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Abstract 

Though one of the most commonly employed analysis techniques in the leisure literature, 

multiple regression and in particular the ordinary least squares (OLS) approach are subject to a 

number of critical assumptions, violation of which threaten the efficiency and validity of OLS 

findings. This paper demonstrates the utility of an alternative approach, geographically weighted 

regression (GWR), a local form of linear regression that can be used to model spatially varying 

relationships and that accounts for the spatial effects of heterogeneity (non-stationarity) and 

dependence (autocorrelation) in data. The small number of leisure studies that have employed 

GWR is reviewed, with a focus on the relative performance of the two approaches; GWR is 

shown to be superior to OLS in every case that the appropriate comparison was conducted. Other 

areas to which GWR could usefully be applied are suggested, and limitations of GWR are 

acknowledged. 
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Spatial is Special: The Need to Consider Spatial Effects in Leisure Research 

 

Introduction  

Multiple regression is one of the most commonly employed analysis techniques in the 

leisure literature, offering a powerful method via which to estimate the relationships among 

variables and to engage in prediction and forecasting. Of the many varieties of multiple 

regression, the ordinary least squares (OLS) approach is perhaps the most well-known and 

frequently utilized (Babbie, 1998; Pohlman & Leitner, 2003; Nusair & Hua, 2010). The use of 

OLS comes with a number of assumptions, however. Of most relevance here, these include that: 

(i) the data represent a random sample of the population and that the residuals (the differences 

between observed and predicted values) are statistically independent; (ii) the independent 

variables are not subject to multicollinearity; and (iii) the expected value of the residuals is 

always zero and the residuals have constant (homogenous) variance (e.g., Allen, 1997; Sen & 

Srivastava, 2012; Cohen, Cohen, West, & Aiken, 2013). 

In reality, however, in any application of OLS in a spatial context, in which the unit of 

analysis represents a point or area on the surface of the earth and the independent variables relate 

to any socioeconomic, demographic or environmental aspect of people or places, these 

assumptions are likely to be violated (Brunsdon, Fotheringham, & Charlton, 1996). As noted by 

Longley, Goodchild, Maguire and Rhind, “spatial is special” (2005, p. 5). The two major types 

of spatial effect are spatial heterogeneity (which is associated with spatial non-stationarity) and 

spatial dependence (also known as spatial autocorrelation). A variety of social scientists 

including geographers, economists, criminologists, and environmental planners have all begun to 

acknowledge the implications of Gilbert and Chakraborty’s (2011) observation that, “the analysis 

of spatial data requires specialized techniques that are different from those used to analyze non-
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spatial data” (p. 274). This paper similarly demonstrates the utility of an alternative research 

method that accounts for the spatial effects of spatial heterogeneity and spatial dependence in the 

leisure realm.   

Spatial heterogeneity refers to the uneven distribution of an entity or relationship across a 

region (Longley et al., 2005). Such a lack of spatial uniformity may result from the lack of 

homogeneity between spatial units within a study area, or from structural instability in the 

behavior of a variable across space (Anselin & Getis, 1992). Heterogeneity between spatial units 

can cause misspecification or measurement errors which result in non-constant error variance 

(spatial heteroscedasticity in the error term) as well as inefficient estimation of coefficients and 

invalid t- and F-tests (Anselin, 1988; Porojan, 2001).  

Structural instability represents an additional and similarly substantial problem. The 

global (average) parameter estimates produced by traditional multiple regression techniques 

assume that the influence of any independent variable is constant across space, meaning that the 

same average parameter estimate is applied to all observations within the sample (Gilbert & 

Charkraborty, 2011). This assumption of spatial stationarity is flawed both methodologically, 

due to the possibility of estimation bias and error, and with respect to interpretation and 

implications of results, since it suggests that “one-size-fits-all” with respect to planning or 

management decisions and policy solutions (Fotheringham, Brunsdon, & Charlton, 2002). 

According to Anselin (1988), methodological violations of basic OLS assumptions (including 

homoscedasticity, linearity, and independence and normality of residuals) are likely to occur if 

geographic features are spatially autocorrelated or heterogenous when employing non-spatial 

(linear) statistical methods such as OLS regression. In the worst case scenario, it is possible that 

an insignificant coefficient on a variable in a global model can actually be masking the existence 
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of statistically significant positive and negative coefficients in a spatially explicit specification 

(Brunsdon et al., 1996). As noted by Lee and Schuett (2014), “the use of traditional multivariate 

regression or a single global model can hide key local variations in the relationship between the 

dependent and explanatory variables” (p. 274). 

 Spatial dependence represents "the propensity for nearby locations to influence each 

other and to possess similar attributes" (Goodchild, 1992, p.33), a derivation of Tobler’s First 

Law of Geography, which stated that “everything is related to everything else, but near things are 

more related than distant things” (Tobler, 1970, p. 236). Application of OLS regression in the 

presence of spatially dependent observations results in spatially autocorrelated error terms, 

resulting in inefficient coefficient estimates, underestimation of the error sum of squares, invalid 

(inflated) t- and F-test statistics, and an increased chance of a Type I error (incorrect rejection of 

the null hypothesis) (Fotheringham et al., 2002). Estimation results may in addition demonstrate 

bias if this autocorrelation is due to the omission of one or more variables (Anselin, 1988). 

Spatial autocorrelation may be positive or negative; positive spatial autocorrelation occurs when 

similar values consistently occur near one another, resulting in spatial clusters, while negative 

spatial autocorrelation is demonstrated when dissimilar values consistently occupy adjacent 

locations (Getis & Ord, 1992). In practice, spatial heterogeneity and spatial dependence are 

interrelated and they often occur simultaneously (Anselin & Getis, 1992).  

A variety of enduring questions within the leisure research arena are directly tied to space 

and place. Indeed, much leisure research is predicated on the unique and special characteristics 

of places, whether tourism destinations or recreation settings. However, the existence of spatial 

effects has rarely been acknowledged in this literature, and as this contribution will demonstrate 

their explicit consideration during analysis is even more uncommon. Lee and Schuett (2014), for 
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example, observed the “lack of research in the recreation and parks field using spatial statistics to 

figure out spatial disparities in recreation” (p. 214). The purpose of this paper is therefore to 

demonstrate the utility of an approach that explicitly considers these spatial effects, via the 

employment of local statistics that are multi-valued. The use of such an approach entails the 

performance of as many regressions as there are data points (one regression per spatial unit), 

thereby allowing different values to result at different locations. Allowing for local variation 

enables the development of better fitting, spatially aware models that highlight rather than mask 

dissimilarities across the landscape, not only encouraging but actively supporting locally 

appropriate planning, policy and management decisions. The paper therefore serves as an appeal 

to leisure researchers to reconsider the traditional use of global OLS regression during the 

conduct of spatially explicit work. 

The next section introduces this approach, known as geographically weighted regression. 

Then, the limited number of prior applications of this approach in leisure-related research is 

reviewed. It should be noted that other attempts have been made to develop techniques that can 

provide localized versions of traditional global multivariate modeling methods. These include: 

the spatial expansion method; spatially adaptive filtering; and, multilevel, random coefficient, 

and spatial regression modeling. However, as emphasized by Fotheringham et al. (2002), and as 

demonstrated in some of the studies reviewed below that have compared multiple techniques, 

GWR offers the most comprehensive approach via which to address the full range of spatial 

effects described above. For that reason, it was chosen as the focus of this piece. 

 

Geographically Weighted Regression  

Overview  
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 Geographically weighted regression (GWR) is essentially a local form of linear 

regression that can be used to model spatially varying relationships. As first proposed by 

Brunsdon et al. in 1996, a GWR model can be expressed as  

yi = aio(ui, vi) + ∑ aik 
k
j=1 (ui, vi)xik + ei, 

where (ui, vi) is the coordinate of the ith point in the study area, yi is the vector of the estimated 

parameter at point i, aio(ui, vi) is the intercept parameter at point i, aik(ui, vi) is the local regression 

coefficient for the kth independent variable at point i, and aik is the value of the kth independent 

variable at point i (Fotheringham et al., 2002). The most critical element of GWR is that it allows 

the estimation of parameters at a local level (Fotheringham, Charlton, & Brunsdon, 1998). Each 

coefficient is thus specific to location i and variations between locations are facilitated. 

 

Operationalization  

GWR can be conducted in several geographic information system (GIS) and advanced 

statistical packages such as ArcGIS and GWR or via a programming language such as R 

(Fotheringham et al., 2002). Application of GWR requires two important specifications on the 

part of the analyst, that of the weighting matrix and the appropriate bandwidth (Charlton & 

Fotheringham, 2009b). These two issues are introduced in the following paragraphs; the reader is 

encouraged to consult the sources cited for a better understanding of how to make and 

operationalize these choices in practice.  

The weighting matrix in GWR represents the spatial structure of the dataset based on 

Tobler's (1970) First Law. Data points are weighted by their proximity to the regression point, 

with those closer to that point weighted more heavily than those farther away. The maximum 
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value of the weight of an observed data point occurs when it coincides with the regression point, 

and decreases as the distance between the two points increases (Fotheringham et al., 2002). 

The choice of weighting matrix is between fixed kernel and adaptive kernel. A kernel 

refers to "a circle of influence or a circular area with a given radius around one particular 

regression point, and the given radius is called the bandwidth" (Yoo, 2012, p. 27). A fixed kernel 

(also referred to as the Gaussian kernel function) has a defined bandwidth and assumes that the 

bandwidth at each regression point is stationary across the study area. It is typically employed 

when the observed data points are regularly distributed in the study area, and the weighting 

matrix for the fixed kernel is estimated as follows:  

wij= exp[-(dij/b)2], 

where dij is the Euclidean distance between regression point i and data point j, and b is the 

bandwidth. A data point’s weight is unity at the regression point; as distance from the regression 

point increases, weights decrease. The weights of all points, however, are non-zero even if they 

are far from the regression point (Charlton & Fotheringham, 2009b; Fotheringham et al., 2002).  

 The adaptive kernel is called a bi-square kernel function with adaptive bandwidth and is 

employed when the observed points are geographically concentrated in the study area 

(Fotheringham et al., 2002). Generally, the size of the bandwidth increases when the observed 

data points are widely distributed and decreases when they are clustered (Fotheringham et al., 

1998). The weighting matrix for the adaptive kernel is estimated as follows: 

wij = [1 - (dij / b)2] when dij ≤, wij = 0 when dij > b 

The weight of the data point is unity at the regression point i and falls to zero if the distance 

between i and j equals or exceeds the bandwidth (Brunsdon et al., 1996).  
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Since bandwidth represents a smoothing parameter, choosing this width is a critical issue 

in GWR because results are sensitive to that choice (Fotheringham et al., 2002). Greater 

smoothing occurs when a larger bandwidth is employed (Charlton & Fotheringham, 2009b). 

Choice of the bandwidth is determined by a given distance or a fixed number of nearest 

neighbors (Brunsdon et al., 1998). Several methods exist to derive the optimal bandwidth, e.g., 

the one that optimizes the trade-off between goodness-of-fit and degrees of freedom 

(Fotheringham et al., 2002). These include approaches that involve minimization of the cross-

validation (CV) or generalized cross-validation (GCV) criterion (Cleveland, 1979; Craven & 

Wahba, 1979; Bowman, 1984; Loader, 1999), minimization of the Bayesian Information 

Criterion (BIC, Weakliem, 1999, also sometimes referred to as the Schwartz Information 

Criterion or SIC, Schwartz, 1978) or selection of the model with the lowest Akaike Information 

Criterion (AIC) score (Akaike, 1973; Hurvich, Simonoff, & Tsai, 1998). 

 

Outputs 

Results of GWR are typically presented in tabular form (Yoo, 2012). Unlike OLS results, 

however, in which solely the global estimate for each variable can be listed, GWR tables include 

a series of columns showing some combination or all of the minimum and maximum, mean and 

median, and lower and upper quartile estimates (Gilbert & Charkraborty, 2011). A more 

powerful ability is to map GWR outputs, e.g., the parameter values or local R2 for each location 

or unit of analysis, in a GIS program such as ArcGIS or GeoDa (Charlton & Fotheringham, 

2009a). Such maps, which can be produced using points, areas (choropleth) or shaded contours, 

can provide compelling visual evidence of patterns in the data, allowing variations in parameters 

to be examined under a “spatial microscope” (Fotheringham et al., 2002). This integration of 
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GWR results with GIS capabilities thereby also enables the development of new hypotheses 

based on observed variations in the data (Charlton & Fotheringham, 2009a). 

 

Measures of Performance 

 GWR performance can be assessed in a variety of manners. The most commonly 

employed measures include measures common to OLS techniques such as R2, adjusted R2 and 

residuals, as well as the Akaike information criterion and condition number (Charlton & 

Fotheringham, 2009b). The use of R2 and/or adjusted R2 in regression is likely familiar to all 

readers; in both cases, larger values (up to a maximum of one) indicate that an increasing 

proportion of the variance in the dependent variable is explained by the independent variables, 

suggesting a model with a better fit (Cohen et al., 2013). Local R2, however, is specific to GWR. 

Values range from 0 to 1, with increasing values indicating that the local regression model better 

fit the observed values (Fotheringham et al., 2002). An added opportunity, as referenced above, 

is to map local R2 values, to identify variations in predictive performance and perhaps gain ideas 

about variables that might be missing from the regression model (Gilbert & Charkraborty, 2011).  

 Residuals – the differences between observed and estimated values of the dependent 

variable – are another measure of performance (Wilcox, 1996). Comparison of standard residuals 

from OLS and GWR models is one way to assess whether the local regression model (GWR) 

represents an improvement on the traditional global regression model (OLS). Similarly, the sum 

of the squared residuals can be compared, with smaller sums indicating closer fit of the model to 

the observed data (Charlton & Fotheringham, 2009a, 2009b).  

Calculation of the Akaike information criterion (AIC) provides another measure of the 

relative quality of a series of global (e.g., OLS) and local (e.g., GWR) statistical models (Akaike, 
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1973; Bozdogan, 1987). Models with smaller AIC values are preferable to models with higher 

values; however, if the difference in the AIC between two models is less than three, they are held 

to be equivalent in their explanatory power (Fotheringham et al., 2002).  

The condition number provides a measure of the degree of local collinearity in the data. 

This diagnostic is calculated by taking the square root of the largest eigenvalue divided by the 

smallest eigenvalue (Charlton & Fotheringham, 2009b). In the presence of strong local 

collinearity, indicated by a condition number in excess of 30, GWR results become unstable; 

condition numbers below this cut-off indicate a lack of local multicollinearity and therefore that 

the GWR model performs adequately (Charlton & Fotheringham, 2009a).  

 

Summary of Differences between Local and Global Statistics  

 To summarize, per Fotheringham et al. (2002), while global statistics such as the 

parameter estimates associated with OLS regression provide one value or estimate for an entire 

study area, local statistics such as those derived using GWR are multi-valued, meaning that 

different values can occur at different places. Thus, while global statistics suggest similarities 

across space, and are indicative of a search for regularity, local statistics emphasize differences 

across space and allow for exceptions (‘hot-spots’) to be highlighted. A variety of diagnostics 

exist to allow comparison between the relative fit of global and local models. Unlike global 

statistics, local statistics can be mapped in GIS, providing the powerful ability to identify 

variations in relationships across space and, thus, actively consider variable, locally appropriate 

planning, policy and management decisions.  

 

Approach 
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 The search conducted was extensive, incorporating English-language papers from both 

traditional leisure journals (including those focusing on parks, recreation, tourism and 

hospitality) and disciplinary venues in which leisure-related research sometimes occurs (e.g., 

geography, economics). Keywords “geographically weighted regression” or “GWR” were 

combined with “leisure,” “tourism,” “recreation,” “park,” and “public open space” in Scopus, 

CAB Abstracts and Google Scholar. Additional citations were sought in the reference sections of 

this preliminary selection of items. The authors then independently reviewed the articles and 

created the summaries below. As will be shown, very few applications of GWR appear in the 

leisure literature. In many of the examples from other fields, the leisure aspect was secondary to 

some other primary purpose. The inclusion of these items, and overview of their findings and 

implications, helps build the case for greater application of GWR in leisure research.  

 

Applications to Date 

The publications identified have been grouped into four categories, namely those 

pertaining to: recreation demand; park/recreation access, equity and physical activity; property 

and room price impacts; and, tourism growth and development. Table 1 summarizes the major 

characteristics of the studies. It also provides additional methodological notes to those in the text 

below and lists key performance measures that in every case demonstrate the superiority of 

GWR over OLS techniques.  

 

Recreation Demand 

 Recreation demand is one of the most investigated topics within the recreation literature. 

According to Manning (2011, p. 23), measurement of recreation demand is “The first and most 
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straight forward form of research into the social aspects of outdoor recreation …,” though the 

complexity of some of the econometric techniques commonly applied in the current era belie a 

portion of this statement. Yet only one study has explicitly considered spatial location within a 

recreation demand analysis, of national park visitation in Texas (Lee & Schuett, 2014).  

The authors employed a large suite of spatial tests and measures to illustrate their 

findings. First, spatial autocorrelation (clustering) in the dependent variable (the national park 

visitation ratio) was tested for at the global and local levels; both tests indicated significant 

clustering in the data. Next, a global OLS model was built using stepwise techniques. Moran’s I 

and the Koenker (BP) statistics were calculated, both of which indicated strong spatial 

autocorrelation in the OLS residuals, a potential source of flawed statistical inference. Together, 

these findings demonstrated the desirability of developing a GWR model. When that model was 

compared with its OLS counterpart, it exhibited improved performance in terms of goodness of 

fit (R2) and AIC. Spatial heterogeneity (variations in strength of the coefficient by location) was 

indicated for all six independent variables. Moran’s I indicated a lack of spatial autocorrelation 

in the GWR residuals, indicating that the model was not mis-specified. Analysis of local R2 

values showed that national park visitation was better explained by the GWR model in 96% of 

counties, and that more explanatory variables would be required to explain national park 

visitation in only 4% of counties. Condition numbers indicated a lack of serious local 

multicollinearity problems in the GWR model. As concluded by the authors, “The GWR was 

able to account for both spatial autocorrelation and spatial non-stationary processes, thereby 

providing a better foundation for prediction and explanation than the corresponding OLS model” 

(Lee & Schuett, 2014, p. 220). The applicability of a spatially explicit approach to recreation and 
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tourism demand is clearly apparent, suggesting the need to fundamentally rethink the methods 

commonly applied to one of the most prevalent topics in the leisure literature. 

  

Park/Recreation Access, Equity and Physical Activity  

Analyses of the levels of access and equity associated with distributions of parks and 

other recreation opportunities have appeared in the literature since the late 1990s (e.g., Talen, 

1997; Talen & Anselin, 1998; Nicholls, 2001; Nicholls & Shafer, 2001; Wolch, Wilson, & 

Fehrenback, 2005), gaining additional traction in the last decade with the increasing focus on the 

relationship between access to places that facilitate physical activity, levels of activity, and 

individual/community health (e.g., Timpiero, Ball, Salmon, Roberts, & Crawford, 2007; 

Abercrombie, Sallis, Conway, Frank, Saelens, & Chapman, 2008; Moore, Diez Roux, Evenson, 

McGinn, & Brines, 2008). Though access and equity are clearly both inherently spatial 

phenomena, involving relationships between the locations of parks and other recreation 

opportunities, people’s places of residence (or work), and their socioeconomic and demographic 

characteristics, only two studies of the many dozen that exist have to date incorporated explicit 

consideration of spatial effects.  

 In the first of these two exceptions, the results of OLS and GWR models were compared 

in an assessment of the relationships between the distribution of parks and physical activity sites, 

and a series of demographic and socioeconomic variables, in New York City (Maroko, Maantay, 

Sohler, Grady, & Arno, 2009). The six explanatory variables reached statistical significance in 

eleven of twelve cases across two OLS models. For two of the six variables, however, the 

coefficients were of the opposing sign. Further, the OLS models both exhibited a low R2 (and 

high AIC), whereas the GWR models had much lower AICs. The GWR models indicated spatial 
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non-stationarity in both models, suggesting that disparities in accessibility varied over space. 

Thus, though the distribution of parks/activity sites throughout the city could not be considered 

equitable, this inequity was not predicted by the demographic or socioeconomic variables 

considered at the global level. The authors suggested this finding of “unpatterned inequality” 

indicated the need for “a number of additional factors, variables, and methods” (p. 1) to be 

considered in future access studies. 

 More recently, Kim and Nicholls (2016) demonstrated the utility of GWR in an equity 

analysis of the distribution of public beaches in the Detroit Metropolitan Area. Thirteen 

explanatory variables were used to represent residents' need with regard to public beach access. 

Local regression models based on GWR identified spatially varying relationships between 

variables, with great improvements in model performance over the corresponding global (OLS) 

regression models. The OLS models both exhibited a low R2 (and high AICc), whereas the GWR 

models had much a higherR2 (and lower AICc). In addition to development of an improved 

approach to the measurement of equity, the findings of studies such as this can help parks and 

recreation agencies better understand local patterns of (in)equity and could ultimately facilitate 

the formulation of locally appropriate programming solutions as and where needed.  

 Studies focusing on relationships between (perceived or actual) levels of access to 

environments that facilitate leisure-based physical activity, and observed levels of activity or 

health, have also begun to explicitly account for spatial effects. The four cases identified all 

emphasized the desirability of a localized approach that recognizes the intrinsic patterning of 

individual contexts (places) and all highlighted the significant impacts of location on the causal 

pathway between the environment and individual behaviors/outcomes. In Leeds, UK, the GWR 

analyses conducted by Edwards, Clarke, Ransley and Cade (2010) showed a non-stationary 
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relationship between all twelve covariates and obesity, “meaning that the same obesogenic 

stimulus provokes a different response in terms of BMI in some parts of Leeds” (p. 196). The 

authors characterized these findings as “support[ing] the debate that solutions need to be tailored 

to the locality for maximum effect (p. 199). More recently, Feuillet et al. (2016) found 

substantial variations in the intensity of the relationship between characteristics of the built 

environment and time spent walking for errands and for leisure across the city of Paris. As they 

concluded, “The effect of the built environment on individual behaviors should be seen at a local 

scale rather than globally. This has implications in terms of tailoring public health policy to a 

local scale” (p. 510).  For the US, An, Li and Jiang (2017) identified substantial heterogeneity in 

the environmental determinants of leisure time physical inactivity, observing that “customized 

policy interventions that address specific and most concerning environmental issue in a local 

area could be more effective (and cost-effective) than a nationwide universal intervention” (p. 8). 

Similarly, both spatial clustering in the prevalence of physical inactivity, and spatially varying 

relationships between activity levels and independent variables, including the density of 

recreation and fitness facilities, numbers of natural and cultural amenities, and age, were 

demonstrated in a second analysis of the continental US (Lee, Dvorak, Schuett & van Riper, 

2017). The authors highlighted the “precision,” “depth of analysis” and “detailed perspective” 

facilitated by the use of GWR, with concomitant implications for potential improvements in the 

targeting of planning and management activities. In every case in which OLS and GWR findings 

in the above four studies were compared, the latter outperformed the former (as evidenced by the 

metrics listed in the right-hand column of Table 1).    

 

Property and Room Price Impacts 
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 Measurement of the impact of green and blue spaces on surrounding property values and 

the local property tax base using the hedonic pricing technique has received attention in the parks 

and recreation, economics, and planning literatures (e.g., Nicholls & Crompton, 2005a, 2005b; 

Crompton & Nicholls, 2006). Again, however, it is only more recently that spatial effects have 

been taken into account. The first study to apply GWR to this topic calculated the value of 

forested landscapes in the Southern Appalachian Highlands, an area popular with tourists, 

retirees and second home owners (Cho, Kim, Roberts & Jung, 2009). Since GWR was the only 

approach employed, comparison of GWR performance relative to that of traditional OLS is not 

possible. Mapping did, however, indicate substantial clustering (spatial autocorrelation), 

allowing identification of areas where the designation of conservation easements would be the 

most economically efficient.   

Li (2010) examined the influence of neighborhood greenspace on residential property 

values in Los Angeles County. She compared findings based on a traditional OLS approach with 

those of two spatial expansion, two spatial regression (lag and error), one GWR and one spatial 

filtering model. Based on adjusted R2 and AIC values, the GWR model performed best, 

producing “the highest model fitness while capturing spatial variations most effectively and 

leaving its regression residuals free of any significant spatial autocorrelation” (Li, 2010, p. 98). 

Li also noted the value of the ability to map spatial distributions of variables using GWR, 

thereby allowing visualization of the causes of spatial variation in distributions. 

Property prices are prone to fluctuation not only through space but also over time, a 

complicating factor recognized by Huang, Wu and Barry (2010). To assess the benefits of 

accounting for each and then both of these issues, the authors constructed four sets of models in 

their assessment of the influence of eleven variables, including an undefined measure of green 
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space, on property prices in Calgary, Canada. The four models included a standard OLS 

regression, a temporally weighted regression (TWR), a GWR, and a geographically and 

temporally weighted regression (GTWR). Relative to the global OLS model, absolute errors in 

the three other models were reduced by 3.5% (TWR), 31.5% (GWR) and 46.4% GTWR. 

Goodness of fit (as measured by R2) increased from 0.76 (OLS), to 0.78 (TWR), 0.89 (GWR), 

and 0.93 (GTWR). Improvements made by the GTWR over the TWR and GWR were 

statistically significant.  

Whilst the studies described above focused on the influence of open spaces on prices of 

residential homes, four studies have applied spatially-explicit hedonic pricing techniques to 

identify the most significant influences on short-term accommodation rental rates. For hotel 

room prices in Beijing, China, results of three traditional OLS specifications (linear, log-linear, 

semi-log) were compared with those using GWR. A substantial increase in R2 and significant 

spatial variation within all the independent variables was found. In four of the five cases, 

parameter estimates in the GWR varied from negative to positive and included zero, conclusive 

evidence of the limited suitability of an aspatial approach (Zhang, Zhang, Lu, Cheng & Zhang, 

2011). 

A spatially explicit hedonic pricing technique was also used to determine influences on 

nightly prices of rural holiday homes in Catalonia, Spain (Hernández, Suárez-Vega & Santana-

Jiménez, 2016). Though the significance of variables was for the most part consistent across the 

four modeling approaches employed (OLS, spatial error, spatial lag, and GWR), the latter three 

all proved significantly superior to the traditional global OLS approach. In the case of GWR, the 

adjusted AIC fell from 391.7 to 378.8 and an improvement F-test to assess the extent to which 

GWR enhanced performance over OLS was significant at the 1% level. 
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The effect of a sea view on hotel prices was assessed in Halkidiki, Greece (Latinopoulos, 

2018). GWR improved upon the performance of OLS for all measures employed, demonstrating 

that the average 4.85% premium for a room with a sea view actually varied from areas where 

such a view imbued no premium, to areas where the increase exceeded 11%. For some variables, 

e.g., distance to the nearest forest, consideration of spatial effects revealed variations in 

coefficients across the study area that ranged from negative to positive, i.e., factors that 

positively influenced room rates in some parts of the study area but reduced them in others. 

Lastly, Soler and Gemar (2018) made multiple calls for the wider adoption of GWR in 

hedonic research in their study of hotel prices in Malaga, Spain. Implementation of a GWR 

model produced a substantial improvement in R2, and for some variables the range of 

coefficients included zero, suggesting that “the OLS model can be misleading for some hotels” 

(p. 133). In practice this suggested the existence of competitive subsystems in the hotel sector 

“that cannot be detected with the use of OLS alone” (p. 133); for researchers, the authors 

concluded that “it is essential to include GWR in any hedonic price model” (p. 133).  

 

Tourism Growth and Development  

 Despite tourism’s explicit relationship with and reliance on movement and place, only a 

handful of studies have applied GWR to tourism topics. Though the earliest example focused on 

migration patterns among people aged 55 and over in the United States, the inclusion of a battery 

of amenity factors, including temperature and indexes representing nature-, water-, recreation-, 

amusement-, tourism- and winter-based activities, has clear implications for shorter term and 

second home travel patterns (Jensen & Deller, 2007). Comparison of the derived sum of squared 

residuals and corresponding ANOVA F-statistics showed that the GWR estimates were more 



19 

 

efficient than their OLS counterparts in all eight models developed. Among the estimated 

coefficients, 92 of 240 (38.3%) exhibited significant spatial variation, suggesting that the global 

parameters derived from the OLS approach masked important spatial differences and adding 

further support to the use of GWR techniques. The authors concluded that the spatial variation in 

the amenity measures tested had “distinctly different implications for development in individual 

localities” (Jensen & Deller, 2007, p. 339). Deller (2010) explored the role of tourism and 

recreation in changing poverty rates in rural counties in the US using OLS and GWR, 

characterizing the GWR estimates as “superior” to their OLS equivalents (neither R2 nor AIC 

values were reported, however).  

 A more recent study used a spatial growth regression framework to model regional 

tourism growth patterns in China between 2002 and 2010 (Yang & Fik, 2014). Recognizing that, 

“Failure to incorporate the effects of spatial spill-overs and/or spatial heterogeneity in a regional 

growth model would result in unreliable and potentially misleading coefficient estimates” (p. 

145), the authors developed and compared a series of five models: traditional OLS, spatial auto-

regressive (SAR), spatial error model (SEM), spatial Durbin model (SDM) and geographically 

weighted spatial Durbin model (GW-SDM). Significant spatial autocorrelation was found in the 

predicted OLS residuals, supporting the application of spatially explicit techniques. The SDM 

specifications outperformed the OLS, SAR and SEM models based on both AIC levels and Wald 

tests. Since the spatial autocorrelation parameter was significant and positive in both SDM 

models, the GW-SDM version was developed. This specification identified substantial 

geographic variations in spatial patterns of tourism growth across the study area. In some cases, 

though a parameter estimate was insignificant within the global OLS model, it was found to be 

statistically significant, though sometime positive and sometimes negative, in the GS-SDM 
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specification, clear indication of the propensity for local variations to be masked in global 

models. In particular, the spatially explicit approach allowed significant spatial spill-over and 

cross-city competition effects to be identified, allowing a series of important implications for 

tourism policymakers and marketers to be proposed.   

  

Discussion 

 As described above, GWR offers a number of advantages over traditional OLS 

regression, allowing spatial effects such as spatial heterogeneity, non-stationarity and 

dependence (spatial autocorrelation) to be accounted for. GWR yields error terms (residuals) that 

are considerably smaller and less spatially dependent than residuals from a corresponding global 

regression model. GWR also offers the powerful ability to visualize spatial variations in 

regression diagnostics and model parameters within a study area, allowing exploration of how 

the direction and significance of statistical relationships between independent and dependent 

variables vary over space. 

Utilization of GWR in leisure research has to date been extremely limited, and the small 

number of published studies has tended to appear in geography or economics, rather than leisure, 

journals. Despite their limited number, these studies clearly demonstrate the importance of 

considering spatial effects. In every case in which the performance of GWR methods was 

compared to the traditional OLS approach, the former outperformed the latter. In many cases, 

GWR findings demonstrated not only statistically significant but also extremely meaningful and 

impactful variations in coefficients at the local level. In some cases these ranged from 

significantly positive to significantly negative, clear evidence of the extensive masking of 

delicate nuances in spatial data by global techniques. Identification of these variations suggests 
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the opportunity for locally-based planning, management and development decisions and policy 

analysis that would not have been evident using a traditional global approach. For example, the 

finely grained portraits of access and equity possible using GWR might help concentrate the 

investment of resources into the most underserved areas, while GWR-based analyses of property 

prices that identify spatial variation in amenity values of green and blue spaces might inform 

decisions regarding where to prioritize protective measures and how/where to allocate 

maintenance budgets.  

The ability to produce meaningful research, work that not only advances the body of 

scholarly literature but that also provides useful information to practitioners and can be used to 

positively influence policy and practice, is critically dependent upon the selection and 

application of the most appropriate analysis techniques. The overview of GWR provided herein 

calls into question prior findings that did not take spatial effects into account. In all studies with 

any spatial context it is clearly time to reconsider the continued use of traditional OLS 

regression, and the advent of GWR behooves the learning and adoption of this superior approach 

by both current researchers in and new students to the leisure field. 

The studies summarized demonstrate the utility of GWR in studies of recreation demand, 

park and recreation access and equity, hedonic analyses of the impacts of open spaces on 

property values, and tourism growth and development. Other areas of leisure research to which it 

is recommended GWR be applied include but are not limited to the following general topics (any 

analysis with a spatial dimension and to which OLS has previously been applied would be an 

appropriate candidate):  

 Exploration and analysis of spatial factors influencing the directions and magnitudes of 

flows of recreationists and tourists between origins and destinations, whether individual sites 



22 

 

or cities, counties, countries, etc. (where the dependent variable might be the number of 

outbound or inbound visitors per geographic unit and independent variables could include 

economic conditions, climate or weather, and levels of actual or perceived safety and 

security, as well as the numbers and attractiveness or quality of accommodations and 

transportation options, events and attractions, etc.). This kind of analysis could be run on 

annual as well as seasonal or monthly data to identify temporal variations in addition to 

spatial influence;  

 Exploration of the spatial impacts of tourism policy on development and growth patterns, to 

assess the influence of past policy on historical change and to identify how and where to 

target future activity. Recognizing the role of tourism policy as an agent of spatial change, 

Kang, Kim and Nicholls (2014) used spatial statistical techniques such as Moran’s I and 

local indicators of spatial association to relates changes in national tourism policy to spatial 

patterns of domestic tourism; GWR would be the natural next step to, and would 

considerably strengthen, such analyses;. 

 Exploration of patterns of spatial agglomeration in the lodging sector and the influence of 

agglomeration on property performance (where the dependent variable might be some 

measure of hotel performance such occupancy rate or revenue per available room) and 

independent variables could include levels of spatial agglomeration (e.g., the number of 

properties within each defined area of a market) and location factors such as proximity to 

critical transportation and other hubs (e.g., convention centers, major leisure attractions);  

 Measurement of the impact of aspects of the built environment on public health, i.e., 

extension of the work on recreation access to incorporate measures of residents’ physical 

and/or mental health (dependent variables could include any measure of community or 
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individual physical activity or health, e.g., body mass index) while independent variables 

might include levels of access to and use of public and private recreation settings (e.g., urban 

parks, fitness centers, playgrounds, etc.) as well as measure of local walkability, 

incorporating, e.g., residential and intersection density, land use, sidewalk availability and/or 

condition, and public transportation availability/distribution. 

 

Limitations of GWR 

 

 No one modeling or analysis technique is perfect, and like every other formalism, GWR 

has its limitations. For example, GWR should be applied to datasets with several hundred 

features for best results, and is not an appropriate method for small datasets. Though a local 

approach such as GWR considerably reduces its influence relative to traditional global models, 

the modifiable areal unit problem (MAUP, Openshaw, 1984) remains a concern. MAUP refers to 

the influence of scale (or spatial resolution) and zoning (the method of aggregation or grouping 

of data, e.g., census blocks versus census block groups versus census tracts) on study results. 

Analysis at the finest, i.e., most spatially disaggregated, scale possible remains the best strategy 

to address this issue; comparison of results based on different scales and zoning schema 

demonstrates the sensitivity of specific datasets to the MAUP. 

There may be situations in which only some of the variables within are model are likely 

to vary spatially, in which case employment of a GWR would generate inefficient estimations 

and incorrect conclusions about the influence of the variables under consideration. In this case, 

mixed GWR (MGWR) allows for the simultaneous existence of spatially stationary and non-

stationary effects. Helbich, Brunauer, Vaz and Nijkamp (2013) explored the use of MGWR with 

respect to hedonic house price models in Austria.  
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Another limitation of GWR relates to local multicollinearity and spatial autocorrelation 

among coefficients (Wheeler & Tiefelsdorf, 2005). Even if GWR models are better able to 

capture spatial dependence patterns in the dataset than OLS models, they cannot control for all of 

it (Griffith, 2008). In addition, the GWR method tends to generate extreme local coefficients and 

may overstate spatial heterogeneity (Farber & Paetz, 2007). Future studies should investigate 

specific diagnostic tools, or remedial methods, for addressing these methodological issues.  

 

Conclusion 

The purpose of this paper was to stress the importance of the consideration of spatial 

effects in leisure research. Further, it has demonstrated the utility of GWR as a method via which 

to assess and address these effects, thereby refining our understanding of important spatial 

relationships among and between dependent and independent variables in a variety of contexts. 

The paper is reflective of similar calls that have previously been made in a diversity of other 

fields, e.g., from fisheries (Windle, Rose, Devillers & Fortin, 2010) to prenatal care (Shoff, Yang 

& Matthews, 2012). As these and the papers reviewed above emphasize, GWR facilitates far 

more spatially aware and nuanced analysis, resulting in more targeted and tailored implications 

to be drawn and hence more meaningful recommendations to be developed. 

GWR is in fact but one of a number of relatively new spatially-aware data collection, 

analysis and modeling techniques from which leisure researchers could immensely benefit; other 

emerging approaches beginning to gain traction in the field include global positioning systems 

(Hallo, Beeco, Goetcheus, McGee, McGehee, & Norman, 2012; Grinberer, Shoval, & 

McKercher, 2014), the use of georeferenced photographs (Girardin, Dal Fiore, Ratti, & Blat, 

2008) and agent-based modeling (Nicholls, Amelung, & Student, 2016). We hope this piece 
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generates additional interest in, and more explicit attention to, the special nature of spatially-

bound studies. 
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Table 1. Summary of Leisure-Related Studies Employing Geographically Weighted Regression 
 

Author(s) (Year) 

Journal 

Topic  Study Site Notes on Method Key Findings and Performance Measures 

Jensen & Deller 
(2007). The 

Review of 

Regional Studies 

Role of 
amenities in 

migration 

patterns of 

older people 

Counties in 
the USA 

Compared OLS and GWR. 
Used Monte Carlo tests to 

confirm GWR findings. 

Comparison of derived sum of squared residuals and 
corresponding ANOVA F-statistic showed that GWR 

estimates more efficient in all 8 models. Estimated 

coefficients exhibited significant spatial variation. 

Cho et al. (2009). 

Ecological 

Economics 

Influence of 

forest-patch 

size and 
density on 

residential 

property prices 

Southern 

Appalachian 

Highlands, 
GA/NC/SC/ 

TN/VA/WV, 

USA 

Traditional OLS results not 

reported. Used the adaptive 

bi-square weight function. 
Used CV approach to select 

bandwidth. Tested residuals 

for SA using LM test. Used 

Monte Carlo tests to confirm 
GWR findings. 

Amenity value of mean patch size and density increased 

during the study period. Conservation of larger forest 

patches of greatest amenity value around Asheville and 
north of Atlanta. Conservation of continuous forest 

patches of greatest amenity value around Greenville, 

Knoxville, Roanoke and Greensboro. 

Maroko et al. 

(2009). 
International J. of 

Health 

Geographies 

Park/physical 

activity site 
access and 

equity 

New York 

City, NY, 
USA 

Compared OLS and GWR. 

Used the adaptive kernel 
method. Used Monte Carlo 

tests to confirm GWR 

findings. 

OLS models had R2 (AIC) of 0.11 (7162) and 0.23 (3529). 

GWR models had AICs of 2014 and -1241. GWR models 
indicated spatial non-stationarity in both models, 

suggesting that disparities in accessibility varied over 

space. Though distribution of parks/activity sites not 

equitable, not globally predicted by race, ethnicity or SES. 

Deller (2010). 

Annals of Tourism 

Research 

Influence of 

tourism and 

recreation on 
poverty rates in 

rural areas 

Counties in 

the USA 

Compared OLS and GWR. 

Used the adaptive kernel 

method. Used Monte Carlo 
tests to confirm GWR 

findings. 

GWR estimates “superior” to OLS estimates. Overall, 

tourism and recreation activities tended not to influence 

poverty rate. Minimal spatial variation associated with the 
control (social and economic) variables. Significant spatial 

variation within two of the six measures of recreation and 

tourism (ski, commercial recreation). 

Edwards et al. 
(2010). J. of 

Epidemiology and  

Community Health 

Relationships 
between 

childhood 

obesity and 12 
obesogenic 

variables 

Census 
wards in 

Leeds, UK 

Traditional OLS results not 
reported. Local relationship 

identified as non-stationary if 

interquartile range of local 
parameter estimate greater 

than twice the global standard 

error. 

All 12 of the covariates included showed a non-stationary 
relationship with obesity.  
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Huang et al. Barry 
(2010). 

International J. of 

Geographical 

Information 
Science 

Influence of 11 
variables 

(including 

green space) on 

residential 
property values 

Calgary, 
Canada 

Compared OLS with TWR, 
GWR and GTWR models. 

Used CV approach to select 

bandwidth. 

ANOVA indicated significant temporal and spatial non-
stationarity, RSS and MS improved using non-OLS 

models. Relative to OLS model, absolute errors reduced 

by 3.5% (TWR), 31.5% (GWR) and 46.4% GTWR. 

Goodness of fit: OLS, 0.76; TWR, 0.78; GWR, 0.89; 
GTWR, 0.93. AIC: OLS, -5595.6; TWR, -5886.9; GWR, -

8693.9; GTWR, -8850.4. 

Li (2010). Chapter 

4 of PhD 
Dissertation 

Influence of 

neighborhood 
greenspace on 

residential 

property values 

Los Angeles 

County, 
USA 

Compared OLS with two 

spatial expansion (SE1, SE2), 
two spatial regression (lag 

and error), one GWR and one 

spatial filtering (SF) model. 
Selected bandwidth using 

adaptive kernel function.  

Adjusted R2 and AIC: OLS, 0.65, 947.7; SE1, 0.66, 920.9; 

SE2, 0.72, 652.7; lag, N/A, 418.8; error, N/A; 372.8; 
GWR, 0.77, 363.0; SF, N/A, 793.8. 

Zhang et al. 

(2011). 
International J. of 

Hospitality 

Management 

Determinants 

of hotel room 
prices 

Beijing, 

China 

Compared OLS with GWR. 

Used Moran’s I to test for SA 
in the DV and residuals. Used 

Monte Carlo tests to confirm 

GWR findings. 

Adjusted R2: OLS linear, 0.49; OLS loglinear, 0.54; OLS 

semilog, 0.53; GWR, 0.84 (range 0.23-0.92). Moran’s I 
indicated significant positive SA, supporting application of 

GWR. Significant spatial variation indicated for all five 

IVs; in four of five cases, parameter estimates include 
zero. 

Lee & Schuett 

(2014). Applied 

Geography  

Spatial 

variations in 

relationships 
between 

recreation 

demand and 
socioeconomic/ 

demographic 

factors 

Counties in 

TX, USA 

Compared OLS and GWR. 

Used global Moran’s I and 

LISA to test for global and 
local SA in DV. Selected 

bandwidth using adaptive 

kernel function. Used 
Moran’s I and Koenker (BP) 

statistic to test for SA in OLS 

and GWR residuals. 
Calculated local R-squared 

value and condition number.      

Global and local SA tests indicated spatial autocorrelation 

(clustering) in DV. Moran’s I and Koenker (BP) statistic 

indicated strong SA in the OLS model. Goodness of fit: 
OLS, 0.73; GWR, 0.75. AIC: OLS, 206.39; GWR, 187.80. 

Significant spatial variation indicated for all six IVs. 

Moran’s I indicated lack of spatial autocorrelation in the 
GWR residuals. Visitation better explained by the GWR 

model in 96% of counties. Condition numbers indicated 

lack of serious local multicollinearity problems in the 
GWR model. Family structure and economic status most 

important influences on national park visitation.    

Yang & Fik 

(2014). Annals of 
Tourism Research 

Spatial patterns 

of regional 
tourism growth 

rates 

Prefectural-

level cities 
in mainland  

China 

Compared OLS with SAR, 

SEM, SDM and GW-SDM. 
Used nearest neighbor 

weighting matrix. Used CV 

approach to select bandwidth. 

Significant SA found in predicted OLS residuals. SDM 

specification outperformed other models according to AIC 
levels and Wald test for both dependent variables (AIC: 

OLS, 1218.0 and 649.6; SAR, 1165.9 and 638.5; SEM, 

1147.6 and 613.3; SDM, 1133.0 and 606.9). Spatial 
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autocorrelation parameter significant and positive in both 
SDM models. GW-SDM identified substantial geographic 

variations in spatial patterns of tourism growth. 

Feuillet et al. 

(2016). Journal of 
Transport & 

Health 

Built 

environmental 
correlates of 

walking for 

errands and for 

leisure 

Paris, France Conducted global and local 

(semiparametric 
geographically weighted) 

Poisson regressions. 

Determined kernel size of the 

spatial weighting scheme by 
minimizing corrected AIC. 

Spatial heterogeneity of relationships between walking 

and the built environment occurred across the entire study 
area (odds ratios ranged from 1.01 to 1.31 for walking for 

errands and from 1.07 to 1.35 for walking for leisure). 

Hernández et al. 

(2016). Tourism 
Management  

Determinants 

of price per 
night of rural 

holiday homes 

Catalonia, 

Spain 

Compared OLS, spatial error, 

spatial lag and GWR. 
Selected bandwidth using 

adaptive kernel function. 

Adjusted R2 and AIC: OLS 0.21, 391.7; spatial error 0.20, 

363.4; spatial lag 0.25, 365.8; GWR 0.24, 378.8. F-test of 
improvement of GWR over OLS significant at 1%. 

Kim & Nicholls 

(2016). J. of 
Leisure Research 

Public beach 

access and 
equity 

Detroit 

Metropolitan 
Area, MI, 

USA 

Compared OLS and GWR. 

Used the adaptive bi-square 
weight function. Used 

Moran’s I to test for SA in 

the regression residuals.  

Adjusted R2 and AIC: OLS (model 1), 0.37, 11,839.75; 

OLS (model 2), 0.18, 6,300.11; GWR (model 1), 0.69, 
8,679.89; GWR (model 2), 0.70, 4,085.73. GWR models 

identified important local variations, indicating spatial 

non-stationarity. Global Moran's I of residual: 0.36 (OLS 
model 1), 0.61 (OLS model 2), 0.10 (GWR model 1), 0.15 

(GWR model 2). GWR models improved model fit by 

reducing SA in the residuals.  

An et al. (2017). 
International J. of 

Environmental 

Research and  
Public Health 

Geographical 
variations in 

environmental 

determinants of 
leisure time 

physical 

inactivity 

Counties in 
the USA 

Compared OLS and GWR 
using two key sets of 

independent variables 

(overall Environmental 
Quality Index (EQI) and five 

individual EQI subdomains). 
Used Moran’s I to test for SA 

in the residuals. 

R2: increased from 0.58 (OLS) to 0.87 (GWR) using 
overall EQI as key independent variable; increased from 

0.58 (OLS) to 0.86 (GWR) using five EQI subdomains. 

Moran’s I of the residuals: reduced from 0.092 (95% CI = 
0.090, 0.093) (OLS) to -0.0003 (95% CI = -0.001, 0.001) 

(GWR) for overall EQI; reduced from 0.089 (95% CI = 

0.088, 0.090) (OLS) to 0.0002 (95% CI = -0.001, 0.001) 

(GWR) for five EQI subdomains. 

Lee et al. (2017). 

Landscape and 

Urban Planning 

Situational and 

socioeconomic 
determinants of 
physical 

inactivity  

Counties in 

the USA 

Compared OLS and GWR. 

Selected bandwidth using 

adaptive kernel function. 
Used Moran’s I to test for 

SA. 

R2 increased from 0.55 (OLS) to 0.73 (GWR); adjusted R2 

increased from 0.55 (OLS) to 0.72 (GWR); AIC dropped 

from 16,858.5 (OLS) to 15,435.2 (GWR). 
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Latinopoulos 
(2018). Tourism 

Management 

Effect of sea 
view on hotel 

prices 

Halkidiki, 
Greece 

Compared OLS and GWR. 
Selected bandwidth using 

adaptive kernel function. 

Used Moran’s I to test for 

SA. 

R2 increased from 0.78 (OLS) to 0.90 (GWR); adjusted R2 

increased from 0.77 (OLS) to 0.86 (GWR); AIC dropped 

from 195.0 (OLS) to 49.7 (GWR); CV dropped from 0.08 

(OLS) to 0.06 (GWR). F-test of improvement of GWR 

over OLS significant at 1%. 

Soler & Gemar 

(2018). J. of 

Destination 

Marketing and 
Management  

Determinants 

of hotel room 

prices 

Malaga, 

Spain 

Compared OLS and GWR. 

Selected bandwidth using 

adaptive kernel function. 

Adjusted R2 increased from 0.64 (OLS) to 0.81 (GWR). 

 

AIC = Aikaike information criterion, ANOVA = analysis of variance, CI = confidence interval, CV = cross-validation, DV = dependent variable, 
GTWR = geographically and temporally weighted regression, GWR = geographically weighted regression, GW-SDM = geographically weighted 

spatial Durbin model, IV = independent variable, J. = Journal, LISA = local indicator of spatial association, LM = Lagrange  multiplier, MS = 

mean square, OLS = ordinary least squares, RSS = residual sum of squares, SA = spatial autocorrelation, SAR = spatial auto-regressive, SDM = 

spatial Durbin model; SEM = spatial error model, SES = socio-economic status, TWR = temporally weighted regression. 

 

  


