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Random environmental variation, or stochasticity, is a key determinant of ecological 20 

dynamics. While we have some appreciation of how environmental stochasticity can 21 

moderate the variability and persistence of communities, we know little about its 22 

implications for the nature and predictability of ecological responses to large 23 

perturbations. Here, we show that shifts in the temporal autocorrelation (colour) of 24 

environmental noise provoke trade-offs in ecological stability across a wide range of 25 

different food-web structures by stabilizing dynamics in some dimensions, while 26 

simultaneously destabilizing them in others. Specifically, increasingly positive 27 

autocorrelation (reddening) of environmental noise increases resilience by hastening 28 

recovery of food-webs following a large perturbation, but reduces their resistance to 29 

perturbation and increases their temporal variability (reduces biomass stability). In 30 

contrast, all stability dimensions become less predictable, showing increased variability 31 

around the mean response, as environmental noise reddens. Moreover, we found 32 

environmental reddening to be a considerably more important determinant of stability 33 

than intrinsic food-web characteristics. These findings reveal the fundamental and 34 

dominant role played by environmental stochasticity in determining the dynamics and 35 

stability of ecosystems and extend our understanding of how the multiple dimensions of 36 

stability relate to each other beyond simple white noise environments. 37 

Predicting how ecosystems will respond to global environmental change has become a 38 

central focus of ecological research1-7. Prediction of ecological responses typically involves 39 

the use of static approaches that focus on mean levels of environmental change, such as 40 

warming and deforestation8,9. Many approaches overlook environmental stochasticity, which 41 

introduces uncertainties and, even when incorporated, is usually considered as a purely 42 

random term. However, stochasticity has structure and comprises a key determinant of the 43 

dynamics and structure of populations and communities10,11. Exploration of its underlying 44 

characteristics, such as its variance and temporal or spectral structure12-14, reveals, for 45 

example, the frequency and duration of extreme events and determines the variability and 46 



persistence of populations8,15-21. For example, Ruokolainen et al.13 reviewed how predictable 47 

outcomes for population variation depend on the interplay between population density 48 

dependence (i.e. under-, over-, or purely compensatory dynamics) and the structure of the 49 

autocorrelation in environmental stochasticity. Briefly, red noise (positive autocorrelation) is 50 

expected to be amplified at the population level in (deterministically) slow growing 51 

(undercompensatory) populations, but dampened in rapidly growing (overcompensatory) 52 

populations, and vice versa for blue noise (negative autocorrelation). However, in spite of its 53 

overarching influence on population and community dynamics, the role played by 54 

environmental stochasticity in moderating ecological responses to other perturbations, 55 

particularly large perturbations, remains mostly unknown. 56 

Ecological stability is a multidimensional concept that tries to capture the different 57 

aspects of the dynamics of the system and its response to perturbations9,22,23. The concept is 58 

fundamental to the conservation and management of natural resources9 and has been a central 59 

focus of ecological research for decades23-25. The various dimensions of stability, such as the 60 

variability of community biomass in time and space, and the resistance and resilience of 61 

communities – their capacity to, respectively, resist and recover from perturbations – have, 62 

however, typically been considered in isolation, due in part to the difficulty of quantifying 63 

them simultaneously in the natural world9. Moreover, their behaviour and predictability likely 64 

depend strongly on the spatiotemporal range across which they are estimated26. Stability 65 

components such as variability and persistence – the length of time a system maintains the 66 

same state before it changes in some defined way23 – are usually estimated from long-term 67 

dynamics and are therefore more likely to reflect key features of environmental stochasticity. 68 

In contrast, stability components that describe the responses of communities to distinct 69 

perturbations, such as resistance and resilience, are determined within shorter time windows. 70 

They are consequently likely to be sensitive to the timing and duration of potential extreme 71 

events. This makes them less predictable – i.e., they show greater variation around the mean 72 

community response. Nonetheless, their general response pattern can be still revealed by 73 



examining and averaging the stability of many similar systems experiencing the same 74 

environmental perturbations. 75 

Here, we explore how three key components of ecological stability (Fig. 1) – recovery 76 

time (the reciprocal of resilience), the extent of change in community structure in response to 77 

perturbation (a measure of resistance; larger extent of change indicates weak resistance22,23), 78 

and variability – are regulated by environmental stochasticity. We use simulated model food-79 

webs described by the general Lotka-Volterra system27-29 to examine both the responses and 80 

predictability of these stability components along gradients of the key factors that characterise 81 

environmental stochasticity – its temporal autocorrelation [i.e. its colour 14,20] and the 82 

correlations in species responses to it13,14,20,21,30. As predators tend to be particularly important 83 

drivers of community dynamics and, consequently, predator loss is considered as one of the 84 

most profound biotic perturbations that can occur7,31-33, we perturbed our model systems by 85 

reducing the densities of the apex predator in each food-web by 50%, as a single pulse 86 

perturbation, coupled with short-term, continuously fluctuating coloured environmental 87 

variation. 88 

Given the significant disjoint between many theoretical measures of stability and what 89 

can be measured empirically9, we quantified all components of stability empirically across a 90 

broad range of four-species food-web modules (Supplementary Fig. 1, including, for 91 

example, simple food chains, modules including omnivory and / or apparent competition) – 92 

subnetworks of tightly interacting species that act as the ‘building blocks’ of food-webs34-36 – 93 

to explore the generality of our findings. Our results revealed highly consistent patterns across 94 

all types of food webs explored and demonstrate contrasting patterns across different stability 95 

dimensions and increasing uncertainty in community responses under redder environments. 96 

 97 



Results 98 

To illustrate our findings, we focus initially on the effect of temporal autocorrelation on 99 

the dynamics of one randomly assembled community, from what is the simplest food-web 100 

module – the food chain (i.e., Module 1 in Supplementary Fig. 1). We then expand our focus 101 

to 100 replicate communities from each of 14 food-web modules to explore the generality of 102 

our results (Supplementary Fig. 1).  103 

Increased temporal autocorrelation (reddening) of environmental stochasticity both 104 

stabilized and destabilized the example food chain community along different dimensions of 105 

stability (Fig 2a). Increasing autocorrelation from negative (blue) to positive (red) 106 

destabilized the community by increasing both total biomass variability and the extent of 107 

change in community structure (i.e. reducing resistance) in response to the initial, large 108 

perturbation. Simultaneously, environmental reddening enhanced stability by reducing 109 

recovery time after the perturbation (i.e. increasing resilience; Fig. 2a). In contrast, the 110 

uncertainty (coefficient of variation) in all stability responses increased consistently with 111 

environmental reddening (Fig. 2b), indicating that higher temporal autocorrelation reduces the 112 

predictability of ecological stability, at the scale of individual food web responses. 113 

 Results from the example food chain community were consistent not only with those 114 

from the other communities with the same module structure, but also with those from across 115 

all other modules examined (Fig. 3). Recovery time decreased with environmental reddening, 116 

while the extent of community change and biomass variability both increased (Fig. 3a). 117 

Further, the predictability of all dimensions of stability decreased monotonically as 118 

environmental autocorrelation increased, as the uncertainty (coefficient of variation) across 119 

individual food web responses more than doubled in every case as noise colour changed from 120 

blue to red (Fig. 3b). 121 

The correlation in species responses to environmental fluctuations modified the specific 122 

response of both recovery time and variability, but had little effect on the extent of 123 

community change (Fig. 4a). When correlations in species responses to environmental 124 

fluctuations were weak, communities showed lower biomass variability (i.e. increased 125 



stability) compared to when they were strong. However, weaker correlations in species 126 

environmental responses simultaneously destabilized communities by increasing recovery 127 

time compared to when they were strong (Fig. 4a). There was no general effect of correlations 128 

in species-environment responses on the uncertainity of any of the stability components (Fig. 129 

4b). 130 

Variation in the general response of all stability components analysed was almost 131 

entirely accounted for by the explanatory variables included in our random forest regression 132 

models (pseudo-R2  values ≥ 0.98 in every case; Fig. 5a). However, the models accounted for 133 

significantly lower variation in the specific responses of stability components to distinct runs 134 

of stochastic noise (regression pseudo-R2 of recovery time, extent of community change and 135 

variability was reduced to, respectively, 0.38, 0.35 and 0.72; Fig. 5a). These reductions in 136 

explanatory power were particularly acute for resistance and resilience, consistent with the 137 

high uncertainty associated with these stability components in previous analyses (Figs. 2b and 138 

Fig. 3b).  139 

The temporal autocorrelation of environmental stochasticity was the dominant 140 

determinant of both the general and specific responses of all stability components examined  141 

(Fig. 5b). Species environmental response correlations had a far weaker effect on stability 142 

dimensions than temporal autocorrelation, and contributed little to the general response of any 143 

stability component, though they had some influence on the specific temporal response of 144 

communities in terms of their recovery time and variability (Fig 5b). Compared to these 145 

components of environmental stochasticity, both community and module characteristics were 146 

of minor importance in determining stability (Fig. 5b). 147 

 148 

Discussion 149 

Although environmental stochasticity plays a critical role in determining the assembly, 150 

diversity, evolution, and functioning of ecological communities13,30,37,38, it is commonly 151 

treated as synonymous with fundamental unpredictability. In contrast, our results demonstrate 152 



that key aspects of environmental stochasticity can regulate ecological stability responses in a 153 

predictable way. Within the given range of the parameters of our models, we identified the 154 

two key factors that characterise stochasticity – its temporal autocorrelation and the 155 

correlations in species responses to it – as more important determinants of ecological stability 156 

than any inherent characteristics of community or module structure. Moreover, we found that 157 

the effects of environmental stochasticity on the responses and uncertainties associated with 158 

different components of ecological stability are highly consistent across a large variety of 159 

food-web structures. These findings highlight the fundamental importance of applying 160 

environmental stochasticity to illuminate our understanding of – and enhance significantly our 161 

capacity to predict – the different dimensions of ecological stability in communities.  162 

Shifts in both the temporal autocorrelation of environmental noise and correlations of 163 

species responses to it provoked trade-offs among components of stability by stabilizing 164 

communities in some ways but simultaneously destabilizing them in others. The reddening of 165 

environmental noise reduced recovery time (i.e. increasing resilience), while simultaneously 166 

increasing both the extent of change in response to perturbation (i.e. reducing resistance) and 167 

variability. Moreover, these effects were amplified when correlations in species responses to 168 

environmental fluctuations were strong. In general, as was the case in our study, increasing 169 

environmental reddening amplifies the fluctuations in population density in under-170 

compensatory populations13,39,40. Increases in both variability and the extent of change in 171 

response to perturbation was a consequence of the propagation of this enlarged population 172 

(and community) variance as environmental stochasticity reddened. Further, the higher 173 

temporal variability of both populations and communities in red noise environments more 174 

rapidly overwhelmed the effect of the initial perturbation, bringing the perturbed and 175 

unperturbed communities into more similar stochastic biomass envelopes (the shaded bands 176 

in Fig. 1b) with the same environmental stochasticity, consequently reducing recovery time. 177 

Increasing correlations of species responses to environmental noise enhanced this effect 178 

further by increasing species synchrony, which reduces the buffering effect caused by species 179 

responding in more diverse ways to environmental fluctuations41-44. 180 



            Our findings highlight the challenges in predicting ecological stability on local 181 

temporal and spatial scales. Despite the trade-off that occurred among components of stability 182 

as temporal autocorrelation changed, their uncertainty increased consistently as 183 

environmental noise reddened. When environmental colour changes from blue through white 184 

to red, populations experience longer runs of extreme conditions40. As undercompensatory 185 

populations are slow to track environmental change, longer runs of extreme conditions are 186 

then translated into longer runs of low (or high) total biomass densities. The increase in the 187 

duration of extreme runs increases the variability of recovery time as long runs of good 188 

environmental conditions reduce recovery time by helping the community recover quickly 189 

from the initial large perturbation, while long runs of poor environmental conditions increase 190 

recovery time by making it harder for the community to return to the equilibrium envelope. 191 

Likewise, long runs of poor environmental conditions will tend to amplify the initial large 192 

perturbation more than long runs of good conditions (which will tend to cancel it out quickly, 193 

bringing the community back to the equilibrium envelope). This means that, under a run of 194 

poor conditions, the extent of community change will be larger under red than under 195 

blue/white noise as the poor conditions drag the initial perturbation further from the 196 

equilibrium envelope, while under a long run of good conditions, the community is taken less 197 

far from the equilibrium envelope than under blue/white noise. All these together resulted in 198 

higher uncertainty, and thus lower predictability, in the extent of community change under red 199 

than under blue/white noise.    200 

Our results also show that recovery time and resistance are much more difficult to 201 

predict than biomass variability. This is likely a consequence of the difference in time ranges 202 

across which these different dimensions of stability are quantified. Resistance and recovery 203 

time were quantified from discrete time points within a relatively short time window. Over 204 

increasingly short time ranges, the relative importance of distinct patterns in the timing and 205 

duration of a few individual extreme events across the (50) different replicate runs of 206 

environmental stochasticity is enhanced, reducing the ratio of signal to noise, and leading to a 207 

large variance in resistance and recovery time among replicates. In contrast, biomass 208 



variability was measured across the whole simulation time, which is likely to reflect 209 

stochastic structure much more closely as the effects of multiple individual extreme events are 210 

averaged out. Consistent with this, shortening the time window over which variability was 211 

quantified increased its uncertainty significantly (Supplementary Fig. 2). This mechanism is 212 

also likely to be responsible for the lack of importance of species environmental response 213 

correlations in determining the extent of community change in response to perturbation. Over 214 

the relatively short time periods that the extent of community change was measured, the 215 

impact of the single, large perturbation overwhelmed any effect that correlations of species 216 

environmental responses could exert on this stability dimension. 217 

The complex and hierarchical nature of ecology provides a key challenge for predicting 218 

ecological stability in stochastic environments. For simplicity, we used four-species food-web 219 

modules as the basic structure of the biological community. Although these include some of 220 

the most common building blocks of the ecological networks found in nature34-36 and have 221 

been used broadly to study ecological stability and both environmental and demographic 222 

stochasticity, they nonetheless omit some important biological details that are could affect 223 

how biological communities respond to environmental stochasticity. For example, 224 

demographic stochasticity and variation in realised vital rates through age, stage, genetic, 225 

behavioural, spatial or other biological structure can all modify population responses to 226 

environmental variation11. These factors may be either affected directly by environmental 227 

stochasticity or may regulate the impact of environmental stochasticity on other biological or 228 

ecological characteristics. For example, our models assume the interaction coefficient aij to be 229 

constant (i.e. consumption by consumers increases linearly across all prey densities, similar to 230 

Holling's type I functional response). In nature, depending on the body size ratio between the 231 

consumer and the resource species, consumers may follow type I, II or III functional response 232 

patterns45. Though the choice of functional response curve could influence system dynamics, 233 

we would nonetheless expect qualitatively similar shifts in the stability characteristics of the 234 

system with changes in the temporal autocorrelation of environmental noise (Supplementary 235 

Table 1; see also Kaneryd et al.46). While including all the biological complexities we 236 



describe above together with environmental stochasticity would result in a highly complex 237 

model, incorporating a subset of the biological details in the proper candidate stochastic 238 

model may reveal the interplay between key biological details and environmental 239 

stochasticity in determining ecological stability. For example, the Allometric-Trophic-240 

Network (ATN) model47 may reveal how environmental stochasticity affects ecological 241 

stability through regulation of metabolic rates, either through direct regulation of the 242 

metabolic rate or indirect regulation via changing the body mass/size of individuals.  243 

In our study, all three stability measures are based on the assumption of the existence of 244 

a unique stable-point equilibrium in the food-webs, and our community assembly process 245 

ensured that this was the case. Ecosystems can, however, shift from one stable state to another 246 

type of equilibrium as a consequence of either strong environmental forcing or positive 247 

feedback from the system24,48. Environmental stochasticity may prevent the community from 248 

arriving at its deterministic equilibrium in at least three ways. First, for a deterministic system 249 

prone to bifurcation or chaos, the existence of environmental stochasticity will inevitably 250 

increase the unpredictability of the system’s dynamics in some way. Second, as slow trackers 251 

of environmental change, undercompensatory populations may present strong positive 252 

autocorrelation in their dynamics under red noise, and may therefore be more prone to regime 253 

shifts49. Third, sufficiently large environmental stochasticity can cause the community to 254 

fluctuate around its equilibrium – either a stable point or a limit cycle – within a characteristic 255 

distribution. In systems close to a bifurcation boundary, stochasticity can cause the system to 256 

appear to switch to a qualitatively different type of dynamical behaviour, such as from 257 

fluctuating around a stable point equilibrium to fluctuating around a cycle50. The deterministic 258 

negative feedback inherent in consumer-resource interactions can, for example, make these 259 

systems prone to cycling51. When the cycles are transient (i.e. dampled oscillations), systems 260 

will settle onto a point equilibrium in the absence of stochasticity. With stochasticity, 261 

however, the same systems may exhibit sustained cycles50. In this way, stochasticity can 262 

provoke qualitatively different dynamics in ecosystems that would not otherwise be apparent.  263 



For simplicity and tractibility, we controlled the variance of environmental 264 

stochasticity at the same level, and assigned set levels of species response correlations to 265 

environmental fluctuations for all consumers and basal species, whose populations all exhibit 266 

undercompensatory dynamics. In nature, communities consist of both overcompensatory and 267 

undercompensatory populations, each of which could respond in different ways to 268 

environmental stochasticity. Moreover, different species experience different levels of 269 

stochasticity across multiple environmental factors all the time. These complexities may scale 270 

up to affect ecosystem stability by propagation through the linear, nonlinear, and higher-order 271 

interactions52 between the other components of the system. Predicting the outcomes of these 272 

processes is a complex challenge. However, our findings demonstrate that incorporating key 273 

characteristics of environmental stochasticity into our models is an essential step towards 274 

improving prediction in ecological systems. Moreover, understanding how different elements 275 

of human-induced global environmental change modifies the temporal and spatial 276 

autocorrelation of environmental noise is necessary to provide improved understanding and 277 

prediction of ecosystem stability. 278 

 279 

Methods  280 

Food-web construction and simulations 281 

We constructed sets of 14 distinct four-species food web modules (Supplementary Fig. 282 

1) to cover a large range of different network structures that vary in both trophic topology and 283 

connectance. We then constructed 100 individual communities within each set of module 284 

structures. The dynamics of our modules are described by the general Lotka-Volterra 285 

system27-29:  286 

𝑑𝑁𝑖(𝑡)

𝑑𝑡
= 𝑁𝑖(𝑡) (𝑟𝑖 + ∑ 𝑎𝑖𝑗

4

𝑗=1

𝑁𝑗(𝑡) + 𝜀𝑖(𝑡))   (1)                                    287 

where i and j are the identity of species in the community, Ni is the population density of 288 

species i, ri is the intrinsic growth/mortality rate (positive for basal species, otherwise 289 



negative), aij is the interaction coefficient that describes the per capita effect of the jth species 290 

on the growth/mortality rate of the ith species (positive if it enhances population growth; 291 

negative if it causes decreases in growth) and εi(t) is the species-specific response to 292 

environmental stochasticity (see below). 293 

We followed Petchey et al.29 to parameterize the models. We first set the growth rates 294 

of basal species to 1, and drew mortality rates (i.e. the intrinsic rate of change in the absence 295 

of resources and predation) of consumers randomly from a uniform distribution. Petchey et 296 

al.29 drew mortality rates from [-0.001, 0]. As our food-web modules have fewer species but 297 

more trophic levels, we drew mortality rates from [-0.001, -0.1] instead to avoid extremely 298 

small mortality rates of consumers, particularly the top consumer. We sorted the mortality 299 

rate so that the predator had lower mortality rates than their prey, as species at higher trophic 300 

levels tend to be larger53 and large size generally leads to greater longevity and low mortality 301 

rates54,55. The value of the per capita effect of the consumer on its resources aij was assigned 302 

depending on the number of resource species. When the consumer fed on only one species, aij 303 

was set to 0.5. Otherwise, a randomly chosen link was given one strong interaction coefficient 304 

(set to 0.4), and other links were assigned weak interactions and set to 0.1 divided by the 305 

number of the resources minus 1. This approach resulted in a skewed distribution of 306 

interaction strengths, which is commonly found in real ecological  networks56,57. The per 307 

capita effect of the resource species on its consumer aji was calculated as aij times the 308 

conversion efficiency. We set the conversion efficiency of non-omnivorous links to 0.2 and 309 

that of omnivorous links to 0.02 by assuming that it takes more mass of the basal species 310 

(plants in most situations) than animals to produce one predator offspring29. Intraspecific 311 

competition occurred in all species and was set to 1 for basal species and 0.1 for other species. 312 

Interspecific competition among basal species was modelled by setting the appropriate 313 

competition coefficients (drawn randomly from the uniform distribution [0, 0.5]). 314 

Interspecific competition among consumer species was indirect through consumption of 315 

shared resources29. 316 



Using the interaction coefficient matrix A, with entries aij, and the vector R, with 317 

entries of ri, we estimated the density of species at equilibrium, Ni
*. At equilibrium, the per 318 

capita change rate of all species is zero, so AN* = -R. Then, N* can be solved as N* = -A-1R, 319 

where A-1 is the inverse of matrix A. The equilibrium Jacobian interaction matrix J* (also 320 

known as the community matrix) with entries Jij, which is used to test the local stability of the 321 

constructed community25, is Jij = aijNi
*. When the maximum real part of the dominant 322 

eigenvalue of the community matrix is negative, the deterministic system will settle to a 323 

stable point equilibrium. However, if this negative eigenvalue is close to zero, the system 324 

approaches a bifurcation threshold. To ensure against alternative full coexisting stable states 325 

(e.g., limit cycles or chaotic fluctuations) by stochastic resonance, we excluded communities 326 

whose maximum real part of the dominant eigenvalues was larger than -0.005 (see 327 

Supplementary Fig. 3 for the realised distributions of the maximum real part of the 328 

eigenvalues from our model communities). This is sufficiently far from the bifurcation 329 

threshold to avoid the system shifting to another dynamical attractors under the stochastic 330 

variation we considered. The process of parameterization continued until, for each of the 14 331 

food-web modules, we constructed 100 communities that satisfied the requirements of both 332 

local stability and feasibility58-60. The equilibrium species densities of communities generated 333 

by this method conformed to the pyramidal structure, with species of lower trophic levels 334 

being more abundant (Supplementary Fig. 4).  335 

 336 

Environmental stochasticity 337 

The effect of environmental stochasticity was incorporated in the dynamical system of 338 

Equation (1) by the continuous variable εi(t), which represents the specific response to 339 

environmental stochasticity. When the time step is small, εi(t) can be approximately 340 

represented by the discrete variable εi(T), which is given by the autoregressive process30, as: 341 



𝜀𝑖(𝑇 + 1) = 𝑘𝜀𝑖(𝑇) + 𝜎√1 − 𝑘2
𝜑(𝑇) + 𝛽𝜔𝑖(𝑇)

√1 + 𝛽2
  

 

(2) 

𝛽 = √
1−|𝜌|

|𝜌|
                                                                                                        

where T is the discrete time point (0, 1, 2 ... 1000), k is the autocorrelation coefficient, and ρ  342 

is the species response correlation – the correlation between all pairs of specific response εi. 343 

The terms φ(T) and ωi(T) are standard normal random components, where the former is 344 

consistent for all species and the latter differs between species. Parameter β is a scaling factor 345 

ensuring that noise variance remains independent of ρ. This method scales the noise time 346 

series to its asymptotical variance σi
2 independently of noise autocorrelation30,61. We 347 

simulated a range of regimes of environmental stochasticity within a fully-crossed design 348 

using k and ρ. k was set to -0.8, -0.4, 0, 0.4, and 0.8, reflecting ranges in colour from blue 349 

through white to red, while ρ was set to 0.2, 0.5, and 0.8 (with 0 corresponding to no 350 

correlation among species and 1 corresponding to perfect correlation). There were, therefore, 351 

15 (i.e. 5×3) fully-crossed combinations of k and ρ. We arbitrarily set σi
2 to 0.05 for 352 

simplicity. Changing the level of set σi
2 does not affect our conclusions about the general 353 

effects of k and ρ on the response and predictability of ecological stability (results not shown 354 

here). The unique combination of stochasticity features all led to different stochasticity 355 

regimes determined by the random terms φ(T) and ωi(T). We produced 50 sets of φ(T) and 356 

ωi(T), and applied them to each unique combination of stochasticity features to build 50 357 

‘replicated’ regimes of environmental stochasticity, which were then used for every model 358 

community. 359 

Most models comparing coloured environments with white noise assume implicitly that 360 

the normality of the noise time series is retained as its temporal autocorrelation changes from 361 

zero to either positive or negative values40,62. However, Fowler and Ruokolainen63 showed 362 

that coloured series tend to deviate from the normal distribution when using common 363 

approaches to generate time series of coloured environmental stochasticity, and this can 364 



confound the effect of environmental colour on dynamical processes. Cohen et al.64 365 

developed 'spectral mimicry' approach, to transform a coloured environmental series that does 366 

not follow a normal frequency distribution to a new series with a normal distribution yet 367 

maintaining the original level of temporal autocorrelation. Briefly, spectral mimicry takes two 368 

input series of equal length, X and Y, and reorders one series (Y) to generate a third series (Z) 369 

that approximates the temporal characteristics (colour) of (X).  (X) is a traditional coloured 370 

series that was generated by the autoregressive process defined by Equations (1) & (2), and 371 

(Y) is an independent random series drawn from a standard normal distribution (mean  =  0, 372 

standard deviation  = 1). Only random series Y that failed to reject the null hypothesis of a 373 

Jarque-Bera statistical test (i.e. that there is no evidence that data deviate from a normal 374 

distribution; significance level a  =  0.05) were selected for further use. The elements 375 

of X were ranked in increasing value, with their order statistics recorded from the original 376 

series. Series Z was then generated from Y “by replacing each element of Y by the 377 

corresponding order statistic of X”64. This algorithm results in series Z having a spectral 378 

exponent similar to that of X. For each environmental stochasticity time series generated 379 

using the autoregressive process (equation 2), we used spectral mimicry to generate another 380 

time series to avoid artefacts in the results known to be caused by traditional AR(1) 381 

methods63. Both the autoregressive method and spectral mimicry produced the desired 382 

temporal autocorrelation and species response correlation (Supplementary Figs. 5 and 6). For 383 

simplicity, we report only the results that used spectral mimicry to generate environmental 384 

stochasticity, though the general features of our results are consistent with those from 385 

autoregression. In summary, we produced 5(k)×3(ρ)×50(realisations) = 750 stochasticity 386 

regimes for each of our 1400 communities (100 communities×14 modules). 387 

 388 

Ecological stability  389 

We simulated species dynamics for all food-webs with the locally stable equilibrium as 390 

the initial state value for every replicate stochasticity regime. In parallel, we also simulated 391 

their dynamics with a 50% reduction in the equilibrium biomass of the species at the highest 392 



trophic level in each food-web module as the initial state value under the same stochasticity 393 

regime. The latter corresponded to the ‘perturbed’ treatment for each replicate stochasticity 394 

regime. Coupling the simulations with and without initial perturbation adds ecological realism 395 

compared to previous studies, which tend to investigate only one of them (but see65). 396 

Simulations of dynamics of both the ‘unperturbed’ and ‘perturbed’ community were run over 397 

1000 time steps with a step length of 1. The time allowed almost all (> 99.9%) of the 398 

simulated communities to recover fully (Supplementary Fig. 7). The simulations were 399 

performed in R version 3.2.466 using the 'deSolve' library67 with the solver 'lsoda'. 400 

Because predators tend to be particularly important drivers of community dynamics 401 

and stability7,31-33, we examined the responses of our simulated communities to instantaneous 402 

reductions in the densities of the apex predator in the system. However, we also explored 403 

whether the effect of environmental stochasticity on stability and its uncertainty are sensitive 404 

to the identity of the species receiving the pulse perturbation by perturbing each of the four 405 

species of the diamond module in isolation (i.e. Module 2 in Supplementary Fig. 1). We 406 

found that the general effect of environmental autocorrelation on the response and 407 

predictability of the various dimensions of ecological stability we quantified is robust to the 408 

identity of the consumer species receiving perturbations, but that this was not the case for the 409 

basal species (Supplementary Fig. 8). Rather, the relatively high abundances and intrinsic 410 

growth rates of the basal species enabled them to compensate rapidly for the initial reduction 411 

in their population densities in perturbed communities. This resulted in the Euclidean distance 412 

of the perturbed community decreasing monotonically from its equilibrium immediately 413 

following the perturbation and, thus, the maximum distance between perturbed and 414 

unperturbed communities occurring at the point of perturbation itself. Because of this, the 415 

extent of community change caused by the perturbation was unaffected by the temporal 416 

autocorrelation of environmental stochasticity when the basal species was perturbed in 417 

isolation (Supplementary Fig. 8). Given this, our results may not extend to situations where a 418 

direct and isolated pulse perturbation is conducted on a species with an extremely rapid 419 



response and where there is barely time for short-term environmental structure to have any 420 

obvious impact. 421 

The recovery time for each food-web simulation was quantified as the time when the 422 

difference between the ‘unperturbed’ and ‘perturbed’ community dynamics reduced to a 423 

critical level (Fig. 1b). This corresponded to the first timestep when the difference between 424 

the densities of all species in the perturbed and unperturbed communities was less than 0.01 425 

and this difference was maintained for at least 50 timesteps thereafter to ensure convergence 426 

had been achieved. The maximum Euclidean distance between perturbed and unperturbed 427 

communities, which we measured at each simulation step, was used to measure resistance 428 

(Fig. 1c). Increases in Euclidian distance correspond to reductions in resistance, and vice 429 

versa22. We quantified variability as the standard deviation of the total density of the 430 

unperturbed community during the simulation time window divided by its mean (Fig. 1d). As 431 

variability is a function of time, we also explored how the duration of the time window over 432 

which it was quantified affects our measure of variability and its uncertainty. We therefore 433 

measured variability over both the entire time series of the simulations and during only the 434 

recovery period (i.e. ‘transient’ variability). We found that both variability measures 435 

responded similarly to the temporal autocorrelation of environmental noise, though the 436 

uncertainty associated with transient variability was markedly higher than for when variability 437 

was measured over the entire time series (Supplementary Fig. 2). We report only the results of 438 

variability measured over the entire time-series of the simulations in the manuscript. 439 

 440 

Random forest regression 441 

We examined the capacity of environmental stochasticity and a range of community 442 

and module characteristics (see Fig. 5 for full list of explanatory variables used in the models) 443 

to explain the responses of each of our three focal stability dimensions using random forest 444 

regression at two analytical scales. The first includes the data from across all of the individual 445 

replicate (n = 50) stochasticity regimes for each distinct community, and thus incorporates 446 

variation in responses of food-webs to distinct runs of environmental stochasticity (i.e. the 447 



specific temporal responses of communities) described by autocorrelation and species 448 

response correlation, while the second omits the variation across these replicate stochasticity 449 

regimes to focus only on the mean stability response of each community for each stochasticity 450 

treatment combination, indicating the general response pattern at the level of each food-web. 451 

The random forest algorithm converges on an optimal solution from individual solutions of 452 

multiple trees (500 regression trees in this case) using bootstrapping and is non-parametric, 453 

not subject to distributional assumptions, compatible with categorical, ordinal, and continuous 454 

data simultaneously, invariant to outliers and monotonic transformations of variables, and 455 

capable of handling high-dimensional data and identifying and incorporating complex 456 

variable interactions68,69. Random forest regression was therefore appropriate for analysis of 457 

our multiple-layer dataset given the skewed distribution and nonlinear responses of many of 458 

our stability components (e.g. Supplementary. Fig. 7) and the need to include both continuous 459 

and categorical variables as predictors. The importance of each predictor in the random forest 460 

is computed from permuting out-of-bag (OOB) data70. For each tree, the prediction (mean-461 

squared) error on the OOB portion of the data was recorded. The same was then done after 462 

permuting each of the predictors. The differences between the two are then averaged across 463 

all trees, and normalized by the standard deviation of the differences. The random forest 464 

regression model was conducted in R version 3.2.466 using the 'ranger' library71. 465 

 466 

Data availability All core data including the constructed communities, time series of 467 

environmental stochasticity, and ecological stabilities, and the R codes for generating the 468 

results and figures of this paper will be uploaded to Dryad repository and open to the public. 469 
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 629 

  630 



Fig. 1 | Quantification of ecological stability dimensionms. a. A typical example of 631 

community dynamics. b. The species density difference between perturbed and the equivalent 632 

unperturbed communities at each simulation timestep. Recovery time was quantified as the 633 

moment when the species density difference is smaller than 0.01 for all species (indicated for 634 

each species by +; see Methods). c. The extent of change of the community (our measure of 635 

resistance) was quantified as the largest Euclidean distance between perturbed and their 636 

equivalent unperturbed community. d. Variability was quantified as the standard deviation of 637 

the total density of the unperturbed community divided by its mean value. 638 

 639 

Fig. 2 | Stability responses of a single food-chain community to replicate regimes of 640 

environmental stochasticity along a gradient in temporal autocorrelation. a. Changes in 641 

recovery time, the extent of change in community structure and variability in a single example 642 

food-chain community along a gradient in temporal autocorrelation. Every point at each level 643 

of autocorrelation represents the stability response of one of 50 noise replicates (distinct runs 644 

of stochastic noise described by identical autocorrelation; see Methods) for the community. 645 

All responses are inversely related to stability (i.e. stability decreases from the bottom to the 646 

top of the y-axis in every case). The solid line corresponds to the mean response for the 647 

community across noise replicates and, therefore, indicates the general response of each 648 

stability component to the temporal autocorrelation of environmental noise. b. Uncertainty in 649 

stability responses of the community to the temporal autocorrelation of environmental noise. 650 

This was quantified as the coefficient of variation (standard deviation divided by the mean) 651 

across the noise replicates. High uncertainty corresponds to low predictability of ecological 652 

stability. For this illustrative example, the correlation of species responses to environmental 653 

fluctuations was set to 0.2. 654 

 655 

Fig. 3 | General stability responses to changes in environmental autocorrelation across a 656 

diverse range of food-web modules. a. General stability responses and b. uncertainty of 657 

those responses to changes in environmental autocorrelation. Individual lines in a. and b. 658 



correspond, respectively, to the mean and coefficient of variation in the response across 50 659 

noise replicates for each of the 100 communities of each module structure. All responses in a. 660 

are inversely related to stability (i.e. stability decreases from the bottom to the top of the y-661 

axis in every case). For this illustrative example, the correlation of species responses to 662 

environmental fluctuations was set to 0.2. 663 

 664 

Fig. 4 | General stability responses to changes in the correlation of species responses to 665 

environmental fluctuations across a diverse range of food-web modules. a. General 666 

stability responses and b. uncertainty of those responses to changes in species environmental  667 

response correlations. Individual lines in a. and b. correspond, respectively, to the mean and 668 

coefficient of variation in the response across 50 noise replicates for each of the 100 669 

communities of each module structure. All responses in a. are inversely related to stability 670 

(i.e. stability decreases from the bottom to the top of the y-axis in every case). For this 671 

illustrative example, the temporal autocorrelation of environmental noise was set to 0.8. 672 

 673 

Fig. 5 | The determinants of ecological stability in stochastic environments. a. 674 

Explanatory power (pseudo-R2 of random forest regression models) of environmental 675 

stochasticity and community and module characteristics in determining both the general 676 

response pattern (the mean stability response across noise replicates, n = 21,000) and the 677 

specific temporal response (i.e. incorporating variation in responses of food-webs to distinct 678 

runs of stochastic noise described by identical autocorrelation, n = 1,050,000) of stability 679 

components to environmental autocorrelation. b. Relative importance of individual 680 

determinants of stability, calculated as the importance value of each explanatory variable in 681 

random forest regression models divided by the sum of the importance of all variables. The 682 

following variables were included as determinants in the model: the autocorrelation 683 

coefficient of environmental stochasticity (autocorrelation), the correlation of species 684 

responses to environmental noise (correlation.species), the maximum real part of the 685 

eigenvalue of the community matrix (max.real.eigen.J), the maximum equilibrium species 686 



density (max.Neq), the minimum equilibrium species density (min.Neq), the slowest 687 

growth/decay rate of the community (min.R), the mean value of the upper triangular 688 

(mean.upper.tri.J), lower triangular (mean.lower.tri.J) and diagonal (mean.diag.J) entries of 689 

the community matrix, the mean value of the upper triangular (mean.upper.tri.A), lower 690 

triangular (mean.lower.tri.A) and diagonal (mean.diag.A) entries of the interaction coefficient 691 

matrix, the number of trophic levels (n.trophic.levels), basal species (n.basal.species), 692 

omnivorous species (n.omnivorous.species) and omnivorous links (n.omnivorous.links), food-693 

web connectance (connectance), and the presence of competitive links between basal species 694 

(competition). 695 
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Supplementary Table 1 | Influence of consumer functional response patterns on different components of ecological stability. Here we take a two-

species consumer-resource system as an example. For simplicity, we assume the population density of the consumer is linear with the biomass of the resource 

consumed, so that the relationship between the density of the consumer and the resource can also be represented by the functional response curve. We 

consider the following four scenarios, where we compare the stability of the consumer-resource system under different levels of environmental 

autocorrelation. a. The system follows the Type I functional response pattern. b. The system follows the Type II pattern. c. The system follows the Type III 

pattern, and the slope at equilibrium (indicated by the black point) is smaller than that at the perturbation point (indicated by the black circle). d. The system 

also follows the Type III pattern, but the slope at the equilibrium is larger than that at the perturbation point. 
 

 Autocorrelation 

of environmental 

stochasticity 

Type of functional response  Response of the systems (— with perturbation, — without perturbation) 

with regard to the color of the environmental stochasticity. The red 

dashed line represents the moment of recovery.  

Predicted response of 

ecological stability 

     
a. Negative/zero 

autocorrelation 
 

 

 

 

 

 

 

 

 

 

 

Under negative 

autocorrelation (blue noise) or 

zero autocorrelation (white 

noise), the many short runs of 

good environmental 

conditions and the many short 

runs of poor environmental 

conditions can cancel each 

other out. So the dynamics of 

both the system with 

perturbation and the system 

without perturbation may 

approximately follow the 

trajectory of the systems 

without environmental 

stochasticity.   
 

Long recovery time; 

Small extent of 

change and variability. 
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 Positive 

autocorrelation 

 

 

 

 

 

 

 

 

 

 

 

Under positive autocorrelation 

(red noise), the long runs of 

extreme environmental 

conditions caused by 

autocorrelation may largely 

cancel the effect of the initial 

perturbation. As 

undercompensatory 

populations are slow trackers 

of environmental change, the 

longer runs of extreme 

conditions are then translated 

into longer runs of low (or 

high) total biomass densities. 

 

   

Short recovery time; 

Large extent of 

change and variability. 

b. Negative/zero 

autocorrelation 

 

 

 

 

 

 

 

 

 

 

 

The dynamics of the system 

with perturbation and the 

system without perturbation 

are similar with that in a. 

(negative/zero 

autocorrelation). However, as 

the system with perturbation 

converges with the system 

without perturbation, their 

fluctuation decreases. This is 

because the slope of the 

functional response curve at 

the perturbation point is larger 

than that at the equilibrium. 

Therefore, the biomass of the 

consumer changes faster and 

Long recovery time; 

Small extent of 

change and variability 

(the variability of the 

system with 

perturbation decreases 

as it converges with 

the system without 

perturbation). 
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the variability caused by 

environmental stochasticity is 

larger at the perturbation 

point. 

 
 Positive 

autocorrelation 

 

 

 

 

 

 

 

 

 

 
 

 

The dynamics of the system 

with perturbation and the 

system without perturbation 

are similar with that in a. 

(positive autocorrelation). 

However, as the system with 

perturbation converges with 

the system without 

perturbation, their fluctuation 

decreases.  

Short recovery time; 

Large extent of 

change and variability. 

c. Negative/zero 

autocorrelation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar with that in b. 

(negative/zero 

autocorrelation). 

 

Similar with that in b. 

(negative/zero 

autocorrelation). 
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 Positive 

autocorrelation 

 

 

 

 

 

 

 

 

 

 

 

Similar to that in b. (positive 

autocorrelation). 
Similar to that in b. 

(positive 

autocorrelation). 

d. Negative/zero 

autocorrelation 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dynamics of the system 

with perturbation and the 

system without perturbation 

are similar with that in a. 

(negative/zero 

autocorrelation). However, as 

the system with perturbation 

converges with the system 

without perturbation, their 

fluctuation increases. This is 

because the slope of the 

functional response curve at 

the perturbation point is 

smaller than that at the 

equilibrium. Therefore, the 

biomass of the consumer 

changes slower and the 

variability caused by 

environmental stochasticity is 

Long recovery time; 

Small extent of 

change and variability 

(but the variability of 

system with 

perturbation increases 

as it converges with 

the system without 

perturbation). 
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smaller at the perturbation 

point. 

 
 Positive 

autocorrelation 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dynamics of the system 

with perturbation and the 

system without perturbation 

are similar with that in a. 

(positive autocorrelation). 

However, as the system with 

perturbation converges with 

the system without 

perturbation, their fluctuation 

increases.  

Short recovery time; 

Large extent of 

change and variability. 
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Supplementary Fig. 1 | Food-web modules used in our study. Pink points represent 

different species, with lower points as the resource and the upper points as consumers. Green 

lines indicate consumer-resource interactions. Cyan lines represent the competition between 

basal species.
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Supplementary Fig. 2 | Responses of variability measured across different time windows (i.e. long-term variability and transient variability; see 

Methods) to changes in environmental autocorrelation across a diverse range of food-web modules. a. General stability responses and b. uncertainty of 

those responses to changes in environmental autocorrelation. Each line corresponds to the mean response across 50 noise replicates for each of the 100 

communities of each module structure. All responses in a. are inversely related to stability (i.e. stability decreases from the bottom to the top of the y-axis in 

every case). For this illustrative example, the correlation of species responses to environmental fluctuations was set to 0.2.
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Supplementary Fig. 3 | The distribution of the maximum real part of the eigenvalues of 

the community matrix of constructed communities. Numbers in the shaded area indicate 

the identity of the modules in Supplementary Fig. 1. 
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Supplementary Fig. 4 | The equilibrium density of each species in our simulated 

communities. Numbers in the shaded area indicates the identity of the modules in 

Supplementary Fig. 1. Numbers along the x-axis represent the species identity that is marked 

on the module node. 
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Supplementary Fig. 5 | The realized temporal autocorrelation of the environmental 

stochasticity time series generated by the autoregressive method (no-mimicry) and that 

generated by spectral mimicry (mimicry). The dashed line is the identity line where x = y. 
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Supplementary Fig. 6 | The realized species response correlation generated by the 

autoregressive method (no-mimicry) and that generated by spectral mimicry (mimicry). 

The dashed line is the identity line where x = y. 
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Supplementary Fig. 7 | The distribution of recovery time in our simulated communities. 

Numbers in the shaded area indicates the identity of the modules in Supplementary Fig. 1.
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 2 
Supplementary Fig. 8 | Sensitivity analysis of the identity of the species receiving 3 
perturbations by perturbing each species of the diamond module in isolation.  The grey 4 
arrows on the right point to the species receiving the pulse perturbation. Because variability 5 
was calculated from unperturbed timeseries, it is not included here. a. General stability 6 
responses and b. uncertainty of those responses to changes in environmental autocorrelation. 7 
Individual lines in a. and b. correspond, respectively, to the mean and coefficient of variation 8 
in the response across 50 noise replicates for each of the 100 communities of the diamond 9 
module. All responses in a. are inversely related to stability (i.e. stability decreases from the 10 
bottom to the top of the y-axis in every case). For this illustrative example, the correlation of 11 
species responses to environmental fluctuations was set to 0.2. 12 
 13 


