
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

2019 IEEE Pacific Visualization Symposium (PacificVis)

                                                        

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa48170

_____________________________________________________________

 
Conference contribution :

Colasanti, R., Borgo, R. & Jones, M. (in press).  Emoji and Chernoff – A Fine Balancing Act or are we Biased?. 2019

IEEE Pacific Visualization Symposium (PacificVis), 

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/189161567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa48170
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

Emoji and Chernoff – A Fine Balancing Act or are we Biased?
Ricardo Colasanti*

Swansea University
Rita Borgo†

King’s College London
Mark W. Jones‡

Swansea University

ABSTRACT

We seek to answer the question on whether different geometrical
attributes within a glyph can bias interpretation of data. We focus on
a specific visual encoding, the Emoji, and evaluate its effectiveness
at encoding multidimensional features. Given the anthropomorphic
nature of the encoding we seek to quantify the amount of bias
the encoding itself introduces, and use this to balance the Emoji
glyph to remove that bias. We perform our analysis by comparing
Emoji with Chernoff faces, of which they can be seen as direct
descendant. Results shed light on how this new approach of feature-
tuning in glyph design can influence overall effectiveness of novel
multidimensional encodings.

Keywords: Emoji Glyphs, Glyph Bias, Balancing Glyphs, Cher-
noff, Multidimendional Data.

1 INTRODUCTION

Understanding multi-dimensional data involves tasks such as trend
and sequence analysis, outlier detection, and gaining familiarity with
a large set of data. A key aspect of data visualization is to be able to
identify a suitable visual encoding for multidimensional data points.
Glyph based visualization has emerged as a strong contender for data
representation where multiple dimensions (up to 20 [15]) are mapped
to distinct visual elements within the representation. Questions
arise surrounding the human use of the visual encoding in terms of
learnability and usability. Learnability relies on previous familiarity
with the chosen token in a different context or that the token places
low cognitive demands on the user. User studies provide evidence of
good “learnability” if novel encodings provide comparable or better
accuracy and speed to existing approaches.

We explore questions in this area through this research. We select
a familiar visual encoding in the form of Emoji, of which usage
in the visualization domain is, to our knowledge, novel. Emoji are
highly stylized cartoon like faces, and are therefore strongly related
to Chernoff faces [11] which have a long history in glyph visual-
ization. We conducted a user study to test the usability of Emoji
for tasks related to multi-dimensional data exploration, we explore
performance when compared with conceptually similar layouts like
Chernoff faces and standard representations like Star glyphs [10,29].

We also hypothesize that where multiple channels are encoded
within a glyph, the individual visual elements comprising those chan-
nels can lead to visual bias, smile for example is visually highly
salient and grabs attention automatically potentially influencing
viewer’s perception of non-happy/happy eyes in a face [8]. We think
that it is vital to understand how a glyph can attach varying impor-
tance to each dimension in accordance to the weighting perceived
through the corresponding visual channel. To demonstrate this idea,
we introduce glyph balancing on Emoji. We seek to determine how
visually effective each channel is within a glyph, and then adjust the
size of that channel accordingly. We use as control the Star glyph
which is trivially balanced, and Chernoff faces in which different
features are probably more visually important than others. We aim to
balance the Emoji, and test this balancing to see if it has any impact
during usage.
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Therefore our contributions are: (i) a proposal that glyph bal-
ancing is an important attribute of glyph design to remove visual
dominance as a bias on the data, (ii) a methodology for a controlled
user study to achieve glyph balancing, (iii) the use of this methodol-
ogy to introduce a new balanced glyph – Emoji, (iv) the comparison
of performance between the new glyph and existing Star and Cher-
noff faces glyphs.

2 RELATED WORK

In this section we present some of the related work and current
approaches in the literature for glyph design guidelines and user
studies, along with a discussion of the evolution of Emoji from
representing emotion to other ideas.

Fuchs et al. [22] present an extensive overview and classification
of user studies involving glyphs. They categorized tasks into visual
search, similarity search and trend detection and identified study
goals which were: comparing different glyph designs, variations
and with reading data tables and text. We focus on similar tasks and
comparing different glyph designs with an overall goal of identifying
whether familiarity affects performance. We obtain accuracy and
completion speed.

Fuchs et al. [21] present a user study comparing variations of Star
glyphs with respect to accuracy and speed of picking similar stimuli
amongst other experiments.

Borgo et al. [7] link theoretical models of semiotics with glyph
design. Design guidelines are presented, and current design guide-
lines informed by the literature are also reviewed. Glyph design
guidelines are also suggested by Chung et al. [12], along with the
concept of being able to visibly sort glyphs to aid visual analysis of
rugby video data. Ward [41] surveys glyph placement algorithms.
Lie et al. [33] provide design guidelines for mapping data onto glyph
visual channels. The semantics of attributes should also be consid-
ered when mapping to glyph channels [7, 33, 38, 41], particularly to
avoid introducing bias [34] where some visual channels of the glyph
will have more discriminating power compared to others. Maguire
et al. [34] introduce a qualitative approach to channel balancing,
whereas we are introducing a quantitative approach and demonstrate
through the user study that the bias effect really exists and can be
removed. Metaphoric glyphs or pictograms are shown to reduce cog-
nitive load by exploiting familiarity [31]. Glyphs for pre-attentive
visualization are discussed by Healey et al. [23].

Barbieri et al. [4] studied the semantics of Emoji by a user study
on how people perceive the meaning and relationship between Emoji,
and also using twitter data to derive Emoji semantics. This demon-
strates connection between perception and meaning by Emoji which
could inform how they could be used as surrogates for visualization.
Cappallo et al. [9] present an image classifier that produces Emoji to
capture the semantics of the scene rather than a textual description.

Kelly et al. [30] demonstrate that Emoji are being appropriated for
tasks other than creating emotional context or intonation in messages.
In this user study, they categorized other uses, such as maintaining
a conversation, playful interaction or a shared context specific to
that relationship. The study focused on use within relationships.
Moschini [37] traces the history and usage of Emoji (specifically the
tears of joy). It documents that Emoji can move beyond portrayal
of emotions, to also convey ideas. We take this a step further by
exploiting their use for the visual representation of data.



 Channel  Attribute

0 Left Eye

1 Right Eye

2 Left Brow

3 Right Brow

4 Smile

(a) Emoji Glyph

 Channel  Attribute

0 Eye Width

1 Brow Width

2 Eye Slant

3 Nose 

4 Mouth 

(b) Chernoff Face

 Channel  Attribute

0 Clockwise 15 min

1 Clockwise 27 min

2 Clockwise 39 min

3 Clockwise 51 min

4 Clockwise 03 min

(c) Star Glyph

Figure 1: Visual encodings design channel breakdown.

3 VISUAL ENCODINGS

3.1 Face like Visual Representations
In order to represent multivariate data we have created a minimal
face Emoji according to the Emoji design standard principles [14].
Our Emoji consists of a circular face with a background hexadecimal
rgb color of #FFDD67. The Emoji has a “smile” of color #664E27.
The Emoji has two eyes and two eyebrows. The eye consists of
an outer circle in color White and an inner “pupil” circle of color
#664E27. The eyebrows are arcs outside the area of the eye and are
of color #664E27. The colors were taken from the Unicode®Emoji
design guidelines [14], the same color pattern is also followed by
Google® Emoji set [17]. We have limited our design to five at-
tributes but further attributes could be mapped to Emoji features.
The five mappable Emoji attributes are: depth of the smile, circum-
ference of each outer eye, width of each eyebrow, as defined by the
angle of the arc of the eyebrow. Fig. 1a shows a detailed breakdown
by channel of our Emoji glyph design.

The creation of a multivariate face Emoji allows for direct com-
parison with two other multivariate glyphs: Chernoff face and Star.

The multivariate face Emoji is most similar to the well researched
Chernoff face. The Chernoff face encodes data as a two dimensional
facial caricature or cartoon. In a survey of glyph user trials by
Fuchs [22] 25 of the 65 studies involved Chernoff faces. Within
these studies the rendering of the Chernoff face varied considerably.
For our study we are using the formulation described in the original
paper by Chernoff [11]. The Chernoff face has 18 separate attributes.
We have chosen five of the attributes that most closely correspond
to our multivariate face Emoji: curvature of the smile; width of the
eyes; length of the eyebrow; length of the nose; angle of the eye
and eyebrow. Fig. 1b shows a detailed breakdown by channel of our
Chernoff face design. For the remaining 13 features we have taken
the midpoint values between the minimum and maximum size of
each feature. Some studies also use an extra color variable [2], but
in our study we used Chernoff’s original rendition colors of black
for outline and features, and white for background and fill color.
We have scaled the size of the Chernoff face so that the face width
matches the face width of the multivariate face Emoji. To assess the
overall suitability of an Emoji image to represent multidimensional
data, we compare the multivariate face Emoji and the Chernoff face
with a non-face glyph.

3.2 Non-face like Visual Representations
Chernoff’s original hypothesis was that the documented ability of hu-
mans to recognize facial expressions would improve the representa-
tion of multidimensional data. This hypothesis has been extensively
tested [22]. The Star glyph has figured as the most common glyph
used for comparison. For our studies we have used a five element
Star glyph. The Star glyph combines a five sided polygon with a five
armed whisker plot. Each attribute of our data set is mapped to each
of the lengths of the whisker plot. The ends of each arm are joined
by a line to their nearest radial neighbor. Fig. 1c shows a detailed
breakdown by channel of our Star glyph design.

The width and height of the Star are scaled to match the circum-
ference of the multivariate face Emoji. We follow the same color
scheme used in most of the studies surveyed by Fuchs [22] where
the Star glyphs were visualized with a foreground fill of black, and
background fill white. The Star glyph adheres to the Gestalt princi-
ple according to which we have a preference for simple shapes [7].
Unlike the multivariate face Emoji and the Chernoff face, the Star
glyph can be said to be abstract.

4 GLYPH BALANCING

In image correction pre-balancing color channels means to view and
adjust the composite one channel at a time to blend it better with
the background. Similar to color correction in images we attempt to
balance the channels within an Emoji glyph.

Faces are important and salient visual stimuli, being central in
human social interaction, providing critical information about age,
gender, emotional state, intention, and identity of other human be-
ings. Human neuropsychology [24] provides evidence that human
perception of faces is different from human perception of objects or
complex scenes. Moreover the active control of eye fixation plays
an important functional role in a variety of cognitive and perceptual
tasks with fixation sites and fixation durations closely time-locked
to ongoing perceptual and cognitive processes [25]. The human
visual system reorients the fixation point around the viewed image
an average of three times each second, this is achieved via saccadic
eye movements, i.e. the movement of our focus from one part to
another. The path our eyes take across an object, or a picture, is a
pattern of saccades. In both primates’ and humans’ saccades pattern,
when looking at a picture of a face, follows a specific distribution
as shown in Fig. 2. Saccade patterns when gazing at face like repre-
sentations compare to the saccade patterns when gazing at human
faces. Following this principle we have hypothesized the smile (S)
to potentially be the strongest visual cues while eyes (E) and brows
(B) channels to be the weakest.

S >> E|B (1)

We only considered those features which were common between
our design and Henderson et al. [24]. To validate our hypothesis we
have run a smaller study involving a single task in a format similar
to Task 1 (see Section 5.1). Participants were selected from a pool
of visualization experts (both academic and postgraduate students)
at Swansea University. Participants were shown pairs of Emoji
glyphs stimuli, members of a pair differed by only a single channel.
Participants were required to select, as quickly as possible, the glyph
they believed represented the highest value overall. All participants
reached almost 100% accuracy however differences were found
with respect to response time. Fig. 3 shows the overall response
time distribution. Interestingly the pattern resembles results from
Henderson et al. study [24] with smile being the fastest channel.

Let our data X be a set of k-dimensional vectors Xi = xi
1,x

i
2, . . . ,x

i
k,

where the data is processed ready for glyph representation (by nor-
malizing each channel). To depict the data using a glyph, a function



Figure 2: Mean percentage of fixation time per region (image cour-
tesy of Henderson et al. [24]).

Figure 3: Mean response time per channel.

renders each attribute n, of a glyph, at size Sn, and for a specific
glyph instance, Gi, each channel n is scaled by Sn× xi

n. Usually Sn
is transformed such that it has a minimum value when xi

n = 0, e.g.,
in the case of the star glyph, there is a minimum size for each axis
so that it does not collapse to a point.

Glyph balancing results in a vector of global weights
ω1,ω2, ...,ωk. The size of each channel is balanced by applying
Sn×ωn× xi

n to its rendition.
The weights are discovered through the response times on the

chosen task such that:

ωi = 1+ log(
T i

T k
) (2)

where T i is the mean response time from channel i and T k is the
mean response time over all remaining channels. Where there is a
significant difference, we use the weight ωi to rescale the respective
glyph channel. This process is employed iteratively until there is
no significant difference in response times, each time selecting the
channel with the largest difference.

5 EXPERIMENTAL OVERVIEW

To evaluate our hypothesis over effects of glyph balancing over data
interpretation we have devised a 3+1 tasks empirical study. In the
design of our study we have considered both elementary and synop-
tic tasks but opted for the latter. With respect to glyph-based designs
in [22] elementary tasks are identified as those tasks where the user
is concentrating on a specific, single visual attribute of a glyph and
relating it to an attribute of the data set. Synoptic tasks are instead
identified as those tasks that involve the user interacting with the
glyph as a whole. The user is observing all of the visual attributes of
the glyph rather than a specific attribute. Synoptic tasks normally
involve two or more glyphs. We have chosen to investigate only
synoptic tasks since our aim is to assess the relative performance
of the three glyph types as a whole. Examples of synoptic tasks
are visual search (outlier detection in our study), pattern detection
and similarity estimation (parameters estimation in our study). It
is these three tasks that inform our experimental design to assess
the suitability of an Emoji image to represent multidimensional data.

Fig. 13, Fig. 14 and Fig. 15 in supplemental material show screen-
shots of how each task was implemented in our study. The order
of the tasks within the study is fixed but the order of trials within
each task is randomized, with the only constraint that all participants
experience the same trial sequence within a task. For each task in
our study we use a random distribution to generate artificial datasets.
We opted to use artificially generated data to ensure that, for each
task and trial, all glyphs within a display are separated by an amount
equal or greater to the minimum channel just noticeable difference
(JND, Section 5.5) to guarantee discriminability. More task specific
design decisions such as sequence lengths for Task 3, and grid size
for Task 2 and Task 3, were guided by results collected from a series
of pilot studies, described in detail in Section 6.1, used to finalise
the experimental design in terms of difficulty and feasibility.

5.1 Task 1: Parameters Estimation
The first of our tasks is parameters estimation. The participant is
presented with a pair of distinct glyphs and required to select the
one representing the highest value overall, as shown in Fig. 13. The
source data is a 5-vector of numbers between 0 and 1. Four of
the data channels are identical, with the remaining channel being
the one the participant should identify to determine which glyph is
highest. The task forces the participant to examine each channel both
individually and as part of a collective, and to perform interpolation
across the entire glyph to approximate the overall value. We generate
a total of 90 trials corresponding to 6 repetitions per each channel
per glyph.

5.2 Task 2: Outlier Detection
The second of our synoptic tasks is outlier detection. The user is
required to find a target glyph within a square grid of glyphs of
the same kind, as shown in Fig. 14. Within the grid both target
and distractors are rendered from the same dataset, distractors are
selected in such a way that distance to the target be above the smallest
channel’s measured just noticeable difference (JND, as described
in Section 5.5) to guarantee discriminability. Similar to Task 1, we
generate a total of 90 trials corresponding to 3 repetitions per 2 grid
sizes for each channel and glyph.
Glyph. To assess the relative performance of each glyph type, the
same set of data is used for each glyph. There are thus 30 different
sets of target and grid. Each set is rendered three times with each
of the three glyph types used once. The randomized order of the
subtasks is controlled so that a glyph rendered in a subtask is not
followed by one of the same type. The order of subtasks is arranged
so that the same data set is not used in consecutive subtasks.
Grid Size. Within this task we use two grid sizes 5×5 and 6×6, and
vary the position of the target within the grid. Chernoff’s original
hypothesis was that the documented ability of humans to recognize
facial expressions would improve the representation of multidimen-
sional data. One possible hypothesis for any improved representation
is pre-attentive attraction [7, 23]. A consequence of pre-attentive
attraction is that the pop-out effect should not be affected by the
number of other objects vying for attention. This pre-attentive aspect
of Chernoff faces was investigated by Sivagnanasundaram [39]. We
followed Sivagnanasundaram’s method of testing for pre-attentive
attraction by varying the size of our glyph grid using grid sizes of
5×5 and 6×6.

5.3 Task 3: Pattern Detection
The third of our synoptic tasks is pattern detection. Participants are
asked to locate one set of three glyphs embedded within a larger
set. Each participant is presented with a 6 × 6 glyph grid. As
aforementioned the 36 glyphs were rendered from an artificially
created dataset, data were chosen at random with the condition that
glyphs within a grid would be separated by a channel-wise JND.
Each participant was presented with a vector of glyphs that occur
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Figure 4: Analysis of accuracy results for Task 1, 2 & 3 respectively. Results shown for each visual encoding, (mean, median) values are
indicated below each bar. Error bars show 95% confidence intervals.
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Figure 5: Analysis of accuracy results for Task 4 – Parameters
Estimation. Results shown for each visual encoding, (mean, median)
values are indicated below each bar. Error bars show 95% confidence
intervals.

as a horizontal sequence in the grid. The task is to locate the vector
within the grid and select any of the glyphs that match, as shown
in Fig. 15. For each set of three glyphs distractors are randomly
generated to enforce participants to focus on a triplet as a whole
and not on a single glyph within the sequence, e.g. a three glyphs
sequence cannot be always identified uniquely by a single glyph
within the full grid.

The originally randomized order of the trials is controlled so that
a glyph rendered in a subtask is not followed by one of the same
type or position. Each participant saw identical trials in the same
sequence. For Task 3 we generated 10 possible glyph arrangements
for a total of 30 trials (i.e. 10 per glyphs).

5.4 Task 4: Parameters Estimation (Balanced Emoji)
In our fourth task we aim at measuring changes in performance
of the Emoji representation after balancing its five channels (see
Section 4). To achieve our goal we repeat Task 1 but with the new
balanced Emoji in place of the original one. Apart from the use of
the newly balanced encoding, the task remains identical to Task 1.

5.5 Just Noticeable Differences
To guarantee discriminability, target and distractors where designed
to be above just noticeable difference (JND) for their respective vi-
sual encoding. Glyphs are by definition composite images therefore
to compute JNDs we chose as threshold value for each glyph the
maximum JND value of all the visual channel employed within its
design. If we indicate with glyphAci and glyphBci the ith channel of
glyphA and glyphB respectively then:

glyphAci 6= glyphBci∀i ∈ {1, . . . ,5}

|(glyphAci−glyphBci)| ≥ max( jnd(glyphAci), jnd(glyphBci))

In our designs the main visual channels to be considered are size,
shape, orientation and curvature. For size, shape and orientation we
follow the same approach to compute JND thresholds as used by
Chung et al. [13]. Size is therefore mapped to circle radius, follow-
ing results which demonstrate how perception of size (e.g., area)
is logarithmic and can be modelled using Weber-Fechners Law [3].
Shape JND is computed in function of the number of spikes of the
star-shaped glyph. Shape differences are measured using image
moment statistics [27]. Orientation follows the more conservative
measurement proposed by Chung et al. [13], with changes between
consecutive elements of at least 11.3°. We similarly avoid ambigu-
ous orientations. Curvature JND threshold was computed according
to work by Foster [19, 20], we relied on Weber fraction for contour-
curvature discrimination and favoured the viewpoint invariant fea-
tures of the curvature. Color is not used as a discriminant between
target and distractors, however in the design of Emoji we selected a
shade whose hue and value could be easily distinguished from the
background as previously suggested [6].

6 STUDY PROCEDURE

6.1 Pilot

Three pilot studies were performed to guide the design of the present
study. In the first pilot participants were asked to rate the overall
level of difficulty of the study as a whole and of each task. They were
also asked for any general feedback and to detect any display errors
or logic problems. Feedback from the first pilot were used to tune
the study procedure in terms of number of trials and length of tasks.
In the second pilot study we measured performances when varying
grid sizes (for Tasks 2 and 3) and sequence length (for Task 3). We
experimented with 3 grid sizes 4×4, 5×5, 6×6, results showed no
significant effect for grid sizes below 5. In the case of sequence
length we experimented with sequences of 2, 3 and 4, results showed
no significant effect for sequence length below 3, while post-hoc
comparison of results of sequences of length 3 and 4 showed no
significant difference. Moreover during the debriefing interview the
majority of participants (78%) reported to be focusing on either the
first 3 or last 3 elements in a sequence to locate the correct answer.
The findings guided our decision to design sequences of length 3 for
Task 2, and restrict grid sizes to 5×5 and 6×6. The third pilot study
was used to collect interim results to guide our balancing strategy as
described in Section 4.

6.2 Participants

Participants for the first two pilots and the main study were recruited
from students and staff at Swansea University. All participants were
compensated with £5 vouchers. For the first pilot study we recruited
10 participants, all male below age 25. All pilot participants were
Computer Science graduates with experience in data visualization.
For the second pilot study we recruited 16 participants, 4 females
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Figure 6: Analysis of response time results for Task 1, 2, & 3 respectively. Results shown for each visual encoding.

Figure 7: Analysis of response time results for Tasks 4 – Parameters
Estimation with balanced Emoji glyph. Results shown for each
visual encoding.

and 12 males all below age 25. All pilot participants were study-
ing for a Computer Science degree. 12 described themselves as
knowledgeable of data visualization. For the third pilot study we
recruited 10 participants, 1 female and 9 males between the age of
23 and 45. All pilot participants were visualization experts at either
academic or postgraduate level. Participants of all three pilot studies
were automatically excluded from the main study. For the main
study we recruited 18 participants – 5 females and 13 male. Ages
ranged from 20 to 44 (Mean=23.24, SD=8.27). All participants had
education at or above high school. 17 either had or were studying for
a Computer Science degree. 1 described himself as knowledgeable
of data visualization. All participants had normal or corrected to
normal vision and were not informed about the purpose of the study
prior to the beginning of the session.

6.3 Experimental Setting
The study took place in a university computer laboratory. The
computers were all Viglen Omnino 5 computers running windows
10. The screen size was 24 inches with native resolution of 1,920 x
1,080. The maximum brightness was 300cd/m2. The contrast ratio
was 1000:1 and the response time was 5ms. As described in Section
4.5 the tasks were presented as web pages. The browser that was
used throughout was Google Chrome version 54.0.

Procedure. The study began with a brief overview read by
the experimenter using a predefined script. Detailed instructions
were then given through a self-paced slide presentation and video
of the user interface. The presentation included a briefing on how
to interpret each visual design. Participants completed a number of
training trials for each task. Each training trial included a feedback
to the participants regarding the correct answer. None of the stimuli
used during training were repeated in the main tasks. All four tasks
were completed in sequential order. Maintaining the same section
order for each participant meant that each participant experienced
similar experimental conditions. This increased robustness of the
analysis of the collected data. To compensate for possible learning

effects Task 1 through 3 required the user to perform ontologically
different actions with different level of complexity, stimuli within
each tasks were randomly generated to avoid repetition on stimuli
across tasks. Each task featured a different level of complexity in
terms of number and size of distractors to compare against and size
of target. Randomness was introduced at trial level. Within a task,
trials were randomized to avoid learning effects. The study was
closely monitored and participants abode to the study requirements.
At the end of each task a short multiple choice questionnaire was
presented to collect qualitative information from the participants.
At the end of the study each participant completed a post-study
debriefing interview and questionnaire to collect demographic and
further qualitative information. All three visual designs were at all
times presented as valid options, especially during post-processing
interview, to maintain unbiased judgment and preserve validity of
the collected qualitative feedback. Participants were given no time
limit to complete each trial but were encouraged to be as accurate
and fast as possible.

7 EVALUATION

7.1 Summary Statistics
In our analysis we mainly consider the effect of task vs. visual
encoding. We perform the analysis of the collected results in two
stages. First, we consider the effect of visual encoding overall, as
this is our primary research question. To check for normality, we run
a Shapiro-Wilk test on each distribution, for normally distributed
data we use a repeated measure analysis of variance (ANOVA), for
data not always normally distributed we use a non-parametric Fried-
man’s test both with standard statistical level α = 0.05 to determine
the statistical significance between conditions. Post-hoc analysis is
conducted using Wilcoxon paired-samples test for all conditions that
pass Friedman’s test. In a second stage we then analyze differences
in performances of visual channels within visual encoding and grid
size, due to the different semantic of each encoding dimensions a
channel-wise comparison across visual encoding is not feasible. To
compensate for measuring multiple outcome from the same condi-
tions we adjust the p-value, e.g. α value, applying a Bonferroni
adjustment to the significance value. We choose a more conservative
approach to provide stronger control of the condition-wise error
rate. When separating the data by channel we apply a Bonferroni
correction, reducing the significance level to α = 0.01 obtained
by subdividing the alpha value by the number of channels. When
separating the data by grid size we apply a Bonferroni correction,
reducing the significance level to α = 0.025 obtained by subdividing
the alpha value by the number of grid sizes. Post-hoc analysis is
conducted as above. Unless explicitly reported no trade-off effects
(i.e., less time leading to more errors) were detected. Due to space
limitation we report mean correctness and response time results
for the channel-wise analysis in the supplemental material. Since
grid size dealt no significance effect, i.e. no cases where found in
which either time or accuracy data produced significant results, we
omit those results. Table 1 summarizes the significance values for



Table 1: Task 1, 2 & 3 results – Post-hoc p-values results for parameter estimation, outliers detection and pattern detection overall. Significant
differences are highlighted in red.

Task 1: Parameters Estimation – Significance
Pair-wise Test Accuracy Time (sec.)

Emoji vs. Chernoff 0.01 0.248

Emoji vs. Star 0.206 0.002

Chernoff vs. Star 0.003 0.001

Task 2: Outliers Detection – Significance
Pair-wise Test Accuracy Time (sec.)

Emoji vs. Chernoff 0.027 0.084

Emoji vs. Star 0.184 � 0.001

Chernoff vs. Star 0.085 � 0.001

Task 3: Pattern Detection – Significance
Pair-wise Test Accuracy Time (sec.)

Emoji vs. Chernoff 0.234 0.463

Emoji vs. Star 0.07 0.093

Chernoff vs. Star 0.008 0.055

Table 2: Task 4 results – Post-hoc p-values results parameter estima-
tion overall with balanced Emoji (Emoji B). Significant differences
are highlighted in red.

Task 4 – Parameters Estimation – Significance
[Balanced Emoji]

Pair-wise Test Accuracy Time (sec.)

Emoji B vs. Chernoff 0.01 0.001

Emoji B vs. Star 0.13 0.002

Chernoff vs. Star 0.009 0.001

Table 3: Comparison by visual design of results from Task 1 &
Task 4 – T1 refers to data from Task 1 and T4 refers to data from
Task 4, we indicate with Emoji B the balanced Emoji. Post-hoc p-
values results for parameter estimation, outliers detection and pattern
detection overall. Significant differences are highlighted in red.

Task 1 vs Task 4 – Parameters Estimation – Significance
Pair-wise Test Accuracy Time (sec.)

Emoji vs. Emoji B (T4) 0.7 � 0.001

Star(T1) vs. Star(T4) 0.83 � 0.001

Chernoff(T1) vs. Chernoff(T4) 0.11 � 0.001

post-hoc p-values for the first three tasks and three different visual
encodings. Tables 2 summarizes the significance values for post-hoc
p-values for Task 4 and the three different visual encodings with
a balanced Emoji. Table 3 summarizes the significance values for
post-hoc p-values in the pairwise comparison of the three different
visual encodings in Task 1 and Task 4.

Tables in supplementary material summarize the significance
values for post-hoc p-values with respect to each visual channel.

Task 1 – Parameters Estimation – Non Balanced Glyphs.
Performances for Task 1, as a function of visual design, are sum-
marized in Fig. 4 and Fig. 6. We found a significant difference
overall of Emoji and Star versus Chernoff faces, with Emoji being
significantly more accurate than Chernoff, and Star being both more
accurate and faster than Chernoff faces.

Post-hoc analysis on channels revealed an effect of channel in
Emoji and Chernoff. In Chernoff faces Eye Width was significantly
more accurate than Brow Width and Nose, while Eye Slant sig-
nificantly faster than Eye Width and Month. In Emoji Smile was
significantly faster than Left Brow. Performances for Task 1, as a
function of visual design and channel, are summarized in Fig. 9 and
Fig. 10.

Task 2 – Outliers Detection. Performances for Task 2, as a
function of visual design, are summarized in Fig. 4 and Fig. 6. We
found a significant difference overall of Emoji versus Chernoff faces,
with Emoji being significantly more accurate than Chernoff faces
while Star being significantly faster than both Emoji and Chernoff
faces.

Table 4: Feedback received from participants, each cell shows how
many participants selected a level of difficulty for a specific task.

Participant Perceived Difficulty

Easy Medium Hard

Task 1 – Parameter Estimation 7 11 0

Task 2 – Outliers Detection 6 10 2

Task 3 – Pattern Detection 0 5 13

Table 5: Feedback received from participants, table shows how many
selected a visual encoding as good (g), or bad (b), to be used in a
specific task. Participants were allowed select multiple glyphs.

Participant Glyph Preference

Chernoff Emoji Star N/A
g/b g/b g/b

Task 1 – Parameter Estimation 1/6 8/1 7/5 1/0

Task 2 – Outliers Detection 1/6 8/1 8/2 1/1

Task 3 – Pattern Detection 1/4 9/0 4/4 1/1

Post-hoc analysis on channels revealed an effect of channel across
all visual encodings. Chernoff faces Brow Width was significantly
faster than all other Channels, Eye Slant and Mouth were signifi-
cantly faster than Nose. Emoji channels featured also significant
differences with Right Eye and Smile being faster than Left Eye,
Left Brow, Right Brow.

Post-hoc analysis on grid size revealed no significant effect of grid
size on performances and reconfirmed Star as significantly faster
than Emoji and Chernoff faces across both grid sizes.

Task 3 – Pattern Detection. Performances for Task 3, as a
function of visual design, are summarized in Fig. 4 and Fig. 6. We
found a significant difference of Chernoff faces which proved to be
significantly more accurate than Star.

Post-hoc analysis revealed no effect of visual layout between
Emoji and Star. No effect was detected on response time across all
three visual layouts.

Task 4 – Parameters Estimation – Balanced Glyphs. Per-
formances for Task 4, as a function of visual design, are summarized
in Fig. 5 and Fig. 7. We found a significant difference overall of
Emoji and Star versus Chernoff faces, with Star being still both
more accurate and faster than Chernoff faces. An increase in Emoji
accuracy was measured with Emoji being now both more accurate
and faster than Chernoff faces.

Post-hoc analysis on channels revealed an effect of channel on
Chernoff faces with Eye Slant significantly faster than Channel Eye
Width. Performances for Task 4, as a function of visual design and
channel, are summarized in Fig. 9 and Fig. 10.
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Figure 8: Manhattan distances of target versus answer for Task 3. Data shows the number of incorrect answers and distance from target.

Task 1 and 4 – Parameter Estimation – Balanced vs. Non-
balanced Glyphs. Comparison of performances for Tasks 1 and
4, as a function of visual design, are summarized in Fig. 11 and
Fig. 12. Comparison of glyphs across Task 1 and 4 revealed a
significant decrease in response time across all visual encodings
with balanced Emoji featuring the highest decrease. No trade-off
effect was detected.

User survey. At the end of each task the participants were
asked to rate the difficulty of the task and to choose the most and
least suited glyph. Tables 4 and 5 summarize the results. Participants
selected Emoji as the preferred Glyph for two of the tasks, and equal
preference with Star for the other (Table 5).

7.2 Further Analysis
For Task 3, pattern detection, we performed a topology-based analy-
sis by comparing distances between target and selected answer. In
the task each sequence was composed by 3 glyphs of 5 dimension
each (i.e. the 5 channels), a sequence can therefore be interpreted
as a 15-dimensional vector. When the user selects the correct se-
quence from within the grid, the vector that represents the selected
sequence and the vector that represents the target vector will be the
same. However when a user selects an incorrect sequence the two
vectors will be different. A quantitative measure of the difference
can be obtained by calculating the Manhattan distance between the
two vectors, where the Manhattan distance computes the distance
between target and distractor and is measured as the sum of the
absolute difference between respective channel coordinates. The
Manhattan distance was chosen as distance metric as it shows higher
reliability for high dimensional data where it is not straightforward
to compare dimensions [1].

The smaller the Manhattan distance the more similar the chosen
and target vector will be in appearance. The Manhattan distance
thus becomes a measure of how good is the guess of the participant.

Results of the pattern detection task showed a total of 55 incorrect
attempts over a total of 540. We calculated Manhattan distance for
each incorrect answer and broke down the results by glyph type. We
also created 55 totally random answers for the same data set and
calculated the Manhattan distance between these random answers
and the target sequence. Results are shown in Fig. 8, histogram of
the Manhattan distance. Results for all the glyphs differ from the
random answers featuring lower Manhattan distance values than
the random ones. Chernoff glyph has fewest incorrect answers as
reflected in the flatness of its histogram. Star glyph has a similar
profile to the random histogram while Emoji is more skewed towards
the lower Manhattan distance values.

8 DISCUSSION

Collected results both met and confounded our expectations. In our
second pilot study Star glyphs outperformed other visual layouts
especially with respect to response time, we therefore expected a
similar behavior. Nevertheless in both the parameter estimation and
outlier detection tasks, Emoji glyphs outperformed Chernoff faces,
while performed equally well to Star with respect to accuracy. Emoji
glyphs carry a much higher cognitive load than Star and Chernoff

faces due to the extra color channel. The wireframe nature of both
Star and Chernoff faces reduces the load in terms of information
processing. Emoji performances can be explained if we consider the
boost provided by familiarity and frequency of use of the encoding.
Despite our Emoji design following a minimalistic approach it still
abides by the Unicode standard [14].

Emoji glyphs also held their ground against Star glyphs in the
pattern detection task with respect to both accuracy and response
time. In the same task Chernoff faces, still a face-like representation,
outperformed Star in accuracy but not response time. Chernoff face’s
better performance with respect to accuracy might corroborate the
hypothesis of an effect of semantic appealing of face like visual lay-
outs in search task. In this respect it is interesting to compare results
between Tasks 2 and 3, both visual search tasks at the core, but with
different target lengths. Results would indicate that a “group” of
faces within a crowd is easier to identify than a single individual.
Both tasks required conjunction search (target and distractors dif-
fered by more than a single feature), psychology literature provides
substantial evidence [16, 35] that conjunction search, in its early
stages, favors a bottom-up process when looking for features within
a stimulus. In later stages conjunction search moves towards a serial
process of the pre-defined stimuli to identify the stimulus that best
represents the targets.

Feature integration theory (FIT) [40, 42] suggests that features
like luminance, color, orientation, and simple aspects of form are
registered early and rapidly coded in parallel across the visual field
using pre-attentive processes. FIT also suggests that to integrate
two or more visual features belonging to the same object, a later
process involving integration of information from different brain
areas is needed and is coded serially using focal attention. For Emoji
this would entail integration of both color and shape information to
locate the target. For Chernoff faces this would entail integration
of shape information to locate the target. Eriksen et al. [18] report
how visual attention can either be focused on high resolution smaller
areas or spread over wider areas but with loss of detail. Treiseman
et al. [40] extends the analogy, suggesting that attention can either
be narrowed to focus on a single feature, when there is a need to see
what other features are present and how they contribute to form an
object, or distributed over a whole group of items sharing the same
relevant feature. Our results seem to suggest that, when dealing with
a group of items, not only pre-attentiveness of features in face-like
representations but also semantic meaning/empathic feedback and
familiarity with the visual encoding support the cognitive process
involved in the visual search.

Analysis of Manhattan distances in Task 3 revealed also how,
despite the complexity of the task, response did not exhibit a random
pattern and, when presented with face like representations, partic-
ipants selected responses much closer to the correct answers even
when incorrect responses were selected.

Effects of Glyph Balancing. The symmetric nature of Star
glyphs makes it a balanced visual representation by design, this
is supported by our results which do not show any effect of chan-
nels. More complex glyph representations however might introduce
channel bias due to different dominance of features. Bias can in-
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Figure 9: Analysis of accuracy results for Task 1 & 4 – Parameters Estimation (unbalanced vs. balanced). Results are broken down by channel
for each visual encoding, (mean, median) values are indicated below each bar. Error bars show 95% confidence intervals.

Chernoff Emoji Star
Glyph

0

2

4

6

8

10

12

14

16

Ti
m

e 
(s

ec
on

ds
)

Parameter Estimation - Response Time
 By Channel

Channel
0
1
2
3
4

Chernoff Emoji Star
Glyph

0

2

4

6

8

10

12

14

16

Ti
m

e 
(s

ec
on

ds
)

Parameter Estimation - Response Time Balanced
 By Channel

Channel
0
1
2
3
4

Figure 10: Analysis of response time results for Task 1 & 4 – Parameters Estimation (unbalanced vs. balanced). Results are broken down by
channel for each visual encoding.

troduce distortion in the data representation and user performance
may be influenced depending on the channel that was used for de-
piction [15, 31, 32]. Emoji and Chernoff faces both report effect
of channels in accordance with Henderson et al. [25] findings with
channel 4 (i.e. Smile) being significantly faster. Henderson study
also highlights how focal attention varies when looking at faces,
given the importance of focal attention in visual search tasks this
can introduce a bias when mapping values to facial features. Results
from Task 4 appear to support our initial hypothesis. Emoji is the
only glyph undergoing balancing, and results show a significant
increase in accuracy and decrease in response time, while effects
of channels disappear. It is fair to report that an improvement in
performances with respect to Task 1 was reported across all three
visual encoding, as shown in Fig. 5 and Fig. 7. This could be due
to Task 4 being a repetition of Task 1, participants becoming more
familiar with the interface and therefore learning effects might start
to surface. It is important to highlight that balanced Emoji stimuli
were seen for the first time in Task 4, therefore learning effects, if
present, should have had a more visible positive impact on Chernoff
faces and Star, encodings unchanged through all four tasks. Bal-
anced Emoji however feature the highest improvement overall, as
shown in Table 2. Performance results also showed more uniform
responses across channels for Emoji (as shown in Fig. 9 and Fig. 10),
a result which we do not detect in Chernoff faces, where effect of
channel is still significant (significance values reported in supple-
mental material). The controlled design of our study would imply
that any learning effect would impact equally all visual encodings
and, as such, should generate equal improvements, again no uniform
improvement across all encodings can be detected from the results.
In designing our stimuli we also ensured an equal distribution of face
expressions to avoid any confounding effect introduced by people

favoring “happy” versus “sad” faces as reported in literature [5, 26].

Aesthetic Influence. Tables 4 and 5 summarize the feedback
received from participants at the end of each task. Task 3 was ranked
as the most difficult followed by Task 2. Participants expressed clear
preference for Emoji overall but selected also Star as the optimal
visual encoding for Task 2. The latter partially reflects the study
results which sees Star outperforming all visual encodings within
Task 2 in response time. Preference for Emoji can be explained
by both familiarity and aesthetic appeal. In post-study debriefing
participants reported Emoji as their favorite encoding and how both
color, “finally color instead of boring black and white”, and design,

“looking at happy faces” made performing a task more enjoyable. It is
worth noting that not all Emoji stimuli were “smiling” but they still
appeared more friendly than their Chernoff counterparts, this shows
how familiarity with the visual encoding has built an empathic link
between participants and visualization.

9 LESSONS LEARNED

The primary objective of our study has been to investigate the use
of emoji to encode multidimensional data, as previously attempted
by Chernoff [11]. A by-product of our investigation has been the
need to control for effects of the different visual channels, more
prominent when dealing with antropomorphic encodings. We have
called the formalization of such attempt as Balancing. We have
chosen to be conservative in our approach to maintain control over
as many parameters as it was feasible, however dealing with human
factors has highlighted interesting aspects of balancing as a prob-
lem with no absolute solution, but rather converging to what can
be defined as local minima determined by the surrounding space
shape. Balancing is inherently an optimization problem with a set
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Figure 11: Pairwise analysis of performance results of Chernoff, Emoji and Star glyphs for Task 1 & 4.

Figure 12: Pairwise Analysis of response time results of Chernoff, Emoji and Star glyphs for Task 1 & 4.

of feasible solutions contained within a convex polytope. The con-
vex polytope is computed through the intersection of finitely many
half spaces, each of which defined by a logarithmic inequality de-
termined by an individual perceptual abilities. Our approach is an
attempt at defining an objective function as an iterative algorithm
searching for a point in the polytope where the function achieves
the smaller value [28]. Due to the influence of elements such as
familiarity and/or previous knowledge such function is reliant on the
space definition and an optimal unique solution may not exist, but
rather a set of user dependent local minima. Nevertheless, results
from our study have shown that when such minima is found, sig-
nificantly positive effects of balancing can be detected. We want to
acknowledge that the experimental nature of our work, being a first
of its kind for objective and context, and the control imposed on the
experimental design, provide a starting point worth pushing forward
for validation in more complex settings such as using real datasets
ideally at different levels of complexity.

A further point of reflection relates to the antropomorphic nature
of face like glyphs, which makes balancing not categorizable as
a linear optimization problem. In face like representations chan-
nels interact with each other influencing perception in a non-linear
way [8]. In our study we have restricted our analysis to 5 channels
as in the original Chernoff face implementation [11], and also be-
ing one of the most common standard emoji representation. We
have favoured 5 channels also as 5 items being the lower limit on
our capacity to process information [36]. Based on the results it
would be interesting to investigate effects of balancing for higher
number of channels within and above the traditional 7±2 suggested
boundary [36]. Psychophysical research is a valuable asset to help
determine perceptual magnitude of within channels influence, this
would also allow to constrain the parameter space of the Balancing
optimization problem increasing the velocity of reaching a feasible
solution for the cost function.

Finally emoji are becoming a visual language phenomena, based

on user post-study feedbacks aesthetic appeal and familiarity emerge
as factors worth further investigation.

10 CONCLUSION

As initially suggested literature has demonstrated that Emoji are
being appropriated for tasks other than creating emotional context
or intonation in messages [30], we have taken these results a step
further by utilizing Emoji for data visualization. Results from our
study have shown how Emoji, as a visual encoding, can be as ef-
fective for visualising multiple attributes as other more common,
and more minimalist, visual designs which in literature have instead
outperformed Chernoff faces.

By purposely choosing a neutral dataset we have been able to
reduce any confounding effect that might emerge from semantic
links between data and its representations. However by doing so
we have also restricted the full potential of the expressive power
of glyph representation. Participants feedback have highlighted
a strong empathic link with Emoji representations, likely due to
their common usage. This adds a further level of implicit cognitive
processing which could potentially be leveraged to support analytical
tasks and complex data interpretation. A further level of analysis
would therefore be to exploit semantic link between data and glyph
visualization when such a link exists.

We have investigated, and highlighted, possible biases introduced
when mapping data to features which might be inherently dominant.
We have made a step towards the quantification of such bias and
proposed a strategy to compensate for its effect. As future work
it would be interesting to pursue this analysis further to inspect
any variation with respect to task and difference in compensation
strategies which could take the form of either reducing the size of
the channel in its visual depiction (the choice we make here), or to
transform the underlying data in a preparation stage before being
mapped onto a glyph.
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