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PERSEVERATION IN HUMAN ERROR 

 

Abstract 

Everyday complex and stressful real-life situations can overwhelm the human brain to an 

extent that the person is no longer able to accurately evaluate the situation and persists in 

irrational actions or strategies. Safety analyses reveal that such perseverative behavior is 

exhibited by operators in many critical domains, which can lead to potentially fatal 

incidents. There are neuroimaging evidences of changes in healthy brain functioning 

when engaged in non-adaptive behaviors that are akin to executive deficits such as 

perseveration shown in patients with brain lesion. In this respect, we suggest a cognitive 

continuum whereby stressors can render the healthy brain temporarily impaired. We 

show that the dorsolateral prefrontal cortex is a key structure for executive and attentional 

control whereby any transient (stressors, neurostimulation) or permanent (lesion) 

impairment compromises adaptive behavior. Using this neuropsychological insight, we 

discuss solutions involving training, neurostimulation, and the design of cognitive 

countermeasures for mitigating perseveration. 
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PERSEVERATION IN HUMAN ERROR 

Introduction 

Operators of critical systems (e.g. an airplane, unmanned vehicle, nuclear power 

plant) are subjected to numerous factors known to impair human cognitive performance 

(e.g., overload, fatigue, emotional stressors), as well as having to contend with external 

distractions and interruptions that can further reduce situation awareness (e.g., Hodgetts, 

Vachon, & Tremblay, 2014; Hodgetts et al., 2005). Such complex activities require 

adaptive behavior to deal with dynamic and uncertain situations, yet safety analysis 

highlights that even the most experienced human operators can persist in inappropriate 

courses of action when overwhelmed by unexpected events. In most of these highly 

degraded but often recoverable situations, operators are unable to comprehend the 

situation and persist in erroneous behaviors despite the occurrence of multiple 

visual/auditory cues that should instigate a change in strategy. This kind of behavior in 

which operators make decisions without reevaluating whether or not they are correct – 

even in the face of information that directly contradicts their decision – has been coined 

perseveration (Hall, Fragola, & Wreathal, 1982). Such a lack of mental flexibility is seen 

with dysexecutive patients in the clinical domain, but in the current paper we seek to 

provide a holistic account for perseveration to help advance our understanding of human 

performance failures in the real world. We identify how neural correlates of perseverative 

behavior can be compromised by either situational variables or brain damage particularly 

to the dorslolateral prefrontal cortex (DLPFC), and propose a cognitive continuum 

whereby perseveration can result from a brain lesion or from a temporary loss of control 

as a function of environmental stressors in safety-critical operations. The current article is 

not intended as an exhaustive review of the perseveration literature; rather, we provide 
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examples from clinical and cognitive psychology to illustrate the proposed cognitive 

continuum and refer the reader elsewhere for more comprehensive reviews of 

perseverative behaviours (e.g., Clancy, Prestwich, Caperon, & O'Connor, 2016; Hauser, 

1999; Hotz & Helm-Estabrooks, 1995), as well as complementary approaches, for 

example, from social psychology (Fox & Hoffman, 2002) and ergonomics (De Keyser & 

Woods, 1990). 

In the neuropsychological domain, the concept of perseveration is the continuation 

or repetition of an action or a strategy after the cessation of the original stimulus or goal, 

and to an extent that the activity is no longer optimal or relevant to the task at hand 

(Sandson & Albert, 1984). More precisely, these authors defined three categories of 

perseveration: recurrent, continuous, and, of most relevance to the current human factors 

focus, stuck-in-set perseveration. It is defined as “the inappropriate maintenance of a 

current category or framework”, and is considered a process deficit in executive 

functioning. This inability to shift between representations and strategy, observed in 

patients (Waegeman, Declerck, Boone, Seurinck, & Parizel, 2014), is commonly assessed 

with the Wisconsin Card Sorting Test (WCST; Berg, 1948) whereby cards must be sorted 

according to implicit rules that change across time. This ability to adapt strategy in line 

with changing circumstances is important in everyday situations, and particularly for the 

operators of dynamic and complex critical systems. For example, piloting an airplane 

involves adaptation to continually evolving scenarios, and mental flexibility as measured 

by one of the performance metrics on the WCST has proven successful in predicting pilot 

perseveration in a subsequent flight simulation (Causse, Dehais, Arexis, & Pastor, 2011). 

A correlation was found between the total number of errors (including perseverative 
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errors) and a pilot's erroneous decision to continue to land in bad weather. This suggests 

that impaired performance on the WCST can be indicative of non-adaptive perseveration 

in pilots as well as in the aforementioned patient population, supporting the idea of 

common neural correlates underlying different manifestations of perseverative behavior.  

Research from areas of cognitive psychology (Lee, 2014), cognitive neuroscience 

(Dreisbach et al., 2004) and social psychology (Atkinson & Cartwright, 1964; 

Masicampo & Baumeister, 2011) have identified certain pre-conditions that can lead 

healthy people to rigidly pursue their initial goal even if it would seem maladaptive. One 

main explanation for this phenomenon is that any interference with the on-going activity 

(Dehais, Causse, & Tremblay, 2012) can induce a feeling of loss that leads to increased 

physiological arousal and prefrontal activity (Yechiam, & Hochman, 2013), which serves 

to focus attention on task achievement. This focus promotes a fixation on the initial goal 

to the exclusion of other viable alternatives. Several factors are thought to increase the 

likelihood of this type of human error, including high task demand (Durantin, Gagnon, 

Tremblay, & Dehais, 2014; Dehais, Causse, Vachon, & Tremblay, 2012), time-on-task 

(Van der Linden, Frese, & Meijman, 2003; Cho, Ennaceur, Cole, & Suh, 2000; Orzeł-

Gryglewska Jolanta, 2010; Rouch, Wild, Ansiau, & Marquié, 2005), and stress and 

emotions (Shanteau, & Dino, 1993; Cowen, 1952). These pre-conditions are endemic in 

the work environments of critical systems that are analogous with multitasking, time 

pressure, emotional stress, and in some cases, under stimulation (e.g., supervisory 

monitoring/vigilance, such as air traffic control), making these tasks particularly 

susceptible to perseverative error. A greater understanding of the neural basis of 

perseveration could inform strategies or support systems that could help to mitigate this 
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class of human error. 

Despite the development of technology to automate aspects of the work 

environment and circumvent the fallibility of human operators, human error – and in 

particular perseverative error – remains a key feature of many real world catastrophic 

events. The history of aviation is unfortunately rich with perseverative behaviors such as 

the 1978 United Air Lines Flight 173 incident in which the pilots faced a faulty landing 

gear indicator and decided to postpone the landing with a holding pattern. The pilots 

became so fixated on handling the landing gear issue that they forgot to check the fuel 

tank instrument and eventually crashed in the vicinity of Portland airport (NTSB, 1979). 

In the medical domain, Bromiley (2008) described how his wife died following “routine” 

surgery: during anesthesia, the medical team faced a “can’t intubate, can’t ventilate” 

situation as they were trying to intubate the patient. While a solution to this situation 

exists (tracheotomy), the team ignored it and persisted in unsuccessful attempts at 

intubating for 35 minutes before abandoning the procedure, after which time the patient 

could not recover. These dramatic events are not specific to these fields, and such critical 

persistence in inappropriate behaviors has occurred in the nuclear power plant industry 

(e.g., Three Mile Island, Tchernobyl), the Aerospace domain (e.g., Challenger accident; 

Rogers, 1986) and has been observed with anesthesiologists (Fioratou, Flin, & Glavin, 

2010; Gaba, 1989; Schwid & O’Donnell, 1992), drivers (Lee, 2014), traders (Haigh & 

List, 2005), navy operators (Collyer & Malecki, 1998; Rochlin, 1991), surveillance and 

monitoring operators (Hodgetts, Vachon, Chamberland, & Tremblay, 2017; Lanagan-

Leitzel, Skow, & Moore, 2015) and athletes in extreme sport (Krakauer, 1997). The 

ubiquity of these behaviors across varied domains raises the question of how highly 
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trained personnel can become ‘trapped’ and fail to respond appropriately, despite being 

presented with cues that should prompt an alternative course of action.  

The existence of perseverative behavior at the core of these real-world incidents 

supports the idea that environmental factors may cause an impairment of executive and 

attentional control within healthy operators, leading to deficits similar to those observed 

in patients with brain lesions. The boundary between normal and pathological cognitive 

performance can be crossed by a healthy individual, depending on his/her position along 

a cognitive continuum (see Petersen, 2004, for an illustration of the cognitive continuum 

in the clinical domain). We therefore suggest that advances in understanding and 

mitigating human error can be made by considering a cognitive continuum ranging from 

normal (high to normal intellectual performance) to pathological (very degraded 

intellectual performance), as a function of the level of mental workload, fatigue, or stress 

(Figure 1).  Figure 1 about here 
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In the sections below, we first review the constructs of perseveration and related 

executive impairments that can jeopardize the ability to adapt to external changes. In 

terms of the cognitive continuum hypothesis, we show that permanent or temporary 

deactivation of the DLPFC area can promote perseveration.  

Secondly, we argue that perseveration can result from a lack of attentional control, 

thereby an erroneous course of action is continued due to an inability to notice relevant 

environmental changes that could indicate the need for an alternative approach. We 

review studies investigating temporal, parietal and frontal cortices involved in attentional 

networks within both healthy and patient populations, and note parallels between the two. 

In particular, we emphasize the key role of the DLPFC, at the interface between 

executive and attentional control, impairment of which can lead to biased attentional 

processing and neglect of information with the potential to instigate changes in behavior.  

Thirdly, the cognitive continuum can provide a basis for further research and for the 

development of solutions specifically suited to degraded operational conditions. We 

therefore introduce a number of methods, such as training, neurostimulation and 

cognitive countermeasures for mitigating perseverative behavior.  

Perseveration: Making the parallel between a neurological deficit and a temporary 

loss of executive control 

The construct of perseveration has been largely studied in the fields of 

neuropsychology, neurology, and psychiatry with patients exhibiting dysexecutive 

syndrome (e.g., following brain damage to the frontal lobes); however, as postulated, a 

similar syndrome also concerns human factors as it appears in healthy operators subjected 
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to environmental stressors. In accordance with the continuum hypothesis, we propose that 

the manifestation of perseverative behavior in complex task operators is due to the 

impairment of neural circuits, whereby these circuits are permanently affected in patients 

(Robertson & Halligan, 1999) and the elderly (Head, Kennedy, Rodrigue, & Raz, 2009; 

Kennedy & Raz, 2009), or affected temporarily in healthy individuals through 

operational stressors. In terms of the brain regions involved, neuropsychological studies 

have shown consistent relationships between perseveration and structural damage in 

several brain regions of the prefrontal lobes (Anderson, Damasio, Jones, & Tranel, 1991; 

Lombardi, Andreason, Sirocco, Rio, & Gross, 1999; Nagahama, Okina, Suzuki, 

Nabatame, & Matsuda, 2005; Ridderinkhof, Span, & van der Molen, 2002), including the 

DLPFC (Lie, Specht, Marshall, & Fink, 2006).   

Neuroimaging evidence supports the idea that temporary disruption of the 

functioning of the prefrontal lobes induced by environmental stressors is one factor 

contributing to perseverative error. The transient hypofrontality hypothesis (Dietrich, 

2003) postulates that human errors can be linked to a transient deregulation of the 

prefrontal cortex function induced by high levels of demand. Physically demanding 

situations have been found to impair prefrontal-dependent cognition, in particular with 

higher levels of perseverative errors (Del Giorno, Hall, O'Leary, Bixby, & Miller, 2010). 

Psychological stressors (Dolcos & McCarthy, 2006; Simpson, Drevets, Snyder, Gusnard, 

& Raichle, 2001; Simpson, Snyder, Gusnard, & Raichle, 2001) are associated with a 

temporary decrease in activity in the right DLPFC and the promotion of perseverative 

behavior (Causse et al., 2013). Cognitively demanding tasks have also been found to 

disengage DLPFC and to induce a lack of mental flexibility (Durantin et al., 2014; see 
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Figure 2). Furthermore, low-demand and unstimulating tasks are known to impair the 

ability to adapt to environmental changes (Braboszsz & Delorme 2011; Smallwood, 

Beach, Schooler, & Handy, 2008, Galéra et al., 2012; Lemercier et al., 2014; Yanko, & 

Spalek, 2014). Again, in these low-demand and unstimulating environments, 

perseverative errors have been associated with lower activation of DLPFC (Durantin, 

Dehais, Delorme, 2015; Harrivel, Weissman, Noll, & Peltier, 2013; Mason et al., 2007). 

These findings indicate that workload that is either too high (e.g., multitasking, multiple 

sources of incoming information) or too low (e.g., monitoring/vigilance task with few 

targets), could contribute to an operator becoming “stuck in set” due to decreased activity 

in the DLPFC.   

Figure 2 about here 

 

One possible neurochemical explanation for this decreased activity in the DLPFC 

when facing operational stressors relates to the dopamine and norepinephrine 
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neurotransmitters that have a modulatory influence on PFC activity in a non-linear 

fashion (see Arnsten, 2010). Low release (i.e. under low arousal) or excessive release 

(i.e., under high arousal) of these two neuromodulators depresses the firing rates of 

neurons in the DLPFC and consequently impairs executive functioning. Under low 

arousal settings, the rationale for DLPFC deactivation may result from a need to prevent 

the waste of valuable cognitive resources when facing non-challenging tasks. Under high 

arousal settings, dopamine and noradrenaline – while depressing DLPFC activity – 

increase the activation of subcortical areas dedicated to promoting the activation of 

automatic responses (Dolan, 2002). The advantage of engaging an “automatic” strategy is 

that it protects against depletion of resources, and allows a faster response time when 

facing an immediate danger, like the “fight-or-flight” response. While such a strategy 

could be considered adaptive in the early age of humanity or when facing a well-known 

situation, it is much less appropriate in the face of complex and unknown situations 

(Ellenbogen, Schwartzman, Stewart, & Walker, 2006) that require executive functions for 

adaptation (Barkley, 2001). 

It is useful to consider several links between the DLPFC and perseverative behavior 

as these can provide a new perspective for understanding the underlying mechanisms of 

perseveration in real-world situations with non-clinical populations. First, the DLPFC is a 

brain structure involved in working memory (WM), an executive function dedicated to 

storing and updating information (see Curtis & Esposito, 2004). Accordingly, a 

temporary lack of WM capacity is likely to induce perseveration since the inability to 

upgrade situation awareness, in line with unexpected events, can lead to the continuation 

of schemes of action that are no longer appropriate in the current circumstances (Causse, 
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Dehais, Arexis, & Pastor, 2011; Orasanu, Martin, & Davison, 2001). Second, it has been 

proposed that the DLPFC is the neural substrate of the supervisory attentional system that 

arbitrates conflicts between competitive responses to stimuli (Norman & Shallice, 1986). 

In accordance with this perspective, perseveration can be conceptualized as the incapacity 

to selectively inhibit irrelevant or dominant responses (Fuster, 1988; Houdé, Zago, 

Mellet, Moutier, & Pineau, 2000; Houdé, 2000), and, hence, manifests the behavioral 

tendency to persist with the original goal under depressed DLPFC activity. Third, the 

monitoring capacity of frontal executive functions is an important element for human 

reasoning, flexibility, and adaptation in open-ended environments (Collins & Koechlin, 

2012). The DLPFC is known to play a key role in planning through the assessment of 

alternative strategies to adapt to external contingencies in naturalistic situations (Donoso, 

Collins, & Koechlin, 2014). One could argue that the disengagement of this prefrontal 

area leaves human operators ill-equipped to elaborate upon new solutions, and hence 

persevering with their initial strategy by default. 

 A final point to note in the link between perseveration and the DLPFC is the role of 

this region for self-regulation and control of goal values, both of which are important for 

rational-focused decision-making (Gross, 1998). Several fMRI studies have found that 

the DLPFC is involved in voluntary emotion regulation (Delgado, Gillis, & Phelps, 2008; 

Ochsner & Gross, 2005) and cognitive control (Hare, Camerer, & Rangel, 2009). 

Interestingly, Maier, Makwana, and Hare (2015) showed that acute stress manipulations 

increased immediate reward seeking by impairing self-control decisions with long-term 

goals. In this study, stress induction was linked to a reduced connectivity between the 

vmPFC and the DLPFC. Accordingly, the disengagement of the DLPFC might impair the 



PERSEVERATION IN HUMAN ERROR 

operator’s ability to control his/her emotions under unexpected or stressful operational 

conditions leading him/her to seek immediate options, instead of delayed but safer or 

more rewarding options. Similarly, perseveration is thought to be related to risk taking 

(Goh & Wiegmann, 2002) and poor utility assessment and ability to frame decisions 

(Burian, Orasanu, & Hitt, 2000; O’Hare & Smitheram, 1995).  Fecteau et al. (2007) 

demonstrated that excitatory transcranial direct stimulation of the DLPFC within healthy 

subjects suppresses the temptation to maximize personal gain whereas disruption of the 

DLPFC by inhibitory stimulation induces risk-taking behavior (Knoch et al., 2006), and 

therefore compromises the selection of well-considered and rational strategies. Mohr, 

Biele, and Heekeren (2010) performed a meta-analysis, presenting a model of the neural 

correlates involved in the risky decision-making process (Figure 3a). In addition, the 

authors developed a model (Figure 3b), explaining the risk processing between the risk 

stimulus and the actual choice. They argued that risky decision processing (DLPFC, 

parietal cortex) is an interplay of emotional risk processing (thalamus, bilateral anterior 

insula) and cognitive risk processing (dorso-medial prefrontal cortex).  

Figure 3 about here 
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Consistent with these findings is an fMRI study involving a simplified but plausible 

landing situation in which participants were to decide whether or not to land (Causse et 

al., 2013). A payoff matrix was designed to reproduce the aversive consequences linked 

with the decision to go-around. The behavioral results revealed a shift from rational to 

risky decision making to land when a financial incentive was present. Participants with 

poor decision-making performance who adopted more risky and perseverative behaviors 

exhibited lower activity in the right DLPFC (see Figure 4). 

Figure 4 about here 
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Taken together, these four assertions provide some neuropsychological explanations 

for perseveration in healthy individuals facing degraded environments, and demonstrate 

commonalities with frontal lobe patients. However, there is a need for further studies 

conducted with human operators in safety-critical operations, and a need to consider 

other neural areas involved in cognitive control (e.g., orbitofrontal cortex and anterior 

cingulate cortex, see Stuss & Knight, 2013; cortico-basal ganglia circuit, see Dreisbach & 

Goschke, 2004). Hence, the hypothesis of a putative cognitive continuum, spanning from 

optimal to impaired performance (Pastor, 1999) represents a promising approach to offer 

a full account of the complexity of this phenomenon in complex real-life situations. 

Perseveration as inattention to task-relevant changes  

While we can make the case that perseverative behavior is an executive deficit – 
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either due to frontal lesions or a temporary change in activity in the DLPFC due to 

environmental conditions – a complementary approach to conceptualize perseveration 

within healthy but stressed subjects is to consider the existence of attentional limitations. 

That is, individuals may fail to adapt to developing circumstances not because they lack 

the cognitive control or flexibility to assimilate and respond to these changes, but because 

they are simply unable to detect unexpected changes occurring in the environment in the 

first place. In this section, we consider examples of how attentional limitations can lead 

to perseverative behavior, and in accordance with the continuum hypothesis, provide 

comparison with brain lesion studies.  

While the avoidance of extraneous stimuli is often desirable as it protects planned 

behavior from distraction and impulsivity, it also means that in a dynamic environment, 

important changes in the evolving situation can be missed (change blindness; Simons & 

Levin, 1997). Individuals can experience inattentional blindness or change blindness to 

the extent that they miss critical visual signals that are designed to capture attention and 

invoke an alternative behavioral response. Change blindness refers to a failure to visually 

perceive a change in state of a present stimulus, whereas inattentional blindness refers to 

a failure to visually perceive the appearance of new stimuli (Jensen, Yao, Street, & 

Simons, 2011). This phenomenon of perceptual failure often occurs under high visual 

load (Lavie, Beck, & Konstantinou, 2014; Rauss, Pourtois, Vuilleumier, & Schwartz, 

2009), and has been reported in a wide range of work domains and operational contexts, 

affecting the performance of police officers (Chabris, Weinberger, Fontaine, & Simons, 

2011), radiologists (Drew, Vol, & Wolfe, 2013), anesthesiologists (Ho et al., 2017), 

drivers (Strayer, Drews, & Johnston, 2003), surveillance operators (Suss, Vachon, 
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Lafond, & Tremblay, 2015), pilots (Nikolic, Orr, & Sarter, 2004), unmanned-vehicle 

operators (Dehais, Causse, Vachon, & Tremblay, 2012) and athletes (Memmert & Furley, 

2007).  

 Using fMRI to determine the brain regions involved in such issues of inattention 

can be challenging due to the difficulty of inducing failures of attention in a repetitive 

manner. However, two studies, implementing a change detection task using a WM 

paradigm (Pessoa & Ungerleider, 2004) and a flicker paradigm (Beck, Rees, Frith, & 

Lavie, 2001), found evidence of fronto-parietal network activation when changes were 

reported.  The authors concluded that activation of the parietal cortex and PFC (including 

DLPFC) represents a sine qua non condition to awareness. Accordingly, the parietal 

cortex would play a transient role during the occurrence of rapid changes in the 

environment (i.e. selection of new items) whereas the DLPFC would exert stable and 

sustained maintenance and manipulation of the selected items in WM (see Rees, 2001). 

Todd, Fougnie, and Marois (2005) manipulated visual WM load in a primary task to 

induce inattentional blindness to unexpected visual stimuli. Their results indicated that 

failures of attention resulted in a deactivation of the right temporo-parietal junction (TPJ). 

TPJ has been mainly thought to play a key role in exogenous attention and the processing 

of unexpected stimuli (Fox et al., 2005). Some authors have proposed that the activity of 

this brain area is suppressed during the performance of demanding goal-driven activities 

(Todd, Fougnie, & Marois, 2005; Marois, Yi, & Chun, 2004), probably to shield against 

distraction and depletion of resources. This hypothesis echoes with the attentional set 

theory postulating that inattentional failures result from the processing of events relevant 

only to the task at hand (Most et al., 2005).  



PERSEVERATION IN HUMAN ERROR 

In keeping with the cognitive continuum hypothesis, we consider parallels between 

the brain regions underlying temporary inattention in the aforementioned experimental 

studies, and the failures of attention experienced with brain lesions. Patients with lesions 

of TPJ (Robertson, Lamb, & Knight, 1988; Friedrich, et al., 1998, see Corbetta & 

Schulman, 2011, for a review) and participants undergoing rTMS to this area (Chang et 

al., 2013; Meister et al., 2006), are found to experience a failure of attentional 

reorientation. In terms of DLPFC lesions (patients or rTMS-induced), results regarding 

the failure of visual attention have been contradictory or non-compelling (Kozuch, 2014). 

However, a disconnection of white matter fibers between DLPFC and parietal cortices 

has been shown to alter attentional processing and the reorientation of attention (He et al., 

2007). These connectivity analyses confirm that the DLPFC is a crucial node in the 

voluntary attentional network (Corbetta & Shulman, 2002). 

 The link between issues of inattention and perseverative behavior is also relevant 

in the auditory modality, as auditory signals designed to promote disengagement from an 

erroneous strategy can be neglected if poorly designed (Bliss, 2003; Breznitz, 2013; 

Dekker, 2005; Sorkin, 1988), especially under high workload settings (Bliss & Dunn, 

2000), leading operators to persue their original goal. Also, there is now evidence that 

unexpected or task-irrelevant salient sounds can fail to reach awareness when engaged in 

stressful (Dehais, Vachon, Causse, & Tremblay, 2014), or cognitively (Causse, Imbert, 

Giraudet, Jouffrais, & Tremblay, 2016) or visually (Macdonald & Lavie, 2011; Molloy, 

Griffiths, Chait, & Lavie, 2015; Raveh & Lavie, 2015; Tellinghuisen, Cohen, & Cooper, 

2016) demanding situations. This phenomenon of inattentional deafness could provide a 

valuable explanation for understanding the lack of detection of auditory stimuli reported 
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within anesthesiologists (Brown & Anglin-Regal, 2008; Edworthy, 2013), navy radar 

operators (Chamberland, Hodgetts, Vallières, Vachon, & Tremblay, 2017) and pilots 

(Dehais et al., 2012; Dehais et al., 2014; Gibb & Gray, 2016), yielding human operators 

to make inappropriate decisions and display perseverative behaviors. For instance, the co-

pilot of the ill-fated Air France flight 447 from Rio de Janeiro continued to put the 

aircraft into a steep climb, despite more than 70 audible stall warnings (BEA, 2012). 

Cognitive neuroscience has provided some insights into the phenomenon of 

auditory inattention in the healthy brain. For instance, it has been shown that auditory 

evoked responses can be suppressed by visual modulatory influences at a very early stage 

in the brainstem (Sörqvist, Stenfelt, & Rönnberg, 2012) and electrophysiological 

inattentional deafness studies have revealed evidence of a reduced N100 response in the 

auditory cortex (Dehais, Roy, & Scannella, 2019; Callan, Gateau, Gonthier, & Dehais, 

2018) as well as diminished auditory P300 amplitude (Dehais, Roy, & Scannella, 2019; 

Giraudet, St-Louis, Scannella, & Causse, 2015), indexing attention orientation. A MEG 

study reported diminished N100 auditory evoked activity in the superior temporal sulcus 

(STS) and posterior middle temporal gyrus (MTG) during episodes of inattentional 

deafness under high perceptual load (Molloy, Griffiths, Chait, & Lavie, 2015). These two 

integrative areas have been shown to be particularly active for the processing of 

multimodal stimuli (Beauchamp, Lee, Argall, & Martin, 2004). One recent fMRI 

experiment (Durantin, Dehais, Gonthier, Terzibas, & Callan, 2017), examining auditory 

hits vs misses in an ecological inattentional deafness paradigm in the context of flying, 

proposed the existence of top down regulation mechanisms taking place via the activation 

of frontal regions associated with an attentional bottleneck described by Tombu et al. 
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(2011). This study revealed that the onset of this frontal network served to shut down 

hearing processing via reduced effective connectivity to auditory processing areas in the 

right MTG and superior temporal gyrus (STG); see Figure 5. Interestingly, the visual area 

(V5 – related to motion processing) was more active during episodes of inattentional 

deafness confirming that the visually demanding task (i.e. controlling the aircraft) draws 

away attention from auditory events.  

Figure 5 about here 
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These transient patterns of cerebral deactivation allow comparison with brain 

injured patients, revealing the involvement of similar structures. Lesions of STS and STG 

have been associated with several auditory disorders including impairment of rapid 

processing and recognition of environmental sounds (see Goll, Crutch, & Warren, 2010 

for a review).  Knights and Scabini (1988) reported that patients with a unilateral lesion 

of the STG exhibited lower auditory N100 amplitude compared to healthy subjects in 

response to auditory stimuli. Electric cortical stimulation of STG on neurosurgical 

patients has been known since the 1950’s to suppress hearing abilities (Penfield & 

Rasmussen, 1950). The key role of this brain structure for processing sounds has been 

confirmed more recently with the demonstration that electrical pulses over STG induce 

transient deafness within neurosurgery patients (Fenoy et al., 2006).  

Whereas studies investigating inattentional deafness within healthy participants 

have shown evidence of the top down prefrontal regulation of attention (Durantin, 

Dehais, Gonthier, Terzibas, & Callan, 2017; Molloy, Griffiths, Chait, & Lavie, 2015) 

none have precisely defined the role of the DLPFC.  Interestingly, some studies reveal 

that this brain structure allows for a shift of attention by increasing the activity of the 

most relevant stream of information with regards to the on-going task (Johnson, & 

Zatorre, 2006). This mechanism has been demonstrated by impairing DLPFC activity 

with rTMS in a bimodal paradigm which resulted in the inability to divide and switch 

attention between visual and auditory modalities (Johnson, Strafella, & Zatorre, 2007).  

In the above section, we have demonstrated that attentional control – involving a 

large network including temporal, parietal and prefrontal cortices – supports adaptive 

behavior and can be disrupted by brain lesions or operational stressors. Among these 
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cortices, the DLPFC plays a key role in the voluntarily and top down regulation of 

attention.  Following the cognitive continuum approach, we have also demonstrated that 

permanent or temporary impairments of these attentional networks can impede cross-

modal interactions to an extent that auditory signals are missed under demanding visual 

settings. The opposite also stands true (Strayer, Drews, & Johnston, 2003) as focusing 

one’s attention on the auditory stream (e.g., talking on the phone while crossing a street) 

can negatively impact visual processing (e.g., detecting approaching traffic). Moreover, 

these cross-modal issues are not limited to the auditory and visual modalities as failures 

of attention with other modalities have also been reported (Murphy & Dalton, 

2016);however, further connectivity research is necessary to investigate the complex 

interactions that take place between the neural networks involved in the control of 

attention and perseveration.  

Mitigating Human Performance Limitations   

In accordance with the hypothesis of a putative cognitive continuum, we have 

highlighted some of the neural mechanisms underpinning perseveration at the executive 

and attentional levels and their deleterious consequences on human performance. Taking 

into account this clinical framework, an important next step is to implement cognitive 

countermeasures to mitigate the effect of these critical errors. We first describe potential 

solutions to improve the executive level impairment and then discuss some potential 

cognitive countermeasures dedicated to facilitating sensory processing. 

The comparison of the neural circuits involved in perseveration at an executive 

level revealed that perseveration results from impaired activity in the DLPFC. Under 
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these conditions, the brain switches from slow and flexible strategies controlled by the 

PFC to rapid but rigid automatic responses (Dolan, 2002). While it may be difficult to 

prevent the use of such automatic actions in high-pressured situations, one option might 

be to expand the range of automatic responses available for selection in such 

circumstances. Providing appropriate training using simulated critical events might 

improve the catalogue of reponses that could help to cope with unexpected situations, 

thus potentially reducing the likelihood of perseveration despite rigid and automatic 

responses still taking presidence. Moreover, training represents an important approach 

since perseverative behavior has been linked with low expertise levels (e.g., novices; 

Causse, Dehais, & Pastor, 2010), with the suggestion that novices have lower abilities for 

both information search and problem solving that in turn negatively affect decision 

making (Wiggins & O'Hare, 1995).  

One drawback of direct training is that it is not possible to anticipate and expose 

human operators to all possible situations that could be encountered.  Therefore, an 

interesting prospect is to consider indirect training or “cognitive training” that is 

dedicated to enhancing executive functioning, thus improving the ability to deal with 

complex situations. Indeed, WM and mental flexibility are abilities that have shown to be 

good predictors of the trend to persist or not in erroneous decision making (Causse, 

Dehais, & Pastor, 2011), and so enhancement of these functions should lead to better 

performance. The underlying  approach – defined in the field of Neuropsychology and 

Neuro-rehabilitation – consists of recurrent training sessions using a battery of cognitive 

tests. This method has demonstrated its efficiency in enhancing a broad set of executive 

functions in healthy participants, with particular involvment of the prefrontal cortex 
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(Packwood, Hodgetts, & Tremblay, 2011). For instance, WM performance has been 

shown to improve after five weeks of training and this was associated with anatomical 

changes (Dahlin, Neely, Larsson, Backman, & Nyberg, 2008). Furthermore, 

improvements in mental flexibility have been obtained by transfer learning via the 

training of executive functions using a multitasking paradigm (Anguera et al., 2013).  

A recent trend in cognitive training consists of the integration of a neurostimulation 

tool such as transcranial direct current stimulation (tDCS) and high definition tDCS (HD-

tDCS) during cognitive training sessions to boost executive functionning (see Callan, 

Falcone, Wada, & Parasuraman, 2016).  Initially used for clinical purposes, some studies 

have demonstrated that the use of tDCS over prefrontal sites can enhance such abilities as 

attention and performance on vigilance and threat detection tasks (Falcone, Coffman, 

Clark, & Parasuraman, 2012; Parasuraman & Galster, 2013), as well as WM (Fregni et 

al., 2005). One benefit of this technique is that it is portable and can be combined with 

other brain imaging techniques under real life situations (McKendrick, Parasuraman, & 

Ayaz, 2015, Gateau, Ayaz, & Dehais, 2018), opening the possibility for real-time neuro-

modulation of cerebral activity.  For instance, two studies have shown that stimulation 

over DLPFC sites could improve set shifting skills (Leite et al 2011, Jeon et Han, 2012, 

see Tremblay, et al., 2014, for a review), demonstrating that this technique might have 

some potential to mitigate perseveration. However, these results should be taken with 

caution: given the complexity of the multifactorial design (e.g., sham vs anodal vs 

cathodal stimulation; left vs right DLPFC stimulation; type of task), the sample size 

(n~30) of these two off-line stimulation studies could be considered rather small and 

potentially problematic given that the efficiency of tDCS is highly subject to inter 
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individuals’ responses (Tremblay et al., 2014). A further limitation is that follow up tests 

to investigate the very long-term efficiency of neurostimulation on executive functioning 

were not conducted. Moreover, ethical concerns regarding this technique, especially with 

healthy subjects, means that further research and caution over use are essential. 

Alternatively, the use of medication is a way to improve executive functionning. 

For instance, Yesavage et al. (2002) administered dopenezil, an inhibitor of 

acetylcholinesterase, that is currently used in the treatment of Alzeihmer patients. After 

thirty days of treatment, subtle but significant improvement was found in pilots’ ability to 

retain complex procedures and to deal with unexpected critical situations in a flight 

simulator. Aside from the potential side effects of such drug, this result raises very strong 

ethical and practical questions about its use to improve performance within healthy 

participants. Thus, a more reasonable approach is to consider meditation techniques that 

have been proven to enhance cognitive performance and well-being (Moore, & 

Malinowski, 2009).  For instance, these authors found that mindfulness meditation 

improved cognitive flexibility, suggesting that this technique could be promising to 

prevent the occurrence of perseveration in humans operating critical systems. 

As previously discussed, perseveration may result not just from an executive deficit 

(i.e. compromised DLPCF activity) but also from a failure of attention. Thus, 

perseverative error at an attentional level presents interface designers with a paradox: 

how can one expect to “cure” human operators from such behavior if the warning 

designed to alert them is neglected? For instance, human factors experiments have shown 

that the absence of response to either auditory (Dehais et al., 2012) or visual alarms 

(Dehais, Causse, & Tremblay, 2011) may be explained by an inability to disengage 
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attention. These studies tend to show that the classical approach that consists of adding 

more information (e.g. flashing light, aural alarm) to warn human operators often fails to 

disengage and capture attention under stressful settings.   

Therefore, one solution could consist of temporarily removing the information on 

which the human operator is focused, and instead replacing it with an explicit stimulus in 

the visual field.  The user interface thus acts as a cognitive prosthesis to perform the 

attentional disengagement and attentional shifting (Dehais et al., 2012). The rationale is 

also to reduce the amount of information and cascades of alarms that generally occur 

during critical incidents and that have shown to be counter-productive. This principle was 

successfully tested with pilots in a flight simulator (Dehais, Tessier, & Chaudron, 2003) 

and in the context of human-unmanned vehicle interaction (Dehais et al., 2013). 

However, given the effect that a temporary removal of task-related information could 

have on the ongoing task, such countermeasures may not be appropriate for all contexts 

and should only be considered in cases in which strategy change is imperative, and not 

simply as another form of alert (Imbert, Hodgetts, Pariseé, Vachon, Dehais, & Tremblay, 

2014).  

Another possible solution is to reduce the time and the complexity of the cortical 

processing of alarms. One must understand that responding to a warning involves a multi-

step process: perceiving, paying attention, understanding, evaluating validity, and then 

elaborating and initiating the appropriate motor response. One original approach is to 

consider techniques such as those relying on mirror neurons that have been successfully 

used for patients’ rehabilitation (Rizzolatti, Fabbri-Destro, & Cattaneo, 2009). Firstly, 

discovered in monkeys, the mirror motor neurons (Rizzolatti & Craighero, 2004) are 
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known to fire both during observation and performance of an action. Electrophysiological 

studies have emphasized that observing an action modifies electrical activity within the 

sensorimotor cortices (Gastaut & Bert, 1954). More specifically mu EEG rhythm, ranging 

from 8Hz to 13 Hz, is attenuated when participants perform an action or when they 

simply watch moving pictures of the same actions.  

These mirror neurons are thought to be important in action understanding and have 

been shown to play a key role in flying (Callan et al., 2012). One candidate solution may 

be utilizing the user interface to inform the pilot of the necessary action to perform, even 

if this is subject to inattentional deafness or deleterious high stress. By displaying an 

intuitive video showing the urgent motor action to be performed (e.g., pulling the stick), a 

preliminary study indicated that the response time to actually activate the motor cortex 

and perform the action could be halved (Causse, Phan, Ségonzac, & Dehais, 2012), due 

to the solicitation of mirror neurons (see Figure 6). Similarly, simply hearing sounds of 

actions might also help initiate the required motor actions by activating mirror neurons, 

as shown in monkeys (Kohler et al., 2002). 

Figure 6 about here 
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However, it should be noted that perseverative behaviors can be either unconscious 

and involontary, whereby the operator is caught in the wrong strategy – as is the case 

with attentional limitations and executive lapses – or they can be conscious and 

voluntary, in the form of risk taking, whereby the operator makes erroneous decisions in 

a conscious and lucid state. Studies carried out to date show that cognitive 

countermeasures are effective in mitigating the effects of unconscious perseveration 

(Dehais, Causse, & Tremblay, 2011) by redirecting attention to priority information. On 

the other hand, operators who have all their cognitive abilities but who are overly 

confident and consciously decide to pursue the original course of action, will probably 

deliberately ignore whatever cognitive countermeasures are implemented to try to invoke 
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a strategy change. Ultimately, approaches that leave the level of system autonomy intact 

and do not provide adaptive automation will all be limited by the final (conscious) 

decision of the operator. 

Conclusions  

The current article combines human factors and neuroscience knowledge to present 

the idea of a cognitive continuum as a means to understanding and mitigating 

perseveration in complex and dynamic occupational settings. In particular, we raise the 

question as to why highly trained individuals continue to persist with non-adaptive and 

irrational courses of action, even when provided with information that should instigate a 

change in strategy. With neuroimaging techniques such as fNIRS, EEG, and fMRI, it is 

possible to complement subjective assessments and purely observable behaviors, to 

instead gain insight into the changes occurring at a neuronal level when ill-judged 

decisions/strategies continue to be pursued. Neuroimaging techniques show that 

measurable changes in brain functioning do indeed occur when an individual experiences 

non-adaptive behaviors. We introduce the idea that seemingly irrational behavior 

displayed by individuals in particularly pressurized or complex situations could perhaps 

be attributed to a momentary “malfunction” of brain processes (particularly executive 

processes), whereby high levels of stress or workload can render the healthy brain 

temporarily impaired. 

Although executive functioning lacks a formal definition – indeed a recent literature 

review identified a total of 68 executive subcomponents (Packwood, Hodgetts, & 

Tremblay, 2011) – it could be broadly described as the higher order control processes that 
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direct and coordinate behavior in an adaptive manner. Clinical patients that exhibit 

executive deficits typically have damage to the frontal lobe, and display difficulty in 

areas such as problem solving, inhibition, and task switching. Executive functioning is 

also intrinsic to the human factors domain since complex, multitasking, and safety-

critical work environments (such as aviation, emergency response, military operations) 

are characterized by dynamic decision making. This process alone is likely to subsume a 

number of proposed executive functions (e.g., cognitive flexibility, monitoring, motor 

planning, shifting attention, managing multiple goals). At an observable, behavioral level, 

similarities have been highlighted between the types of behavior exhibited by patients 

with DLPFC lesions, and those displayed by personnel operating in dynamic and 

pressurized decision-making environments (e.g., updating goals, inhibiting irrelevant 

goals, planning alternative goals, evaluating goal values). The cognitive continuum 

hypothesis makes the novel suggestion that healthy adults can sometimes experience a 

temporary breakdown in cognitive function, akin to that of clinical patients, when acting 

or making decisions under extreme critical situations.  

Following this approach, we have also shown that attentional control is critical to 

ensure adaptive behaviors in a real-life multimodal environment. The adequate 

orientation of attention towards the most relevant items encompasses a brain network 

including temporal, parietal, and PFC/DLPFC cortices. The review of brain imaging 

studies demonstrates that the superior temporal and parietal cortices are thought to act as 

circuit breakers to shut down early sensory structures, thus potentially preventing the 

processing of novel and relevant stimuli. As for executive control, DLPFC seems to play 

a key role for attentional control by maintaining the relevant pre-processed information in 
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WM (see Curtis, &Esposito, 2004) and allowing selection of the most relevant 

information with regards to the on-going task (Johnson, Strafella, Zatorre, 2007; Johnson, 

& Zatorre, 2006). As a consequence, its transient impairment compromises the ability to 

switch attention toward new stimuli that could invoke a change in behavior. 

 Taken together, these findings suggest that the DLPFC is at the interface between 

executive and attentional control, and that its transient (stressors, neurostimulation) or 

permanent (lesion) impairment is detrimental to exhibiting adaptive behavior. Finally, 

viewing DLPFC deficits – whether permanent, or temporary and circumstantial – as 

deriving from the same malfunction of neural mechanisms opens up the possibility to 

apply potential solutions from neuropsychology to human factors ranging from direct and 

indirect training, meditation, neurostimulation of the DLPFC, and cognitive 

countermeasures.  
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Figure captions 

 

Figure 1: Illustration of the cognitive continuum from a healthy subject with optimal 

performance to a patient with permanent lesions in the dorsolateral prefrontal cortex 

(DLPFC). The cognitive performance of a healthy but stressed subject lies between the 

two, exhibiting temporary low performance.  

 

Figure 2: Illustration of the DLPFC disengagement when facing mental overload. The 

participants had to perform a computer-based piloting task in which they were asked to 
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follow a dynamic target among five aircrafts with their aircraft (middle of the screen) 

depending on a visual stroop-like cue. The processing load was manipulated in terms of 

working memory, with an N-Back-like sub-task. The combination of control difficulty 

and processing load allowed the creation of four levels of difficulty from easy to very 

hard.  (a). When reaching the hardest levels of difficulty, the left-DLPFC activity is 

reduced (b, far right), associated with non-adaptive behavior (i.e. inability to follow the 

new target). Adapted from Durantin et al. (2014). 

 

 

Figure 3: Neural representations of risk (a) and risk processing (b). The authors found 

representations of risk in bilateral anterior insula (aINS), thalamus, dorsomedial 

prefrontal cortex (dmPFC), right DLPFC, right parietal cortex, left precentral gyrus, and 

occipital cortex; they distinguish between risk processing during or before choice 

(decision risk) and risk processing after or without a choice (anticipation risk), with the 

crucial difference that risk information is likely used to guide choices in the context of 

decision risk but not in the context of anticipation risk. Adapted from “Neural processing 

of risk,” by  Mohr, Biele, & Heekeren, 2010, Journal of Neuroscience, 30, p. 6615, 6617. 

 

Figure 4: Left. Correlation between the level of activity in the right DLPFC (BA9) and 

participants' d ' discriminability index when facing an aeronautical decision under 

financial pressure with high uncertainty conditions. Right. Illustration of the association 

between the average response in the right DLPFC region (BA9) for each participant with 
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their individual d' discriminability index. Risky decision makers who persisted in 

erroneous decision making exhibited lower DLPFC activation than safer ones. 

 

Figure 5: Cortical regions in the Inferior Frontal Gyrus (IFG) and Superior Medial 

Frontal Cortex (Pre-SMA) associated with an attentional bottleneck are activated during 

inattentional deafness (a). Their activation is related to a decrease in functional 

connectivity from the IFG to the auditory processing areas (b). Adapted from Durantin et 

al., (2017). 

 

Figure 6: Time frequency decomposition during rest state and the watching of the mirror 

neuron video. 5–30 Hz (µ) frequency bands measured on the C3 electrode (motor area) 

diminish (in blue) during the viewing of the video. This desynchronization of the motor 

neurons suggests an activation of the mirror neuron system. 
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