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Abstract

In this paper, we will consider how to stabilize a mathematical model of plant species
interaction which is modelled by using Lotka-Volterra system. We first identify the unstable
steady states of the system, then we use the feedback control based on the solutions of the
Riccati equation to stabilize the linearized system. We further stabilize the nonlinear system
by using the feedback controller obtained in the stabilization of the linearized system. We
introduce the backward Euler method to approximate the feedback control nonlinear system
and obtain the error estimates. Four numerical examples are given which come from the
application areas.
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1. Introduction

Stabilizing a nonlinear system is a very important topic in application. By using the
feedback control based on the Riccati equation of the linearized system, Barbu and Coca
and Yan [2] considers how to stabilize a semilinear parabolic equation. The method of
[2] has been extended to stabilizing a semilinear parabolic system [16] and Navier-Stokes
equation [17]. The purpose of this paper is to consider how to stabilize a nonlinear ordinary
system by using the idea of [2] and [9]. The numerical approximation scheme of the feedback
control nonlinear system is introduced and the error estimates are proved. To our knowledge,
we didn’t find any error estimates of the feedback control nonlinear system based on the
solutions of the Riccati equation in literature.

Why are we interested to study this topic? In our recent research [3], [4], we know that
ecological systems behave like other real world systems which are expected to run over a
longer period of time to enable clearer qualitative characteristics to be observed. Therefore,
an interesting problem in this context is that of stability of ecological systems. In particular,
knowledge about the steady state solutions and stability may provide vital information for
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ecological studies in predicting the future states of the plant community [4]. Feedback control
laws are also important in ecological studies as they can be used to control the outcome of
competition between interacting populations described by a system of coupled nonlinear
ordinary differential equations. In contrast, without control, one of the plant species is more
likely to be driven to extinction. Within the ecological literature, ecosystem stability is an
important feature of ecosystems [6], [11], [8].

What are the applications of our present study in ecological studies? The key contribu-
tion of our present work is to numerically estimate the depletion rates of two plant species
by stabilizing unstable interacting ecological populations. Comparisons of these depletion
rates can provide useful information to guide against severe depletion which other studies
are yet to estimate as far as we know. These results would be of immense application in
ecosystem monitoring and decision making against species extinction which would enhance
the ideas and norms of ecological services in the sustainability of human life. Since our
model equations of competition interaction are unstable, if they are to accurately model real
ecosystems it is inevitable to find the mechanisms of stabilization [6].

There are some works related to this paper. For example, [12] has used an integral
quadratic cost functional to obtain a quasi-optimum feedback control law for two competing
species whose dynamics are described by the well established mathematical formulation
of Volterra’s competition equations. Next [13] also applied optimal control theory which
has an integral linear cost functional to control a prey-predator system described by the
Lotka-Voterra model equations. Similarly, [5] and [14] have studied optimal control of prey-
predator systems which are described by the Lotka-Volterra equations. More recently, [10]
have applied the methods from optimal control theory and from the theory of dynamical
systems to the mathematical modelling of biological pest control.

The paper is organized as follows: In Section 2, we introduce the steady states of a
nonlinear system and the stabilization theories by using the feedback control based on the
solutions of the Riccati equation of the linearized system. In Section 3, we introduce the
backward Euler method and prove an error estimate. In Section 4, we use our numerical
method to consider four examples which come from the application areas. The conclusion
is in Section 5.

2. Stabilization of steady states for a nonlinear system

Let us consider the steady states of the following general nonlinear system

dy

dt
= y(t)(a1 − b1y(t)− c1z(t)), (1)

dz

dt
= z(t)(a2 − b2y(t)− c2z(t)), (2)

with initial conditions y(0) = y0 > 0, z(0) = z0 > 0. Here ai, bi, ci, i = 1, 2 are positive
constants. The steady state (ye, ze) satisfies

ye(a1 − b1ye − c1ze) = 0, (3)

ze(a2 − b2ye − c2ze) = 0, (4)
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which implies that there are four steady states

ye = 0, ze = 0,

ye = 0, ze =
a2
c2
,

ye =
a1
b1
, ze = 0,

ye =
a1c2 − c1a2
b1c2 − c1b2

, ze =
b1a2 − a1b2
b1c2 − c1b2

.

To determine the stability of the steady state (ye, ze), we need to consider the linearized
system of (1)- (2) about (ye, ze). Denote

F (y, z) = y(a1 − b1y − c1z),

G(y, z) = z(a2 − b2y − c2z).

By using Taylor series, we have

F (y, z) = F (ye, ze) +
∂F (ye, ze)

∂y
(y − ye) +

∂F (ye, ze)

∂z
(z − ze) + higher order terms,

G(y, z) = G(ye, ze) +
∂G(ye, ze)

∂y
(y − ye) +

∂G(ye, ze)

∂z
(z − ze) + higher order terms.

Hence we get the linearized system of (1)-(2)

d

dt

[
y(t)
z(t)

]
= A

[
y(t)− ye
z(t)− ze

]
,

[
y(0)
z(0)

]
=

[
y0
z0

]
(5)

where

A =

[
∂F (ye,ze)

∂y
∂F (ye,ze)

∂z
∂G(ye,ze)

∂y
∂G(ye,ze)

∂z

]
.

Lemma 2.1. Assume that all the eigenvalues of A are negative, then the solution of (5)

tends to the steady state

[
ye
ze

]
as t→∞ for some suitable initial value

[
y0
z0

]
.

Proof 2.2. Substituting y − ye and z − ze by Y and Z seperately and denoting u =

[
Y
Z

]
,

we can write the linearized system (5) into

du

dt
= Au, u(0) = u0, (6)

where u0 =

[
y0 − ye
z0 − ze

]
.
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It is sufficient to prove that the system (6) tends to the steady state

[
0
0

]
as t→∞ for

some suitable initial value u0 =

[
y0 − ye
z0 − ze

]
which we will prove now.

Note that the solution of (6) has the form

u(t) = etAu0. (7)

Assume that A has two eigenvalues λ1, λ2, and a corresponding basis of orthonormal eigen-
function {ei}2j=1 ∈ R2. For any function g(λ), we define the spectrum σ(A) = {λj}2j=1 of A,
and set

g(A)v =
2∑
j=1

g(λj)(v, ej)ej, for v ∈ R2,

where (·, ·) denotes the inner product in R2. Denote ‖ · ‖ = (·, ·)1/2 the Euclidean norm. We
then have,

‖g(A)‖ = max
j
|g(λj)| = max

λ∈σ(A)
|g(λ)|. (8)

In fact, by the definition of the operator norm,

‖g(A)‖ = sup
v 6=0

‖g(A)v‖
‖v‖

≥ ‖g(A)ej‖
‖ej‖

= |g(λj)|, j = 1, 2,

which implies that
‖g(A)‖ ≥ max

λ∈σ(A)
|g(λ)|.

On the other hand, by Parseval’s relation, we have

‖g(A)v‖2 =
2∑
j=1

(
(v, ej)g(λj)

)2 ≤ (max
j
|g(λj)|

)2 2∑
j=1

(v, ej)
2

=
(

max
λ∈σ(A)

|g(λ)|
)2‖v‖2,

which implies that

‖g(A)‖ = sup
v 6=0

‖g(A)v‖
‖v‖

≤ max
λ∈σ(A)

|g(λ)|.

Hence we have proved (8).
By (7), we have

‖u(t)‖ = ‖etAu0‖ ≤ ‖etA‖‖u0‖ ≤ max
λ∈σ(A)

etλ‖u0‖.

By assumption, A has two negative eigenvalues, we therefore get

lim
t→∞
‖u(t)‖ = 0.

The proof is complete.
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If A has at least one positive eigenvalue, then the steady state (ye, ze) is not stable, i.e.,
(y(t), z(t)) will not tend to (ye, ze) as t → ∞. Then we will use the feedback control to
stabilize the steady state. We can prove the following theorems following the approach in
[9] and [2]. The first theorem is the stabilization of the linearized system (5) at an unstable
steady state.

Theorem 2.3. Assume that

[
ye
ze

]
is an unstable steady state of the system (1) - (2), then

there exists V : [0,∞)→ R2 such that the following linearized feedback control system of (5)

d

dt

[
y(t)
z(t)

]
= A

[
y(t)− ye
z(t)− ze

]
+BV (t),

[
y(0)
z(0)

]
=

[
y0
z0

]
(9)

is exponentially stable at

[
ye
ze

]
. Here

V (t) = −R−1B∗Π
[
y(t)− ye
z(t)− ze

]
,

and Π satisfies the Riccati equation

A∗Π + ΠA− ΠBB∗Π +Q = 0. (10)

Here R = 1 and Q is any positive definite matrix and B =

[
1
0

]
,

[
0
1

]
or

[
1
1

]
.

More precisely, there exists ρ > 0 such that for all

[
y0
z0

]
:
∥∥∥ [ y0

z0

]
−
[
ye
ze

] ∥∥∥ < ρ, there

exists a unique solution

[
y
z

]
∈ C1(0,∞,R2), such that, with some constant C and γ > 0,

∥∥∥ [ y(t)
z(t)

]
−
[
ye
ze

] ∥∥∥ < Ce−γt
∥∥∥ [ y0

z0

] ∥∥∥.
The next theorem is the stabilization of the nonlinear system (1)-(2). We have

Theorem 2.4. Assume that

[
ye
ze

]
is an unstable steady state of the system (1) - (2). Then

V (t) = −R−1B∗Π
[
y(t)− ye
z(t)− ze

]
,

will stabilize exponentially the nonlinear system at

[
ye
ze

]
,

d

dt

[
y
z

]
=

[
F (y, z)
G(y, z)

]
+BV (t). (11)
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Here Π is obtained by (10).

More precisely, there exists ρ > 0 such that for all

[
y0
z0

]
:
∥∥∥ [ y0

z0

]
−
[
ye
ze

] ∥∥∥ < ρ, there

exists a unique solution

[
y
z

]
∈ C1(0,∞,R2), such that, with some constant C and γ > 0,

∥∥∥ [ y(t)
z(t)

]
−
[
ye
ze

] ∥∥∥ < Ce−γt
∥∥∥ [ y0

z0

] ∥∥∥.
3. error estimates

In this section, we will consider the numerical approximation of the nonlinear feedback
control system (11) and prove an error estimate result.

Let 0 = t0 < t1 < t2 < . . . be time points, and k = tj − tj−1 be time step. We use
yn to denote the approximation of y(tn). Using the backward Euler method, we define the
following difference scheme of (11)[

yn−yn−1

k
zn−zn−1

k

]
=

[
F (yn, zn)
G(yn, zn)

]
−R−1BB∗Π

[
yn−1 − ye
zn−1 − ze

]
, (12)

with initial value (y0, z0). Then we get the sequences (yn, zn), n = 1, 2, . . . . By Theorem
2.4, we have (yn, zn)→ (ye, ze) as n→∞.

Let us consider the error estimate of (12). Substituting y − ye and z − ze by Y and Z,
then (11) becomes

d

dt

[
Y
Z

]
=

[
F (Y + ye, Z + ze)
G(Y + ye, Z + ze)

]
+BV (t). (13)

Here V (t) = −RB∗Π
[
Y
Z

]
. Denote u =

[
Y
Z

]
and F (u) =

[
F (Y + ye, Z + ze)
G(Y + ye, Z + ze)

]
. Then

we can write (13) into
du

dt
= F (u)−RBB∗Πu, (14)

or
du

dt
+ A1u = F (u). (15)

Here A1 = RBB∗Π.
Denote Un as the approximation of u(tn). We define the following backward Euler

method for the abstract form (15)

Un − Un−1

k
+ A1U

n = F (Un−1). (16)

or, with r(λ) = (1 + λ)−1,

Un = r(kA1)U
n−1 + kr(kA1)U

n−1. (17)
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In our paper, we assume that F satisfies the global Lipschitz condition and growth
condition, i.e., there exist C1 > 0, C2 > 0 such that

‖F (u)− F (v)‖ ≤ C1‖u− v‖, ∀u, v ∈ R2. (18)

and
‖F (u)‖ ≤ C2‖u‖ (19)

Note that A1 is a positive definite matrix for our choice of B =

[
1
0

]
,

[
0
1

]
or

[
1
1

]
,

see [9] and [2], it is easy to prove the following lemma.

Lemma 3.1. We have, with E(t) = e−tA1,

‖A1E(t)‖ ≤ Ct−1,

and
‖A−γ1 (E(t)− I)‖ ≤ Ctγ, 0 ≤ γ ≤ 1.

Here the operator A−γ1 is defined by A−γ1 v =
∑2

j=1 µ
−γ
j (v, ϕj)ϕj for any v ∈ R2. Here

(µj, ϕj), j = 1, 2 are the eigen pairs of the operator A1 : R2 → R2.

Next we will prove a regularity result of the solution of (15).

Lemma 3.2. Assume that u(t) is the solution of (15). Then we have, for any 0 ≤ t1 <
t2 ≤ T , with lk = | ln(t2 − t1)|,

‖u(t2)− u(t1)‖ ≤ C(t2 − t1)
(
‖A1u0‖+ lk max

0≤s≤T
‖u(s)‖

)
.

Proof 3.3. By Duhamel’s principle, the solution of (15) may be written, with E(t) = e−tA1,

u(t) = E(t)u0 +

∫ t

0

E(t− s)F (u(s)) ds.

Thus, we have

u(t2)− u(t1) = E(t2)u0 − E(t1)u0 +

∫ t2

0

E(t2 − s)F (u(s)) ds−
∫ t1

0

E(t1 − s)F (u(s)) ds

= I + II.

For I, we have, by Lemma 3.1 and the stability of E(t), that is ‖E(t)‖ ≤ C,

‖I‖ = ‖E(t2)u0 − E(t1)u0‖ = ‖E(t1)A
−1
1

(
E(t2 − t1)− I

)
A1u0‖

≤ C(t2 − t1)‖E(t1)A1u0‖ ≤ C(t2 − t1)‖A1u0‖.

Here A−11 denote the inverse of A1.
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For II, we have

‖II‖ =
∥∥∥∫ t2

0

E(t2 − s)F (u(s))−
∫ t1

0

E(t1 − s)F (u(s)) ds
∥∥∥

≤
∥∥∥∫ t1

0

(
E(t2 − s)− E(t1 − s)

)
F (u(s)) ds

∥∥∥+
∥∥∥∫ t2

t1

E(t2 − s)F (u(s)) ds
∥∥∥

= II1 + II2.

We first consider II1. Let k = t2 − t1. Assume that t1 ≤ k, we have

II1 ≤
∫ t1

0

‖
(
E(t2 − s)− E(t1 − s)

)
F (u(s))‖ ds ≤

∫ t2−t1

0

C‖F (u(s))‖ ds (20)

≤ C(t2 − t1) max
0≤s≤T

‖F (u(s))‖.

Assume that t1 > k, then we have, with lk = | ln(k)|, by Lemma 3.1,

II1 ≤
∥∥∥∫ t1−k

0

(
E(t2 − s)− E(t1 − s)

)
F (u(s)) ds

∥∥∥+
∥∥∥∫ t1

t1−k

(
E(t2 − s)− E(t1 − s)

)
F (u(s)) ds

∥∥∥
≤
∥∥∥∫ t1−k

0

A−11

(
E(t2 − t1)− I

)
A1E(t1 − s)

)
F (u(s)) ds

∥∥∥+ C

∫ t1

t1−k
‖F (u(s))‖ ds

≤
∥∥∥∫ t1−k

0

A−11

(
E(t2 − t1)− I

)
A1E(t1 − s)

)
F (u(s)) ds

∥∥∥+ C

∫ t1

t1−k
‖F (u(s))‖ ds

≤
∫ t1−k

0

C(t2 − t1)‖A1E(t1 − s)
)
F (u(s))‖ ds+ C

∫ t1

t1−k
‖F (u(s))‖ ds

≤
∫ t1−k

0

C(t2 − t1)(t1 − s)−1‖F (u(s))‖ ds+ C

∫ t1

t1−k
‖F (u(s))‖ ds

≤ C(t2 − t1)lk
∫ t1−k

0

‖F (u(s))‖ ds+ C

∫ t1

t1−k
‖F (u(s))‖ ds

≤ C(t2 − t1)lk max
0≤s≤T

‖F (u(s))‖.

Together this with (20) shows that

II1 ≤ C(t2 − t1)lk max
0≤s≤T

‖F (u(s))‖.

We now consider II2. We have

II2 ≤ C

∫ t2

t1

‖F (u(s)‖ ds ≤ C(t2 − t1) max
0≤s≤T

‖F (u(s))‖.

Together these estimates and (19) completes the proof of the lemma.

We have the following error estimates.
8



Theorem 3.4. Let T > 0 and let u(tn), 0 ≤ tn ≤ T and Un be the solutions of (15) and
(17) respectively. Assume that F satisfies the global Lipschitz condition (18) and growth
condition (19). Let k be the time step. Then there exists a constant C(T ) such that, with
lk = |ln(k)|,

‖Un − u(tn)‖ ≤ C(T )k
(
‖A1u0‖+ lk max

0≤s≤T
‖u(s)‖

)
.

Proof 3.5. By Duhamel’s principle, the solution of (15) may be written, with E(t) = e−tA1,

u(t) = E(t)u0 +

∫ t

0

E(t− s)F (u(s)) ds.

Further Un can be written in the form

Un = r(kA1)
nU0 +

n∑
j=1

∫ tj

tj−1

r(kA1)
n−j+1F (U j) ds.

Denoting en = Un − u(tn) and Fn = r(kA1)
n − E(tn), we have

en = Fnu0 +
n∑
j=1

∫ tj

tj−1

r(kA1)
n−j+1

(
F (U j)− F (u(tj))

)
ds

+
n∑
j=1

∫ tj

tj−1

r(kA1)
n−j+1

(
F (u(tj))− F (u(s))

)
ds

+
n∑
j=1

∫ tj

tj−1

(
r(kA1)

n−j+1 − E(tn − tj−1)
)
F (u(s)) ds

+
n∑
j=1

∫ tj

tj−1

(
E(tn − tj−1)− E(tn − s)

)
F (u(s)) ds

= I1 + I2 + I3 + I4 + I5.

Thus

‖en‖ ≤
5∑
j=1

‖Ij‖.

Now we will estimate ‖Ij‖, j = 1, 2, 3, 4, 5.
For I1, we have, see [15],

‖I1‖ = ‖Fnu0‖ = ‖(r(kA1)− e−kA1)u0‖ ≤ Ck‖u0‖.

For I2, noting that ‖r(kA1)‖ ≤ 1, we have, by (18),

‖I2‖ ≤
n∑
j=1

∫ tj

tj−1

‖F (U j)− F (u(tj))‖ ds ≤ C
n∑
j=1

∫ tj

tj−1

‖ej‖ ds.
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For I3, we have, by Lemma 3.2,

‖I3‖ ≤
n∑
j=1

∫ tj

tj−1

‖u(tj)− u(s)‖ ds ≤ C(T )k
(
‖A1u0‖+ lk max

0≤s≤T
‖F (u(s))‖

)
.

For I4, we have

‖I4‖ =
n∑
j=1

∥∥∥∫ tj

tj−1

r(kA)n−j+1 − E(tn − tj−1)F (u(s)) ds
∥∥∥

=
n∑
j=1

∥∥∥∫ tj

tj−1

Fn−j+1F (u(s)) ds
∥∥∥ ≤ n∑

j=1

∫ tj

tj−1

‖Fn−j+1F (u(s))‖ ds

≤
n∑
j=1

k‖Fj‖ max
0≤s≤T

‖F (u(s))‖.

Using the same idea as in [15], we have

k
n∑
j=1

‖Fj‖ = k
n∑
j=1

(
sup
v 6=0

‖Fjv‖
‖v‖

)
= sup

v 6=0

k
∑n

j=1 ‖Fjv‖
‖v‖

≤ Ck,

which implies that
‖I4‖ ≤ Ck max

0≤s≤T
‖F (u(s))‖.

For I5, we have, by Lemma 3.1,

‖I5‖ =
∥∥∥ n∑
j=1

∫ tj

tj−1

(
E(tn − tj−1)− E(tn − s)

)
F (u(s)) ds

∥∥∥
≤
∥∥∥ n−1∑
j=1

∫ tj

tj−1

(
E(tn − tj−1)− E(tn − s)

)
F (u(s)) ds

∥∥∥
+
∥∥∥∫ tn

tn−1

(
E(tn − tn−1)− E(tn − s)

)
F (u(s)) ds

∥∥∥
≤
∥∥∥ n−1∑
j=1

∫ tj

tj−1

A1E(tn − s)A−11

(
E(s− tj−1)− I

)
F (u(s)) ds

∥∥∥+ Ck max
0≤s≤T

‖F (u(s))‖

≤
n−1∑
j=1

∫ tj

tj−1

Ck(tn − s)−1‖F (u(s))‖ ds+ Ck max
0≤s≤T

‖F (u(s))‖

≤ Ck
(∫ tn−1

0

(tn − s)−1 ds
)

max
0≤s≤T

‖F (u(s))‖+ Ck max
0≤s≤T

‖F (u(s))‖

≤ Cklk max
0≤s≤T

‖F (u(s))‖.
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Combining these estimates and (19), we have, by using the Gronwall lemma

‖en‖ ≤ C(T )k
(
‖A1u0‖+ lk max

0≤s≤T
‖u(s)‖

)
.

The proof is complete.

4. Some Examples

4.1. Example 1

The first example is a system of nonlinear first order ordinary differential equations [3].

dN1

dt
= N1(t)(0.168− 0.0020339N1(t)− 0.0005N2(t)) (21)

dN2

dt
= N2(t)(0.002− 0.00002N1(t)− 0.000015N2(t)) (22)

with initial starting values N1 = 0.045 grams per area of plant species cover, N2 = 0.045
grams per area of plant species cover.

The detailed idea of this model formulation has been defined and discussed by [3]. The
model parameters are estimated under the regime of a 70-day growing season. This system
of equations is characterised by four steady states namely (0, 0), (82.59993, 0), (0, 133.3333),
and (74, 34.5). The first three steady states are unstable and would need to be stabilized
whereas the coexistence steady state is stable and may not require a further stabilization.

In Figure 1, we illustrate the stability of the steady state (0, 0) in both uncontrolled and
controlled cases. In Figure 2, we illustrate the stability of the steady state (82.59993, 0) in
both uncontrolled and controlled cases. In Figure 3, we illustrate the stability of the steady
state (0, 133.3333) in both uncontrolled and controlled cases.

4.2. Example 2

The second example below is a prey-predator system [1] whose uncontrolled dynamical
equations are

dN1

dt
= N1(t)

(
r(1−N1(t)/K)− kN2(t)((1− e−γN1(t))/N1(t))

)
= N1(t)f1(N1(t), N2(t)),

dN2

dt
= N2(t)

(
− b+ β(1− e−µN1(t)

)
where N1 and N2 denote the sizes of the prey, and the predator populations, respectively;
b, r, k,K, β, γ, µ are positive constants. The unique steady state is (N1e,N2e), where

N1e = (1/µ)log(β/(β − b)), N2e =
r

k

(
1− N1e

K

) N1e

1− e−γN1e
.
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Figure 1: Uncontrolled and controlled cases at the steady state (0,0)
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Figure 2: Uncontrolled and controlled cases at the steady state (82.59993,0)

This steady state is stable when

K < N1e
(

1 +
(

1− γN1e

eγN1e − 1

)−1)
,

and unstable, if this last inequality is reversed.
In our numerical simulation, we choose b = 1, r = 1, k = 1, β = 2, γ = 1;µ = 1. Then

we can calculate the steady state (N1e,N2e). Denote

K0 = N1e
(

1 +
(

1− γN1e

eγN1e − 1

)−1)
.
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Figure 3: Uncontrolled and controlled cases at the steady state (0, 133.3333)

We choose K = K0 + 1 > K0. Then the nonlinear system is unstable at the steady state.
By using the method in this paper, we can stabilize this steady state. Figure 4 shows the
unstable and the stable solutions. Clearly we observe that the controlled system is stable at
the steady state.

In the simulation, we choose the initial value (2, 1). The final time is T = 20.
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Figure 4: Uncontrolled and controlled cases at the steady state (N1e,N2e)

4.3. Example 3

The third example below is a competitive system governed by, [1]

13



dN1

dt
=

r1
K1

N1(t)
(
K1 −N1(t)− αN2(t)

)
,

dN2

dt
=

r2
K2

N2(t)
(
K2 −N2(t)− βN1(t)

)
,

where r1, r2, K1, K2, α, β are positive numbers. The steady state

N1e =
1

1− αβ
(K1 − αK2), N2e =

1

1− αβ
(K2 − βK1),

is stable when αβ < 1 and unstable if αβ > 1.
In our numerical simulation, we choose r1 = 20, r2 = 1, K1 = 2, K2 = 4. We choose

α = 1 and β = 3 which implies that αβ > 1. Thus the nonlinear system is unstable at the
steady state. By using the method in this paper, we can stabilize this steady state. Figure 5
shows the unstable and the stable solutions. Clearly we observe that the controlled system
is stable at the steady state.

In the numerical simulation, we choose initial value (1.5, 0.5). The final time is T = 20.
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Figure 5: Uncontrolled and controlled cases at the steady state (N1e,N2e)

4.4. Example 4

The fourth example is a system of nonlinear first order ordinary differential equations [7]

dN1

dt
= r1N1

(
1− N1

K1

+
(b1N2 − c1N2

2

1 + d1N2
2

)N2

K1

)
,

dN2

dt
= r2N2

(
1− N2

K2

+
(b2N1 − c2N2

1

1 + d2N2
1

)N1

K2

)
,
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where r1, r2, K1, K2, b1, b2, c1, c2, d1, d2 are positive numbers. The steady states are (0, 0), (0, K2),
and (K1, 0) which are unstable. By using the method in this paper, we can stabilize this
steady states. Figure 6 - 8 show the unstable and the stable solutions for the different steady
states. Clearly we observe that the controlled system are stable at the steady states.

In the numerical simulation, we choose r1 = 0.6, r2 = 0.3, K1 = 1, K2 = 1, b1 = 5, b2 =
5, c1 = 1, c2 = 1, d1 = 0.5, d2 = 0.5.

The initial value is (0.5, 0.3). The final time T = 100.
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Figure 6: Uncontrolled and controlled cases at the steady state (0,K2)
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Figure 7: Uncontrolled and controlled cases at the steady state (K1, 0)

From these numerical simulations, we observe that in the uncontrolled case we cannot
guarantee where the arbitrary unstable steady state will converge to because it is unstable.
However, in the controlled case we report that the arbitrary unstable steady state can

15



0 5 10 15 20
0

5
N1 in the uncontrolled case

t

N
1
(t) uncontrolledN

1(
t)

0 5 10 15 20
0

2

4
N2 in the uncontrolled case

t

N
2(

t)

N
2
 uncontrolled

0 5 10 15 20
−0.5

0

0.5
N1 in the controlled case

t

N
1(

t)

N
1
 controlled

0 5 10 15 20
−1

0

1
N2 in the controlled case

t
N

2(
t)

N
2
 controlled

Figure 8: Uncontrolled and controlled cases at the steady state (0, 0)

converge to the given steady state. Hence, both the unstable trivial and nontrivial steady
states can be said to be stabilized using our numerical method of constructing a controller.

5. Conclusion

In this paper, we have developed a powerful numerical tool with which to stabilize the
unstable steady states which were constructed in our previous research [4]; [3]. In terms
of ecological thinking, equilibrium models of coexistence are models where species would
coexist indefinitely in spite of local and transient fluctuations in their population sizes. The
application of our strong simultaneous stabilization as reported in this paper is a major
contribution to this ecological thinking.

Our present analysis which we have not seen elsewhere can contribute to our further
understanding of the role of numerical simulation and numerical stabilization of steady states
into the study of computational and mathematical modelling of plant species interactions in
harsh climates. Further extension of our analysis to capture the behaviour of plant species
to spread as they grow would be our next investigation.
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