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A significant proportion of the population has become used to sharing private 
information on the internet with their friends. This information can leak through-
out their social network and the extent that personal information propagates can 
depend on the privacy policy of large corporations. In an era of artificial intelli-
gence, data mining, and cloud computing, is it necessary to share personal infor-
mation with unidentified people? Our research shows that deep learning is possi-
ble using relatively low capacity computing. When applied, this demonstrates 
promising results in spatio-temporal positioning of subjects, in prediction of 
movement, and assessment of contextual risk. A private surveillance system is 
particularly suitable in the care of those who may be considered vulnerable.  
 
Keywords: privacy, deep learning, assisted-living, mobile computing, ethics, 
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1 Background 

Advancements in mobile devices that can be worn and carried, their interconnectivity, 
and the improvement of artificially intelligent tools provide a significant opportunity to 
assist in the care of the aged. In accordance with a human right to private life, we have 
examined methods to keep tracking information private unless there is a moral argu-
ment, such as risk to the person being monitored, that justifies a breach in privacy. In 
this scenario, safety is paramount and in the interests of beneficence and non-malefi-
cence an ethical policy in terms of design is employed, which defines that personal 
information is precious and should therefore not be shared on the internet.  
Dementia is a debilitating condition that is growing with the aging society. Continuance 
with life in the community is encouraged, since social interaction and physical activity 
stimulates a healthy mental state in the person with symptoms (PwS) along with the 
family carer. We seek bespoke artificially intelligent solutions for these persons living 



with dementia (PlwD) who wish to preserve independence of the PwS. Initial system 
infrastructure and findings are published in [1], the suitability of a mobile computer 
technology in tracking PwS and ethical aspects are previously outlined in [2]. The work 
described here contributes to the ethical debate regarding the question at which point 
information gathered when monitoring a PwS should be shared. We investigate a tech-
nological solution that keeps data private until a threshold of risk is reached. AI is used 
to learn what is ‘normal’ for a person (based on individual habits), various metrics are 
then used in the decision making to change the default private state. 
To this end, a monitoring system is designed that requires the PwS to carry a mobile 
phone and wear a fitness tracker. It is understood that some may not be comfortable 
with this and it is anticipated that the mobile technology component will ultimately be 
integrated in a single wearable device. This technology can be particularly useful for 
patients who have early-onset dementia, i.e., those of working age and therefore more 
likely to be used to carrying a phone or wearing a smart-watch. 

2 The problem 

The onset of dementia has a profound effect on the PwS and the wider family unit. 
Diagnosis can bring with it a loss of role function, uncertainty about the future, fear of 
being a burden, and reduced mobility that can lead to social isolation [3]. The objective 
of this study is to create an ‘electronic safety net’ that can provide peace of mind to the 
carer, while preserving the rights and independence of the PwS. A key aim of the pro-
ject is to delay residential care. 

2.1 Dementia 

Dementia is caused by several diseases of the brain. There is a wide spectrum of symp-
toms, some of which may manifest in a propensity to walk independently at inappro-
priate times [4]. Literature indicates that this can lead to premature mortality [4, 5, 6]. 
Actions to mitigate this risk can lead to increased dependence, to curtailment of social 
activities, and reduction in quality of life [7]. Elopement episodes are a major reason 
for nursing home admission [8]. A study in Finland reports that the latter may be de-
layed, using assistive technology, by an average of eight months [9].  

2.2  Privacy 

Online data privacy divides opinion. Many elect to share very varied information about 
their lives publicly on the internet, but this is not always a conscious decision – Terms 
and conditions regarding data sharing tend to be ignored by many users as they install 
applications and use online services. Nevertheless, consent given in this way is often 
referred to as informed when the potential for data propagation is mentioned in the 
supplied information, even though this information is rarely considered thoroughly.  
Leaks of private information have recently been in the news headlines. Data stored on 
the internet, e.g. by cloud services, is often assumed to be safe, but human intervention 



and inadequate security measures allow breaches [10]. Advocates of privacy treat per-
sonal information very differently and avoid sharing their information with people or 
organisations. This attitude is supported by cyber-security activists, e.g. in a report of 
vulnerabilities leading to 91 exploits of tracking service providers in January 2018 [11]. 
In the case of care for persons who may be considered vulnerable it seems ethically 
correct that a strict data protectionist policy should be the default. 

2.3 A Human Rights-based Approach 

The World Health Organisation (WHO) advocates a human rights-based approach for 
PlwD [12]. In our study, almost two years of personal data was collected. This included 
location (derived using GPS and nearby Wi-Fi nodes), activity recognition, indoor 
movement, and logs of heart rate, steps, and sleep patterns. This kind of monitoring 
undoubtedly has the potential to invade a person’s right to private life. The tracking 
was described by the subject as a big-brother bad dream. On reflection, the level of 
‘invasion’ depends on who has access to the data.  

3 Machine Learning (ML) 

The aim is for an algorithm to learn human mobility patterns of an individual, and to 
assess the perceived risk against the learnt normality that is deemed to be ‘safe’. A 
measure of risk is used to determine the level of protection required on the personal 
data collected. To protect privacy, propagation of this information is restricted to the 
secure home network. No interaction with the wearable or phone is required of the PwS. 
To improve potential accessibility to many users in the long run, the equipment used in 
a working prototype is a standard smart-phone and a home-based ‘hub’, which is a 
credit-card sized computer with limited resources, such as a Quad-Core 1.2Ghz CPU 
and 1GB RAM. Networking between the two in ‘monitoring’ mode is via on-board 
Bluetooth and Wi-Fi only while at home.  
 
Unconventional Deep Learning: Deep learning (DL) discovers intricate patterns in 
large datasets by using multiple processing layers to learn representations of data [13]. 
Sequential and parallel information is processed in a cyclical (recurrent) fashion by 
modifying internal weightings of input signals to produce an expected output signal 
[14, 15]. The hardware platform described may seem restrictive for a DL task in an age 
where we are used to resources being server based and ubiquity being the norm. Con-
vention says that DL requires large computing capacity, but this is not available for the 
present use case. Long Short-Term Memory (LSTM) networks [16] are a type of Re-
current Neural Network suitable for learning and predicting sequential patterns in time-
lines. Using accelerometers, as commonly found in modern mobile devices, LSTM are 
deployed in human activity recognition (HAR). X-Y-Z accelerometer readings are in-
terpreted over a defined time-period and then compared to those taken in a laboratory 
to determine probability that a categorised activity is taking place [17]. We have assim-
ilated this using GPS sensor data. A dataset suitable for learning using an LSTM neural 



network was developed, and the resultant tensor was deployed to an Android device to 
calculate the probability of being on a learnt trajectory or otherwise.  
The novel concept that surveillance need not be invasive is introduced. There is a host 
of literature relating to HAR [18], there are indoor monitoring studies with AI, e.g. [19], 
and studies of wandering trajectories, e.g. [20]. None of these describe categorisation 
of the normal movements of a person together with discrete monitoring that keeps in-
formation private until anomalies are found. 

3.1 ML Methodology 

Data: GPS data is collected from one subject using a standard HTC-10 smartphone 
used solely for that purpose. Considerable data preparation is required using the minute-
by-minute location co-ordinates. Data is first compartmentalised based on total move-
ment to date (tm). This is then divided by an increment (i) giving sub-divisions as shown 
in Fig. 1. with i = 20. 

 

Fig. 1. Boundaries of the extent of total movement for 3 months, i = 20. Map: © Google. 

To optimise computation time, daily data is reduced to only the proportion that repre-
sents movement.  
 
Categorisation. Points within each segment (or compartment) are assessed for each 
trajectory and each segment’s points are compared using a kd-tree-based nearest-neigh-
bour algorithm [21]. The degree of similarity is assessed giving a percentage and a 
threshold provides a similarity decision. There is difficulty in some trajectories where, 
for example, topographical, atmospheric, or networking issues used in test data collec-
tion lead to sparse and noisy data. Sparse data was dealt with using 1d-univariate inter-
polation [22]. This is particularly important in the early days of training where there are 
few trajectories to compare. Noisy data is essentially ignored at this time by adding a 
tolerance to the similarity decision just described which is explained in more detail 



below. The result of the comparison algorithm is a segment chain (string) for trajecto-
ries with 1 or 0 signifying a match in each square. 

 

 

 

Fig. 2. A successful match of two segment chains. 
29 segments, i=10 

Fig. 3. Interpolation used to deal with 
sparse data causing accuracy issues  
Map data: © Google 

Categorisation by comparison of trajectory segment chains by only comparing matched 
segments significantly reduces the computational capacity required in terms of pro-
cessing and memory. If a match is found, interpolated point data is added to a master 
repository with which future comparisons are made. An encoded polyline [23] reduces 
database size requirements and allows trajectories to be stored as entities. In time, the 
necessity for interpolation is reduced as the repository trajectory density increases. 
As seen in Fig. 3., interpolation may cause significant deviation from the route that is 
travelled, e.g. by cutting corners and using roundabouts, but this level of granulation is 
considered satisfactory as a ‘zone of safe movement’ is maintained. Matching segments 
rely on a nearest neighbour tolerance (nnT) and merging with subsequent trajectories 
eventually creates a dense category master that is used to define this zone.  
 

  
 

Fig. 4. a) A comparison tolerance nnT leads improved matches while ignoring noise 
            b) Interpolated points are merged to create a dense category master 
 

nnT set at 0.005 in decimal degrees, equating to just over 500m, is used in the ex-
periments. This tolerance can be linked to tm in further work as the extent of movement 
defines the granularity required within the movement space. The resultant categories 
develop into a densely populated polyline seen in Fig. 4b. All movement within a data 
collection period are matched with destinations recognised in the initial cluster analysis. 



In addition to our collected data, the comparison algorithm was tested using seven 
users’ data from the Geolife (GL) dataset [24]. This contains better quality GPS trajec-
tories and includes higher variance in modes of travel. With nnT applied to nearest 
neighbour algorithm it is observed that small deviations from a route are not a signifi-
cant problem. As can be seen in Fig. 5., four separate tracks converge on a destination 
and in the extent of this day’s movement all points are within one segment.  

Noise, detours and differing distances included in two tracks taking Route 1 and 
Route 2 in Fig. 6., both arrive at the same place E1 and C2. nnT allows for the eventuality 
of C1 and D1 not matching Route 2. Adding both to the master increases the possibility 
that subsequent trajectories match by widening the dataset. 

  

Fig. 5. Detours and converging paths are 
handled using nnT and segment comparison 
Map: © Google Maps 

Fig. 6. Widening the category master by allow-
ing a nearest neighbour tolerance 

Bearing. Some GL users’ data highlighted the difficulty of recognising direction of 
travel in that only one-way trajectories are recorded. Experimentation with inclusion of 
direction of travel gave complex results, consequently movement is treated as omni-
directional; the category master is essentially an amalgamation of history on that route. 
Time factor. This is an important consideration in the study scenario, but the likelihood 
of a person travelling a recognised trajectory at the same time is low so prediction of 
this is not required. There are detours from a route, the method of travel may change, 
there may be traffic. These factors all have a significant impact on spatio-temporal data 
and following extensive experimentation, it is concluded that data-point true 
timestamps cause confusion. Instead, each category master is indexed sequentially. 
Predictability. Major studies in human mobility patterns find that there is a high degree 
of temporal and spatial regularity [25]. In the datasets investigated, this study concurs; 
the number of places travelled to is surprisingly low. The three most regularly visited 
destinations are selected for demonstration; these are travel to University (south), to 
social visits (west) and to a supermarket (east) seen in Fig. 7. 



 
Fig. 7. Three categories of travel overlaid with noise showing, interpolated; 3 x 10k records 

Pre-processing. Category masters are exported and the number of records per category 
is equalised by interpolating (increased or reduced) to 10,000 records each. Noise is 
amplified where outliers are interpolated. These outliers will be removed in later ver-
sions of the system. The data is stacked and normalised. Train:test split is 80:20. 
Machine Learning. Inspiration for this is credited to work using Convolutional Neural 
Network and LSTM RNN in mobile phone HAR applications. The solution selected for 
our application is Tensorflow ‘BasicLSTMCell’ stacked with ‘MultiRNNCell’ with 64 
hidden units. The neural network is expected to learn geo-spatial data to predict cate-
gorisation (of the trajectory) when it is given further blocks.  

3.2 ML results  

Experimentation found that the number of time steps set at 10, in blocks of 10 gave an 
accuracy of 90-97% over 500 epochs in less than 1.5 hours (Fig. 8.).  

  
Fig. 8. LSTM training session over 1.4 hours. 90-97% accuracy 



Deployment. Using our dataset, the resultant tensor is imported to an Android appli-
cation that sequentially passes arrays of 10 steps of a test trajectory in a timed fashion. 
A Tensorflow classifier returns the probability of the array being Category 1, 2 or 3 
for the three trained classes. These predictions are logged on the phone (Fig. 9.).  
 
Mobile Results 
Category 1: Correctly predicted with 98 - 99% certainty unless trajectories overlap. 
Category 2: Correctly predicted with 55 - 86% certainty. 
Category 3: Correctly predicted with 77 - 90% certainty. 
 

a) b) 
 

c) 
 
Fig. 9. Android category prediction results: The vertical scale on these graphs range from 0 
to 1 where 1=100% certainty.  
             a) Category 1 (dotted line) 
             b) Category 2 (dashed line) 
             c) Category 3 (solid line) 

 
The Tensorflow classifier gives reliable prediction of a route being tested in all cases. 
These are very satisfactory results. Overlap between two categories returning a 50:50 
result in the Category 1 test is perfectly acceptable since the routes do overlap.  
 
Public Dataset Results 
Training was carried out using matched trajectories in the GL dataset with similarly 
acceptable results. 

 

 
Fig. 10. LSTM training session for 7 users (in 9 tests) using Geolife dataset 

 



Volunteer Test Results 
Six volunteers were recruited from a convienience sample that consented to be 
tracked by phone and fitness tracker for a period of three months. GPS data was col-
lected by enabling Google Timeline and by configuring their phone accordingly. 
Places visited, and routes taken are stored on Google servers1. At the end of the pe-
riod data was exported, and a bespoke script was developed to interpret the data. With 
very few exceptions, it was found that the main locations visited can be classified as 
attending a place of work or study, going shopping and visiting friends or family.  
 
Machine Learning Results: As previously explained, the six datasets consist of lati-
tude, longitude, and elevation. When subjected to the same neural network, training 
test results are shown in Table 1. 

Table 1. Volunteer machine learning results 

Volunteer Age Gender Phone % Accuracy Result 
1 46 F iPhone 5s 86 
2 23 M iPhone 6s 84 
3 22 F iPhone 5s 85 
4 80 F Android Galaxy S5 89 
5 45 M Android Galaxy J3 97 
6 54 M Android Galaxy S4 88 

 
Volunteer 3 presented problems in that trajectories overlapped due to the topography 
of their home address. A revised method that change the way overlapping trajectories 
are categorised can be used overcome these issues. Volunteer 4 had noticeably more 
restricted movement and comparably reduced distance travelled causing specific is-
sues of data sparsity. For these reasons both datasets required manual categorisation 
and matching. 
 
Data Augmentation: Noisy data was dealt with using Google Snap-to-Road [26] 
and/or TrackMatching [27] and when sparsity occurred, gaps were filled using route 
finding techniques such as Google Directions API [28] or a variation of Open Street 
Maps routing [29]. Route finding methods of augmentation cause an element of sub-
jectivity but provided data suitable to test the network. 
 
Deployment Results: The Android simulator gives closely comparable results as that 
with our own data, for example volunteer 1:  
Category 1: Correctly predicted with 42-54% certainty. * 
Category 2: Correctly predicted with 97-99% certainty. 
Category 3: Correctly predicted with 98-99% certainty.  * routes overlap 

                                                           
1 Note that Google Timeline is only used for data gathering in this initial feasibility study. The 
  full solution uses GPS data stored only locally on the mobile device and processed on the home  
  hub. 



It is concluded from this series of tests that the developed machine learning model 
provides adequate accuracy in the categorisation of routes. The differing data collection 
methods give a valuable insight into how best to develop training data. The method of 
transferring learnt information to a mobile phone is particularly interesting as heavy 
processing can be carried out on a hub, thus preserving the restricted battery resource 
of the mobile device. 

4 Situation Appraisal 

Real-time appraisal of the situation of the person being monitored is key to ensuring 
their well-being. The system is designed with PlwD in mind, so apart from elopement, 
issues specific to PwS are considered: 

 
Sleep and Dementia. Circadian rhythm disorders can present as an early component 
of the disease. They have significant impact on patients and caregivers and are a ‘major 
risk factor for early institutionalisation’ [30, 31]. Symptoms include sleep disturbances, 
sun-downing, and agitation. Instances of elopement regularly occur at night. Disturb-
ance in sleep of the PwS has a significant effect on care-givers that can lead to their ill-
health [32, 33].  

Therefore, monitoring of sleep is highly relevant to this study. Not only should 
PwS’s safety outdoors be monitored, but a metric of well-being should be used to mod-
ify system sensitivity. The following section describes the approach and some techni-
calities of machine learning in this area. In addition, the initial metrics used in appraisal 
of the contextual situation the person being monitored is in are outlined. Factors such 
as sleep, and heart rate are here referred to as the ‘pre-disposition’ of the person. This 
may be understood as a metric for their well-being.  
 
Data Collection. Although sharing data to a manufacturer’s server breaches the com-
plete privacy rule, a FitBit fitness monitor is used in this study for convenience. A 
dedicated wearable with direct, local data access would allow to preserve privacy and 
will be used in the final prototype. A FitBit ‘Ionic’ is one of many devices that are 
popular with those who wish to monitor, for example, a keep-fit regime. While wrist 
actigraphy is customarily used in sleep research there is evidence that FitBit devices 
provide close estimation of total sleep time [34]. Over 2 years of data was collected 
from one subject using this device and more than three months of data from six volun-
teers using similar models. It was found that the data collected gives a good represen-
tation of actual sleep patterns. A secure authenticated oAuth2.0 API is used to access 
data from the FitBit servers, yielding daily data, when visualised is shown in Fig. 11. 
  



 
Fig.11. Graph of steps, heart rate and sleep records for one day 

Machine Learning. Machine-learning techniques have been developed that assess the 
data, which includes minute by minute heart-rate, steps and sleep records. The require-
ment is that human activity is discretely monitored with automated realisation of trends. 
The daily situation is then evaluated and compared to what is deemed ‘normal’ for the 
individual. 
 
Sleep Period. This is modelled using a Gaussian Distribution in order to give clarity 
on the expected duration of sleep. Long term changes to averages in a 3-month moving 
period for example using start, finish and duration of sleep may be used in appraisal 
(cf. Fig. 12). 
 

 
Fig. 12. Gaussian distribution of sleep start, finish and duration for 3 months 

While the subject in this study does not suffer from disruption in diurnal rhythm per se, 
average sleep per week, and distribution, give an interesting illustration that show var-
iance in the time-period (cf. Fig. 13.). 
 



 
Fig. 13. Trends in weekly sleep time for one year ignoring restlessness 

Results can be categorised using 1σ or 2σ, i.e. 68% or 98% of the norm (μ). Waking 
times can be defined as normal (up to 1σ), early or late (between 1σ and 2σ), and very 
early or late (>2σ). When visualised, trends are apparent, there are outliers that repre-
sent exceptional occurrences in this period.  
 
Activity. The same method was applied to step-count in daytime and night periods. 
This information is useful in recognising active periods during the night and possible 
association of these with daytime sedentary periods possibly in correlation with less 
sleep at night. 

 
Heart Rate while Asleep. It is observed in our dataset that in the day, heart rate closely 
relates to physical activity such as steps, but while asleep, lack of movement can be 
used to provide a period in which it is possible to benchmark and provide reliable re-
gression analysis. As illustrated in Fig. 11., minute by minute daily heart rate is col-
lected. When heart-rate while asleep is extrapolated across days and polynomial regres-
sion compared, clear differences are evident. Centroids of five sleep periods are ana-
lysed. The sleep periods are start, early, mid, late and finish. In this way, varying sleep 
periods of different lengths are normalised. Agglomerative clustering with simple Eu-
clidean affinity [35], and k-means cluster analysis [36] are used to give single centroids 
for each period. Having results for each period makes it possible to visualise clusters 
(cf. Fig. 14), and conclude μ and σ in any defined period. 

 



 
Fig. 14. Five clusters of heart rate readings in one night. μ = 63 bpm 

Centroid data for a date period gives an average of averages (μ). If a limit of, for exam-
ple, (μ + 0.5σ) is applied on data available then results can be categorised as being 
ordinary (0) or otherwise (1). Currently, only checks for high heart rate are introduced 
into the training data, but others could be included in future.  
 
Neural Network. A neural network was developed using Keras and TensorFlow. The 
input layer and 2nd hidden layer uses a rectifier activation function with 6 nodes and 9 
inputs. These are maximum, minimum, μ, σ and the five centroid results. A sigmoid 
activation function is used on the output layer. The classifier function is compiled using 
the 'adam' optimiser with 'binary_crossentropy' loss, 500 epochs are used in training in 
batches of 10. The data is split so that 80% is used in training and 20% as test data. 
Experimentation using just over a year of raw-data were useful in that they were able 
to recognise the categorisation that had been applied to that data. 94.9% accuracy was 
measured for 1 year’s data in 105 seconds. Using 1 month of data, 85% accuracy was 
measured in 24 seconds, this was then improved to 87% by only supplying centroid 
measurements i.e. 5 inputs. It was concluded that pre-processing using hierarchical 
clustering then k-means and applying a fixed rule for categorisation is reliably recog-
nised in a Neural Network; it is possible, for this subject, to predict with 87% accuracy 
given a month of data. The categorisation of data requires a rule to build training data, 
but once training has taken place the resultant tensor is deployed to the phone to process 
daily readings autonomously. The system successfully recognised exceptional heart 
rate events of the subject.  
 

A fitness tracker that is worn 24 hours a day provides an efficient way to collect 
information for this study. The product used is aesthetically pleasing and if a PwS is 
used to wearing a smart-watch it should not present a problem in use. Activity and 
indication of heart-rate levels may provide a useful indicator of well-being of a person 
at night.  



5 Contextual Factors 

When coupled with fundamental contextual factors such as time-of-day, distance from 
home, and weather conditions, contextual risk of being at a location outdoors can be 
used in decisions regarding preservation of privacy. The following sections summarise 
factors used in this study. 

 
5.1 Time and Distance Metric 

Time-of-day is easily determined on a computer and is an important factor when con-
sidering risk. Weightings w(t) of time t and distance from home are used for analysis. 
A time metric simply uses the hour of day, this is provisionally set as follows: 

with 1 representing low risk. A distance metric w’(d) for distance d is similarly set at:  

These definitions are notional values for use in the experiments which should initially 
be decided by the user dyad after considering the questions of when and how far is 
normal for the individual PwS. 

 
5.2 Weather Metric 

In a similar way, scales of risk can be compiled using weather forecasting applications 
such as Dark Sky or OpenWeatherMap. The Dark Sky API [37] offers a full collection 
of meteorological conditions and is used in the study. The locality of the subject is 
known so forecast data is retrieved for temperature, precipitation and wind in that area. 
A rudimentary weather metric is defined using a matrix (see Table 2 where, again, 1 
corresponds to low risk). 

 

Table 2. Weather Metric Matrix 

Weight Temperature (° C) Precipitation (mm/h) Wind (Beaufort scale) 

1 ]15..25] [0..1] [0..5] 

2 ]10..15], ]25..27] ]1..4] ]5..11] 

3 [∞..15], ]27..∞] ]4..∞] ]11.. ∞] 

    
Fig. 15. illustrates how this matrix can be used to conclude an accumulated weather 
measurement and how this can be weighted by time of day.  



 

Fig. 15. Examples of a weather metric at different times of the day 

The weather metric, time, and categorised location result, when amalgamated with pre-
disposition give a measure of risk. Put simply, if the monitored person is well rested 
and is outside on a sunny afternoon in a place which is defined as normal then perceived 
risk may be low, an accumulated score is used to derive the overall risk. When viewed 
together, these measures can be used to decide the point at which to override the privacy 
rule to ensure the monitored person is not harmed. The following section describes a 
working application designed to illustrate this. 

6 Risk Analysis 

Complex methods can be applied to calculate the perceived risk to the PwS; all the 
metrics described may be used to adjust the overall sensitivity of the system. 
 
6.1 Inferring an Unknown Location 

The Tensorflow Classifier, described in Section 3, is used in prediction of where the 
subject is in relation to normally visited places. If the subject moves to a new space, the 
contextual risk of that activity is assessed using time, distance from home, and fore-
casted weather conditions. In Fig.16 a) movement along the test trajectory is outside 
known areas (shaded grey), distance and known temperature for the area is monitored 
(left graph above map). Risk is visualised in the right graph. As distance from home 
(start point) reduces, the system perceives this as returning and hence risk decreases. In 
Fig.16 b) a detour outside a known path instigates appraisal and logs this as a new place, 
leading to an accumulation of risk, that is reset when the probability of normal move-
ment increased, as shown in Fig. 16 c).  



  
a) 

 b)   
c) 

Fig. 16. a) Graphed representation of accumulating risk reducing with distance. 
              b) Risk increasing when taking a detour from the trained path. 
              c) Correct categorisation of trajectory with 99% accuracy – risk is reset. 
 

The described system is indicative of how machine learning can be used to assess 
the ‘normality’ of outdoor movement and changes in sleep and heart rate patterns. 
The attraction of using AI in this way is that data learnt can be transferred across 
platforms and re-training can take place using a private network overnight. The ten-
sor allows the mobile device carried by the PwS (in our study a phone) to act as an 
autonomous agent that does not require the internet, which has a very significant 
positive impact on battery life.  
 

This research introduces a method using an AI agent to continuously assess the 
situation and make an ethical decision on overriding the default level of privacy. The 
point at which a measure of risk translates into a decision to breach privacy for the 
good of the monitored person is the topic of significant and ongoing debate, to which 
this technical study contributes. The following section briefly touches on considera-
tions in this field. 

7 Ethics 

The ethical debate regarding the point at which location data is shared, and with whom 
is an interesting area to which our findings contribute. If activity, time, place, or weather 
is appraised as high risk or ‘inappropriate’, a prior moral framework that rates safety 
and risk versus. privacy can justify that recent movement and current location may be 
shared. A wellbeing metric can be used to determine system sensitivity. The sharing of 
location can take the form of an SMS alert, or an alert via the internet including a map 
showing the current position of the PwS to a trusted carer. Continuous updates can 
facilitate speedy recovery. In all other cases, the PwS may continue independently and 
all data collected is kept private. 



Several questions arise: 
• When applied to vulnerable persons, who may decide the threshold and who 

defines what is ‘inappropriate’? 
• Is normality really ‘safe’? 
• In production, would an AI-based algorithm implementing a definition of pri-

vacy be trusted?  
 

Our work does not attempt to answer these questions, but provides investigation into 
the capabilities of technology. It is found in literature that technological solutions fail 
to offer a considered approach to resolve well-known privacy issues. Surveillance of 
those who may be deemed vulnerable is considered by many as ethically inappropriate, 
but ‘needs must’ and carers are taking DIY approaches [38], with systems that use tech-
nology not optimised for privacy. This exposes them to potential security vulnerabili-
ties as described above. We have shown that a fitness tracker can be used to learn what 
is normal in terms of heart rate while asleep. This, and other contextual matrices can be 
used to modify system sensitivity. A private monitoring system that uses AI to deter-
mine out-of-the-ordinary movement is novel. Since it respects privacy, this surveillance 
is not intrusive. Development and implementation of such a system is likely to provide 
PlwD with an ethically robust ‘safety net’ that may be used to improve quality of life. 
It can increase independent living of the PwS, provide peace of mind to the carer, while 
not requiring data sharing to call centres, or collection on central servers of tracking 
providers. Our system achieves secure data control and maintains data ownership.  

8 Conclusion 

The research presented shows promising results both in recognition of human geo-spa-
tial activity and in prediction of movement along normally travelled routes. A wellness 
monitor discretely monitors both sleep and heart rate and this can be used to learn what 
is normal to enable it to flag exceptions. A cost-effective working prototype has been 
produced to demonstrate that deep-learning techniques can be applied to spatio-tem-
poral data after programmatically categorising normally travelled trajectories. It has 
been found that when only part of a trajectory has been travelled, likely destinations 
can reliably be inferred. The application is designed to restrict personal information 
propagation to a home network and the limitations of computing capacity do not detract 
from the quality of results.  

The World Health Organisation recognises that surveillance is intrusive, that the hu-
man rights of PwS are sometimes denied and that abuse of liberties is present. Locking 
doors to stop a person eloping violates their human right to liberty, but surveillance 
normally results in sharing of personal information, so is contrary to their human right 
to private life. Risk, when deviations from known places are sensed, is assessed auto-
matically on a smart-phone in the context of time, extent and weather conditions.       

Human rights (of private life and liberty) of the person with symptoms will be re-
spected until the point at which it is judged that a prior moral argument of safety and 
risk supersedes the importance of privacy. If this happens, alerts containing location 



and recent movements are shared with an assigned carer, thus facilitating swift recov-
ery.  
 

The potential of the AI system described here is considerable. It is likely that many 
who value the importance of privacy highly will welcome a surveillance system that 
monitors but does not divulge detail. Predictions of likely trajectory of movement using 
real-time location data is novel, as is the concept of private surveillance as described. 
Availability of an internet connection or at least cellular coverage to deliver alerts is a 
requirement for implementation.  
 

Ongoing work includes the processing of data from recruited volunteers, it is diffi-
cult to assess how the data-sets used differ from that which could be collected from 
PwS, subject to gaining the appropriate ethical approvals trials will embark with re-
cruited PwS.  The assessment of complex and intertwined trajectories and comparison 
of different scales of movement is currently under investigation. Findings will contrib-
ute to further refinement of the methodology after consultation with health profession-
als and PlwD. In an ideal scenario this would be used for prolonged independence of 
PwS, alleviation of a 24/7 burden of care, and could delay the necessity of moving the 
PwS to a care home. 
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