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Abstract  

RNA interference (RNAi) is a transformative technology with great potential to control, 

study or even protect insects and acarines through the knockdown of target gene 

expression. RNAi offers unprecedented levels of control, but fundamental to its successful 

deployment is the need to deliver “trigger” RNA in an appropriate fashion giving due 

consideration to potential barriers of RNAi efficiency, safety, and the intended purpose of 

the knockdown. This short review focusses on recent innovations in RNAi delivery that are 

designed for, or could be adapted for use with, insect and acarine pests of medical or 

veterinary importance.  

 

Introduction 

The underlying principles of arthropod RNAi and the common hurdles limiting RNAi 

efficiency encountered by insects have been reviewed comprehensively elsewhere [e.g. 1-

6]. Key to maximum RNAi efficiency is the capacity to avoid or circumvent the dual perils 

of nuclease activity (in the haemolymph and especially the gut) and extremes of gut pH, 

both of which can degrade or destabilize introduced “trigger” interfering RNAs (double-

stranded RNA – dsRNA; short hairpin RNA – shRNA; short interfering RNA - siRNA) [1,7-

8]. Ideally, trigger RNA should arrive intact at its target cell, whereupon it is readily taken 

up (e.g. via clathrin-mediated endocytosis or via scavenger receptors) and escaping the 

endosomal system [9] to be efficiently diced into siRNAs before entering the RNAi 

pathway. Even more preferably, the RNAi effect acts systemically and with subsequent 

propagation (amplification) since from a pest control perspective, systemic RNAi is more 

likely to impart a lethal phenotype.   
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Two factors define RNAi delivery strategies: (i) the anatomical site of entry for trigger RNA, 

and (ii) in what form the RNA is to be administered. Common sites of entry are the gut, the 

respiratory system, the cuticle - either through traumatic penetration or via epicuticular 

uptake, and in situ synthesis by live microbes - usually in the gut but potentially in any 

body compartment (Fig. 1). As will be discussed below, many RNAi delivery vehicles are 

equally capable of entering the insect body at multiple entry sites, but not necessarily 

equally effectively. With the exception of mosquitoes, pests of medical and veterinary 

significance are underrepresented in RNAi research, probably because of the challenges 

posed in rearing and maintaining them for study in a laboratory environment. However, 

most of the delivery systems described below have the potential to be adapted to medical 

and veterinary pests. 

 

Ingestion  

Recent RNAi experiments with the sarcoptic mite Sarcoptes scabiei [10] and the house 

dust mite Dermatophagoides pteronyssinus [11] have utilized total immersion in dsRNA 

over several hours, with significant gene knockdown. Some of the RNA is ingested, as 

indicated by the appearance of fluorescently labelled RNA in the gut. The authors 

envisage eventually developing therapeutic dsRNA-based topical treatments against mite 

infestations. The cat flea Ctenocephalides felis, a pest of considerable medical and 

veterinary significance, is the first siphonapteran in which RNAi has been demonstrated 

recently [12]. Microinjection, ingestion and soaking were compared as dsRNA delivery 

methods, and although all three methods were impressively effective, ingestion via a 

bloodmeal elicited the strongest knockdown of a sigma-class GST antioxidant gene. 

Although it is not clear whether each method administered a comparable dose, the 

injections delivered a fairly minimal 69 ng per insect. Gut nucleases do not appear to be 

problematic in this insect; it is also interesting that the authors remarked on the 

surprisingly good stability of dsRNA mixed into bovine citrated blood, in contrast to the 

observations of Basnet and Kamble [13]. 

 

Cuticular penetration 

Injection of dsRNA remains an essential tool in many RNAi proof-of-principle studies that 

can inform future pest control strategies. Some recent examples of successful RNAi 

deployment by injection highlight targets for the suppression of fecundity. These include 
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knockdown of vitellogenin in adult female bedbug Cimex lectularius [14] in which the 

phenotype persisted for several weeks, RpATG6 in Chagas disease vector Rhodnius 

prolixus adult females (to disrupt yolk production) [15], and ribosomal protein S6 in the 

adult female housefly Musca domestica [16]. Of note are the variable quantities of dsRNA 

used in these studies, ranging from 20 ng (bedbug; roughly equivalent to 2.7 ng per mg 

body mass) to 5 µg (housefly; approximately 238 ng per mg body mass). 

Systemic RNAi has already been demonstrated in all developmental stages of several tick 

species, and immersion of whole ticks in aqueous solutions of dsRNA targeting the 

essential gene Hlfer1 are effective (e.g. [17]). Zhang et al. [18] refined this approach by 

combining fluorescently-labelled dsRNA with a liposome transfection agent to determine 

the best uptake mechanism in ticks. The resulting pattern of fluorescence was consistent 

with direct uptake through the pores and canaliculi of the epicuticle, and the mouth. They 

observed that the target P0 gene was most effectively knocked down by prolonged 

soaking (17 hours) with liposome-RNA complexes in all lifecycle stages, and superior to 

aqueous solutions. Interestingly the most important factor determining RNAi efficiency was 

the duration of soaking, being more critical than concentration or liposome type.  

A few studies have attempted topical uptake by administering dsRNA mixed with acetone 

- in which it is stable - directly to the insect cuticle. This was first trialled with adult Aedes 

aegypti mosquitoes in 2008 [19] using dsRNA directed against 

the Diap1 homologue AeIAP1. A re-evaluation of the paper in 2016 [20] indicated that it 

was not possible to conclude that topical application was successful. It is unclear whether 

the application itself was ineffective or whether the problem rested with the gene target, 

however: injection of dsRNA targetting IAPs failed to produce convincing phenotypes in 

three mosquito species [20] except when incubated with Aag2 cells. Topical application of 

dsRNA targetting actin (in either acetone or water) was also unsuccessful in bed bug 

nymphs [13] despite dsactin eliciting a measurable knockdown by injection. Galay et al. 

[17] observed that Haemaphysalis longicornis ticks, unlike Varroa mites, are not 

susceptible to dsRNA soaking when it is dissolved in 0.9% NaCl, while they are very 

sensitive when the dsRNA is in aqueous solution and possibly taken up osmotically; 

temperature was also an important parameter. This interesting observation cautions that 

we need to understand the biochemistry and composition of the integument in order to 

design the best medium for soaking. 

 

Cross-kingdom RNAi: Delivery by microbes 

(i) bacteria 
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Trigger RNA has been expressed in recombinant E. coli for many years, and is often 

subsequently fed to target insects to elicit RNAi, however, in most insects E. coli can also 

stimulate an immune response. The use of symbiotic or commensal bacteria to synthesize 

dsRNAs in insecta is a natural progression from E. coli based dsRNA expression and the 

paratransgenesis principle [21-22]. Prolonged or even indefinite knockdown can be 

achieved with symbionts because the manipulated RNaseIII-deficient bacteria are re-

introduced to their natural insect host where they establish a continuous turnover of 

dsRNA [23]. This system has been developed in Rhodococcus rhodnii (the symbiont R. 

prolixus) in which stable dsRNA expression is afforded by integrating the dsRNA 

expression cassette into the bacterial chromosome [23]. Short-term RNAi was also 

demonstrated in R. prolixus using dsRNA hairpin-expressing R. rhodnii with a presumably 

intact rnaseIII [24]. In common with some viruses (see below) symbiont delivery systems 

theoretically offer two-tier specificity (that of the dsRNA sequence, and host-symbiont co-

evolution), and the opportunity to exploit natural transmission through an insect population 

by horizontal or vertical transmission [25]. A caveat is that endosymbionts with a long 

history of host co-evolution are not culturable in the lab.  

 

(ii) viruses & virus-like particles 

In situ synthesis of trigger RNAs can also be achieved through viruses and this strategy 

was reviewed extensively by Kolliopoulou et al. [26]. Recent developments (in Drosophila) 

have built on an approach first used successfully by Gu et al. [27], who created a 

recombinant mosquito-specific densovirus (AeDNV) expressing shRNA against the 

essential V—ATPase gene. Taning et al. [28] have now created a recombinant Flock 

House virus (FHV) capable of producing siRNAs. Taning and colleagues’ approach with 

the multi-host FHV was to create a tool for functional studies in a wider variety of RNAi-

recalcitrant insects, which could in future include pests of medical significance. The team 

transfected Drosophila S2 cells with two engineered plasmids containing a capsid protein 

precursor gene and the RNA-dependent polymerase gene and a D. melanogaster target 

sequence for dsRNA production during viral replication. These were expressed in the 

cytoplasm, and the two combined to make infectious virions. For pest control, an oral 

infection method with purified virions would be most appropriate but a very high dose is 

needed for infection of insects such as drosophiliids [29] and mosquitoes, and the 

potential host range of the virus and its mutation rate would need to be risk assessed. 

There are inherent risks with the use of any live microbes repurposed to synthesize trigger 

RNAs, including recombination events. Persistent virus infections may also present 

specific problems if they do not turn over sufficient quantities of interfering RNAs. 

Alternatively, viruses can subvert a normally robust RNAi system by saturating the binding 
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capacity of the RNAi pathway and / or by inhibiting key molecules in that pathway [30]. 

However, there are interesting exceptions such as Israeli acute paralysis virus, which 

actually appears to enhance the RNAi response in its bumblebee host [31-32].  

Virus-like particles (VLPs) could be a more practical solution that avoids many of the 

problems with infective virions. These are spontaneously self-assembled structural 

components of viruses that encapsidate small RNA molecules. Although there appear to 

be no recent examples of VLP development in insect RNAi, a good overview of the 

technology can be found in [26]. 

 

(iii) yeast 

Anopheles gambiae larvicides consisting of yeast expressing specific shRNAs have been 

developed recently [33]. This is a very promising approach for insects with aquatic larval 

stages. The authors identified three putative larval essential genes Sac 1, otk, lrc and then 

used yeast expression vectors to express shRNAs in baker’s yeast Saccharomyces 

cerevisiae, with lethal RNAi phenotypes after ingestion. Even dead yeast cells proved to 

be effective larvicides, so the group formulated dried, inactivated yeast RNAi tablets, 

which makes them suitable for administering cheaply to remote areas of mosquito 

endemicity. This study is interesting too because shRNAs were synthesized in preference 

to long dsRNAs to ensure a level of specificity (since all shRNA sequences are known) 

that cannot be guaranteed with dsRNA.  

 

(iv) Entomopathogenic fungi  

A recombinant dsRNA-expressing strain of the entomopathogenic fungus Isaria 

fumosorosea has been developed to infect the whitefly, Bemisia tabaci via cuticlar 

penetration and then knock down an immunity gene TLR7 [34-35]. The synergistic 

approach of using a fungal pathogen to enhance its own virulence via RNAi chimes with 

the wider concept that RNAi is probably most effectively deployed in concert with other 

pest control strategies. Intriguingly, the authors speculated that it may be the initial 

immune attack itself that damages the invading blastospores, thus liberating the dsRNA 

[34]. While I. fumosorosea lacks host-specificity, other species and strains of 

entomopathogenic fungi are available that exhibit greater specificity (e.g. [36]) and these 

could in future be exploited to deliver RNAi to disease vectors such as mosquitoes. 

 

Nanoparticles 

Nanoparticles (NPs) represent an exciting and dynamic area of innovation in RNAi 

delivery technology. In entomology, chitosan (a polysaccharide from arthropod 
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exoskeletons), silica, perfluocarbon, guanidine-containing polymers and carbon quantum 

dot NPs have all been complexed with trigger RNA. These have been administered 

variously in insect cell culture [37], by feeding [37-43], topical application [18] and even by 

aerosol [44-45]. When chosen appropriately, NPs not only stabilize dsRNA, shRNA and 

siRNA and shield the RNA from nucleases and extremes of pH, but they also optimize 

cellular uptake. The practical steps in NP synthesis are often surprisingly straightforward, 

and NPs are created with a positive charge to enable binding to negatively charged RNA. 

Most NPs also offer the advantage of being biodegradeable and/or biocompatible. It is, 

however, important to note that not all NPs are universally appropriate; silica-based NPs 

perform poorly at extremes of pH and degrade in the strongly alkaline condition the 

mosquito larval midgut, while carbon quantum dots are highly effective [37]. Chitosan-

dsRNA complexes in Aedes larvae also perform well [37,41]. Particle size should also be 

considered if ingested NPs are intended to traverse the peritrophic matrix [46]. 

Perfluocarbon-bound siRNA NPs have been administered by aerosol to aphids [45]. The 

aim was to stabilize the RNA trigger and deliver it to internal organs via the tracheoles 

thereby bypassing the gut and, to some extent, the haemolymph. Aerosoliaztion of naked 

RNA improved RNAi efficiency, and even more so with siRNA-NP complexes. Thairu and 

colleagues’ method [45] was based on a ground-breaking study by Li-Byarlay et al. [44] 

which exposed adult worker honeybees for 5 mins to nebulized aerosols of PFC-NP-

siRNA. It is tempting to speculate that such an approach could be used to kill Varroa mites 

and it could lend itself to treating social and colonial insects that congregate in confined 

spaces. 

Cationic polymethacrylate derivative polymer NPs containing guanidine have recently 

been successfully trialled for oral delivery of dsRNA in two notoriously RNAi-recalcitrant 

species of Spodoptera (Lepidoptera) [42-43]. Polymers with a high guanidine content form 

stable complexes with dsRNA at high pH and thus protect it from the hostile gut 

environment. They also exhibit enhanced cellular uptake by mimicking arginine-rich cell 

penetrating peptides. These NPs would be applicable to the anterior midgut of Anopheles 

gambiae and Aedes aegypti larvae at pH 11 [47]. Transfection agent “lipoplexes” have 

also been used to protect dsRNA in the gut of the cockroach Blatella germanica to allow 

local (not systemic) knockdown of an essential midgut-expressed tubulin gene [40], 

however lipoplexes may not be able to permeate the peritrophic matrix. 

 

Conclusions 

Despite the meteoric rise in popularity of CRISPR-cas9 genome editing tools, RNAi 
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remains a popular and important reverse genetics strategy for entomological research and 

for potential applications in pest control. RNAi is envisaged not as a standalone pest 

control tool but rather as part of a synergistic approach. Critical to the success and safety 

of insect-targetting RNAi is the appropriate choice of delivery method. At present the most 

exciting innovations are the use of nanoparticles, and the expression of trigger RNAs by a 

range of microbes. These offer some practical solutions for deployment in the field for pest 

control, therapeutics, and even possibly for targetting pathogens in vectors rather than the 

vectors themselves. Challenges lie ahead to minimize and risk-assess off-target silencing 

and the potential for RNAi resistance to emerge.  
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FIGURE LEGEND 

 

Figure 1 

Key delivery systems for inhibitory “trigger” RNA in insects. Common anatomical 

sites of RNA entry are indicated together with delivery vehicles and modes of entry. The 

introduced trigger RNA must avoid degradation or deactivation by nucleases and extreme 

pH in the gut and haemolymph. The small pores of the gut peritrophic matrix may further 

represent a physical barrier to larger delivery vehicle particles such as nanoparticles. 
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