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ABSTRACT 26 

Emerging infectious diseases increasingly threaten wildlife populations. Most studies focus 27 

on managing short-term epidemic properties, such as controlling early outbreaks. Predicting 28 

long-term endemic characteristics with limited retrospective data is more challenging. We 29 

used individual-based modelling informed by individual variation in pathogen load and 30 

transmissibility to predict long-term impacts of a lethal, transmissible cancer on Tasmanian 31 

devil (Sarcophilus harrisii) populations. For this, we employed Approximate Bayesian 32 

Computation to identify model scenarios that best matched known epidemiological and 33 

demographic system properties derived from ten years of data after disease emergence, 34 

enabling us to forecast future system dynamics. We show that the dramatic devil population 35 

declines observed thus far are likely attributable to transient dynamics (initial dynamics after 36 

disease emergence). Only 21% of matching scenarios led to devil extinction within 100 years 37 

following devil facial tumour disease (DFTD) introduction, whereas DFTD faded out in 57% 38 

of simulations. In the remaining 22% of simulations, disease and host coexisted for at least 39 

100 years, usually with long-period oscillations. Our findings show that pathogen extirpation 40 

or host-pathogen coexistence are much more likely than the DFTD-induced devil extinction, 41 

with crucial management ramifications. Accounting for individual-level disease progression 42 

and the long-term outcome of devil-DFTD interactions at the population-level, our findings 43 

suggest that immediate management interventions are unlikely to be necessary to ensure the 44 

persistence of Tasmanian devil populations. This is because strong population declines of 45 

devils after disease emergence do not necessarily translate into long-term population declines 46 

at equilibria. Our modelling approach is widely applicable to other host-pathogen systems to 47 

predict disease impact beyond transient dynamics.  48 

 49 

 50 
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 54 

INTRODUCTION 55 

Emerging infectious diseases most often attract attention because their initial impacts on host 56 

populations are frequently severe (de Castro and Bolker 2005, Smith et al. 2009). Following 57 

the initial epidemic and transient dynamic behaviour, long-term outcomes include pathogen 58 

fadeout, host extinction, or long-term endemicity with varying impacts on the host population 59 

size (Hastings 2004, Benton et al. 2006, Cazelles and Hales 2006). Predicting which of these 60 

long-term outcomes may occur on the basis of initial transient dynamics is very challenging 61 

and conclusions about possible disease effects on population viability based on early 62 

epidemic dynamics can be misleading with regard to long-term dynamics. For example, 63 

disease spread in a newly exposed population may slow down after reduction of the pool of 64 

susceptible individuals and coevolutionary processes between a pathogens virulence and host 65 

defence mechanism may further impact long-term dynamics.  66 

 67 

Nevertheless, predicting the long-term consequences of an infectious disease as early 68 

as possible in the emergence process is important for management. If the disease has a high 69 

likelihood of ultimately leading to host extinction, then strategies such as stamping out 70 

infection by removing all potentially infectious individuals may be justifiable, despite short-71 

term impacts on the host species and ethical considerations (McCallum and Hocking 2005). 72 

Resource-intensive strategies such as establishing captive breeding populations protected 73 

from disease or translocating individuals to locations separated from infected populations 74 

may also be justified (McCallum and Jones 2006). In contrast, if impacts are transitory, then a 75 
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preferred strategy may be to avoid interference to allow a new long-term endemic disease 76 

state or pathogen extinction to be reached as quickly as possible (Gandon et al. 2013). 77 

Longer-term evolutionary processes can operate to ultimately reduce the impact of the 78 

disease on the host population (Fenner 1983, Kerr 2012), and inappropriate disease 79 

management strategies may slow down evolution of both host and pathogen. 80 

Models of infectious diseases in the early stages of emergence typically focus on 81 

estimating R0, the number of secondarily infected individuals when one infected individual is 82 

introduced into a wholly susceptible population (Lloyd-Smith et al. 2005). This is a key 83 

parameter for devising strategies to limit invasion or control an outbreak because it allows the 84 

estimation of vaccination or removal rates necessary to eradicate disease. However, by 85 

definition, it does not include density dependent factors and is therefore sometimes 86 

insufficient to predict the long-term consequences of disease introduction into a new 87 

population (Heesterbeek 2002). 88 

Most existing models for infectious disease are based around compartmental 89 

Susceptible – Exposed – Infected – Recovered epidemiological models (S-E-I-R), which rely 90 

on a strict assumption of homogeneity of individuals within compartments (Anderson and 91 

May 1991). There is a parallel literature for macroparasitic infections, which assumes both a 92 

stationary distribution of parasites amongst hosts and that parasite burden is determined by 93 

the number of infective stages the host has encountered (Anderson and May 1978). For many 94 

pathogens, pathogen load on (or inside) an individual typically changes following infection as 95 

a result of within-host processes, causing temporal shifts in transmission and host mortality 96 

rates. For example, the volume of transmissible tumours on Tasmanian devils (Sarcophilus 97 

harrisii) increases through time, with measurable impacts on survival (Wells et al. 2017) and 98 

likely temporal increases in transmission probability to uninfected devils that bite into the 99 

growing tumour mass (Hamede et al. 2013). Similarly, increasing burden of the amphibian 100 
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chytrid fungus Batrachochytrium dendrobatidis on individual frogs after infection limits host 101 

survival, with important consequences for disease spread and population dynamics (Briggs et 102 

al. 2010, Wilber et al. 2016). Burdens of the causative agent of white nose syndrome, 103 

Pseudogymnoascus destructans, which threatens numerous bat species in North America, 104 

similarly increase on most individuals during the period of hibernation (Langwig et al. 2015). 105 

The additional time dependence introduced by within-host pathogen growth can have a major 106 

influence on the dynamics of host-pathogen interactions as uncovered by nested models that 107 

link within- and between-host processes of disease dynamics (Gilchrist and Coombs 2006, 108 

Mideo et al. 2008). Such dynamics are poorly captured by conventional compartmental and 109 

macroparasite model structures. Thus, connecting across the scales of within-  and between-110 

host dynamics remains a key challenge in understanding infectious disease epidemiology 111 

(Gog et al. 2015). 112 

Here we develop an individual-based model to explore the long-term impact of devil 113 

facial tumour disease (DFTD), a transmissible cancer, on Tasmanian devil populations. 114 

DFTD is a recently emerged infectious disease, first detected in 1996 in north-eastern 115 

Tasmania (Hawkins et al. 2006). It is caused by a clonal cancerous cell line, which is 116 

transmitted by direct transfer of live tumour cells when devils bite each other (Pearse and 117 

Swift 2006, Jones et al. 2008, Hamede et al. 2013). DFTD is nearly always fatal and largely 118 

affects individuals that are otherwise the fittest in the population (Wells et al. 2017). 119 

Population declines to very low numbers concomitant with the frequency-dependent 120 

transmission of DFTD led to predictions of devil extinctions, based on compartmental 121 

epidemiological models (McCallum et al. 2009, Hamede et al. 2012).  122 

 Fortunately, the local devil extinctions predicted from these early models have not 123 

occurred (McCallum et al. 2009). There is increasing evidence that rapid evolutionary 124 

changes have taken place in infected devil populations, particularly in loci associated with 125 
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disease resistance and immune response (Epstein et al. 2016, Pye et al. 2016, Wright et al. 126 

2017). Moreover, we recently reported that the force of infection (the rate at which 127 

susceptible individuals become infected) increases over a time period of as long as six years 128 

(~3 generations) after initial local disease emergence and that the time until death after initial 129 

infection may be as long as two years (Wells et al. 2017). Therefore, despite high lethality, 130 

the rate of epidemic increase appears to be relatively slow, prompting predictive modelling of 131 

population level impacts over time spans well beyond those covered by field observations.  132 

In general, there are three potential long-term outcomes of host-pathogen interactions: 133 

host extinction, pathogen extirpation, and host-pathogen coexistence. To determine the 134 

likelihood of each of these outcomes in a local population of Tasmanian devils, we used 135 

individual-based simulation modelling (Fig. 1) and pattern matching, based on ten years of 136 

existing field data, to project population trajectories for Tasmanian devil populations over 137 

100 years following DFTD introduction. 138 

 139 

MATERIALS AND METHODS 140 

Model framework 141 

We implemented a stochastic individual-based simulation model of coupled Tasmanian devil 142 

(Sarcophilus harrisii) demography and devil facial tumour disease (DFDT) epidemiology. A 143 

full model description with overview of design, concept, and details (Grimm et al. 2006) can 144 

be found in Appendix S1. In brief, we aimed to simulate the impact of DFTD on Tasmanian 145 

devil populations and validate 10^6 model scenarios of different random input parameters (26 146 

model parameters assumed to be unknown and difficult or impossible to estimate from 147 

empirical studies, see Appendix S1: Table S1) by matching known system level properties 148 

(disease prevalence and population structure, see Appendix S1: Fig. S2) derived from a wild 149 

population studied over ten years after the emergence of DFTD (Hamede et al. 2015). In 150 
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particular, running model scenarios for 100 years prior to, and after the introduction of 151 

DFTD, we explored the extent to which DFTD causes devil populations to decline or become 152 

extinct. Moreover, we aimed to explore whether input parameters such as the latency period 153 

of DFTD or the frequencies of disease transmission between individuals of different ages can 154 

be identified by matching simulation scenarios to field patterns of devil demography and 155 

disease prevalence.  156 

Entities in the model are individuals that move in weekly time steps (movement 157 

distance θ) within their home ranges and may potentially engage in disease-transmitting 158 

biting behaviour with other individuals (Fig 1). Birth-death processes and DFTD 159 

epidemiology are modelled as probabilities according to specified input parameter values for 160 

each scenario. In each time step, processes are scheduled in the following order: 1) 161 

reproduction of mature individuals (if the week matches the reproductive season), 2) 162 

recruitment of juveniles into the population, 3) natural death (independent of DFTD), 4) 163 

physical interaction and potential disease transmission, 5) growth of tumours, 6) DFTD-164 

induced death, 7) movement of individuals, 8) aging of individuals.  165 

The force of infection λi,t, i.e. the probability that a susceptible individual i acquires 166 

DFTD at time t is given as the sum of the probabilities of DFTD being transmitted from any 167 

interacting infected individual k (with k∈ 1…K, with K being the number of all individuals in 168 

the population excluding i): 169 

 λi,t = �∑ 𝛽𝛽𝐴𝐴(𝑖𝑖)𝛽𝛽𝐴𝐴(𝑘𝑘)𝑘𝑘∈K �𝑁𝑁𝑡𝑡
𝐶𝐶
�

δ
� 1
1+�1−𝑟𝑟𝑖𝑖,𝑡𝑡�ω

� � 1
1+�1−𝑟𝑟𝑘𝑘,𝑡𝑡�ω

� � 𝑉𝑉𝑘𝑘,𝑡𝑡
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

�
γ
� 𝐼𝐼η 170 

Here, the disease transmission coefficient is composed of the two factors βA(i) and βA(k), each 171 

of which accounts for the age-specific interaction and disease transmission rate for 172 

individuals i and k according to their age classes A. Nt is the population size at time t and C is 173 

the carrying capacity of the study region; the scaling factor δ accounts for possible increase in 174 
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interactions frequency with increasing population size if δ > 0. The parameter ri,t is a Boolean 175 

indicator of whether an individual recently reproduced and ω is a scaling factor that 176 

determines the difference in λi,t resulting from interactions of reproductively active and non-177 

reproducing individuals. Vk,t is the tumour load of individual k, Vmax is the maximum tumour 178 

load, and γ is a scaling factor of how λi,t changes with tumour load of infected individuals. 179 

The parameter Iη  is a Boolean indicator of whether two individuals are located in a spatial 180 

distance < η that allows interaction and disease transmission (i.e. only individuals in 181 

distances < η can infect each other). We considered individuals as ‘reproductively active’ 182 

(ri,t=1) for eight weeks after a reproduction event.  183 

 DFTD-induced mortality Ωsize (modelled as odds ratios in relation to demographic 184 

mortality rates with values between 0 and 1) accounts for tumour size, while tumour growth 185 

was modelled as a logistic function with the growth parameter α sampled as an input 186 

parameter. We allowed for latency periods τ between infection and the onset of tumour 187 

growth, which was also sampled as an input parameter. We assumed no recovery from 188 

DFTD, which appears be very rare in the field (Pye et al. 2016). 189 

Notably, sampled scaling factor values of zero for δ, ω, and γ correspond to model 190 

scenarios with homogeneous interaction frequencies and disease transmission rates 191 

independent of population size, reproductive status and tumour load, respectively, while 192 

values of η = 21 km assume that individuals can infect each other independent of spatial 193 

proximity (i.e. individuals across the entire study area can infect each other). The sampled 194 

parameter space included scenarios that omitted i) effects of tumour load on infection and 195 

survival propensity, ii) effect of spatial proximity on the force of infection between pairs of 196 

individuals and iii) both effects of tumour load and spatial proximity, in each of 1,000 197 

scenarios. This sampling design was used to explicitly assess the importance of modelling 198 

individual tumour load and space use for accurately representing the system dynamics. 199 
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 200 

Model validation and summary 201 

To resolve the most realistic model structures and assumptions from a wide range of 202 

possibilities and to compare simulation output with summary statistics from our case study (a 203 

devil population at West Pencil Pine in western Tasmania) (Wells et al. 2017), we used 204 

likelihood-free Approximate Bayesian Computation (ABC) for approximating the most likely 205 

input parameter values, based on the distances between observed and simulated summary 206 

statistics (Toni et al. 2009). We used the ‘neuralnet’ regression method in the R package abc 207 

(Csillery et al. 2012). Prediction error was minimized by determining the most accurate 208 

tolerance rate and corresponding number of scenarios considered as posterior (distribution of 209 

parameter values from scenarios selected to best match empirical evidence according to 210 

ABC) through a subsampling cross validation procedure as implemented in the abc package. 211 

For this, leave-one-out cross validation was used to evaluate the out-of-sample accuracy of 212 

parameter estimates (using a subset of 100 randomly selected simulated scenarios), with a 213 

prediction error estimated for each input parameter (Csillery et al. 2012); this step facilitates 214 

selecting the most accurate number of scenarios as a posterior sample. However, we are 215 

aware that none of the scenarios selected as posterior samples entirely represents the true 216 

system dynamics. We identified n = 122 scenarios (tolerance rate of 0.009, Appendix S1: Fig. 217 

S2) as a reasonable posterior selection with minimized prediction error but sufficiently large 218 

sample size to express uncertainty in estimates. The distribution of summary statistics was 219 

tested against the summary statistics from our case study as a goodness of fit test, using the 220 

‘gfit’ function in the abc package (with a p-value of 0.37 indicating reasonable fit, Appendix 221 

S1: Fig. S3, S4). 222 

We generated key summary statistics from the case study, in which DFTD was 223 

expected to have been introduced shortly before the onset of the study (Hamede et al. 2015), 224 
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and a pre-selection of simulation scenarios, in which juveniles never comprised > 50% of the 225 

population, DFTD prevalence at end of 10-year-period was between 10 and 70%, and the age 226 

of individuals with growing tumours was ≥ 52 weeks. Hereafter, we refer to ‘prevalence’ as 227 

the proportion of free-ranging devils (individuals ≥ 35 weeks old) with tumours of sizes ≥ 0.1 228 

cm3; we do so to derive a measure of prevalence from simulations that is comparable to those 229 

inferred from the 10 years of field data. Summary statistics were: 1) mean DFTD prevalence 230 

over the course of 10 years, 2) mean DFTD prevalence in the 10th year only, 3) 231 

autocorrelation value for prevalence values lagged over one time step (capturing short-term 232 

changes in DFTD prevalence), 4) three coefficient estimates of a cubic regression model of 233 

the smoothed ordered difference in DFTD prevalence (fitting 3rd order orthogonal 234 

polynomials of time for smoothed prevalence values using the loess function in R with degree 235 

of smoothing set to α = 0.75 in order to capture the overall temporal changes in DFTD 236 

prevalence), 5) phase in seasonal population fluctuations, calculated  from sinusoidal model 237 

fitted to the number of trappable individuals in different time steps (capturing population 238 

fluctuations due to seasonal birth pulses), 6) regression coefficient of a linear model of the 239 

changing proportions of individuals ≥ 3years old in the trappable population over the course 240 

of 10 years (accounting for the known shift in demographic structure; DFTD dispatches 241 

mostly mature and reproductively active devils). Summary statistics for the simulations were 242 

based on the 37 selected weekly time steps after the introduction of DFTD that matched the 243 

time sequences of capture sessions in the case study, which included records in ca. three 244 

months intervals (using the first 30 time steps only for population sizes, as the empirical 245 

estimates from the last year of field data may be subject to data censoring bias). Overall, 246 

these summary statistics aimed to describe general patterns rather than reproducing the exact 247 

course of population and disease prevalence changes over time, given that real systems would 248 

not repeat themselves for any given dynamics (Wood 2010). Additionally, unknown factors 249 
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not considered in the model may contribute to the observed temporal changes in devil 250 

abundance and disease prevalence.  251 

As results from our simulations, we considered the posterior distributions of the 252 

selected input parameters (as adjusted parameter values according to the ABC approach 253 

utilised) and calculated the frequency and timing of population or disease extirpation from 254 

the 100 years of simulation after DFTD introduction of the selected scenarios. All simulations 255 

and statistics were performed in R version 3.4.3 (R Development Core Team 2017). We used 256 

wavelet analysis based on Morlet power spectra as implemented in the R package 257 

WaveletComp (Roesch and Schmidbauer 2014) to identify possible periodicity at different 258 

frequencies in the time series of population sizes (based on all free-ranging individuals) for 259 

scenarios in which DFTD persisted at least 100 years.  260 

For estimating the sensitivity of the three possible long-term outcomes (devil extirpation, 261 

DFTD extirpation, coexistence) to variation in the posterior estimates of key parameters (i.e. 262 

the likely parameter values obtained through the ABC approach), we used boosted regression 263 

trees using the ‘gbm.step’ routine (binomial error structure, learning rate of 0.001, tree 264 

complexity of 5, k-fold cross-validation procedure) in the R package dismo (Elith et al. 265 

2008). Similar approaches to global sensitivity analysis were recently applied to eco-266 

epidemiological models (Wells et al. 2015, Drawert et al. 2017). 267 

 268 

RESULTS 269 

For scenarios that best matched empirical mark-recapture data, 21% of posterior scenarios 270 

(26 out of 122) led to devil population extirpation in timespans of 13 – 42 years (mean = 21, 271 

SD = 8; ~7-21 generations) after introduction of DFTD (Fig. 2). In contrast, the disease was 272 

lost in 57% of these posterior scenarios (69 out of 122), with disease extirpation taking place 273 

11 – 100 years (mean = 29, SD = 22) post-introduction (Fig. 2). Loss of DFTD from local 274 
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populations therefore appears to be much more likely than devil population extirpation, given 275 

no other factor than DFTD reducing devil vital rates. Moreover, fluctuations in host and 276 

pathogen after the introduction of DFTD exhibited long-period oscillations in most cases 277 

(Fig. 3). In the 27 selected scenarios in which DFTD persisted in populations for 100 years 278 

after disease introduction, population size 80-100 years after disease introduction was smaller 279 

and more variable (mean = 137, SD = 36) than population sizes prior to the introduction of 280 

DFTD (mean = 285, SD = 3; Fig. 4). The average DFTD prevalence 80-100 years after 281 

disease introduction remained < 40% (mean = 14%, SD = 4%; Fig. 4). Most wavelet power 282 

spectra of these scenarios showed long-period oscillations over time periods between 261 – 283 

1040 weeks (corresponding to 5 – 20 years) (Appendix S1: Fig. S5). 284 

Inference of input parameters was only possible for some parameters, whereas 95% 285 

credible intervals for most of the posterior distributions were not distinguishable from the 286 

(uniformly) sampled priors. Notably, the posterior mode for the latency period (τ) was 287 

estimated as 50.5 weeks (95% credible interval 48.5 – 52.6 weeks, for unadjusted parameters 288 

values the 95% was 22.9 – 94.3 weeks), providing a first estimate of this latent parameter 289 

from field data (Appendix S1: Fig. S6, Table S2). The posterior of the DFTD-induced 290 

mortality factor (odds relative to un-diseased devils) for tumours < 50 cm3 (Ω<50) was 291 

constrained to relatively large values (Appendix S1: Fig. S6), supporting empirical estimates 292 

that small tumours are unlikely to cause significant mortality of devils. Posterior distributions 293 

of weekly movement distances (θ) and the spatial distance over which disease-transmitting 294 

interactions took place (η), in turn, allowed no clear estimates of these parameters (Appendix 295 

S1: Fig. S6). Notably, the 122 scenarios selected as posteriors all explicitly accounted for the 296 

effect of tumour load on infection and survival, while 90% of selected scenarios included 297 

spatial proximity of individuals as influencing disease transmission (i.e. selected scenarios 298 

comprised 110 models that included both the effect of tumour load and spatial proximity, 299 
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while 12 models included tumour load but not spatial proximity). Sensitivity analysis 300 

revealed that the long-term outcomes of extinctions (DFTD or devils) versus coexistence 301 

were dependent on a suite of parameters related to spatial aspects of transmission, density 302 

dependence on transmission and disease progression on individual devils (Appendix S1: Fig. 303 

S7, Fig. S8).  304 

 305 

DISCUSSION 306 

Our results suggest that DFTD will not necessarily cause local Tasmanian devil extinction or 307 

even long-term major declines, whereas the extirpation of DFTD or coexistence/endemicity is 308 

much more likely. In cases where DFTD persists in local devil populations in the long-term, 309 

oscillations with relatively long periods (5-20 years, corresponding to 2-10 generations) 310 

appear likely. These predictions are starkly different from those derived from previous 311 

compartmental models, which considered all devils with detectable tumours to be equally 312 

infectious and assumed exponentially distributed time delays. These models predicted 313 

extinction (McCallum et al. 2009), as did models with more realistic gamma distributed time 314 

delays or with delay-differential equations that incorporated field-derived parameter 315 

estimates of transmission and mortality rates (Beeton and McCallum 2011). These previous 316 

models, however, differ also from our approach in that they ignore spatial structure and do 317 

not account for the uncertainty in unknown parameters such as disease-induced mortality and 318 

disease transmission rates. 319 

The predictions from our individually-based model, derived from 10 years of 320 

observational data at our case study site (West Pencil Pine), are consistent with observations 321 

now emerging from long-term field studies of the dynamics of Tasmanian devils and DFTD 322 

(Lazenby et al. 2018). No Tasmanian devil population has yet become extinct – and 323 

populations persist, albeit in low numbers, where disease has been present the longest (e.g., at 324 
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wukalina/Mount William National Park and at Freycinet, where DFTD emerged, 325 

respectively, at least 21 and 17 years ago) (Epstein et al. 2016). Also, a considerable decline 326 

in DFTD prevalence has been observed in recent years at Freycinet (Sebastien Comte, 327 

unpublished data). These study sites did not contribute to the fitting of our model and at least 328 

to some extent constitute an independent validation and test of the model predictions. Our 329 

modelling results suggest that observed population dynamics of devils and DFTD do not 330 

require evolutionary changes, although there is evidence of rapid evolution in disease-331 

burdened devil populations (Epstein et al. 2016) similar to rapid evolution in other vertebrates 332 

when subjected to intense selection pressure (Christie et al. 2016, Campbell-Staton et al. 333 

2017).  334 

One of the differences between earlier models and those we present here is the 335 

inclusion of tumour growth, with mortality and transmission rates that depend on individual 336 

disease burden. Inclusion of burden-dependent dynamics results in additional and 337 

qualitatively different time delays than those incorporated in previous models. Tumours take 338 

time to grow before they have a major impact on host survival and become highly infectious 339 

(Hamede et al. 2017, Wells et al. 2017). This slows the spread of DFTD and its impact on 340 

devil population fluctuations. It also means that parameters estimated from field data, without 341 

taking tumour growth into account, may not adequately represent the system dynamics 342 

(McCallum et al. 2009). 343 

McCallum et al. (2009) and Beeton & McCallum (2011) used an informal rejection 344 

method to conclude that the observed dynamics were inconsistent with density-dependent 345 

transmission, because, in an SEI (susceptible-exposed-infected) model framework, the 346 

observed high prevalence coupled with population decline could only be derived assuming 347 

frequency-dependent transmission. This led to predictions of devil extinction. In contrast, our 348 

model, which includes spatial aspects of the dynamics in addition to tumour growth, suggests 349 
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that there is some density-dependence in transmission, as the posterior distribution for the 350 

parameter describing density dependence δ  has a mode close to 1 (Appendix S1: Fig. S6). 351 

This density dependence may be important in contributing to the increased likelihood of devil 352 

population persistence predicted by our model. 353 

Our models suggest that documented dramatic population declines during the first 10 354 

years or so of the DFTD epizootic may represent just the first peak of a classical epidemic 355 

(Bailey 1975). Long-term predictions from our models suggest, however, that DFTD is a 356 

slow burning disease with population changes governed by long-term oscillations.  357 

It is well known, both from simple Lotka-Volterra models and from a range of 358 

empirical studies, that consumer–resource interactions have a propensity to cycle, driven by 359 

the time delays inherent in these systems (Murdoch et al. 2003). Disease burden-dependent 360 

demographic and epidemiological parameters, together with burden growth within the host, 361 

add additional time delays, both lengthening any oscillations and increasing the likelihood 362 

that they will be maintained in the longer term. Apparently, such time-delays increase the 363 

probability of host-pathogen coexistence, similar to predator-prey dynamics, rather than host 364 

or pathogen extirpation. Grounded in theory and a reasonable body of modelling studies of 365 

other wildlife diseases, disease-induced population extinction appears to be more generally an 366 

exception rather than the rule, unless host populations are very small, or unless there are 367 

reservoir species that are tolerant of infection (de Castro and Bolker 2005). Although we 368 

found DFTD extirpation 11-100 years after its emergence to be more likely than devil-DFTD 369 

coexistence, we believe that recognising the slow burning spread of DFTD and possible long-370 

term oscillations is of practical importance. If both DFTD extirpation and coexistence need to 371 

be considered on decadal time spans, immediate management actions after disease emergence 372 

and initial population declines are not necessarily essential, if the goal is to maintain presence 373 

of devils, even with lower population densities in the case of coexistence (Fig. 4). 374 
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 375 

The approach we apply here – coupling the flexibility of individual-based models to account 376 

for heterogeneity in disease burden and space use with Approximate Bayesian Computation 377 

to match model outcomes with available empirical evidence – offers considerable potential 378 

for making predictions regarding the population dynamics for other emerging diseases, 379 

including those with more rapid eco-epidemiological dynamics  (Toni et al. 2009, Beaumont 380 

2010, Johnson and Briggs 2011, Wells et al. 2015). A fundamental problem in applying 381 

modelling approaches to forecast the outcome of emerging infectious disease epidemics is the 382 

need to estimate parameter values based on empirical data derived from the relatively early 383 

stages of an epizootic, in the absence of retrospective knowledge (Heesterbeek et al. 2015, 384 

Ferguson et al. 2016). Examples include estimating R0 for SARS (Lipsitch et al. 2003) and 385 

for the 2014-2015 Ebola epidemic in West Africa (Whitty et al. 2014, WHO Ebola Response 386 

Team 2014) among others (LaDeau et al. 2011). In most of these cases, the objective is to 387 

estimate parameters associated with the growth phase of the epidemic to assess the 388 

effectiveness of interventions such as vaccination. The task we have addressed in this paper is 389 

even more challenging – seeking to predict the long-term endemic behaviour of a pathogen 390 

that is currently still in the early stages of emergence. We suggest that management efforts to 391 

maintain devil populations in the face of DFTD should be guided by our changing 392 

understanding of the long-term dynamics of the DFTD epidemic. Management efforts in wild 393 

populations that solely aim to combat the impact of DFTD can be counterproductive if they 394 

disrupt long-term eco-evolutionary dynamics that may eventually lead to endemicity with 395 

stable devil populations. Our ability to predict future outcomes in the absence of management 396 

actions require some caution as we cannot fully exclude the possibility that DFTD can cause 397 

local population extinctions once populations are small, warranting future research. While 398 

our findings emphasize the importance of accounting for individual tumour load for accurate 399 
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prediction and epidemiological modelling of DFTD dynamics, our inability to uncover the 400 

exact role of devil spatial proximity on disease transmission means that further research is 401 

necessary to understand relevant factors in disease spread.  402 

 403 

The key management implication of our model is that "heroic" management interventions are 404 

unlikely to be necessary to ensure persistence of Tasmanian devil populations with regard to 405 

DFTD control. Given more information on immune-related or genetic variation in resistance, 406 

the model could be modified to assess the value of interventions such as vaccination or 407 

reintroduction of captive reared animals. At the same time, we believe that any management 408 

actions should be subject to rigorous quantitative analysis to explore possible long-term 409 

impacts. In particular, allocating resources and scientific endeavours to the management of 410 

wildlife diseases such as DFTD should not disguise the fact that sufficiently large and 411 

undisturbed natural environments are a vital prerequisite for wildlife to persist and eventually 412 

cope with perturbations such as infectious diseases without human intervention. 413 

 414 
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FIGURE CAPTION 621 

Figure 1. Illustrative overview of the individual-based model to explore long-term population 622 

changes of a Tasmanian devil population burdened with devil facial tumour disease (DFTD). 623 

Individuals are distributed in a study area. For every weekly time step seven different 624 

processes are modelled, namely 1) the possible recruitment of young from females 625 

(conditional on young survival during previous weaning time), 2) possible death independent 626 

of disease status, 3) movement of individuals away from their home range centre, 4) 627 

behavioural interaction between nearby individuals that may result in the transmission of 628 

DFTD, 5) growth of DFTD tumours, 6) death of individuals resulting from DFTD, 7) aging 629 

of individuals. 630 

 631 

Figure 2. Frequency distributions of timespans of devil extirpation (upper panel) and devil 632 

facial tumour disease (DFTD) extirpation (lower panel) presented as years after the 633 

introduction of the disease into populations. Number of plotted scenarios correspond to those 634 

for which extirpation events were recorded (26 and 69 out of 122 posterior samples, 635 

respectively). 636 

 637 

Figure 3. Examples of long-term devil and tumour dynamics. Scenario 1 is an example of 638 

DFTD extirpation, and Scenario 2 is an example of coexistence. The upper panels show the 639 

summarized population sizes (free-ranging individuals ≥ 35 weeks old) over 100 years (5,200 640 

weeks) of simulations after the introduction of DFTD in the population, middle panels show 641 

the respective wavelet power spectra, based on Morlet wavelet analysis. Red spectral colours 642 

in the power spectra indicate strong periodicity over weekly time spans depicted on the y-axis 643 

and the corresponding time during the course of simulations indicated on the x-axis; blue 644 

spectral colours indicate weak periodicity. Ridges (black lines) of strongest periodicity often 645 
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indicate long-term oscillations > 500 weeks. Lower panels show the prevalence of DFTD 646 

(growing tumour ≥ 0.1 cm3) in the respective population. 647 

 648 

Figure 4. Frequency distributions (count) of mean devil populations sizes (x axis, upper 649 

panel) and mean devil facial tumour disease (DFTD) prevalence (x axis, lower panel) 80-100 650 

years after disease introduction for those scenarios (n = 27) in which DFDT persisted for at 651 

least 100 years. The light-grey vertical line in the upper panel indicates the mean population 652 

sizes of simulated populations over 100 years prior to disease introduction. 653 
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