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Abstract 
In this study, a finite element (FE) model is proposed to study the thermal transverse vibrations of 
cracked nanobeams resting on a double-parameter nonlocal elastic foundation. Hamilton’s 
principal is employed to derive the governing equations for the free vibrations of the nanobeam. 
The cracked section of the beam is modelled by dividing the cracked element into two classical 
beam sections connected via a rotational spring positioned at the crack. The Galerkin method of 
weighted residuals is used to solve the equations of motion and calculate the natural frequencies. 
The effect of the crack length, crack position, the temperature gradient, the boundary conditions 
and the foundation stiffness, on the vibration response of the cracked nanobeams supported by 
elastic foundations is considered by including thermal effects. The FE results are compared to the 
available benchmark studies in the literature.

Keywords:

Cracked nanobeam; Nonlocal theory; Transverse free vibrations; Winkler-Pasternak medium; 
Thermal effects; Finite element.

Introduction
Recently nano/micro-structured materials have become more important due to their superior 
performance and because of their wide range of applications in cell manipulation [1], microsurgery 
[2] and micro/nano-electro mechanical systems (MEMS/NEMS) [3]. The study of micro/nano 
structural elements such as beams and plates at the micro/nano-length scale has attracted the 
attention of many researchers. Since atomic and molecular models are too expensive for design 
optimisation, continuum models are generally utilised in the analysis of these elements where size 
effects are critical [4]. High order continuum theories have received intense interest, since these 
theories are able to describe the size effects of micro/nano structures incorporating the interactions 
of non-adjacent atoms and molecules. The most popular continuum mechanics theory used to 
model the size effects of nanostructures is the nonlocal elasticity theory. This high order theory 
incorporates size effects accurately enough to model micro/nano scale structures [5]. In this theory, 

1 Corresponding author: arashimaniaria@gmail.com.
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introduced by Eringen [5], the long range interactions between atoms are included. In fact, 
Eringen’s theory assumes that the stress of a specific point in a continuum body is related to the 
strains at all points of that continuum, not only those near the considered point. In the recent years, 
many studies have analysed the vibrations and buckling of intact nanostructures on the basis of 
nonlocal elasticity [6-23]; since the list of these investigations is very long, only some of the latest 
studies are mentioned here. Also, in the field of electro-mechanical structures, Zhu et al, 
investigated the influence of the surface energy on the vibration [24] and buckling [25] behaviour 
of piezoelectric nano-shells. They proposed several significant methods to improve the simulated 
responses of piezoelectric nano-shells.

Cracks, which are common relevant defects, can decrease the stiffness of the system and 
consequently reduce the natural frequencies [26-34]. Since the presence of defects cannot be 
ignored in the fabrication of micro/nanostructures, the investigation of cracks and flaws should be 
considered in the design of micro/nanoelectromechanical systems. In the literature, few researchers 
have studied cracked nanobeams incorporating size effects. Luque et al. [35] investigated the 
tensile response of copper nano-wires, considering surface cracks, using molecular dynamics 
simulations. The transverse vibrations of cracked nanobeams were analysed by Loya et al. [36] 
based on Euler- Bernoulli theory with a torsional spring using nonlocal elasticity. The flexural 
vibration of cracked Euler–Bernoulli nanobeams considering surface effects was studied by 
Hasheminejad et al. [37]. By neglecting, the effect of surface density, they examined the influences 
of surface tension and surface elasticity. Hosseini- Hashemi et al. [38] analysed the vibration 
behaviour of cracked nanobeams based on surface elasticity. Using first-order shear deformation 
theory, they examined the influences of crack depth and location, rotary inertia, shear deformation 
and vibration modes. Roostai et al. [39] studied multiple cracks with various boundary conditions 
exploiting nonlocal elasticity theory. They utilized analytical solutions to investigate the effects of 
crack severity, crack location and nonlocal parameter on the fundamental frequencies of the Euler–
Bernoulli nanobeam. Analysing the influences of temperature gradient and magnetic field, Karlicic 
et al. [40] presented an analytical model to examine the natural frequencies of a cracked Euler–
Bernoulli nanobeam resting on a single parameter medium incorporating thermal effects. Tadi 
Beni et al. [41] studied the bending vibration of cracked nanobeam in the framework of modified 
coupled stress theory. They highlighted the roles of the crack location and crack severity on the 
bending frequency of the nanobeam. Wang and Wang [42] studied lateral vibrations of cracked 
nanobeams considering surface effects and using surface energy theory. Buckling and post 
buckling of cracked nanobeams, using the modified coupled stress theory was studied by 
Khorshidi et al. [43]. They modelled the microbeams by Euler Bernoulli theory with open edge 
cracks and studied the influence of the crack location, crack depth, and length scale parameter on 
microbeam’s buckling and postbuckling response. 

There are variety of approaches to model elastic foundations [16]. For example, Winkler’s elastic 
medium is based on a linear spring system, which contains closely spaced linear springs. In this 
model, the deformation occurs only at the location where the load is applied. In the Pasternak 
model, shear interaction among the spring elements is modelled by connecting the ends of the 
springs to a structure that only undergoes bending shear deformation. In addition to these two 
models, there are several other methods to model the elastic medium such as the Heteny model, 
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the Borodicha Filonenko model, and the Kerr model. In the past few years, a range of 
investigations have studied the vibration and buckling behaviour of beams that are embedded in 
various kinds of elastic medium. Yang et al. [44] studied the free vibration of axially moving 
elastic beams, considering pinned-pinned boundary conditions, and supported by an elastic 
foundation. Murmu and Pradhan [45] examined the role of elastic foundations on the thermal free 
vibration of single-walled CNTs on a Winkler foundation. Amirian et al. [46] studied the shear 
deformation and rotatory inertia effects on the natural frequencies of single-walled CNTs. They 
employed first-order shear deformation theory to study the flexural vibrations of beams on 
Pasternak foundations. Chang [47] exploited the FE method to analyse the thermal bending 
vibration and pre-buckling of single-walled CNTs embedded in an elastic foundation, based on the 
mechanics of thermoelasticity. In order to examine linear buckling of axonal microtubules, Civalek 
and Demir [15] calculated the critical buckling loads for different kinds of microtubules resting on 
elastic foundations with various boundary conditions, using the finite element method. They also 
investigated thermal flexural vibrations of silicon carbides resting on a Winkler-Pasternak 
foundation [16] and calculated the natural frequencies for different boundary conditions.

The novelty of this study is to propose a nonlocal finite element formulation in order to investigate 
the thermal vibrations of cracked nanobeams that are embedded in a double-parameter elastic 
foundation. The governing equations are derived based on Hamilton’s principle and the crack is 
modelled as a rotational spring. Classical beam theory is utilized and three boundary conditions 
are considered. In the present study, the influences of the nonlocal parameter, the crack severity, 
crack location, temperature and the foundation stiffness on the natural frequencies of crack 
nanobeams are investigated and the results are compared with previous studies available in the 
open literature.

2. Model Formulation
    2.1 Cracked beam 
A cracked beam of length , has an edge crack of depth  and a crack at  from left (Fig. 1). 𝑙 𝑑𝑐𝑟 x = 𝑙𝑐
It is assumed that the edge crack always remains open. The exclusion of one or more atoms in the 
structure of the nanobeams results in additional strain energy, that may be considered as equivalent 
to a crack in the continuum. The cracked nanobeam is modelled as two beams, which are connected 
to each other by a rotational elastic spring. This spring is assumed to include the additional strain 
energy, which is imposed by the existence of the crack. The increments corresponding to the strain 
energy with respect to the axial force and the bending moment can be given as

(1)∆𝑈𝑐 =
1
2𝑀∆𝜃 +

1
2𝑁∆𝑢

where  and , are the angular deformation of the rotational spring and the horizontal 𝛥𝜃 𝛥𝑢
displacement at  respectively, which are given by [36] x = 𝑙𝑐

(2)∆𝜃 = 𝑘𝑀𝑀
∂2𝑤
∂𝑥2 + 𝑘𝑀𝑁

∂𝑢
∂𝑥
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(3)∆𝑢 = 𝑘𝑁𝑁
∂𝑢
∂𝑥 + 𝑘𝑁𝑀

∂2𝑤
∂𝑥2

where,  and  are the flexibility constants. Also, in case of free transverse 𝑘𝑀𝑀, 𝑘𝑁𝑁,𝑘𝑀𝑁 𝑘𝑁𝑀
vibrations, no longitudinal displacement is assumed and the flexibility constants  and   𝑘𝑁𝑁,𝑘𝑀𝑁 𝑘𝑁𝑀
are considered to be small [36]. Hence, only the flexibility related to the bending moment  is 𝑘𝑀𝑀
considered. 

z
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Torsional spring

lA lB
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Fig. 1. (a): Cracked nanobeam on a Winkler-Pasternak elastic foundation, (b): crack is modelled 
as a torsional spring.

The edge crack causes a discontinuity in the bending slope and the continuity condition for the 
Euler–Bernoulli beam in the cracked section  is, 𝑥 = 𝑙𝑐

(4)∆𝜃 =
𝑘𝑀𝑀

𝑙
∂2𝑊(𝑥)

∂𝑥2 |𝑥 = 𝑙𝑐 = 𝐾
∂2𝑊(𝑥)

∂𝑥2 |𝑥 = 𝑙𝑐

where .𝐾 =
𝑘𝑀𝑀

𝑙

Also, the stiffness of the rotational spring may be related to the crack depth by the following 
relation [48]

(5)𝐾𝑠 =
𝐸𝐼
𝑙

1
𝑘 ∗

where

(6)𝑘 ∗ =
ℎ
𝑙𝐶(𝑑𝑐𝑟 ℎ)

in which, according to [49]:
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(7)𝐶(𝑑𝑐𝑟 ℎ) =
(𝑑𝑐𝑟 ℎ)[2 ‒ (𝑑𝑐𝑟 ℎ)]

0.9[(𝑑𝑐𝑟 ℎ) ‒ 1]
2

        2.2 Nonlocal Elasticity Theory
Nonlocal elasticity theory [5] incorporates the size effects by adding a scale parameter to the 

classical continuum elasticity theory. For a nanobeam with length  and modulus of elasticity , 𝑙 𝐸

the stress at a general point  is given by 𝑥

(8)𝜎𝑥𝑥 = ∫𝑙
0𝐸𝛼0(𝑥,𝑥',𝑒0𝑎)𝜀 '

𝑥𝑥(𝑥')𝑑𝑥'

where  is the normal strain at a neighbouring point . The coefficient  is the principal 𝜀 '
𝑥𝑥 𝑥'  𝛼0

attenuation kernel function, that imports the nonlocal effects to the constitutive equations. The 

parameter  is the nonlocal coefficient, which represents the contribution of the nonlocal stress 𝑒0𝑎

field, where  is an internal characteristic length and  is the nonlocal material constant.  𝑎 𝑒0

Although, to date, no agreement has been achieved on how to specify the material-dependent 

length scale parameter experimentally [50], some studies have extracted the nonlocal parameter 

by molecular dynamics simulations in CNTs [51,52].  In this paper a parametric study is performed 

to analyse the effect of this parameter on the vibration behaviour of cracked nanobeams. Equation 

(5) denotes the weighted average of the contributions of the strain field at all points in the 

continuum over the stress field at a given point. The integral form of Eq. (8) is difficult to solve, 

but based on the linear differential operator that was proposed by Eringen [5], it is possible to 

transform the exponential nonlocal kernel functions to their equivalent differential form as follows

(9)(1 ‒ (𝑒0𝑎)2∇2)𝝈 = 𝑪 ∶ 𝜺

where   is the Laplacian operator.∇2 =
∂2

∂𝑥2 +
∂2

∂𝑦2 +
∂2

∂𝑧2

       2.3 Euler- Bernoulli Beam Theory Based on Nonlocal Elasticity
The displacement field  based on Euler-Bernoulli beam theory (EBT) at time  is given (𝑢𝑥,𝑢𝑦,𝑢𝑧) 𝑡
by

(10)𝑢𝑥(𝑥,𝑧,𝑡) = 𝑢(𝑥,𝑡) ‒ 𝑧
∂𝑤(𝑥,𝑡)

∂𝑥

(11)𝑢𝑦(𝑥,𝑧,𝑡) = 0
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(12)𝑢𝑧(𝑥,𝑧,𝑡) = 𝑤(𝑥,𝑡)

where,  and  are the displacement components of the mid-surface in the axial ( ) and 𝑢 𝑤 𝑥
transverse ( ) directions, respectively. The non-zero normal strain of EBT is given by𝑧

(13)𝜀𝑥𝑥 =
∂𝑢𝑥

∂𝑥 =
∂𝑢
∂𝑥 ‒ 𝑧

∂2𝑤
∂𝑥2

In order to obtain the governing equations, Hamilton’s principle is used 

(14)𝛿∫𝑡2
𝑡1

(𝑇 ‒ (𝑈 + 𝑉)𝑑𝑡 = 0

where, ,  W and  denote the strain energy, the work done by the external forces and the kinetic 𝑈 𝑇
energy, respectively. 

The variation of the strain energy is defined as

(15)𝛿𝑈 = ∫
𝑉𝜎𝑥𝑥𝛿𝜖𝑥𝑥𝑑𝑉 = ∫𝑙

0(𝑁𝑥𝑥
∂𝛿𝑢
∂𝑥 ‒ 𝑀𝑥𝑥

∂2𝛿𝑤
∂𝑥2 )𝑑𝑥

where  and  denote the stress resultants corresponding to the axial forces and the bending 𝑁𝑥𝑥 𝑀𝑥𝑥
moments respectively and are given by

(16)𝑁𝑥𝑥 = ∫
𝐴𝜎𝑥𝑥𝑑𝐴

(17)𝑀𝑥𝑥 = ∫
𝐴𝑧𝜎𝑥𝑥𝑑𝐴

The variation of the kinetic energy is 

(18)𝛿𝑇 = ∫𝑙
0𝜌𝐴(𝑢𝛿𝑢 + 𝑤𝛿𝑤)𝑑𝑥

The variation of the virtual work of the distributed axial load ( ) and the distributed transverse 𝑓
load ( ) and the concentrated axial end force  are defined as 𝑞 𝑃

(19)𝛿𝑊 = ∫𝑙
0(𝑓𝛿𝑢 + 𝑞𝛿𝑤 + 𝑃

∂𝑤
∂𝑥

∂𝛿𝑤
∂𝑥 )𝑑𝑥

By substituting Eqs. (15), (18) and (19) into Eq. (14) and performing integration by parts the 
following weak form is derived 

(20)∫𝑡2
𝑡1

∫𝑙
0[(∂𝑁𝑥𝑥

∂𝑥 ‒ 𝑓 ‒ 𝜌𝐴𝑢)𝛿𝑢 + (
∂2𝑀𝑥𝑥

∂𝑥2 ‒ 𝑞 ‒ 𝜌𝐴𝑤 ‒ 𝑃
∂2𝑤
∂𝑥2)𝛿𝑤]𝑑𝑥𝑑𝑡 = 0

By setting the coefficients of  and  to zero, the equation of motion for an Euler- Bernoulli 𝛿𝑢 𝛿𝑤
beam is obtained as

(21)
∂𝑁𝑥𝑥

∂𝑥 ‒ 𝑓 = 𝜌𝐴𝑢,

(22)
∂2𝑀𝑥𝑥

∂𝑥2 ‒ 𝑞 ‒ 𝑃
∂2𝑤
∂𝑥2 = 𝜌𝐴𝑤
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Substituting Eq. (13) into Eq. (9), for a 1-dimensional element the following is derived 

(23)𝜎𝑥𝑥 ‒ (𝑒𝑎0)2∂2𝜎𝑥𝑥

∂𝑥2 = 𝐸(∂𝑢
∂𝑥 ‒ 𝑧

∂2𝑤
∂𝑥2)

In view of Eqs. (21) and (22), the stress resultants can be written as

(24)𝑁𝑥𝑥 = (𝑒𝑎0)2∂2𝑁𝑥𝑥

∂𝑥2 + 𝐸𝐴
∂𝑢
∂𝑥

(25)𝑀𝑥𝑥 = (𝑒𝑎0)2∂2𝑀𝑥𝑥

∂𝑥2 ‒ 𝐸𝐼
∂2𝑤
∂𝑥2

By using Eqs. (21), (22), (24) and (25), the governing equations of motion for an Euler- 
Bernoulli beam with respect to the displacements, and including nonlocal elasticity theory, are 
obtained as 

(26)𝐸𝐴
∂2𝑢
∂𝑥2 + (1 ‒ (𝑒𝑎0)2 ∂2

∂𝑥2)(𝜌𝐴𝑢 ‒ 𝑓) = 0

(27)𝐸𝐼
∂4𝑤
∂𝑥4 + (1 ‒ (𝑒𝑎0)2 ∂2

∂𝑥2)(𝜌𝐴𝑤 + 𝑞 + 𝑃
∂2𝑤
∂𝑥2) = 0

In this study, the thermal transverse free vibrations are investigated, and therefore only Eq. (27) 
will be analysed. Also, the effect of thermal loading is considered via the axial force , where𝑃

(28)𝑃 = 𝐸𝐴𝜀𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 =‒ 𝐸𝐴𝜀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =‒ 𝐸𝐴𝛼∆𝑇

where  is the linear thermal expansion coefficient and  is the temperature change.𝛼 ∆𝑇

Assuming   and   the residue is given by𝑤(𝑥,𝑡) = 𝑊(𝑥)𝑒𝑖𝜔𝑡 𝑞 = 𝑘𝑤𝑤 ‒  𝑘𝑝
∂2𝑤
∂𝑥2

R= (29){𝐸𝐼
𝑑4𝑊
𝑑𝑥4 + (1 ‒ (𝑒𝑎0)2 𝑑2

𝑑𝑥2)(𝜌𝐴𝜔2𝑊 + 𝑘𝑤𝑊 ‒ 𝑘𝑝
𝑑2𝑊
𝑑𝑥2 ‒ 𝐸𝐴𝛼∆𝑇

𝑑2𝑊
𝑑𝑥2 )}

Here,  is the frequency,  is the linear stiffness related to the Winkler foundation,  is the 𝜔 𝑘𝑤 𝑘𝑝

shear stiffness corresponding to the Pasternak foundation and  is the cross section area, 𝐴

       2.4 Finite Element Formulation
Fig.2 shows a three-node beam element, where in this study the third node is assumed to be 
located at the crack and in the middle of the element ( ). This finite beam element has 𝑙a = 𝑙𝑏 = 𝑙 2
seven degrees-of freedom including three transverse and four rotational displacements that are 
defined at the neutral axis. 
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Fig. 2. Beam element with three nodes and seven degrees of freedom.

By minimizing Eq. (29) over a given element, one obtains

(30)∫𝑙
0𝑅𝜑𝑑𝑥 = 0

where  is the weighting function in the Galerkin finite element method. This weighting function 𝜑
is also employed as the shape function. By substituting Eq. (29) into Eq. (30) and after 
performing partial integration, the weak form is derived as

∫𝑙

0[𝐸𝐼
∂2𝑊
∂𝑥2

∂2𝜑
∂𝑥2 ‒ 𝜌𝐴𝜔2(𝑊𝜑 + (𝑒𝑎0)2∂𝑊

∂𝑥
∂𝜑
∂𝑥) + 𝑘𝑝

∂𝑊
∂𝑥

∂𝜑
∂𝑥 + (𝑒𝑎0)2𝑘𝑝

∂2𝑊
∂𝑥2

∂2𝜑
∂𝑥2 + 𝑘𝑤𝑊𝜑 + (𝑒𝑎0)2𝑘𝑤

∂𝑊
∂𝑥

∂𝜑
∂𝑥]𝑑𝑥

‒ (𝑒𝑎0)2𝜌𝐴𝜔2∂𝑊
∂𝑥

∂𝜑
∂𝑥| 𝑙

0
+ (𝑒𝑎0)2(𝑘𝑝 ‒ 𝐸𝐴𝛼∆𝑇)

∂𝑊
∂𝑥 𝜑| 𝑙

0
‒ (𝑒𝑎0)2(𝑘𝑝

∂𝑊
∂𝑥 ‒ 𝐸𝐴𝛼∆𝑇)

∂2𝑊
∂𝑥2

∂𝜑
∂𝑥| 𝑙

0
+ 𝐸𝐼

  (31)
∂3𝑊
∂𝑥3 𝜑| 𝑙

0
‒ 𝐸𝐼

∂2𝑊
∂𝑥2

∂𝜑
∂𝑥| 𝑙

0
‒ (𝑘𝑝 ‒ 𝐸𝐴𝛼∆𝑇)

∂𝑊
∂𝑥 𝜑| 𝑙

0
= 0

The domain of the Euler-Bernoulli beam is discretized into a number of elements. The weak form 
is used for each of the discrete elements of length  with domain . 𝑙𝑒 ℧𝑒 = (𝑥𝑒,𝑥𝑒 + 1)

The general form of Eq. (31) for all nodes corresponding to a single element is obtained as

∫𝑙𝑒
0 [𝐸𝐼

∂2𝜑
∂𝑥2

∂2𝜑
∂𝑥2 ‒ 𝜌𝐴𝜔2(𝜑𝜑 + (𝑒𝑎0)2∂𝜑

∂𝑥
∂𝜑
∂𝑥) + (𝑘𝑝 ‒ 𝐸𝐴𝛼∆𝑇)

∂𝜑
∂𝑥

∂𝜑
∂𝑥 + (𝑒𝑎0)2(𝑘𝑝 ‒ 𝐸𝐴𝛼∆𝑇)

∂2𝜑
∂𝑥2

∂2𝜑
∂𝑥2 + 𝑘𝑤𝜑𝜑 + (𝑒𝑎0)2𝑘𝑤

∂𝜑
∂𝑥

∂𝜑
∂𝑥]𝑑𝑥

  (32)= 0

In this study, the finite element model is developed based on Hermit Interpolation functions for 
each of the left (A) and right (B) sections of the beam element. Each section is defined by four 
degrees of freedom and hence needs four interpolating polynomials defined as 

(33)𝜑 =
[

1
4(1 ‒

𝑥
𝑙𝑒)2

(2 + 𝑥/𝑙𝑒)

1
8𝑙(1 ‒

𝑥
𝑙𝑒)2

(1 + 𝑥/𝑙𝑒)

‒ 1
8 𝑙(1 +

𝑥
𝑙𝑒)2

(1 ‒ 𝑥/𝑙𝑒)

1
4(1 +

𝑥
𝑙𝑒)2

(2 ‒ 𝑥/𝑙𝑒)]

The dynamic equation for a beam is given by
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(34)𝑴𝑼 ‒ (𝑲 + 𝑲𝑻)𝑼 = 𝟎

where, ,  and  are the global stiffness, mass and thermal geometric stiffness matrices, 𝑲 𝑴 𝑲𝑻

respectively.  denotes the global displacement vector. For free vibration analysis, the following 𝑼
eigenvalue equation is deduced from Eq. (34)

(35)(𝑲 + 𝑲𝑻 ‒ 𝜔2𝑴)𝑼 = 𝟎

where, 

(36)[𝑲] = 𝐸𝐼𝑲 + 𝑘𝑤𝑿1 + (𝑒𝑎0)2𝑘𝑤𝑿2 + 𝑘𝑝𝑿2 + (𝑒𝑎0)2𝑘𝑝𝑲,

. (37)[𝑴] = 𝜌𝐴𝑿1 + (𝑒𝑎0)2𝜌𝐴𝑿2

(38)[𝑲𝑇] = ‒ 𝐸𝐴𝛼∆𝑇(𝑿2 + (𝑒𝑎0)2𝑲),

where the  element matrices of , and  for each uncracked beam element, and also the 4 × 4 𝑲 𝑿1 𝑿2
sections of the cracked beam element, are given in the Appendix. These elemental matrices are 
assembled in the standard way to build the global stiffness, mass and geometric matrices. Finally, 
these eigenvalue problems could be solved readily.

In order to study finite element of a cracked beam, the crack is modelled as a torsional spring 
connecting two elements with corresponding lengths of  and , each side of a single edge crack, 𝑙𝐴 𝑙𝐵
as shown in Fig. 2. The assembled stiffness matrix for this kind of element has the form [53]:

(39)[𝐾] =

𝑤1
𝜃1

𝜃2𝐴
𝑤2
𝜃2𝐵
𝜃3
𝑤3

[
𝑘 𝐴

11 𝑘 𝐴
12 𝑘 𝐴

13 𝑘 𝐴
14 0 0 0

𝑘 𝐴
21 𝑘 𝐴

22 𝑘 𝐴
23 𝑘 𝐴

24 0 0 0
𝑘 𝐴

31 𝑘 𝐴
32 𝑘 𝐴

33 + 𝐾 𝑘 𝐴
34 ‒ 𝐾 0 0

𝑘 𝐴
41 𝑘 𝐴

42 𝑘 𝐴
43 𝑘 𝐴

44 + 𝑘 𝐵
11 𝑘 𝐵

12 𝑘 𝐵
13 𝑘 𝐵

14
0 0 ‒ 𝐾 𝑘 𝐵

21 𝑘 𝐵
22 + 𝐾 𝑘 𝐵

23 𝑘 𝐵
24

0 0 0 𝑘 𝐵
31 𝑘 𝐵

32 𝑘 𝐵
33 𝑘 𝐵

34
0 0 0 𝑘 𝐵

41 𝑘 𝐵
42 𝑘 𝐵

43 𝑘 𝐵
44

]
where  and  ), refer to elements of the stiffness matrices for the portions of the beam 𝑘𝐴

𝑖𝑗 𝑘𝐵
𝑖𝑗 (𝑖,𝑗 = 1:4

A and the beam B, which are coupled by a torsional spring with stiffness .𝐾

3. Numerical results
In the following subsections, first validity of the present model is investigated with the available 
studies in the literature, then a parametric examination is performed to analyse the thermal 
vibration behaviour of a cracked nanobeam on a Winkler- Pasternak elastic foundation with 
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different crack depth, crack location, temperature parameter, foundation stiffness, nonlocal 
parameter and boundary conditions. The following nondimensional parameters are employed 

 ,      ,     ,     (40)𝜔4 = 𝜔2𝑙4𝜌𝐴
𝐸𝐼 𝐾𝑤 =

𝑘𝑤𝑙4

𝐸𝐼 𝐾𝑝 =
𝑘𝑝𝑙2

𝐸𝐼 𝑃𝑡𝑒𝑚𝑝 =
𝐸𝐴𝛼∆𝑇𝑙2

𝐸𝐼
where , ,  and  are the nondimensional frequency, Winkler stiffness, Pasternak 𝜔 𝐾𝑤   𝐾𝑝 𝑃𝑡𝑒𝑚𝑝
stiffness and temperature parameter, respectively.
Also, the frequency ratio is defined as

(41)Ω =
𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎 𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑏𝑒𝑎𝑚
𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑛𝑐𝑦 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑡𝑎𝑐𝑡 𝑏𝑒𝑎𝑚

3.1 Validation
In order to present a thorough verification procedure, the influences of the crack severity and 
location, nonlocal parameter, foundation stiffness and temperature gradient are calculated 
individually and compared with the corresponding benchmark studies in the literature. Initially, 
the existence of the crack is neglected and the results are obtained for an intact beam on an elastic 
foundation (Tables 1 and 2). Then, the natural frequencies for a cracked nonlocal beam without an 
elastic foundation are calculated and compared (Tables 4 and 5). Finally, in Table 6, in order to 
analyse the thermal effects, the influences of both the foundation and the crack are ignored and 
different frequencies are obtained for various temperature parameters. 
The first five nondimensional frequencies  for pinned-pinned beams with different Winkler-𝜔
Pasternak foundation parameters are compared with those from Demir and Civalek [16], Togun 
and Bagdatli [54], Mustafa and Zhong [12] and Yokoyama [55] in Table 1. Based on these results, 
it is seen that good agreement is achieved between the five studies.

Table 1. Nondimensional frequencies  for pinned-pinned boundary conditions.𝜔
Nondimensional Frequencies 𝜔

𝐾𝑤 = 25, 𝐾𝑝 = 25 𝐾𝑤 = 36, 𝐾𝑝 = 36
Mode

number
Present

Demir and 
Civalek 

[16]

Togun 
and 

Bagdatli 
[54]

Mustafa 
and 

Zhong 
[12]

Yokoyama 
[55] Present

Demir 
and 

Civalek 
[16]

Togun 
and 

Bagdatli 
[54]

Mustafa 
and 

Zhong 
[12]

1 19.2016 19.2133 19.2133 19.2178 19.21 22.1186 22.1069 22.1069 22.1112
2 50.6688 50.7004 50.7002 50.7804 50.71 54.8989 54.9162 54.916 55.1873
3 100.6473 100.6794 100.677 - - 105.4515 105.4724 105.47 -
4 169.9863 170.0439 170.028 - - 175.0559 175.1085 175.093 -
5 258.9208 259.0480 258.987 - - 264.1314 264.2556 264.196 -
 
Also, a comparison is carried out between the results of the present model and those of Togun and 
Bagdatli [46]. Here, the first four nondimensional natural frequencies  for a nonlocal beam 𝜔
embedded in a Winkler-Pasternak medium are evaluated and compared for pinned-pinned and 
fixed-fixed boundary conditions in Tables 2 and 3, respectively.
       
Table 2. First four nondimensional frequencies  for different nonlocal parameters  with 𝜔 𝑒0𝑎 𝑙
pinned-pinned boundary conditions.    

𝑒0𝑎 𝑙 Nondimensional Frequencies 𝜔
𝐾𝑤 = 10, 𝐾𝑝 = 5

𝜔1 𝜔2 𝜔3 𝜔4
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Present Togun and 
Bagdatli [54] Present Togun and 

Bagdatli [54] Present Togun and 
Bagdatli [54] Present Togun and 

Bagdatli [54]
0.0 12.5146 12.5203 42.0126 42.0231 91.3260 91.3470 160.383 160.4250
0.1 12.1636 12.1658 36.3884 36.3978 68.0447 68.0635 102.2853 102.3140
0.2 11.3636 11.3660 28.4815 28.4900 46.7512 46.7661 64.8468 64.8678
0.3 10.5297 10.5325 23.4372 23.4457 36.4738 36.4878 49.3651 49.3844
0.4 9.8513 9.85475 20.4945 20.5039 31.1748 31.1898 41.8001 41.8205
0.5 9.3468 9.35098 18.7183 18.7291 28.1633 28.1803 37.6017 37.6247

Table 3. First four nondimensional frequencies  for different nonlocal parameters  with 𝜔 𝑒0𝑎 𝑙
fixed-fixed boundary conditions.    

𝑒0𝑎 𝑙 Nondimensional Frequencies 𝜔
𝐾𝑤 = 10, 𝐾𝑝 = 5

𝜔1 𝜔2 𝜔3 𝜔4

Present
Togun and 

Bagdatli 
[54]

Present

Togun 
and 

Bagdatli 
[54]

Present
Togun and 

Bagdatli 
[54]

Present
Togun and 

Bagdatli 
[54]

0.0 23.9126 23.9143 63.5714 63.5888 122.9359 122.972 201.9627 202.019
0.1 23.0764 23.0822 53.8200 53.8346 89.2658 89.2907 125.6068 125.6420
0.2 21.2793 21.2855 41.0222 41.035 60.6079 60.6274 79.1712 79.1969
0.3 19.5227 19.5297 33.3379 33.3506 47.3692 47.3877 60.3096 60.3333
0.4 18.1785 18.1866 29.0045 29.0183 40.6586 40.6783 51.1188 51.1438
0.5 17.2264 17.2362 26.4374 26.4531 36.8696 36.8920 46.0198 46.0480

For a pinned-pinned boundary condition, the first four nondimensional natural frequencies of a 
cracked nonlocal beam are given in Table 4 and compared with those of Torabi and Dastgerdi [26] 
and Loya et al. [36] which are based on Timoshenko beam theory (TBT) and Euler-Bernoulli 
(EBT) beam theory, respectively. For further validation, the nondimensional frequencies  of the 𝜔
present model are compared with those of Loya et al. [36] for fixed-fixed boundary conditions in 
Table 5. In this comparison first four vibration modes are again analysed. 

Table 4. Comparison of first four nondimensional frequencies  for a pinned-pinned beam with 𝜔
different nonlocal parameters  and crack severities . 𝑒0𝑎 𝑙 𝐾

𝑒0𝑎 𝑙 = 0 𝑒0𝑎 𝑙 = 0.2

𝑙𝑐 𝐾 Mode
number

TBT
Torabi 

[26]

EBT
Loya [36]

EBT
Present

TBT
Torabi 

[26]

EBT
Loya [36]

EBT
Present

1 3.1252 3.1416 3.1409 2.8795 2.8908 2.8907
2 6.1583 6.2832 6.2818 4.9225 4.9581 4.9578
3 9.0328 9.4248 9.4228 6.4222 6.4520 6.45170

4 11.7170 12.5664 12.5638 7.6262 7.6407 7.6403
1 2.9379 3.0469 3.0466 2.7290 2.8031 2.8030
2 6.1583 6.2832 6.2818 4.9225 4.9581 4.9578
3 8.5536 9.1669 9.1652 6.1820 6.2604 6.26010.065

4 11.7170 12.5664 12.5638 7.6262 7.6407 7.6403
1 2.3533 2.7496 2.7489 2.2387 2.5233 2.5232
2 6.1583 6.2832 6.2819 4.9225 4.9581 4.9578

0.5

0.35
3 7.3535 8.6129 8.6114 5.5861 5.7891 5.7889
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4 11.7170 12.5664 12.5638 7.6262 7.6407 7.6403
1 1.3055 2.0960 2.0958 1.2842 1.9098 1.9098
2 6.1583 6.2832 6.2818 4.9225 4.9581 4.9578
3 6.3928 8.0730 8.0715 5.2078 5.3416 5.34132

4 11.7170 12.5664 12.5638 7.6262 7.6407 7.6403
1 3.1252 3.1416 3.1409 2.8795 2.8908 2.8908
2 6.1583 6.2832 6.2818 4.9225 4.9580 4.9580
3 9.0328 9.4248 9.4228 6.4222 6.4520 6.45190

4 11.7170 12.5664 12.5638 7.6262 7.6407 7.6405
1 3.024 3.0921 3.0925 2.7985 2.8447 2.8446
2 5.8101 6.1028 6.1019 4.7165 4.8101 4.8100
3 8.8166 9.3021 9.3005 6.3146 6.3638 6.36370.065

4 11.717 12.5664 12.5642 7.6262 7.6407 7.6405
1 2.596 2.9071 2.9064 2.4461 2.6645 2.6645
2 4.9441 5.6491 5.6484 4.1829 4.4169 4.4168
3 8.4026 9.0767 9.0752 6.1179 6.1924 6.19230.35

4 11.717 12.5664 12.5642 7.6262 7.6407 7.6405
1 1.5023 2.3493 2.3465 1.4703 2.1134 2.1134
2 4.3015 5.1047 5.1042 3.7556 3.9906 3.9906
3 8.1377 8.9008 8.8993 5.9940 6.0692 6.0691

0.25

2

4 11.717 12.5664 12.5642 7.6262 7.6407 7.6405

Table 5. Comparison of first four nondimensional frequencies  for a fixed-fixed beam with 𝜔
different nonlocal parameters  and crack severities . 𝑒0𝑎 𝑙 𝐾

𝑒0𝑎 𝑙 = 0 𝑒0𝑎 𝑙 = 0.2

𝑙𝑐 𝐾 Mode
number

EBT
Loya [36]

EBT
Present

EBT
Loya [36]

EBT
Present

1 4.7300 4.7291 4.2766 4.2764
2 7.8532 7.8516 6.0352 6.035
3 10.9956 10.9934 7.3840 7.38370

4 14.1372 14.1343 8.4624 8.4621
1 4.6285 4.6277 4.1736 4.1735
2 7.8532 7.8516 6.0352 6.035
3 10.6976 10.6957 7.1421 7.14190.065

4 14.1372 14.1343 8.4624 8.4621
1 4.3566 4.356 3.8855 3.8854
2 7.8532 7.8516 6.0352 6.035
3 10.1028 10.101 6.6089 6.60870.35

4 14.1372 14.1343 8.4624 8.4621
1 3.9702 3.9696 3.4764 3.4763
2 7.8532 7.8517 6.0352 6.035
3 9.5833 9.5815 6.2045 6.2043

0.5

2

4 14.1372 14.1343 8.4624 8.4621
1 4.7300 4.7312 4.2766 4.2765
2 7.8532 7.8521 6.0352 6.0351
3 10.9956 10.9949 7.3840 7.38390

4 14.1372 14.1357 8.4490 8.4622
1 4.7273 4.7261 4.2752 4.2751
2 7.6991 7.6989 5.9062 5.9061
3 10.7787 10.7776 7.1962 7.19610.065

4 14.0911 14.0894 8.3902 8.3901
1 4.7194 4.7145 4.2705 4.2704

0.25

0.35 2 7.3175 7.3175 5.5040 5.5039
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3 10.4067 10.4048 6.8797 6.8796
4 14.0159 14.0146 8.2780 8.2778
1 4.7068 4.7038 4.2595 4.2594
2 6.8770 6.8766 5.0234 5.0233
3 10.1452 10.1441 6.7231 6.7232

4 13.9634 13.9618 8.2163 8.2161

For further validation, the nondimensional thermal frequencies for different temperature 
parameters , nonlocal coefficients  and boundary conditions are given in Table 6 and 𝑃𝑡𝑒𝑚𝑝 𝑒0𝑎 𝑙
compared with those given by Demir and Civalek [16].

Table 6. Nondimensional natural frequencies  for different nonlocal parameters  and 𝜔 𝑒0𝑎 𝑙
thermal effects .𝑃𝑡𝑒𝑚𝑝

𝑒0𝑎 𝑙

0 0.1 0.2
𝑃𝑡𝑒𝑚𝑝

Present
Demir& 
Civalek 

[16]
Present

Demir& 
Civalek 

[16]
Present

Demir& 
Civalek 

[16]

Pinned-pinned
0 3.1415 3.1416 3.0680 3.0685 2.8903 2.8908
1 3.0563 3.0588 2.9787 2.9793 2.7823 2.7828
2 2.968 2.9687 2.8806 2.8813 2.6599 2.6605
3 2.8694 2.8695 2.7714 2.7721 2.5179 2.5185

Fixed-fixed
0 4.7292 4.7300 4.5936 4.5945 4.2759 4.2766
1 4.6993 4.7007 4.5532 4.5541 4.2047 4.2054
2 4.6696 4.6707 4.5117 4.5125 4.1296 4.1304
3 4.6397 4.6402 4.4689 4.4697 4.0503 4.0510

Pinned-pinned
0 3.1415 3.1416 3.068 3.0685 2.8903 2.8908
-1 3.218 3.2183 3.1501 3.1506 2.9875 2.9880
-2 3.2894 3.2899 3.2262 3.2267 3.0759 3.0764
-3 3.3562 3.3571 3.2973 3.2977 3.1574 3.1579

Fixed-fixed
0 4.7292 4.7300 4.5936 4.5945 4.2759 4.2766
-1 4.7582 4.7588 4.633 4.6338 4.3436 4.3444
-2 4.7861 4.7871 4.6713 4.6721 4.4084 4.4092
-3 4.814 4.8148 4.7087 4.7095 4.4703 4.4712

This concludes the thorough validation procedure for the present model. Good agreement is 
achieved between the results of this study and the benchmark investigations from the literature.

     3.2 Thermal vibration of a cracked nanobeam on an elastic foundation 
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In this section, a parametric study is performed to analyse the thermal vibration behaviour of a 
cracked nanobeam  on an elastic foundation with various crack depth, crack (𝑙 = 100ℎ,  ℎ = 1nm)
location, temperature parameter, foundation stiffness, nonlocal parameter and boundary 
conditions. 
Fig.3, shows the variation of the nondimensional frequencies of the cracked nanobeam with the 
temperature parameter  for various crack severities  and boundary conditions. The 𝑃𝑡𝑒𝑚𝑝 𝐾
frequencies decrease as the crack severity increases, which is related to the stiffness reduction in 
the cracked beams. In this study, the thermal expansion coefficient is assumed to be positive, which 
means that as temperature reduces, the beam stretches and this results in higher stiffness, which 
causes higher frequencies. Moreover, the crack severity has a unique influence on the frequencies 
for each boundary condition. As an illustration, the frequencies for the fixed-fixed boundary 
condition have the least dependence on the variation of the crack severity, while the frequencies 
related to the pinned-pinned boundary condition have the highest dependence on the crack severity 
change, among the three boundary conditions that are investigated in this study.
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Fig.3. Variation of the nondimensional frequencies with the temperature parameter  for different crack severities  𝑃𝑡𝑒𝑚𝑝 𝐾
and boundary conditions ( ).𝑒0𝑎/𝑙 = 0.2, 𝐾𝑤 = 10, 𝐾𝑃 = 5,𝑙𝑐 = 0.5

Variations of the first three natural frequency ratios  of the cracked nanobeam with respect to the Ω
crack position for two temperature parameters  and different boundary conditions are plotted 𝑃𝑡𝑒𝑚𝑝
in Fig. 4. In all four cases, the first mode of the vibration is the case where the thermal effects 
create the most difference in the frequency ratio and for the higher modes the influence of the 
temperature parameter reduces and the two temperatures ( ) have similar 𝑃𝑡𝑒𝑚𝑝 = 0,𝑃𝑡𝑒𝑚𝑝 = 4
trends. Furthermore, considering the fixed-fixed beam, the temperature parameter ( ) has the 𝑃𝑡𝑒𝑚𝑝
minimum effect on the frequency ratio, while for a pinned-pinned beam, the effect of the 
temperature parameter on the frequency ratio is maximum among the boundary conditions 
considered. Another interesting point is that, because of the symmetry of the model, the second 
natural frequency corresponding to the mid-span cracked beam is independent of the crack 
severity; these results were expected since the second derivative of the transverse displacement is 
zero at the midpoint of the beam.
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Fig. 4. Variations of the first three frequency ratios  of cracked nanobeam with respect to crack position for two Ω
temperature parameters  and different boundary conditions ( ).𝑃𝑡𝑒𝑚𝑝 𝑒0𝑎/𝑙 = 0.2, 𝐾𝑤 = 10, 𝐾𝑃 = 5

Fig.5 shows the variation of the nondimensional frequency  with the temperature parameter 𝜔
 and crack severity  for local  and nonlocal , considering different 𝑃𝑡𝑒𝑚𝑝 𝐾 𝑒0𝑎 𝑙 = 0 𝑒0𝑎 𝑙 = 0.2

boundary conditions and foundation stiffness. For a nanobeam without an elastic foundation, the 
variation of the nondimensional frequency with respect to the temperature parameter is nonlinear, 
while for a nanobeam resting on an elastic foundation this variation becomes linear. Also, the 
nonlocal effect is more significant for a nanobeam embedded in an elastic foundation. This is 
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because the nonlocal elasticity effect is also considered for elastic foundation in the formulations. 
Moreover, in this example, different ranges are assumed for the temperature parameters , 𝑃𝑡𝑒𝑚𝑝
because, for pinned-pinned boundary condition, the beam loses its static stability for temperature 
parameters greater than .𝑃𝑡𝑒𝑚𝑝 = 2

𝐾𝑤 = 0,𝐾𝑝 = 0 𝐾𝑤 = 100,𝐾𝑝 = 50
Pinned-pinned

Fixed-pinned

Fixed-fixed
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Fig.5. Variation of the nondimensional frequency  with temperature parameter  and crack severity  for local  and 𝜔 𝑃𝑡𝑒𝑚𝑝 𝐾 𝑒0𝑎 𝑙 = 0
nonlocal  cases, considering different boundary conditions and foundation stiffness ( ). 𝑒0𝑎 𝑙 = 0.2 𝑙𝑐 = 0.5

The changes of the nondimensional fundamental frequency  for pinned-pinned, fixed-pinned and 𝜔
fixed-fixed beam with various crack severities , foundation stiffnesses , temperature 𝐾 (𝐾𝑤, 𝐾𝑃)
parameters  and nonlocal parameters  are given in Table 7 for a crack located at  𝑃𝑡𝑒𝑚𝑝 𝑒0𝑎 𝑙 𝑙𝑐 = 0.5
and in Table 8 for a crack located at . 𝑙𝑐 = 0.25

Table 7. Nondimensional natural frequency  of pinned-pinned, fixed-pinned and fixed-fixed 𝜔
boundary conditions for various crack severities , elastic foundations , nonlocal 𝐾 (𝐾𝑤, 𝐾𝑃)
parameters  and temperature parameters  ( ).𝑒0𝑎 𝑙 𝑃𝑡𝑒𝑚𝑝 𝑙𝑐 = 0.5

Pinned-pinned
=0𝑒0𝑎 𝑙 =0.2𝑒0𝑎 𝑙

𝑃𝑡𝑒𝑚𝑝 𝑃𝑡𝑒𝑚𝑝𝐾 (𝐾𝑤, 𝐾𝑃)
-1 0 1 -2 0 2

(0,0) 3.1797 3.1409 3.1002 2.9405 2.8907 2.8382Intact (10,5) 3.2553 3.2179 3.1804 3.0342 2.9891 2.9418
(0,0) 2.4776 2.3825 2.2753 2.2672 2.1778 2.07571 (10,5) 2.6271 2.5490 2.4631 2.4566 2.3875 2.3118
(0,0) 2.2334 2.0958 1.9231 2.0376 1.9098 1.74942 (10,5) 2.4307 2.3248 2.2043 2.2845 2.1971 2.0978
(0,0) 2.1007 1.9260 1.6806 1.9131 1.7528 1.53003 (10,5) 2.3302 2.2062 2.0610 2.1992 2.0997 1.9835

Fixed-pinned
𝐾 (𝐾𝑤, 𝐾𝑃) =0𝑒0𝑎 𝑙 =0.2𝑒0𝑎 𝑙
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𝑃𝑡𝑒𝑚𝑝 𝑃𝑡𝑒𝑚𝑝
-2 0 2 -2 0 2

(0,0) 3.9490 3.9256 3.9019 3.6090 3.5700 3.5296Intact (10,5) 3.9895 3.9664 3.9430 3.6611 3.6237 3.5851
(0,0) 3.4304 3.3892 3.3462 3.0984 3.0505 3.00031 (10,5) 3.4908 3.4516 3.4116 3.1792 3.1350 3.0888
(0,0) 3.2994 3.2513 3.2006 2.9691 2.9145 2.85652 (10,5) 3.3668 3.3217 3.2743 3.0604 3.0106 2.9582
(0,0) 3.2392 3.1872 3.1321 2.9103 2.8518 2.78943 (10,5) 3.3106 3.2617 3.2101 3.0068 2.9540 2.8981

Fixed-fixed
=0𝑒0𝑎 𝑙 =0.2𝑒0𝑎 𝑙

𝑃𝑡𝑒𝑚𝑝 𝑃𝑡𝑒𝑚𝑝𝐾 (𝐾𝑤, 𝐾𝑃)
-2 0 2 -2 0 2

(0,0) 4.7434 4.7291 4.7145 4.3107 4.2764 4.2413Intact (10,5) 4.7669 4.7525 4.7380 4.3416 4.3080 4.2737
(0,0) 4.1357 4.1073 4.0779 3.6595 3.6202 3.57951 (10,5) 4.1707 4.1428 4.1143 3.7095 3.6718 3.6328
(0,0) 4.0030 3.9696 3.9350 3.5206 3.4763 3.43022 (10,5) 4.0414 4.0088 3.9754 3.5765 3.5343 3.4905
(0,0) 3.9444 3.9085 3.8713 3.4603 3.4134 3.36443 (10,5) 3.9844 3.9498 3.9137 3.5191 3.4746 3.4282

Table 8. Nondimensional natural frequency  of pinned-pinned, fixed-pinned and fixed-fixed 𝜔
boundary conditions for various crack severities , elastic foundations , nonlocal 𝐾 (𝐾𝑤, 𝐾𝑃)
parameters  and temperature parameters  ( ).𝑒0𝑎 𝑙 𝑃𝑡𝑒𝑚𝑝 𝑙𝑐 = 0.25

Pinned-pinned
=0𝑒0𝑎 𝑙 =0.2𝑒0𝑎 𝑙

𝑃𝑡𝑒𝑚𝑝 𝑃𝑡𝑒𝑚𝑝𝐾 (𝐾𝑤, 𝐾𝑃)
-2 0 2 -2 0 2

(0,0) 3.1797 3.1409 3.1002 2.9405 2.8907 2.8382Intact (10,5) 3.2553 3.2179 3.1804 3.0342 2.9891 2.9418
(0,0) 2.6950 2.6170 2.5300 2.4520 2.3753 2.29031 (10,5) 2.8147 2.7465 2.6718 2.6063 2.5432 2.4749
(0,0) 2.4641 2.3493 2.2103 2.2221 2.1133 1.98412 (10,5) 2.6174 2.5211 2.4130 2.4215 2.3393 2.2471
(0,0) 2.3264 2.1767 1.9844 2.0876 1.9501 1.77443 (10,5) 2.5040 2.3873 2.2470 2.3204 2.2239 2.1124

Fixed-pinned
=0𝑒0𝑎 𝑙 =0.2𝑒0𝑎 𝑙

𝑃𝑡𝑒𝑚𝑝 𝑃𝑡𝑒𝑚𝑝𝐾 (𝐾𝑤, 𝐾𝑃)
-2 0 2 -2 0 2

(0,0) 3.9490 3.9256 3.9019 3.6090 3.5700 3.5296Intact (10,5) 3.9895 3.9664 3.9430 3.6611 3.6237 3.5851
(0,0) 3.9462 3.9222 3.8977 3.5992 3.5596 3.51861 (10,5) 3.9862 3.9631 3.9390 3.6516 3.6138 3.5746
(0,0) 3.9453 3.9213 3.8966 3.5964 3.5566 3.51542 (10,5) 3.9857 3.9621 3.9378 3.6490 3.6109 3.5715
(0,0) 3.9450 3.9208 3.8960 3.5951 3.5552 3.51383 (10,5) 3.9854 3.9618 3.9373 3.6478 3.6096 3.5701
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Fixed-fixed
=0𝑒0𝑎 𝑙 =0.2𝑒0𝑎 𝑙

𝑃𝑡𝑒𝑚𝑝 𝑃𝑡𝑒𝑚𝑝𝐾 (𝐾𝑤, 𝐾𝑃)
-2 0 2 -2 0 2

(0,0) 4.7434 4.7291 4.7145 4.3107 4.2764 4.2413Intact (10,5) 4.7669 4.7525 4.7380 4.3416 4.3080 4.2737
(0,0) 4.7249 4.7105 4.6958 4.2981 4.2640 4.22911 (10,5) 4.7485 4.7343 4.7198 4.3292 4.2959 4.2617
(0,0) 4.7204 4.7059 4.6912 4.2935 4.2593 4.22432 (10,5) 4.7441 4.7297 4.7151 4.3247 4.2913 4.2571
(0,0) 4.7183 4.7038 4.6891 4.2910 4.2569 4.22183 (10,5) 4.7420 4.7276 4.7130 4.3223 4.2889 4.2547

4. Conclusions
In this paper the natural frequencies of cracked nanobeams on an elastic foundation, considering 
thermal effects, are investigated. To incorporate the size effect of the nanostructure, nonlocal 
elasticity theory was employed. The cracked section of the nanobeam was modelled using a 
rotational spring that gives a discontinuity in the slope, which is proportional to the crack severity. 
Three different boundary conditions were analysed: pinned-pinned, fixed-pinned and fixed-fixed. 
The finite element methodology used here, provides a simple formulation that enables the 
influence of important parameters (i.e. crack severity, crack location, thermal effects, nonlocal 
parameter and foundation stiffness) that appear in typical applications to be analysed accurately.

Appendix A

Beam element matrices are given by

(A.1)𝐾 =
1
𝑙3[ 12 6𝑙 6𝑙 ‒ 12

6𝑙 4𝑙2 2𝑙2 ‒ 6
6𝑙 2𝑙2 4𝑙2 ‒ 6𝑙

‒ 12 ‒ 6𝑙 ‒ 6𝑙 12
]

(A.2)𝑋1 =
1

420 [ 156𝑙 22𝑙2 ‒ 13𝑙2 54𝑙
22𝑙2 4𝑙3 ‒ 3𝑙3 13𝑙2

‒ 13𝑙2 ‒ 3𝑙3 4𝑙3 ‒ 22𝑙2

54𝑙 13𝑙2 ‒ 22𝑙2 156𝑙
]

(A.3)𝑋2 =
1

30𝑙 [ 36 3𝑙 3𝑙 ‒ 36
3𝑙 4𝑙2 ‒ 𝑙2 ‒ 3𝑙
3𝑙 ‒ 𝑙2 4𝑙2 ‒ 3𝑙

‒ 36 ‒ 3𝑙 ‒ 3𝑙 36
]

where  is the corresponding beam length on each side of the crack ( ).𝑙 𝑙𝐴 = 𝑙𝐵 = 𝑙
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Data Availability

All of the results given in the paper are simulated based on the proposed finite element model. 
The paper contains full details of the developed finite element and the geometry and material 
properties for the examples. Hence, there is no raw data, and data in the figures and tables maybe 
be reproduced by coding the described model.
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