Fig. 1b; Fig. 2a). The memory populations—EM and CM
—displayed greater OXPHOS than NV T-cells with higher levels
of basal respiration and ATP-linked respiration (Fig. 2b, c). CM
T-cells had higher maximal respiration in comparison with NV
(Fig. 2d). There were no significant differences in spare
respiratory capacity, proton leak or nonmitochondrial respiration
between the three populations (Supplementary Fig. 2a–c). While
we demonstrate that EM and CM clearly differ metabolically to
NV T-cells, no subset preferentially utilised one pathway as the
OCR/ECAR ratio calculated using basal respiration and basal
ECAR did not differ between them (Fig. 2e).

To better understand why OXPHOS parameters were higher in
EM and CM CD4+ T-cells, the mitochondrial content of all
subsets was analysed by flow cytometry and confocal microscopy
using the specific mitochondrial probe, MitoTracker Green. Total
CD4+ T-cells were isolated and incubated with MitoTracker
Green as well as anti-CD45RA and anti-CD197 to enable
identification of the subsets by flow cytometry. This enables
comparison of mitochondrial content of the three subsets within
the same donor. EM and CM T-cells had increased mitochondrial
content compared to NV T-cells (Fig. 2f). Cell size in relation to
mitochondrial content was also measured by confocal micro-
scopy. Isolated subsets—NV, EM and CM from different donors
—were incubated with MitoTracker Green, Cell Mask Orange
(cell membrane) and DRAQ5 (nucleus) and analysed using
confocal microscopy (Fig. 2g). A signal (MitoTracker) to cell area
ratio was calculated revealing both memory populations to have a
higher ratio in comparison to NV T-cells (Fig. 2h). Increased
mitochondrial mass could explain the heightened OXPHOS in
the EM and CM compared to the NV subsets at rest.

A recent study by Bantung et al. demonstrated that EM CD8+
T-cells oxidise glucose-derived pyruvate in the mitochondria to
sustain elevated rates of OXPHOS, through a mechanism that
involves the translocation of hexokinase I to the mitochondrial
membrane9. Our data suggest that CD4+ EM and CM cells have
an increased reliance upon HKII rather than HKI (Fig. 1d). Here,
we have used stable isotope tracer analysis (SITA) to determine
whether the increased OXPHOS observed in CM and EM CD4+
T-cells is due to an increase in oxidation of glucose-derived
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pyruvate. In order to determine the contribution of glucose to
TCA cycle metabolism in CD4+ T-cell subsets upon activation,
NV, EM and CM T-cell populations were activated in the
presence of uniformly labelled 13C6-glucose for 0.5 or 4 h. Due to
cell number restrictions we could only obtain a 4 h time point for
CM T-cells. SITA was performed to determine the incorporation
of 13C from glucose into TCA intermediates and non-essential
amino acids (Fig. 2i, j). All subsets integrated glucose-derived 13C
into TCA intermediates and amino acids after 4 h with no
observable difference between the subsets (Fig. 2i, j). Of note, the
relative abundance of unlabelled 12C intermediates of citrate, α-
ketoglutarate and glutamate substantially increased between 0.5
and 4 h for NV CD4+ T-cells, suggesting that other fuels (such as
glutamine) are contributing to these metabolite pools (Fig. 2i, j).
Therefore, these data show that EM and CM CD4+ T-cells do
not have increased oxidation of pyruvate in the TCA cycle relative
to NV cells, arguing that EM and CM CD4+ T-cells sustain
elevated OXPHOS using fuels other than glucose.

CD4+ T-cells rapidly engage glycolysis upon activation. Hav-
ing established that EM and CM CD4+ T-cells have elevated
glycolytic and oxidative capacity at rest compared to NV CD4+
T-cells, we proceeded to determine how these cells responded
metabolically to activation. Following activation with anti-CD3/
CD28 stimulation, extracellular flux analysis was used to monitor
changes in ECAR and OCR over 5 h. A final injection of 2-deoxy-
D-glucose (2-DG) arrested glycolysis. All three subsets demon-
strated an early increase in glycolytic rate that was sustained over
5 h (Fig. 3a). The differences in ECAR and OCR immediately
following stimulation (fold change) and following 257 min of

stimulation (pre/post) were analysed; the parameters used for
these calculations are indicated in Supplementary Fig. 3a.

Human EM CD8+ T-cells have a greater immediate glycolytic
response in comparison to NV T-cells6, but this is not the case in
CD4+ memory T-cells. In fact, the increase in glycolysis and
oxygen consumption rate was greatest in the NV T-cells, which
was significantly greater than in EM CD4+ T-cells (Fig. 3a-b,
Supplementary Fig. 3a, b). ECAR was increased soon after
activation for all subsets (Fig. 3c). As the assay progressed, ECAR
steadily increased for both memory populations. Despite these
apparent kinetic differences, all three subsets increase their
glycolytic rate from baseline post activation (Fig. 3d–f). Oxygen
consumption was also increased upon activation in NV T-cells,
but not in EM and CM T-cells (Fig. 3g, Supplementary Fig. 3c). In
addition, NV T-cells maintained their OCR, whereas both EM
and CM T-cells reduced oxygen consumption for the duration of
the assay (Fig. 3h–j). We also discovered that the early increase in
ECAR in NV cells is dependent on CD28 (the combined effect of
CD28 and CD3 remains greater); however, the early OCR switch
was entirely dependent on both CD3 and CD28 stimulation
(Supplementary Fig. 3d, e). Therefore, while all CD4+ T-cell
subsets underwent a shift towards an increased glycolytic rate
following TCR activation, the kinetics were different for NV
versus memory T-cells. NV CD4+ T cells engage a rapid switch
to a more glycolytic metabolic phenotype, whereas EM and CM
T-cells engage a more gradual glycolytic response (Fig. 3k).
Together, these data demonstrate that NV CD4+ T-cells engage
metabolic adaptation following TCR stimulation involving both
increased glycolysis and OXPHOS that is not observed in the
memory T-cell subsets.

a b c

d

NV EM CM
0.0

0.5

1.0

1.5

G
LU

T
1/

β-
A

ct
in

NV EM CM
0.0

0.5

1.0

1.5

2.0

H
K

II/
β-

A
ct

in *
p = 0.07

NV EM CM
0

1

2

3

P
F

K
P

/β
-A

ct
in

*

NV EM CM
0.0

0.5

1.0

1.5

2.0

P
K

M
2/

β-
A

ct
in

***
*

NV EM CM
0.0

0.5

1.0

1.5

2.0

2.5

LD
H

A
/β

-A
ct

in

NV  EM CM

NV EM CM
0

5

10

15

20

E
C

A
R

 (
m

pH
/m

in
)

Basal ECAR

NV EM CM
0

10

20

30

40

50

E
C

A
R

 (
m

pH
/m

in
)

Maximal ECAR

**
*

0 50 100
0

10

20

30

40

50

Time (min)

E
C

A
R

 (
m

pH
/m

in
)

Oligomycin   FCCP Antimycin A/Rotenone

NV

EM

CM

NV EM CM
0.0

0.5

1.0

1.5

2.0

G
A

P
D

H
/β

-A
ct

in

NV EM CM
0.0

0.2

0.4

0.6

0.8

1.0

H
K

I/β
-A

ct
in

GLUT1 

HKI 

HKII 

GAPDH 

PFKP 

PKM2 

LDHA 

β-Actin

60 kDa
45 kDa

102 kDa

102 kDa

37 kDa

80 kDa

60 kDa

37 kDa

45 kDa

Fig. 1 Quiescent EM and CM T-cells are metabolically active. a Glycolytic stress profile of NV, EM and CM T-cells by measuring ECAR before and following
injections of oligomycin (0.75 μM), FCCP (1 μM) and antimycin A and rotenone (1 μM) at the time points indicated. Basal (b) and maximal ECAR (c) in NV,
EM and CM T-cells. d Representative immunoblots from two different donors per cell type for GLUT1, HKI HKII, GAPDH, PFKP, PKM2 and LDHA and
β-actin. Respective densitometry normalised to β-actin is shown. Data are either representative of five independent experiments (a–c) or 3−4 experiments
(d). Statistical analysis was performed using a non-matching one-way ANOVA with Tukey’s multiple comparison test (b–d). For non-parametric data, a
Kruskal−Wallis test with Dunn’s multiple comparisons test was used. Data expressed as mean ± SEM; *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10023-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2042 | https://doi.org/10.1038/s41467-019-10023-4 | www.nature.com/naturecommunications 3



a b c   d

e f g h

i

j

13C
12C 

NV EM NV EM CM
0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e 
ab

un
da

nc
e

Succinate

0.5 h 4 h

NV EM NV EM CM
0.00

0.02

0.04

0.06

R
el

at
iv

e 
ab

un
da

nc
e

Fumarate

0.5 h 4 h

NV EM NV EM CM
0.00

0.01

0.02

0.03

0.04

R
el

at
iv

e 
ab

un
da

nc
e

Malate 

0.5 h 4 h

NV EM NV EM CM
0.000

0.002

0.004

0.006

0.008

R
el

at
iv

e 
ab

un
da

nc
e

α-ketoglutarate

0.5 h 4 h

NV EM NV EM CM
0.00

0.01

0.02

0.03

0.04

R
el

at
iv

e 
ab

un
da

nc
e

Citrate 

0.5 h 4 h

0 50 100
0

50

100

150

200

250

Time (min)

O
C

R
 (

pm
ol

es
/m

in
) NV

EM

CM

Oligomycin FCCP Antimycin A/Rotenone

NV EM CM
0

50

100

150

200

250

O
C

R
 (

pm
ol

es
/m

in
)

Maximal respiration

**

NV EM CM
0

20

40

60

80

100

O
C

R
 (

pm
ol

es
/m

in
)

Basal respiration

***
**

NV EM CM
0

20

40

60

80

100

O
C

R
 (

pm
ol

es
/m

in
)

ATP linked

***
**

NV EM CM
0

2000

4000

6000

8000

M
ito

 tr
ac

ke
r 

M
F

I

*

NV EM CM
0

2

4

6

8

10

O
C

R
/E

C
A

R
(p

m
ol

es
/m

pH
) 

NV EM CM

NV EM CM
0.0

0.2

0.4

0.6

0.8

1.0

M
ito

 tr
ac

ke
r 

si
gn

al
/a

re
a ***

*** ***

DRAQ5 
Cell mask orange 
Mito tracker green 

NV EM NV EM CM
0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
ab

un
da

nc
e

Aspartate

0.5 h 4 h

NV EM NV EM CM
0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
ab

un
da

nc
e

Glutamate

0.5 h 4 h

13C Glucose

Pyruvate

Oxaloacetate

Malate

Citrate

TCA
Cycle

Fumarate

Succinate

α-Ketoglutarate

CO2

CO2

Fig. 2 Activated CD4+ T-cell subsets incorporate glucose into the TCA cycle. a Oxidative phosphorylation profile of NV, EM and CM T- cells by measuring
OCR before and following injections of oligomycin (0.75 μM), FCCP (1 μM) and antimycin A and rotenone (1 μM). Basal respiration (b), ATP-linked
respiration (c), maximal respiration (d) and OCR/ECAR ratio (e) in NV, EM and CM T- cells. f Mitochondrial content of NV, EM and CM CD4+ T-cells
measured using MitoTracker. g Representative images of NV, EM and CM T-cells stained with DRAQ5 (nucleus), cell mask orange (plasma membrane)
and MitoTracker green (mitochondria) scale bar= 10 μm and h corresponding MitoTracker signal to area ratios. i Uniformly labelled 13C-glucose
incorporation into T-cell metabolites via the TCA cycle in NV, EM and CM T-cells activated for 0.5 and 4 h. Relative abundance of 12C and 13C including
citrate, α-ketoglutarate, succinate, fumarate and malate. j Relative abundance of 12C and 13C in non-essential amino acids glutamate and aspartate . Data
are representative of either five independent experiments (a–e), four independent experiments (f), three experiments with <100 cells analysed as technical
replicates (h) or three independent experiments (i, j). Statistical analysis was performed using a nonmatching one-way ANOVA with Tukey’s multiple
comparison test (b–h). For non-parametric data, a Kruskal−Wallis test with Dunn’s multiple comparisons test was used. Data expressed as mean ± SEM;
*p≤ 0.05, **p≤ 0.01, ***p≤ 0.001

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10023-4

4 NATURE COMMUNICATIONS |         (2019) 10:2042 | https://doi.org/10.1038/s41467-019-10023-4 | www.nature.com/naturecommunications



TCR-induced glycolysis is dependent on Akt in NV T-cells. We
next investigated the mechanisms involved in mediating the
pronounced metabolic responses in TCR-activated NV T-cells.
TCR-induced PI3K-Akt signalling is important in both CD4+
and CD8+ T-cells and has been linked to the robust immediate
glycolytic response in CD8+ EM T-cells6,18,19. TCR stimulation
induced the phosphorylation of Akt on threonine 308 and serine
473, with more robust activation observed in NV T-cells
(Fig. 4a–c). Robust activation is also apparent at earlier time
points (Supplementary Fig. 4a). To investigate whether Akt was
required for the glycolytic response in NV CD4+ T-cells the
allosteric inhibitor, Akti-1/2, was used to inhibit activity prior to
TCR triggering (efficacy of the inhibitor at the concentration used
is demonstrated in Supplementary Fig. 4b). Akti-1/2 incubation
prevented the increase in ECAR following TCR stimulation in
NV CD4+ T-cells (Fig. 4d). Akti-1/2 had no impact upon TCR-
induced OCR in these cells (Fig. 4e). Therefore, we next con-
sidered the TCR-induced signalling that might underpin the early
increase in OCR in NV CD4+ T-cells.

Lck-dependent STAT5 is required for TCR-induced OXPHOS.
We observed that TCR stimulation induced the phosphorylation
of STAT5 on tyrosine 694 in NV, CM and EM CD4+ T-cells
(Fig. 5a). Robust activation is also apparent at earlier time points
(Supplementary Fig. 4a). As STAT5 phosphorylation upon TCR
ligation has not been widely reported, we confirmed the specifi-
city of the STAT5 antibody using IL-2 and IL-7 (known inducers
of STAT5 phosphorylation) as positive controls (Supplementary
Fig. 5)20. STAT5 phosphorylation was dependent on TCR-
induced lck activity and was abolished by the lck inhibitor 4-

Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[3,2-d]pyrimidin-7-yl-
cyclopentane (Fig. 5b).

As there is an emerging role for STAT proteins in
mitochondrial metabolism21,22, we next considered whether
TCR-induced STAT5 is required for the early increase in
OXPHOS observed in NV CD4+ T-cells. A commonly used
STAT5 inhibitor Nʹ-((4-Oxo-4H-chromen-3-yl)methylene)nico-
tinohydrazide (STAT5i) was optimised (Supplementary Figs. 5b
and 6) and used (Fig. 5c–h) to investigate the role of STAT5 in
TCR-induced cellular metabolism23. ECAR and OCR were
measured pre- and post activation with anti-CD3/CD28 in the
presence of STAT5i or a vehicle control (Fig. 5c–h). Inhibition of
STAT5 reduced the TCR-induced increase in OCR in NV T-cells
(Fig. 5c), but had no impact on OCR in CM or EM CD4+ T-cells
(Fig. 5d, e). Inhibition of STAT5 also reduced the TCR-induced
increase in ECAR in NV CD4+ T-cells but not to the same extent
as observed upon Akt inhibition (Figs. 4d, 5f, i). In contrast,
inhibition of STAT5 did not affect ECAR in TCR-stimulated CM
and EM T-cells (Fig. 5g–i). Consistent with these data, STAT5
inhibition resulted in a substantial decrease in both glucose
uptake and extracellular lactate production in TCR-stimulated
NV CD4+ T-cells (Fig. 5j). Next we investigated whether IL-2
and IL-7 (known inducers of Akt and STAT518,24) would
individually induce an increase in OCR or ECAR (Fig. 5k–l).
However, unlike TCR stimulation, exposure to IL-2 or IL-7 did
not affect the metabolic rates of NV T-cells. In order to determine
whether the STAT5 phosphorylation is directly downstream of
TCR activation or activated by autocrine IL-2 secretion, we
cultured NV T-cells with a common γ chain antibody or
respective isotype control for 0.5 and 3 h. We found there was no
significant decrease in STAT5 phosphorylation between the
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control or γ chain antibody-treated NV T-cells, indicating that
the TCR directly activates STAT5 (Fig. 5m, n and Supplementary
Fig. 7).

STAT5 regulates glutaminolysis in NV CD4+ T-cells. Next we
focused on the role of STAT5 in the early metabolic response in
TCR-triggered NV CD4+ T-cells. Glutamine has been described
as an important fuel for sustaining elevated rates of OXPHOS in
activated murine T-cells14. Therefore, we investigated the role of
STAT5 in glutamine metabolism in NV CD4+ using the STAT5
inhibitor. NV T-cells were activated with anti-CD3/CD28 in
media containing uniformly labelled 13C-glutamine (13C5-gluta-
mine) in the presence of STAT5i (Fig. 6a) before extraction of
cellular metabolites for mass spectrometry analysis.

Our data show incorporation of 13C into all TCA inter-
mediates, demonstrating that glutamine is important in fuelling
the TCA cycle in TCR-activated NV CD4+ T-cells (Fig. 6a, b).
Incubation with STAT5i resulted in a decrease in the incorpora-
tion of 13C from glutamine into TCA cycle intermediates
(Fig. 6b), consistent with the observed decrease in OCR (Fig. 5c).
In particular there was a striking decrease in 13C incorporation
into α-ketoglutarate, the point at which glutamine carbon enters
the TCA cycle. The levels of 13C in intracellular glutamine and
glutamate were also substantially decreased arguing that STAT5i
inhibits glutaminolysis in TCR-stimulated NV T-cells (Fig. 6c).
Interestingly, these data show that in TCR-stimulated NV CD4+
T-cells there was a greater incorporation of 13C from glutamine
into α-ketoglutarate and citrate over the other TCA intermedi-
ates, suggesting that TCR-activated NV T-cells are also
metabolising glutamine by reductive decarboxylation, converting
α-ketoglutarate directly to citrate (Fig. 6a, b). To provide further
insight into the mechanism of glutamine incorporation into the
TCA cycle, the mass isotopologue distributions of TCA inter-
mediates were analysed. The metabolite pools of succinate,
fumarate, malate and citrate were all composed of a substantial
proportion of the m+ 4 mass isotopologue indicative of
conventional glutaminolysis. The distribution of the m+ 4 mass
isotopologue was reduced in all cases in the presence of STAT5i

(Fig. 6d). The presence of the m+ 5 mass isotopologue (14%) in
the metabolite pool of citrate indicates that reductive decarbox-
ylation of α-ketoglutarate to citrate is also taking place. The
abundance of the m+ 5 mass isotopologue (indicative of
reductive decarboxylation) was abolished by STAT5 inhibition.

Glutamine is not only used to fuel ATP production via the
TCA cycle but can also be used to support biosynthesis. Citrate
generated from glutamine through the TCA cycle and directly via
reductive carboxylation can be exported from the mitochondria
to fuel biosynthetic processes, such as providing acetyl-CoA for
fatty acid synthesis and amino acids for protein synthesis. For
example, glutamine is used to generate the amino acid aspartate
which is essential for nucleotide biosynthesis. In addition,
glutamine can be used for the production of other amino acids
such as proline and this is independent of the TCA cycle. Indeed,
our data show 13C-glutamine was incorporated into the aspartate
and proline metabolite pools in activated NV T- cells and levels of
these glutamine-derived amino acids were substantially decreased
when STAT5 was inhibited (Fig. 6e). Together, these data argue
that glutamine is an important fuel for supporting ATP
production and biosynthesis in TCR-stimulated NV T-cells and
that STAT5 activity is required.

Next we considered the molecular mechanisms linking STAT5
to the regulation of glutamine metabolism in TCR-stimulated NV
CD4+ T-cells. Given that there is crosstalk between the STAT5
and mTORC1 pathways and mTORC1 is a known regulator of
glutaminolysis25,26, we investigated whether STAT5 inhibition
might affect mTORC1 signalling. Indeed, NV T-cells treated with
STAT5i have reduced phosphorylation of the mTORC1 target
p70S6K and the downstream p70S6K substrate, S6 ribosomal
protein in comparison to the vehicle controls (Fig. 6f).

There are a number of examples where lymphocytes
demonstrate metabolic plasticity and adjust their metabolic
pathways as needed to maintain energy homoeostasis12. There-
fore, we considered whether treating TCR-activated NV T-cells
with STAT5i might change the way that they metabolise glucose
when glutamine metabolism is disrupted. Indeed, upon incuba-
tion with STAT5i there was a substantial increase in the
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incorporation of 13C-glucose into TCA intermediates (Fig. 7a, b),
but not amino acids (Fig. 7c). It has recently been shown that
glucose can fuel OXPHOS in activated lymphocytes via the
citrate-malate shuttle (indicated by the predominance of m+ 2
citrate)27; however, we do not observe this here (Fig. 7b). Despite
the compensation we observe here that glucose alone is not
sufficient to maintain flux through the TCA cycle as it must be
replenished by anaplerosis, most commonly from glutaminolysis.
Indeed, STAT5i-treated NV T-cells have reduced levels of
OXPHOS (Figs. 5a, 7a).

STAT5-mediated glutaminolysis supports NV T-cell function.
Thus far we have shown that STAT5-dependent glutamine meta-
bolism is important for both energy production and biosynthesis in
TCR-activated NV CD4+ T-cells. To determine the role of the
STAT5-dependent early metabolic program on CD4+ T-cell
function, we impaired oxidative metabolism (either by depriving
the cells of glutamine or by using metabolic inhibitors) and mea-
sured IL-2 production. IL-2 production was effectively abolished in

NV CD4+ T-cells upon incubation with STAT5i or in the absence
of glutamine (Fig. 8a, b, Supplementary Fig. 8a, b). We next
determined the relative importance of the different glutamine-
fuelled metabolic pathways for TCR-activated IL-2 production
(Fig. 8c). The importance of generating α-ketoglutarate from glu-
tamine (for TCA cycle anaplerosis) to support IL-2 production was
confirmed using an inhibitor that prevents the conversion of glu-
tamine to glutamate, 6-diazo-5-oxo-L-norleucine (DON), and an
inhibitor preventing the conversion of glutamate to α-ketoglutarate,
aminooxyacetic acid (AOA). Both inhibitors potently blocked TCR-
induced IL-2 production from NV CD4+ T-cells (Fig. 8d, e, Sup-
plementary Fig. 8c, d). These data argue that α-ketoglutarate pro-
duction is crucial for TCR-induced T-cell function. We determined
that α-ketoglutarate is sufficient to support T-cell function in the
absence of glutamine by rescuing IL-2 production with a membrane
permeable α-ketoglutarate (dimethyl 2-oxoglutarate - DMK)
(Fig. 8g, Supplementary Fig. 8e). We next addressed whether α-
ketoglutarate supports IL-2 production in NV T-cells by supporting
energy production or supporting cellular biosynthesis. While

a  b

c d e i

f g h j

k l m n

Time
(min) 0 15    30 180 0 15 30 180 0 15 30 180

αCD3/CD28 αCD3/CD28 αCD3/CD28

β-Actin

β-Actin

NV EM    CM

0.0
DMSO STAT5i

0.5

1.0

1.5

2.0

2.5

F
ol

d 
E

C
A

R
 c

ha
ng

e

NV
EM
CM

*

0 100 200 300 400
0

10

20

30

40

50

Time (min)

E
C

A
R

 (
m

pH
/m

in
)

FC

FC

0 100 200 300 400
0

10

20

30

40

50

Time (min)

E
C

A
R

 (
m

pH
/m

in
)

0 100 200 300 400
0

10

20

30

40

50

Time (min)

E
C

A
R

 (
m

pH
/m

in
)

DMSO

STAT5i

0 100 200 300 400
0

50

100

150

Time (min)

O
C

R
 (

pm
ol

es
/m

in
)

0

50

100

150

O
C

R
 (

pm
ol

es
/m

in
)

STAT5i/ STAT5i/
DMSO

STAT5i/ STAT5i/ STAT5i/
DMSO DMSO DMSO

DMSOαCD3/28

αCD3/28 αCD3/28

αCD3/CD28 αCD3/CD28

αCD3/28

αCD3/28
STAT5i/
DMSO αCD3/28

Naive

0 100 200 300 400

Time (min)

Effector memory

0 100 200 300 400
0

50

100

150

Time (min)

O
C

R
 (

pm
ol

es
/m

in
)

DMSO

STAT5i

Central memory

90 kDa
45 kDa

Veh 1 10 20

Lcki (μM)

0
0 15 30 180

1

2

3

pS
T

A
T

5/
β-

ac
tin

pS
T

A
T

5/
β-

ac
tin

Time (min)

NV
EM
CM

90 kDa

45 kDa

pSTAT5694 

pSTAT5694 
Veh 1 10 20

0.0
0.5
1.0
1.5
2.0
2.5 *

*

–

–
+

+
+

+ +

+
–
––

–
– –

+ +
+

+ +

+
–
––

–
–

+
0

5000

10,000

15,000

G
lu

co
se

 (
μM

)

STAT5i

p = 0.07

Extracellular

– +
0

100

200

300

La
ct

at
e 

(μ
M

)

STAT5i

**

0 50 100 150 200 250 300 350
0

5

10

15

Time (min)

E
C

A
R

 (
m

pH
/m

in
)

Control

IL-7

IL-2

IL-2/IL-7

0 50 100 150 200 250 300 350
0

50

100

150

Time (min)

O
C

R
 (

pm
ol

es
/m

in
)

IL-2/IL-7

90 kDa
90 kDa

45 kDa45 kDa

Isotype Isotype
Common γ chain Common γ chain

0.0

0.5

1.0

1.5 3 h

0.0

pSTAT5694
pSTAT5694

β-Actin β-Actin

0.5
1.0
1.5
2.0
2.5

pS
T

A
T

5/
β-

ac
tin

pS
T

A
T

5/
β-

ac
tin

0.5 h

Fig. 5 STAT5 orchestrates the metabolic switch in activated NV T-cells. a Immunoblot for pSTAT5 Tyr694 and β-actin in NV, EM and CM T-cells following
0, 15, 30 and 180min of activation with anti-CD3/CD28. Densitometry of pSTAT5 Tyr694. b Immunoblot for pSTAT5 Tyr694 and β-actin in NV T-cells
activated with anti-CD3/CD28 in the presence (1, 10 and 20 μM) or absence (Veh) of a lck inhibitor. OCR (c–e) and ECAR (f–h) was measured in NV (c, f),
EM (d, g) and CM (e, h) CD4+ T-cells in the absence (DMSO) or presence of a STAT5 inhibitor (100 μM) before cells were activated with anti-CD3/
CD28 at the indicated time points. i Fold change in ECAR upon activation calculated using the measures in the FC box. j Extracellular glucose and lactate
production in activated NV T-cells (anti-CD3/CD28) in the absence or presence of STAT5i (100 μM) for 4 h. OCR (k) and ECAR (l) of NV T-cells activated
with either IL-2 or IL-7 (10 ng/mL). Immunoblot of pSTAT5 Tyr694 and β-actin in NV T-cells activated with anti-CD3 (2 μg/mL) and anti-CD28
(20 μg/mL) with common γ chain antibody or isotype control (1 μg/mL) for m 0.5 or n 3 h. Statistical analysis was performed using a non-matching two-
way ANOVA with Sidak’s multiple comparison test (a, i), a paired t- test (j) or a matched Friedman test with Dunn’s multiple comparisons test (m, n). Data
are representative of a 3–5 experiments with one representative immunoblot sample of 3–5 is shown, five (b, c, e, f, h), three (d, g, n), four (j, m) or two
independent experiments (k, l) and expressed as mean ± SEM; *p≤ 0.05, **p≤ 0.01

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10023-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2042 | https://doi.org/10.1038/s41467-019-10023-4 | www.nature.com/naturecommunications 7



inhibition of ATP synthesis (by low dose oligomycin) significantly
reduced IL-2 production, an inhibitor of ATP citrate lyase (ACLY)
had no effect in TCR-stimulated NV CD4+ T-cells (Fig. 8g, h,
Supplementary Fig. 8f, g). Taken together, these results suggest that
STAT5-dependent glutamine metabolism supports NV CD4+ T-
cell function by supporting ATP production (Fig. 8i).

Discussion
In this study we characterise the metabolic phenotypes of NV,
EM and CM CD4+ T-cells and investigate the mechanisms
underlying these processes. Importantly, we elucidate a novel role
for STAT5 in the control of glutaminolysis and TCA cycle
metabolism in human T-cells. We also establish how this meta-
bolic program promotes and supports NV T-cell function.

We find that memory CD4+ T-cells have elevated activity of
metabolic pathways compared to NV CD4+ T-cells in quies-
cence, in terms of their capacity to engage glycolysis and mito-
chondrial respiration. These data are the first to demonstrate
increased metabolic processes in CM CD4+ T-cells and are in
agreement with another recent study with respect to EM cells8.

The metabolic phenotype of CD4+ memory cells is distinct to
that described for CD8+ EM memory T-cells. CD4+ CM and

EM T-cells have elevated levels of basal OXPHOS and an
increased capacity for glycolysis that reflects increased mito-
chondrial mass and increased expression of key glycolytic
enzymes. The glycolytic machinery in CD8+ memory T-cells is
not increased and while CD8+ EM T-cells have a slightly
increased respiratory capacity they do not have elevated levels of
basal OXPHOS6. The metabolic response of CD4+ versus CD8+
memory T-cells following TCR triggering is also distinct. CD8+
memory T-cells engage an immediate glycolytic response that is
mediated by increased GAPDH activity while CD4+ CM and EM
T-cells gradually undergo a shift to a glycolytic phenotype,
simultaneously increasing glycolysis and decreasing OXPHOS.
The different kinetics of the metabolic response to TCR stimu-
lation are likely due to the fact that CD4+ CM and EM T-cells are
already in a heightened metabolic state prior to activation and so
can meet the metabolic demands without engaging in an early
metabolic response. CD8+ EM T-cells oxidise glucose in the
mitochondria to sustain elevated OXPHOS9. However, elevated
OXPHOS in CD4+ EM and CM T-cells is not due to increased
glucose-mediated fuelling of the TCA cycle. As such, our study
reveals important differences in the metabolic phenotypes of
CD8+ and CD4+ memory T-cells.

a b c

d e f

TCA Cycle

Citrate

α-ketoglutarate

Succinate

Fumarate

Malate

TCA
Cycle 

Glucose

Pyruvate Lactate

Oxaloacetate

Citrate

α-ketoglutarate

Succinate

Fumarate

Malate
CO2

Glutamate

CO2

13C Glutamine

or

12C 

13C 

– +
0.000

0.005

0.010

0.015

R
el

at
iv

e 
ab

un
da

nc
e

STAT5i – +STAT5i

R
el

at
iv

e 
ab

un
da

nc
e

– +
0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

20

15

10

5

0

R
el

at
iv

e 
ab

un
da

nc
e

R
el

at
iv

e 
ab

un
da

nc
e

STAT5i – +STAT5i

U-[13C]-Q        Citrate U-[13C]-Q        Glutamine

U-[13C]-Q        GlutamateU-[13C]-Q        α-KG

70 kDa pp70S6K389

pS6235–236

70 kDa Total p70S6K

Total S6

Actin

32 kDa

32 kDa

45 kDa

αCD3/CD28

STAT5i –

+ +

+

– +
0.00

0.02

0.04

0.06

0.08

R
el

at
iv

e 
ab

un
da

nc
e

U-[13C]-Q        Succinate

STAT5i

– +STAT5i

– +
0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.08

R
el

at
iv

e 
ab

un
da

nc
e

R
el

at
iv

e 
ab

un
da

nc
e

STAT5i

U-[13C]-Q        Malate

U-[13C]-Q        Fumarate

– +
0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
ab

un
da

nc
e

STAT5i

U-[13C]-Q        Aspartate

m
 +

 0
m

 +
 1

m
 +

 2
m

 +
 3

m
 +

 4
m

 +
 5

m
 +

 6
0

20

40

60

80

100

%
 o

f c
itr

at
e 

po
ol

– STAT5i

+ STAT5i

m
 +

 0
m

 +
 1

m
 +

 2
m

 +
 3

m
 +

 4
m

 +
 5

0

20

40

60

80

100

%
 o

f α
-K

G
 p

oo
l

m
 +

 0
m

 +
 1

m
 +

 2
m

 +
 3

m
 +

 4
0

20

40

60

80

100
%

 o
f s

uc
ci

na
te

 p
oo

l

m
 +

 0
m

 +
 1

m
 +

 2
m

 +
 3

m
 +

 4
0

20

40

60

80

100

%
 o

f f
um

ar
at

e 
po

ol

m
 +

 0
m

 +
 1

m
 +

 2
m

 +
 3

m
 +

 4
0

20

40

60

80

100

%
 o

f m
al

at
e 

po
ol

– +
0.00

0.02

0.04

0.06

0.08
R

el
at

iv
e 

ab
un

da
nc

e

STAT5i

U-[13C]-Q        Proline

– +
0.0

0.5

1.0

1.5

2.0

2.5

pS
6/

T
ot

al
 S

6

STAT5i

**

– +
0.0

0.5

1.0

1.5

pp
70

S
6K

/T
ot

al
 p

70
S

6K

STAT5i

***

Fig. 6 STAT5 regulates glutaminolysis in an mTORC1-dependent manner. a Schematic summarising incorporation of uniformly labelled 13C-glutamine into
the TCA cycle. NV T-cells were activated (anti-CD3/CD28) in the presence or absence of STAT5i (100 μM) for 4 h. b Relative abundance of glutamine-
derived 12C and 13C TCA cycle metabolites, citrate, α-ketoglutarate, succinate, fumarate and malate. c Relative abundance of glutamine-derived 12C and 13C
glutamine and glutamate. d Mass isotopologue distributions (MID) of TCA cycle intermediates, citrate, α-ketoglutarate, succinate, fumarate and malate.
e Relative abundance of glutamine-derived 12C and 13C amino acids aspartate and proline. f Immunoblot for p70S6K and ribosomal S6 phosphorylation
(pS6) in NV T-cells following 4 h activation with (anti-CD3/CD28) in the absence and presence of STAT5i (100 μM). β-actin was used as a loading
control. Statistical analysis was performed using a paired t-test (f). Data are representative of four experiments (b–e) or three experiments (c) and are
expressed as mean+ SEM. **p≤ 0.01, ***p≤ 0.001

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10023-4

8 NATURE COMMUNICATIONS |         (2019) 10:2042 | https://doi.org/10.1038/s41467-019-10023-4 | www.nature.com/naturecommunications



In contrast to CM and EM CD4+ T-cells, and indeed NV CD8+
T-cells6, NV CD4+ T-cells engage an early metabolic response
following TCR/CD28 stimulation that involves increased rates of
glycolysis and OXPHOS. While this rapid glycolytic response fol-
lowing TCR stimulation has been observed in murine and human
CD8+ T-cells, this is the first time it has been described in NV
CD4+ T-cells. We found that increased glycolysis in activated NV
T-cells was dependent on CD28 ligation, whereas in murine CD8+
NV and previously activated T-cells, increased glycolysis was
independent of CD28 in the short term28. This result is supported
by another study that showed an early, although transient, increase
in OCR in CD4+ T-cells from patients with systemic lupus ery-
thematosus29. However, these data are difficult to interpret as the
analysis was performed on total CD4+ T-cells.

We observed an inverse relationship between ECAR and OCR in
EM and CM T-cells. Upon activation, EM and CM T-cells gradually
increased ECAR and reduced OCR. This phenomenon could reflect
the translocation of HKII toward the mitochondria upon stimula-
tion, thus shifting metabolism towards glycolysis; this has been
observed in other cell types30,31. The initial burst of glycolysis
observed in NV T-cells could be explained by elevated levels of
mitochondria-bound HKI, which has previously been linked to
increased glycolysis in murine memory T-cells32. Taken together,
our data highlight the metabolic demands placed on NV CD4+ T-
cells upon immune activation to facilitate rapid and robust
responses.

It is interesting that the kinetics of the glycolytic response in
NV CD4+ T-cells are actually very similar to those observed in
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CD8+ EM T-cells; both cell types respond to TCR activation with
an early increase in lactate production6. Additionally, the data
herein demonstrate that the early glycolytic response in NV
CD4+ T-cells is completely dependent on Akt activity as is
shown to be the case in CD8+ EM T-cells6. This is in contrast to
activated murine NV CD8+ T-cells where the early glycolytic
switch is mediated by pyruvate dehydrogenase kinase 1 (PDHK1)
independent of Akt28.

A unique feature of NV CD4+ T-cells is the very early increase
in OXPHOS that accompanies TCR activation, as this has not
been described in other T-cell subsets to date. The fact that this
OXPHOS response was not affected by Akt inhibition (in contrast
to the increase in glycolysis) suggested that fuels other than
glucose must contribute to the observed increase in mitochon-
drial respiration. Indeed, we show that glutamine is an essential
fuel for activated NV CD4+ T-cells and is used to support
OXPHOS through TCA cycle anaplerosis and amino acid bio-
synthesis—including aspartate (for protein and nucleotide
synthesis) and proline (for protein synthesis).

Our data demonstrate that 4 h following activation, glutamine
is used to support both TCA cycle anaplerosis and citrate bio-
synthesis via reductive carboxylation in NV CD4+ T-cells. This is
consistent with work carried out in T-cells following 48 h acti-
vation10 and complements previous work that demonstrates
human T-cell activation is accompanied by an increase in gly-
colytic machinery1,33. Glutamine-dependent reductive carbox-
ylation has been best described in tumour cells where it supports
anabolic processes including lipid synthesis34,35, or maintaining
mitochondrial redox homoeostasis36. Further work is required to
establish exactly what role glutamine-dependent reductive car-
boxylation plays in TCR-stimulated NV CD4+ T-cells.

While glutaminolysis has been studied in murine T-cells, here
we describe glutamine utilisation in human T-cell subsets using a
metabolomic approach. This is significant because inhibitors of

glutaminase, the first enzymatic step in glutaminolysis, are in
development for the treatment of cancer and hyperglycaemia. As
such, it will be important to understand how these drugs could
impact patient immunity37–39.

A key and novel insight of our study is the characterisation of
STAT5 as a node linking TCR stimulation to increased OXPHOS
(via glutaminolysis) in NV CD4+ T-cells. While STAT5 activa-
tion has been classically associated with cytokine signalling and
JAK kinases, the phosphorylation of STAT5 downstream of TCR
stimulation has also been reported20. Here, we show that TCR-
induced STAT5 phosphorylation was blocked by inhibition of the
TCR-activated lck tyrosine kinase. Overexpression of lck in B-cell
leukaemia has been shown previously to drive STAT5 activa-
tion40. In contrast to TCR stimulation, we did not observe any
metabolic changes in NV T-cells stimulated with IL-2 or IL-7; this
could reflect the fact that NV T-cells are constantly bathed in
cytokines within the lymph nodes, preventing the occurrence of
unnecessary activation. Therefore, we can conclude that STAT5 is
required but not sufficient for NV T-cell activation.

A role for the STATs in mitochondrial metabolism has begun to
emerge21,41. Here we report a profound effect of STAT5 inhibition
on glutamine metabolism in CD4+ NV T-cells. The most striking
defect observed following STAT5i treatment was in the depletion of
glutamate, the product of glutaminase and the first step of gluta-
minolysis. This suggests that STAT5 may regulate glutamine
metabolism at this node. Indeed, STAT5 inhibition reduced
mTORC1 signalling which has been linked to the regulation of
glutaminase expression through control of cMyc stability26. cMyc is
also a direct STAT5 target gene42. Interestingly, STAT transcription
factors have been linked directly to the expression of glutaminase in
monocyte-derived macrophages43.

Importantly, through the promotion of glutaminolysis,
STAT5 signalling supports T-cell function. Akin to STAT5
inhibition, we demonstrate that glutamine withdrawal and
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specific inhibition of glutaminolysis impairs human NV CD4+
T-cell function, blocking IL-2 production. We have described the
importance of glutamine-derived α-ketoglutarate as an energy
substrate in the NV T-cell immune response. Collectively these
data support an essential role for glutaminolysis downstream of
STAT5 signalling in the human NV T-cell immune response.
Importantly, STAT5 signalling has a role in other cell types and
disease states, particularly leukaemia44–46; as such our work will
be pertinent to other systems and pathologies particularly where
STAT5 is amenable to targeting.

Collectively, our study demonstrates that the metabolic path-
ways in human naïve and memory T-cells are distinct. We
identify STAT5 as a key node in the early metabolic response in
naïve T-cells. The metabolic program orchestrated by STAT5
upon activation facilitates NV T-cell function in a fundamental
and causative way allowing the cell to match its bioenergetic
capacity to its functional outputs (e.g. cytokine production).
Therefore, this study provides insight into the processes accom-
panying early activation of human CD4+ T-cell subsets, fur-
thering our understanding of the importance of cellular
metabolism for T-cell responses.

Methods
Human CD4+ T-cell isolation and culture. Human peripheral blood was col-
lected from healthy, nonfasted individuals into heparinised VacuettesTM (Greiner
Bio-one, Frickenhausen, Germany) and processed within 10 min of collection. All
samples were collected with informed written consent and ethical approval was
obtained from Wales Research Ethics Committee 6 (13/WA/0190).

Mononuclear cells were initially isolated by layering whole blood (1:1) onto
Histopaque (Sigma-Aldrich, Poole, UK) prior to centrifugation at 805 × g for 20min
at room temperature. Mononuclear cells were removed and washed with RPMI 1640
(Life Technologies, Paisley, UK) twice by centrifugation at 515 × g. Human CD4+ T-
cell subsets were isolated using the autoMACS technique (Miltenyi Biotec). CD4+
NV, EM and CM cells (1.0 × 106/mL) were either rested or activated with plate-bound
anti-CD3 (2 μg/mL; HIT3a, BioLegend) and free anti-CD28 (20 μg/mL; CD28.2,
BioLegend) in phenol red free RPMI (Gibco)+ glutaMAX at 37 °C in 5% CO2-in-air
for 24 h. After 3 h the media was supplemented with 10% fetal calf serum to prevent
impaired T-cell activation. For autocrine determination experiments, T-cells were
cultured with a common γ chain antibody (1 μg/mL; R&D Systems) or respective
isotype control (mouse IgG1, 1 μg/mL; R&D Systems). T-cells were cultured with or
without 100 μM STAT5 inhibitor Nʹ-((4-Oxo-4H-chromen-3-yl)methylene)
nicotinohydrazide, 1–20 μM Lck inhibitor 4-Amino-5-(4-phenoxyphenyl)-7H-
pyrrolo[3,2-d]pyrimidin-7-yl-cyclopentane (Merck Millipore). Oligomycin (100 nM),
6-diazo-5-oxo-L-norleucine (DON; 50 μM), transaminase inhibitor; aminooxyacetic
acid (AOA; 0.25 - 1 mM), ATP citrate lyase inhibitor; BMS303141 (1 μM) and
dimethyl 2-oxoglutarate (0.3mM) were purchased from Sigma. Cells were harvested
and analysed for flow cytometry and supernatants stored at −20 °C for cytokine
analysis. IL-2 was analysed using ELISA as per the manufacturer’s instructions
(DuoSets; R&D Systems).

Flow cytometry. Population purity was measured using anti-CD4 AlexaFluor®647
(mIgG2b, clone OKT4, BioLegend), anti-CD45RA Brilliant Violet 605 (mIgG2b,
clone HI100, BioLegend), anti-CD45RO FITC (mIgG2a, clone UCHL1, BioLegend)
and anti-CD197 Brilliant Violet 421 (mIgG2a, clone G043H7, BioLegend) anti-
bodies47. The percentage purity for individually isolated T-cell populations was
consistently >90%.

Cell viability and activation were monitored using nuclear-stain, DRAQ7
(BioStatus) and activation marker, PE-labelled anti-CD69 (mIgG1, FN50,
BioLegend), respectively. Mitochondrial content of CD4+ subsets was monitored
using 2 nM MitoTracker Green (Life Technologies). MFI of CD4+ T-cells with
MitoTracker, gated as naive CD45RA+CD197+, effector memory CD45RA
−CD197− and central memory CD45RA−CD197+ to determine mitochondrial
content. Total CD4+ T-cells were stained with Brilliant Violet 421 labelled anti-
CCR7/CD197 (mIgG2a, clone G043H7, BioLegend) and Brilliant Violet 605
labelled CD45RA (mIgG2b, clone HI100, BioLegend) to identify subset
populations. The gating strategy used is identical to Supplementary Fig. 9.

Metabolic analysis. Metabolic analysis of CD4+ NV, EM and CM was carried out
using the Seahorse Extracellular Flux Analyzer XFe24 (Seahorse Bioscience). Briefly
6.0 × 105 cells were seeded onto a Cell-Tak (Corning) coated microplate allowing
the adhesion of T-cells.

Baseline: T-cells were resuspended in XF assay media supplemented with 5.5
mM glucose (Sigma) and 1 mM pyruvate (Sigma). Mitochondrial and glycolytic
metabolic parameters were measured simultaneously via OCR (pmoles/min) and

ECAR (mpH/min), respectively (Supplementary Table 1a, b) with use of injections;
oligomycin (0.75 μM), FCCP (1 μM) and rotenone and antimycin A (both 1 μM).
All chemicals were purchased from Sigma unless stated otherwise. Calculations for
individual metabolic parameters can be found in Supplementary Table 1a, b.

Activation: To monitor the glycolytic switch upon activation, CD4+ NV, EM
and CM cells were resuspended in serum-free XF Assay media supplemented with
11.1 mM glucose and 2 mM L-glutamine (Sigma). ECAR and OCR were measured
simultaneously throughout the experiment, i.e. 1 h before activation and 4 h after.
T-cells were activated via the multi-injection port with anti-CD3 (0.2 μg/mL;
HIT3a, BioLegend) and anti-CD28 (20 μg/mL; CD28.2, BioLegend). A final
injection of 2-DG (100 mM; Sigma) was used to arrest glycolysis.

Real-time activation and metabolic flux was monitored via injection of specific
inhibitors Akt 1/2 kinase inhibitor (10 μM; Sigma) or STAT5 inhibitor Nʹ-((4-Oxo-
4H-chromen-3-yl)methylene)nicotinohydrazide (100 μM; Merck Millipore).
Baseline ECAR was measured for 1 h prior to inhibitor injection after which a 40
min period before injection of anti-CD3/CD28.

Immunoblot. Freshly isolated NV, EM and CM T-cell lysate proteins were
quantified, denatured and separated using SDS-polyacrylamide gel electrophoresis.
Polyvinylidene difluoride membranes were probed with antibodies targeting glu-
cose transporter 1 (GLUT1; 12939), hexokinase I (HKI; 2024), hexokinase II (HKII;
2867), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 5174), phospho-
fructokinase (PFK; 8164), pyruvate kinase (PKM2; 4053), lactate dehydrogenase
(LDHA; 3582), phospho-STAT5 Tyr694 (9351), total STAT5 (9363), phospho-Akt
Thr308 (9275) and Ser473 (9271), phospho-S6 ribosomal protein (Ser235-236;
4858), total S6 ribosomal protein (2217), phospho-p70 S6 kinase (Thr389; 9234)
and total p70 S6 kinase (2708). All antibodies were purchased from Cell Signaling
(Danvers, MA) and used at a 1:1000 dilution. Protein loading was evaluated and
normalised using β-actin (8226; Abcam). Densitometry on nonsaturated immu-
noblots was measured using ImageJ software (FIJI). Original uncropped immu-
noblots can be viewed in Supplementary Fig. 10.

Confocal microscopy. Isolated CD4+ NV, EM and CM T-cells (0.1× 106 cells)
were adhered with Cell-Tak to a Lab-Tek chambered borosilicate coverglass system
(ThermoFisher Scientific) and were stained with 20 nM MitoTracker Green. Nuclei
were then stained with 5 μM DRAQ5 (BioStatus) and allowed to develop for 15
min before staining the cell membrane with 0.1% CellMask Orange (ThermoFisher
Scientific). Live cells were then imaged and captured at ×63 magnification using a
laser scanning confocal microscope (Zeiss LSM710). Captured images were ana-
lysed using ImageJ (National Institutes of Health, USA).

Stable isotope tracer analysis (SITA) by GC-MS. Isolated CD4+ NV, EM and
CM were incubated with universally heavy labelled 13C glucose (11.1 mM; Cam-
bridge Isotopes) in glucose free RPMI (ThermoFisher Scientific) or 13C glutamine
(2 mM; Cambridge Isotopes) in glutamine free (ThermoFisher Scientific). T-cells
were activated with plate-bound anti-CD3 (2 μg/mL; HIT3a, BioLegend) and free
anti-CD28 (20 μg/mL; CD28.2, BioLegend) for a period of either 0.5 or 4 h. Cells
were then washed twice with ice-cold PBS and lysed in 80% methanol. Cell extracts
were then dried down at 4 °C using a speed-vacuum concentrator.

Cellular metabolites were extracted and analysed by gas chromatography-mass
spectrometry (GC-MS) using protocols described previously48,49. Briefly,
metabolite extracts were derived using N-(tert-butyldimethylsilyl)-N-
methyltrifluoroacetamide (MTBSTFA). D-myristic acid (750 ng/sample) was added
as an internal standard to metabolite extracts, and metabolite abundance was
expressed relative to the internal standard. GC/MS analysis was performed using
an Agilent 5975C GC/MS equipped with a DB-5MS + DG (30 m × 250 µm × 0.25
µm) capillary column (Agilent J&W, Santa Clara, CA, USA). For SITA
experiments, mass isotopomer distribution was determined using a custom
algorithm developed at McGill University48.

Extracellular glucose and lactate measurements. Extracellular glucose and
lactate were measured using the glucose assay kit and L-lactate assay kit I (Eton
Bioscience) respectively as per the manufacturer’s instructions.

Statistical analysis. Statistical analysis was performed using GraphPad Prism ver-
sion 6 (USA). Data are represented as the mean ± or + standard error of the mean
(SEM). The one-sample Kolmogorov−Smirnoff test was used to test for normality.
Where no substantial deviations from normality were observed it was considered
appropriate to use parametric statistics. All experiments have replicate sample sizes of
at least n= 3 and significant values were taken as *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data are available from the corresponding author.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10023-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2042 | https://doi.org/10.1038/s41467-019-10023-4 | www.nature.com/naturecommunications 11



Received: 11 May 2018 Accepted: 19 March 2019

References
1. Procaccini, C. et al. The proteomic landscape of human ex vivo regulatory and

conventional T cells reveals specific metabolic requirements. Immunity 44, 712
(2016).

2. Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate
immunometabolic and epigenetic programs in trained immunity. Cell Metab.
24, 807–819 (2016).

3. Rodriguez-Espinosa, O., Rojas-Espinosa, O., Moreno-Altamirano, M. M.,
Lopez-Villegas, E. O. & Sanchez-Garcia, F. J. Metabolic requirements for
neutrophil extracellular traps formation. Immunology 145, 213–224
(2015).

4. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor
T cell responses. Cell 162, 1217–1228 (2015).

5. Klysz, D. et al. Glutamine-dependent alpha-ketoglutarate production regulates
the balance between T helper 1 cell and regulatory T cell generation. Sci.
Signal. 8, ra97 (2015).

6. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells
requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072
(2013).

7. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector
memory T cell subsets: function, generation, and maintenance. Annu. Rev.
Immunol. 22, 745–763 (2004).

8. Dimeloe, S. et al. The immune-metabolic basis of effector memory CD4+ T
cell function under hypoxic conditions. J. Immunol. 196, 106–114
(2016).

9. Bantug, G. R. et al. Mitochondria-endoplasmic reticulum contact sites
function as immunometabolic hubs that orchestrate the rapid recall
response of memory CD8(+) T cells. Immunity 48, 542–555 e546.
(2018).

10. Ecker, C. et al. Differential reliance on lipid metabolism as a salvage pathway
underlies functional differences of T cell subsets in poor nutrient
environments. Cell Rep. 23, 741–755 (2018).

11. Ricciardi, S. et al. The translational machinery of human CD4(+) T cells is
poised for activation and controls the switch from quiescence to metabolic
remodeling. Cell Metab. 28, 895–906 (2018).

12. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation
and effector responses in vivo. Immunity 42, 41–54 (2015).

13. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion.
Cell Metab. 25, 345–357 (2017).

14. Wang, R. et al. The transcription factor Myc controls metabolic
reprogramming upon T lymphocyte activation. Immunity 35, 871–882
(2011).

15. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell
differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795
(2018).

16. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for
CD4 T cell activation and effector function. Cell Metab. 20, 61–72
(2014).

17. Vander Heiden, M. G. et al. Metabolic pathway alterations that support
cell proliferation. Cold Spring Harb. Symp. Quant. Biol. 76, 325–334
(2011).

18. Hand, T. W. et al. Differential effects of STAT5 and PI3K/AKT signaling on
effector and memory CD8 T-cell survival. Proc. Natl. Acad. Sci. USA 107,
16601–16606 (2010).

19. Macintyre, A. N. et al. Protein kinase B controls transcriptional programs that
direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity
34, 224–236 (2011).

20. Beyer, T. et al. Integrating signals from the T-cell receptor and the interleukin-
2 receptor. PLoS Comput Biol. 7, e1002121 (2011).

21. Meier, J. A. & Larner, A. C. Toward a new STATe: the role of STATs in
mitochondrial function. Semin. Immunol. 26, 20–28 (2014).

22. Garama, D. J., White, C. L., Balic, J. J. & Gough, D. J. Mitochondrial STAT3:
powering up a potent factor. Cytokine 87, 20–25 (2016).

23. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-
gamma or IL-10 and are regulated by IL-1beta. Nature 484, 514–518
(2012).

24. Wofford, J. A., Wieman, H. L., Jacobs, S. R., Zhao, Y. & Rathmell, J. C. IL-7
promotes Glut1 trafficking and glucose uptake via STAT5-mediated
activation of Akt to support T-cell survival. Blood 111, 2101–2111
(2008).

25. Saleiro, D. & Platanias, L. C. Intersection of mTOR and STAT signaling in
immunity. Trends Immunol. 36, 21–29 (2015).

26. Csibi, A. et al. The mTORC1/S6K1 pathway regulates glutamine metabolism
through the eIF4B-dependent control of c-Myc translation. Curr. Biol. 24,
2274–2280 (2014).

27. Assmann, N. et al. Srebp-controlled glucose metabolism is essential for NK
cell functional responses. Nat. Immunol. 18, 1197–1206 (2017).

28. Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling
distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018).

29. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci.
Transl. Med. 7, 274ra218 (2015).

30. Calmettes, G., John, S. A., Weiss, J. N. & Ribalet, B. Hexokinase-mitochondrial
interactions regulate glucose metabolism differentially in adult and neonatal
cardiac myocytes. J. Gen. Physiol. 142, 425–436 (2013).

31. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases
TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell
activation. Nat. Immunol. 15, 323–332 (2014).

32. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage
that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA 110,
14336–14341 (2013).

33. Jones, N. et al. Metabolic adaptation of human CD4(+) and CD8(+) T-cells
to T-cell receptor-mediated stimulation. Front. Immunol. 8, 1516 (2017).

34. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates
lipogenesis under hypoxia. Nature 481, 380–384 (2011).

35. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent
carboxylation of alpha-ketoglutarate to citrate to support cell growth and
viability. Proc. Natl. Acad. Sci. USA 108, 19611–19616 (2011).

36. Jiang, L. et al. Reductive carboxylation supports redox homeostasis during
anchorage-independent growth. Nature 532, 255–258 (2016).

37. Rais, R. et al. Discovery of 6-diazo-5-oxo-l-norleucine (DON) prodrugs with
enhanced CSF delivery in monkeys: a potential treatment for glioblastoma. J.
Med. Chem. 59, 8621–8633 (2016).

38. Miller, R. A. et al. Targeting hepatic glutaminase activity to ameliorate
hyperglycemia. Nat. Med. 24, 518–524 (2018).

39. Clinicaltrials.gov. CB-839+ azacitidine for treatment of myelodysplastic
syndrome (MDS). https://www.clinicaltrials.gov/ct2/show/study/NCT03047993
(2017).

40. Cazzaniga, V. et al. LCK over-expression drives STAT5 oncogenic signaling in
PAX5 translocated BCP-ALL patients. Oncotarget 6, 1569–1581 (2015).

41. Chueh, F. Y., Leong, K. F. & Yu, C. L. Mitochondrial translocation of signal
transducer and activator of transcription 5 (STAT5) in leukemic T cells and
cytokine-stimulated cells. Biochem. Biophys. Res. Commun. 402, 778–783 (2010).

42. Pinz, S., Unser, S. & Rascle, A. Signal transducer and activator of transcription
STAT5 is recruited to c-Myc super-enhancer. BMC Mol. Biol. 17, 10 (2016).

43. Zhao, L. et al. Interferon-alpha regulates glutaminase 1 promoter through
STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive
disorders. PLoS ONE 7, e32995 (2012).

44. Moriggl, R. et al. Stat5 tetramer formation is associated with leukemogenesis.
Cancer Cell 7, 87–99 (2005).

45. Girardot, M. et al. Persistent STAT5 activation in myeloid neoplasms recruits
p53 into gene regulation. Oncogene 34, 1323–1332 (2015).

46. Wingelhofer, B. et al. Pharmacologic inhibition of STAT5 in acute myeloid
leukemia. Leukemia 32, 1135–1146 (2018).

47. Jones, N. et al. Bioenergetic analysis of human peripheral blood mononuclear
cells. Clin. Exp. Immunol. 182, 69–80 (2015).

48. McGuirk, S. et al. PGC-1alpha supports glutamine metabolism in breast
cancer. Cancer Metab. 1, 22 (2013).

49. Vincent, E. E. et al. Mitochondrial phosphoenolpyruvate carboxykinase
regulates metabolic adaptation and enables glucose-independent tumor
growth. Mol. Cell 60, 195–207 (2015).

Acknowledgements
We thank D. Avizonis and L. Choinière from McGill University Metabolomics Core
Facility, J. Rathmell, J. Blagih and D. Elder for useful discussion, S. James for assistance
with confocal microscopy, D. Rees for assistance with ImageJ, staff in the Swansea
University Joint Clinical Research Facility for phlebotomy, and all blood donors. This
work was supported with grants awarded by Saint David’s Medical Foundation (SDMF),
Life Sciences Research Network Wales (NRN). S.P. was supported by a Wellcome Trust
Biomedical Vacation Scholarship. E.E.V. was supported by CRUK (C18281/A19169) and
is now supported by a Diabetes UK RD Lawrence Fellowship (17/0005587). D.K.F. is
supported by Science Foundation Ireland (13/CDA/2161).

Author contributions
N.J. performed the majority of experiments; J.G.C., S.P., M.C., S.R.H., S.E.O., N.J.F. and
E.E.V. performed experiments and provided intellectual discussion. N.J., E.E.V., D.K.F.
and C.A.T. designed the experiments. N.J., E.E.V., D.K.F. and C.A.T. wrote the manu-
script. All authors critically revised and approved the manuscript.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10023-4

12 NATURE COMMUNICATIONS |         (2019) 10:2042 | https://doi.org/10.1038/s41467-019-10023-4 | www.nature.com/naturecommunications



Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-10023-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks Sarah Dimeloe, Ping-
Ching Ho and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10023-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2042 | https://doi.org/10.1038/s41467-019-10023-4 | www.nature.com/naturecommunications 13


