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Abstract

DNA methylation is a key epigenetic process which has been intimately associated with gene reg-

ulation. In recent years growing evidence has associated DNA methylation status with a variety

of diseases including cancer, Alzheimer’s disease and cardiovascular disease. Moreover, changes to

DNA methylation have also recently been implicated in the ageing process. The factors which

underpin DNA methylation are complex, and remain to be fully elucidated. Over the years math-

ematical modelling has helped to shed light on the dynamics of this important molecular system.

Although the existing models have contributed significantly to our overall understanding of DNA

methylation, they fall short of fully capturing the dynamics of this process. In this paper we develop

a linear and nonlinear model which captures more fully the dynamics of the key intracellular events

which characterise DNA methylation. In particular the outcomes of our linear model result in

gene promoter specific methylation levels which are more biologically plausible than those revealed

by previous mathematical models. In addition, our nonlinear model predicts DNA methylation

promoter bistability which is commonly observed experimentally. The findings from our models

have implications for our current understanding of how changes to the dynamics which underpin

DNA methylation affect ageing and health. We also propose how our ideas can be tested in the
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HIGHLIGHTS

• The linear model accounts for the overall epigenetic inheritance of DNA methylation patterns and

dynamics.

• The nonlinear model can predict the hypomethylated and hypermethylated states of gene promoters.

• DNA methylation dynamics do not alter when the quantity of DNA methylation enzymes changes.

1. Introduction

DNA methylation is considered a key epigenetic mark for mammalian gene expression and reg-

ulation (Smith and Meissner, 2013). Intriguingly, a growing body of experimental evidence suggests

age-related changes to the methylation status of the genome have a fundamental role to play in

healthspan (Jones et al., 2015). For instance, age-related DNA methylation changes are closely cor-5

related with cancer (Klutstein et al., 2016). Moreover, alterations to genomic methylation patterns

with age have an emerging role to play in many age-related pathologies including, Alzheimers disease

(De Jager et al., 2014), cardiovascular disease (Zhong et al., 2016) and osteoporosis/osteoarthritis

(Delgado-Calle et al., 2013). It has also been postulated that genomic methylation status could be

used to quantify intrinsic ageing by virtue of a methylation clock, where DNA methylation age is10

underscored by the cumulative effect of an epigenetic maintenance system (Horvath, 2013; Horvath

et al., 2016). Taken together these findings suggest that perturbations to the molecular reactions

which are responsible for preserving DNA methylation could significantly impact the trajectory of

healthspan and possibly ageing. In mammals these reactions occur primarily at CpG dyads, where

the methyl group is attached to the fifth carbon of the cytosine at the CpG site (Bird, 2002; Holli-15

day and Pugh, 1975; Riggs, 1975; Sager and Kitchin, 1975). A CpG site being a 5′ − 3′ Cytosine

- Guanine dinucleotide sequence within the DNA molecule with p indicating the phosphate group

between the two nucleotides. A dyad consists of two CpG sites, one on each strand of the DNA

molecule, while regions of DNA which contain a high frequency of CpG sites are referred to as
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CpG islands (CGIs). Such islands consist of approximately 500− 2000 mainly unmethylated base20

pairs which cover in the region of 1% of the mammalian genome (Jones and Liang, 2009).

Despite the sparseness of CGIs within the genome they are acutely important due to the as-

sociation their methylation status has with gene promoter activity. Specifically, hypermethylation,

of CGIs is routinely correlated with the transcriptional silencing of gene promoters, a phenomenon

which is often a feature of diseases such as cancer (Esteller et al., 2000; Kane et al., 1997). Moreover,25

advancing age has been associated with the hypermethylation of a wide variety of gene promoters

belonging to genes which have been associated with ageing/longevity (Hunter et al., 2012; Scott

et al., 2010). Thus, intrinsic ageing would appear to have an effect on the molecular dynamics of

DNA methylation. This dynamic process is underpinned by several enzymes (Robertson, 2001).

For instance, post replicatively, new CpG sites are attached to the complementary strand of the30

daughter cells, which are unmethylated. DNA methyltransferase (DNMT1) then uses S−Adenosyl

methionine as a substrate to transfer methyl groups to the DNA molecule (Crider et al., 2012). As

DNMT1 preferentially acts on hemimethylated DNA it is widely accepted as primarily a main-

tenance enzyme (Robertson et al., 1999). Consequently, additional enzymes are required for de

novo DNA methylation. It is generally regarded that DNMT3a and DNMT3b are the enzymes35

responsible for this role. In addition to maintenance and de novo methylation, the DNA methyla-

tion cycle is counterbalanced by active and passive demethylation (Chen and Riggs, 2011). Passive

demethylation usually takes place during replication and it is known that methylation levels can

drop following several rounds of replication (Razin and Riggs, 1980). Conversely active methyla-

tion is thought to involve Ten-eleven Translocation (TET ) dioxygenases, which oxidize the methyl40

groups of cytosine; a process which eventually culminates with the reintroduction of an unmethy-

lated cytosine into the DNA molecule (Scourzic et al., 2015). Thus, DNA methylation status is the

combined result of the complex interactions between maintenance/de novo methylation and pas-

sive/active demethylation. Moreover, it can be reasonably argued that the dysregulation of these

processes have a role to play in the onset of aberrant gene promoter methylation and unravelling45

the factors which lead to this dysregulation is of fundamental importance to our understanding of

healthspan and ageing.

Mathematical models have been a key to exploring the intricacies of DNA methylation status

and its intersection with health (reviewed in Mc Auley et al. 2016). Early attempts to capture

mathematically the variability associated with DNA methylation levels are grounded in the re-50
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duced probabilistic mathematical representation of methylation dynamics (known as the standard/

classical model) as proposed by Pfeifer et al. (1990) and further utilised by Riggs and Xiong (2004).

More recently Jeltsch and Jurkowska (2014) extended this mathematical framework by introduc-

ing a term to represent the efficiency of maintenance methylation. In addition to this approach

Haerter et al. (2013) also provided a probabilistic view of DNA methylation by using the Gillespie55

algorithm (Gillespie, 1976) to represent this system. Their model attempted to account for ex-

perimental data which has consistently shown non-random patterns of DNA methylation in CpG

clusters, namely CpG clusters can be hypo-methylated or highly methylated (Illingworth and Bird,

2009). Based on the idea that DNA methylation levels strongly depend on the density of the CpG

cluster, Loevkvist and colleagues attempted to mathematically capture the observed bistability in60

DNA methylation patterns of CpG clusters. Therefore, the explicit assumption was made that

spatial dependent collaboration between CpG sites occurs. In particular, this idea was supported

by the hypothesis that methylated CpG sites are able to recruit methylation enzymes that act on

the CpG sites in the neighbouring area (Dodd et al., 2007). Moreover the assumption was made

that unmethylated CpGs can recruit demethylation enzymes which predispose neighbouring CpGs65

to demethylation in that particular region (Loevkvist et al., 2016).

Methylation bistability of gene promoters is a key area of investigation with this work, as we:

(i) describe the construction and examination of a deterministic model of DNA methylation, (ii)

introduce a mathematical approach for representing a model of DNA methylation, (iii) outline

the reasons why our model provides a more complete representation of the dynamics of DNA70

methylation and (iv) discuss the implications of the findings for our understanding of health and

ageing.

4



2. Models and Methods

2.1. Existing Mathematical Models of DNA Methylation Dynamics.

Recently, McGovern and colleagues created a deterministic set of six homogeneous ordinary dif-75

ferential equations, introducing the incorporation of hydroxymethylation by the Ten-eleven Translo-

cation (TET ) enzymes (Scourzic et al., 2015). The authors considered six different states of a

CpG dyad which were represented as follows: 1. unmethylated/unmethylated, 2. unmethylat-

ed/methylated, 3. methylated/methylated, 4. hydroxymethylated/methylated, 5. hydroxymethy-

lated/hydroxymethylated, 6. hydroxymethylated/unmethylated. Mathematically each state was80

represented by x1(t), x2(t), x3(t), x4(t), x5(t) and x6(t), respectively. The rates of the transitions

between the possible states of the CpG dyads were in turn represented by the rate constants kj ,

j = 1 . . . 6. The authors also included the cell division rate d and the rate of cell loss l due to cell

death in their model. The model is represented by the following set of differential equations.

dx1(t)

dt
= (d− l − k1)x1(t) + dx2(t) + dx6(t)

dx2(t)

dt
= k1x1(t)− (l + k2 + k3)x2(t) + 2dx3(t) + dx4(t)

dx3(t)

dt
= k2x2(t)− (d+ l + k4)x3(t)

dx4(t)

dt
= k4x3(t)− (d+ l + k5)x4(t)

dx5(t)

dt
= k5x4(t)− (d+ l)x5(t)

dx6(t)

dt
= k3x2(t) + dx4(t) + 2dx5(t)− lx6(t).

This model was applied to the global methylome and then to local epigenetic regions. Their85

model was able to predict the relative abundances of unmethylated, hemimethylated, fully methy-

lated and hydroxymethylated CpG dyads in the DNA of cells.

Following the work of McGovern et al, Jeltsch and Jurkowska also focused on methylation

dynamics and constructed a single ordinary differential equation, which was based on a classic

model by Pfeifer et al (1990). This model included the interactions among DNMT1, DNMT3a90

and DNMT3b. In addition they included hydroxymethylation by the TET protein family enzymes

as the first step for active demethylation. The authors monitored the evolution of the fraction of
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methylation at a random CpG site θim(t). They considered methylation (rimet) and demethylation

(ridemet) rates, division rate (D) and efficiency of maintenance methylation as a fraction (f imain).

However the authors did not dynamically simulate their model.95

dθim(t)

dt
= rimet

(
1− θim(t)

)
−
(

1

2
D(1− f imain) + ridemet)

)
θim(t).

Although both of the preceding models are noteworthy additions to this field in our opinion, it

is necessary to outline some of their limitations. For instance, McGovern and colleagues created a

set of homogeneous, linear ordinary differential equations. The main drawback with systems of this

form is that they produce only trivial equilibrium points. In other words, only the start of the axis

can be a steady state solution of the system, that is, all coordinates equal to zero. This is biologically100

unreasonable because it would mean that the only stable state of the system happens when there

are no CpG dyads of any state in the region of investigation. On the other hand, the Jeltsch

and Jurkowska model calculates the fraction of CpG sites and not CpG dyads. This restricts the

elucidation of the mechanisms underlying locus-specific DNA methylation. For example, DNMT1

shows affinity for hemimethylated CpG dyads, being responsible for maintenance DNA methylation105

(1). As a consequence this mechanism cannot be supported by this model.

2.2. A Linear Model of DNA Methylation

In order to address these specific limitations we created a new mathematical model. This

model retains key elements of both previous models (McGovern et al., 2012; Jeltsch and Jurkowska,

2014). Significantly, however, we introduce three different types of molecules or chemical species of110

interest; unmethylated CpG dyads, hemimethylated CpG dyads and methylated CpG dyads. An

unmethylated CpG dyad is a CpG dyad with none of the two CpG sites methylated. Analogously,

a hemimethylated CpG dyad has only one methylated CpG site and the opposing unmethylated

and a methylated CpG dyad has both opposing sites methylated, see Figure 1. The number of

unmethylated, hemimethylated and methylated CpG dyads is denoted as x1(t), x2(t) and x3(t),115

respectively. Transitions between the possible states of CpG dyads occur due to the methyla-

tion enzymes DNMT1, DNMT3a and DNMT3b, demethylation enzymes TET family and DNA

replication. k1 is the methylation rate of unmethylated CpG dyads, k2 the methylation rate of

hemimethylated CpG dyads, k3 the demethylation rate of hemimethylated CpG dyads, and k4 is

rate of DNA demethylation of methylated CpG dyads and D is the rate of cell division, see also120
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the diagram in Figure 2. For instance, the constant k1 represents the rate that a methyl group

is attached to one of the two opposing CpG sites of an unmethylated CpG dyad (x1) to form a

hemimethylated CpG dyad (x2). All rate constants are defined analogously.

methylated CpG dyad (x3)

hemimethylated CpG dyad (x2)

unmethylated CpG dyad (x1)

Figure 1: The three different states of a CpG dyad; unmethylated (x1), hemimethylated (x2) and methylated (x3)

CpG dyads. A white circle denotes an unmethylated CpG site whereas a black circle represents a methylated CpG

site. An unmethylated (x1) CpG dyad consists of two unmethylated opposite CpG sites, a hemimethylated dyad

(x2) has only one of the two sites methylated and a methylated dyad (x3) has both opposing sites methylated.

As suggested experimentally interactions among the methylation enzymes DNMT1, DNMT3a

and DNMT3b are considered important for maintenance methylation. Rates k3 and k4 are nec-125

essary to represent active demethylation. Mechanistically this is thought to occur by the TET

enzymes hydroxymethylating the cytosine of the CpG sites and eventually reintroducing an un-

methylated cytosine into them (Rasmussen and Helin, 2016). Thus, we consider the process of

hydroxymethylation to be an important intermediate step leading to the active demethylation of a

CpG site.130

x1 x2 x3

k1 k2

k3 k4

D D

Figure 2: Methylation rates between x1, x2 and x3.

During DNA replication, unmethylated DNA strands bond with the parental strands. Thus,
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all methylated CpG dyads of the parental cell produce hemimethylated CpG dyads in the daugh-

ter cells (Waterland and Michels, 2007). The hemimethylated parental CpG dyads either become

unmethylated, or remain hemimethylated in the daughter cells. Unmethylated dyads remain un-

methylated, as outlined in Figure 3.135

If the above processes are translated as a set of ordinary differential equations (ODEs), then

the following system of ODEs is derived

dx1(t)

dt
= −k1x1(t) +

(
k3 +

1

2
D

)
x2(t)

dx2(t)

dt
= k1x1(t)−

(
k2 + k3 +

1

2
D

)
x2(t) +

(
k4 +D

)
x3(t)

dx3(t)

dt
= k2x2(t)−

(
k4 +D

)
x3(t).

(2.1)

The assumption was made that after replication half of the parental hemimethylated CpG dyads

become unmethylated in the daughter cells and the other half remain hemimethylated. Thus, there

is a 1
2 coefficient in the terms 1

2Dx2(t).140
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parental cell

daughter cell

daughter cell

newly synthesized strands

daughter cell

DNMT1

daughter cell

DNMT1

Figure 3: DNA replication and DNA maintenance methylation. Top left: A parental cell with specific methylation

levels. Top right: DNA replication. New unmethylated CpG sites attach, synthesizing complementary strands

and creating two daughter cells. Bottom left: DNMT1 is responsible for maintaining the methylation levels of the

daughter cells. Bottom right: DNMT1 catalyzes the transfer of methyl groups to the unmethylated CpG sites.

Perturbations to the methylation levels of a variety of gene promoters have been associated

with several diseases and ageing (Gopalakrishnan et al.,2008; Jung and Pfeifer, 2015). Therefore,

our underlying aim with the proposed model (2.1) is to use it to elucidate the dynamics associated

with gene promoter methylation. Moreover, as we are interested in the evolution of a population of

CpG sites in a specific region of the genome with fixed length, the total number of CpG dyads has

to be constant. Thus, we consider x1(t) + x2(t) + x3(t) = C, with C > 0. Regardless of the level of

methylation in the region of interest, the total number of CpG dyads is determined to be C. The

importance of the above relation is that it reduces the size of the set of differential equations by one

and leads to a non-homogeneous linear system. Significantly, its solution stabilizes each time to a

non trivial equilibrium point, which is biologically consistent since the populations xi(t), i = 1, 2, 3

denote the number of CpG dyads and thus they should remain positive. Substituting the above
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equation into the system (2.1), we deduce the equivalent non-homogeneous system

dx1(t)

dt
= −

(
k1 + k3 +

1

2
D

)
x1(t)−

(
k3 +

1

2
D

)
x3(t) + C

(
k3 +

1

2
D

)
dx3(t)

dt
= −k2x1(t)−

(
k2 + k4 +D

)
x3(t) + Ck2

x2(t) = C − x1(t)− x3(t),

(2.2)

which has non-trivial (non-zero) equilibrium solutions.

Gene promoters are differently methylated within the global genome. Indeed, methylation levels

in gene promoters depend on the specific type of tissue under consideration (Lokk et al., 2014). It is

likely however, that methylation mechanisms, on the contrary, are the same for every CpG island,

following the same processes. Thus, it is possible to use our model to quantify the methylation level145

of a specific CpG island. In the first instance, we apply our model to determine methylation levels in

a gene promoter. For that purpose we initially adopt the parameter values suggested by McGovern

et al. Hence, k1 = 0.012D, k2 = 99D, k3 = 0.11D, k4 = 0.08D, is used for calculating methylation

levels in gene promoters, and k1 = 0.205D, k2 = 99D, k3 = 0.04D, k4 = 0.08D, for estimating the

global genome methylation levels. Note that in McGovern’s model, the rates k3 and k4 denote the150

hydroxymethylation of hemimethylated and methylated dyads respectively. This meant that the

same parameter values for active demethylation could be adopted because hydroxymethylation is

the first step of the process that leads to active demethylation. The cell division rate is represented

by D.

Although the linear model gives biologically satisfactory solutions, it cannot predict possible155

changes in the methylation levels due to the onset of disease or ageing. Experimental data sug-

gest DNMT1, which is the enzyme primarily responsible for maintaining DNA methylation levels

following cell replication, suffers from a decrease in activity during ageing (Li et al., 2010). Conse-

quently it can be assumed that the passive demethylation rate increases. It can also be argued this

increase would result in methylation levels in a promoter of a gene in a cancer cell being higher than160

in the same promoter in a healthy cell. Moreover, recent evidence indicates that methylation states

in most average-sized promoters are bistable, namely, they would be either highly methylated or

hypomethylated and hardly ever in an intermediate state (Haerter et al., 2014). For these reasons,

it is reasonable to assume that the transition rates kj are not constant but change with respect to

time.165
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In the current subsection a mathematical model is constructed for predicting potential changes

in methylation levels due to disease and ageing. A reasonable way to accomplish this is by making

the cogent assumption that the methylation rates are functions of the population of CpG dyads,

i.e. kj = kj(xi(t)), i, j = 1, . . . , 4. In particular this approach illuminates how de novo methylation,

maintenance methylation and active demethylation can possibly change over time. The majority170

of gene promoters are either in a hypomethylated or in a highly methylated state. In the former

state, the majority of the CpG dyads are unmethylated, whilst it has been experimentally found

that when CpG dyads are in a highly methylated state, the majority of the CpG dyads are occupied

with methyl groups (Haerter et al., 2014). In order to describe a possible transition between the two

states it is necessary to appreciate the following biological arguments. If a scenario exists whereby175

there is an abundance of unmethylated CpG dyads (x1) and the gene promoter is hypomethylated.

It is then biologically plausible that with time unmethylated CpG dyads start to become methylated.

This could happen due to fluctuating levels ofDNMT3a andDNMT3b (denoted in the model by an

increase in k1 rate). As the number of unmethylated CpG dyads (x1) drops, the methylation rate k1

increases. While the number of unmethylated dyads decreases, then the number of hemimethylated180

dyads (x2) increases. This can be interpreted as k1 being a decreasing function of x1(t) or an

increasing function of x2(t). It is not known if the transition between the two different states is

either due to a rise in de novo methylation enzymes (DNMT3a and DNMT3b) or because of a

decrease in the active demethylation enzymes (TET protein family). To describe the latter, we

can assume the similar argument, that as the number of unmethylated CpG dyads (x1) decreases,185

the demethylation rate k3 drops, due to the decrease in the TET enzymes and consequently the

number of hemimethylated CpG dyads increases. This can be interpreted as denoting the k3 rate

as an increasing function of x1(t) or a decreasing function of x2(t). The exact same argument can

be stated for the transition rates k2 and k4. A huge increase in methylated CpG dyads can be a

result of either an increase in DNMT1 maintenance levels or a decrease in TET enzymes, namely190

either a k2 increase or a k4 drop. Therefore, k2 can be a decreasing function of x2 or an increasing

function of x3 and k4 an increasing function of x2 or a decreasing function of x3.
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Table 1: Transition rates kij are functions of populations of CpG dyads, x1, x2 and x3. There are two different

function selections that comply with the biological evidence. The arrow next to each formula denotes an increasing

or decreasing function of xi. All parameters kij are positive.

Selection I

kj functions of x1,x3

k1(x1) = k11 − k12x21 (↘)

k2(x3) = k21 + k22x
2
3 (↗)

k3(x1) = k31 + k32x
2
1 (↗)

k4(x3) = k41 − k42x23 (↘)

Selection II

kj functions of x2

k1(x2) = k11 + k12x
2
2 (↗)

k2(x2) = k21 − k22x22 (↘)

k3(x2) = k31 − k32x22 (↘)

k4(x2) = k41 + k42x
2
2 (↗)

Following this rationale, two different mathematical formulae are introduced to account for the

transition rate functions, (see Table 2).]A nonlinear model describing gene promoter bistability.

Although the linear model gives biologically satisfactory solutions, it cannot predict possible195

changes in the methylation levels due to the onset of disease or ageing. Experimental data sug-

gest DNMT1, which is the enzyme primarily responsible for maintaining DNA methylation levels

following cell replication, suffers from a decrease in activity during ageing (Li et al., 2010). Conse-

quently it can be assumed that the passive demethylation rate increases. It can also be argued this

increase would result in methylation levels in a promoter of a gene in a cancer cell being higher than200

in the same promoter in a healthy cell. Moreover, recent evidence indicates that methylation states

in most average-sized promoters are bistable, namely, they would be either highly methylated or

hypomethylated and hardly ever in an intermediate state (Haerter et al., 2014). For these reasons,

it is reasonable to assume that the transition rates kj are not constant but change with respect to

time.205

In the current subsection a mathematical model is constructed for predicting potential changes

in methylation levels due to disease and ageing. A reasonable way to accomplish this is by making

the cogent assumption that the methylation rates are functions of the population of CpG dyads,

i.e. kj = kj(xi(t)), i, j = 1, . . . , 4. In particular this approach illuminates how de novo methylation,

maintenance methylation and active demethylation can possibly change over time. The majority210

of gene promoters are either in a hypomethylated or in a highly methylated state. In the former
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state, the majority of the CpG dyads are unmethylated, whilst it has been experimentally found

that when CpG dyads are in a highly methylated state, the majority of the CpG dyads are occupied

with methyl groups (Haerter et al., 2014). In order to describe a possible transition between the two

states it is necessary to appreciate the following biological arguments. If a scenario exists whereby215

there is an abundance of unmethylated CpG dyads (x1) and the gene promoter is hypomethylated.

It is then biologically plausible that with time unmethylated CpG dyads start to become methylated.

This could happen due to fluctuating levels ofDNMT3a andDNMT3b (denoted in the model by an

increase in k1 rate). As the number of unmethylated CpG dyads (x1) drops, the methylation rate k1

increases. While the number of unmethylated dyads decreases, then the number of hemimethylated220

dyads (x2) increases. This can be interpreted as k1 being a decreasing function of x1(t) or an

increasing function of x2(t). It is not known if the transition between the two different states is

either due to a rise in de novo methylation enzymes (DNMT3a and DNMT3b) or because of a

decrease in the active demethylation enzymes (TET protein family). To describe the latter, we

can assume the similar argument, that as the number of unmethylated CpG dyads (x1) decreases,225

the demethylation rate k3 drops, due to the decrease in the TET enzymes and consequently the

number of hemimethylated CpG dyads increases. This can be interpreted as denoting the k3 rate

as an increasing function of x1(t) or a decreasing function of x2(t). The exact same argument can

be stated for the transition rates k2 and k4. A huge increase in methylated CpG dyads can be a

result of either an increase in DNMT1 maintenance levels or a decrease in TET enzymes, namely230

either a k2 increase or a k4 drop. Therefore, k2 can be a decreasing function of x2 or an increasing

function of x3 and k4 an increasing function of x2 or a decreasing function of x3.
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Table 2: Transition rates kij are functions of populations of CpG dyads, x1, x2 and x3. There are two different

function selections that comply with the biological evidence. The arrow next to each formula denotes an increasing

or decreasing function of xi. All parameters kij are positive.

Selection I

kj functions of x1,x3

k1(x1) = k11 − k12x21 (↘)

k2(x3) = k21 + k22x
2
3 (↗)

k3(x1) = k31 + k32x
2
1 (↗)

k4(x3) = k41 − k42x23 (↘)

Selection II

kj functions of x2

k1(x2) = k11 + k12x
2
2 (↗)

k2(x2) = k21 − k22x22 (↘)

k3(x2) = k31 − k32x22 (↘)

k4(x2) = k41 + k42x
2
2 (↗)

Following this rationale, two different mathematical formulae are introduced to account for the

transition rate functions, (see Table 2). The arrow next to each formula denotes an increasing or

decreasing function of xi. These reactions are akin to second order kinetics which are common235

in biochemical systems. Both selections for the transition rates were used to obtain the nonlinear

system. The nonlinear system corresponding to the selection II transition rates was only able

to predict one global equilibrium point for the CpG populations, thus leaving us with the same

limitation as the linear system. Therefore, if Selection I is selected, we obtain the following nonlinear

system240

dx1(t)

dt
= −A1(x1(t))x1(t)−A2(x1(t))x3(t) +A3(x1(t))C

dx3(t)

dt
= −B1(x3(t))x1(t)−B2(x3(t))x3(t) +B3(x3(t))C

x2(t) = C − x1(t)− x3(t),

(2.3)

14



where

A1(x1(t)) = k11 − k12x21(t) + k31 + k32x
2
1(t) +

1

2
D,

A2(x1(t)) = k31 + k32x
2
1(t) +

1

2
D,

A3(x1(t)) = k31 + k32x
2
1(t) +

1

2
D,

B1(x3(t)) = k21 + k22x
2
3(t),

B2(x3(t)) = k21 + k22x
2
3(t) + k41 − k42x23(t) +D,

B3(x3(t)) = k21 + k22x
2
3(t).

The specific selection of the rate functions k2 and k3, is inspired by biological mechanisms and as

it is shown below, leads to the bistability which has been observed experimentally in CpG clusters

(Haerter et al., 2014). In particular, it has been suggested that due to the interaction between

neighbouring CpG sites, methylated CpG sites affect the methylation status of nearby unmethylated245

sites; hence the rate of methylation k2 increases as the population of methylated dyads x3 grows.

Conversely, an abundance of unmethylated CpG sites in a CpG cluster influences the demethylation

of close methylated sites; thus, the demethylation rate k3 increases while unmethylated CpG dyads

x1 increase. In addition, if we consider that intrinsic ageing has the potential to dysregulate

DNMT1 this will result in a decrease in global methylation levels. In other words, a drop in the250

value of k2 results in a concomitant drop in globally methylated CpG dyads x3. Both functions k2

and k3, therefore, are described in terms of x3 and x1, respectively. The same argument can be

stated as a reasonable reasoning for the selection of the rate functions k1 and k4. In both cases,

a decrease in DNMT3a and DNMT3b results primarily in an abundance of unmethylated CpG

dyads x1, so k1 would be more appropriately denoted as a decreasing function of x1. The same255

arguments are valid for k4 as well.

The analysis of the nonlinear model (2.3) was done by using Matlab 2017a. For the delivered

simulations a specific interval of values was determined for each transition rate function kj so that

the model predicts the observed bistability of gene promoters. For that purpose and for a CpG

cluster of a hundred CpG dyads size, i.e. C = 100, transition rate functions were selected in the260

following intervals, 1.9 ≤ k1 ≤ 2.1, 10 ≤ k2 ≤ 110, 1 ≤ k3 ≤ 100 and 2 ≤ k4 ≤ 4. In order to

determine the values of the parameters, the expression of each rate function was substituted into

the intervals. As a result the values listed in Table 3 were determined.
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Table 3: Nonlinear model parameter values

k11 k12 k21 k22 k31 k32 k41 k42

2.1 2× 10−5 10 10−2 1 10−2 4 2× 10−4

3. Results and discussion

Mathematical analysis was conducted for both the linear and the nonlinear model. Equilibrium265

points were calculated for the linear system and stability analysis for both of the systems was

delivered by constructing the phase plane portraits which provide graphically a representation of

the solutions. In addition sensitivity analysis was performed to assess the impact of parameter

perturbations. Matlab 2017a was used for producing the phase plane portraits and for performing

the sensitivity analysis for parameters for the nonlinear model.270

3.1. Linear model outcomes

We examined the equilibrium state of the system x(t) = (x1(t), x2(t), x3(t))T ; namely, the

equilibrium point of the system was calculated when the condition d
dtx(t) = 0 is solved. We then

obtained the following expression for the equilibrium point with respect to the parameters

xss1 =
C(2k3 +D)(D + k4)

D(2k1 + 2k3 + k4) + 2(k1k2 + k1k4 + k3k4) +D2
,

xss2 =
2k1D + 2k1k4

D(2k1 + 2k3 + k4) + 2(k1k2 + k1k4 + k3k4) +D2
,

xss3 =
2Ck1k2

D(2k1 + 2k3 + k4) + 2(k1k2 + k1k4 + k3k4) +D2
.

Mathematical analysis showed that all three components of the equilibrium point are always275

positive and less than C = 100, for any positive values of the parameters. In addition, stability anal-

ysis indicated that the equilibrium point is stable for all positive selection of the parameter values.

The latter actually entails that in a region of investigation, like a CpG island, our model predicts

that no matter what the initial methylation levels are, the number of unmethylated, hemimethy-

lated and methylated CpG dyads will always converge to a steady-state value inside the interval280

[0, 100].

In order to examine the model in a specific region of the genome, it would be necessary to

have clear experimental data. In the absence of experimental data, the assumption that we were
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working with a promoter of a gene was made. Data suggests that the values of the parameters

should be considered as in the McGovern et al. paper (McGovern et al., 2012) for local epigenetic285

regions. Thus, k1 = 0.012D, k2 = 99D, k3 = 0.11D, k4 = 0.08D,D = 1 and C = 100. were

selected. As shown in Figure 4, our model predicts that the equilibrium methylation state for

this promoter would be: 38.2% unmethylated, 0.8% hemimethylated and 61% methylated CpG

dyads. The fact the equilibrium point is stable ensures the heredity of post replicative maintenance

methylation. Moreover, any perturbation in the availability of DNMT1, DMNT3a,DNMT3b290

or the TET family enzymes during methylation or active demethylation is temporary and will

eventually terminate. Therefore, the linear model accounts for the overall epigenetic inheritance of

DNA methylation patterns and dynamics.
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x1 ' = - (k1 + k3 + 1/2 D) x1 - (k3 + 1/2 D) x3 + C (k3 + 1/2 D)
x3 ' = - k2 x1 - (k2 + k4 + D) x3 + C k2                        

k3 = 0.11
C = 100
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D = 1
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Figure 4: Phase plane portrait of solutions for the linear model (2.2). The above figure shows the percentage

of unmethylated CpG dyads versus the unmethylated CpG dyads. For k1 = 0.012D, k2 = 99D, k3 = 0.11D,

k4 = 0.22D,D = 1 and C = 100, the equilibrium point is (x1, x3) = (38.2, 61).

3.2. Nonlinear model outcomes

The nonlinear model (2.3) was created to overcome some significant weaknesses of the linear295

model. Due to the presence of the nonlinear terms we had to use numerical methods to solve it.

The 4th order Runge-Kutta method was implemented for defining the equilibrium points of the

system, and for performing sensitivity analysis for the parameters perturbation.
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Figure 5: Transition rate functions kj versus populations xi for a CpG cluster of C = 100 CpG dyads in total.

k1(x1) = k11 − k12x2
1, k2(x3) = k21 + k22x2

3, k3(x1) = k31 + k32x2
1 and k4(x3) = k41 − k42x2

3. with k11 = 2.1,

k12 = 2 × 10−5, k21 = 10, k22 = 10−2, k31 = 1, k32 = 10−2, k41 = 4, k42 = 2 × 10−4.

3.2.1. Nonlinear Phase Plane Portrait

Notably the transition rates are not constants anymore but vary over time. We selected rates300

as functions of population of CpG dyads, namely k1(x1) = k11 − k12x
2
1, k2(x3) = k21 + k22x

2
3,

k3(x1) = k31 + k32x
2
1 and k4(x3) = k41 − k42x23, (see Figure 5).
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For computational purposes and for the reasons explained in the previous section, we focus on

the case of a gene promoter of C = 100 CpG dyads length, for which experimental evidence suggests

that the following parameters k11 = 2.1, k12 = 2×10−5, k21 = 10, k22 = 10−2, k31 = 1, k32 = 10−2,305

k41 = 4, k42 = 2 × 10−4 should be considered. Then the model produces two stable equilibrium

points (x1, x2, x3) = (2.2, 3.1, 94.7) and (x1, x2, x3) = (93.9, 2, 4.1), see Figure 6. This means that

there are two possible scenarios regarding the eventual methylation level of the promoter. In the

first case the promoter is hypermethylated, as the first equilibrium point dictates, with 94.7% of

the total CpG dyads within the promoter being methylated, and only 2.2% remain unmethylated.310

The second scenario corresponds to the promoter being in a hypomethylated state, with only 4.1%

of the total CpG dyads methylated and 93.9% unmethylated. Therefore it could be reasonably

inferred that the first scenario represents the hypermethylation of the promoter, possibly due to

ageing. The promoter we consider was assumed to be a generic promoter akin to a homebox gene. If

the gene is responsible for suppressing genetic mutations in the cell, its silencing would potentially315

lead to cancer development. Depending on the gene function, silencing due to hypermethylation

could potentially lead to different diseases. Analogously, the second case represents the normal

hypomethylated state of the promoter, where the gene is active. There is an intermediate region

which separates these two stable regions. This region denotes a methylation state threshold where

if exceeded, methylation levels change properly in the promoter.320
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x1 ' = - (k11 - k12 x12) x1 + (k31 + k32 x12 + 1/2) (100 - x1 - x3)  
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Figure 6: Phase plane portrait for the solutions of the nonlinear model (2.3). The above figure shows the percentage of

unmethylated CpG dyads versus the unmethylated CpG dyads. Assuming that k11 = 2.1, k12 = 2× 10−5, k21 = 10,

k22 = 10−2, k31 = 1, k32 = 10−2, k41 = 4, k42 = 2×10−4, two stable equilibrium points occur; (x1, x3) = (2.2, 94.7)

and (x1, x3) = (93.9, 4.1).

3.2.2. Sensitivity analysis

A sensitivity analysis for the parameters of the system was performed. This approach allowed us

to identify how a variation in the value of the parameters of the model would influence the solution

of the system. In other words, we used a sensitivity analysis to examine how a possible change in

the availability of the methylation and demethylation enzymes would affect the methylation levels325

and the dynamics of the model under investigation. For that purpose we increased the parameters

by 5%, 10%, 25%, 50%, 100% and decreased them by 5%, 10%, 25%, 50%, 75%. Next we calculated
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Table 4: Sensitivity analysis for the parameters of the nonlinear model (2.3). Each parameter was increased by

50%. The percentage change was calculated for each variable of the system. Parameters k11 and k32 had the most

significant impact on both hemimethylated and methylated CpG dyads whereas k21 and k41 cause a noticeable

change in methylated dyads.

50% change in parameter % change in x1 % change in x2 % change in x3

k11 4.2 61.7 64.7

k12 0.3 4.9 5

k21 2.4 3.1 54.4

k22 0.04 0.3 0.9

k31 0.04 0.8 0.6

k32 2.3 34.8 34.4

k41 1.3 1.8 29.8

k42 0.001 0.2 0.04

the percentage change in the solution for x1, x2 and x3 and the results are presented in Table 4.

After ranking the results, we calculated the Spearman’s rank correlation coefficient, usually called

Spearman’s r.330

The rankings between the various increases and decreases in parameters are compared for each

variable, xi. It is found that the order of the impact of parameters on x2 and x3 between 5%

increases and 100% increases was exactly the same, see Table 5. This confirmed that none of the

parameters of the system has a switching on effect, that is, when they reach at a particular threshold,

their effect on the system is greatly increased, in relation to the other parameters. Having identified335

this, it is inferred that the DNA methylation mechanisms remained unaltered despite changes to

the parameters. For example, the sensitivity analysis shows that a change in the quantity of the de

novo methylation enzymes DNMT3a and DNMT3b causes a significant change in the number of

hemimethylated and methylated CpG dyads, but not in the unmethylated dyads. The Spearman’s

rank analysis also indicates that hemimethylated and methylated dyads are more sensitive to a340

DNMT3a and DNMT3b change compared to the unmethylated ones.
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Table 5: The Spearman’s rank correlation coefficient r calculated indicates a positive correlation for r = 1 and no

correlation for r = 0.

x1 x2 x3

Spearman’s r 0.987 1 1

In order to explore the mechanics of DNA methylation further, we compare all xi rankings to

identify a correlation between them. Interestingly, comparing x1 rankings with x3 rankings yielded

a positive correlation, i.e. r = 1. This means that the parameters of the nonlinear system (2.3)

affect x1 and x3 with the same order of magnitude. In addition, both x1 rankings compared to345

x2 and x2 rankings compared to x3 yield a significant correlation, r = 0.89. Generally, changes in

the quantity of the enzymes taking part in the DNA methylation processes cause changes in the

number of the three different states of CpG dyads with the same order of magnitude.
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4. Conclusion

Based on the biological assumptions made in pre-existing models in the literature, two mathe-350

matical models were constructed; the linear model (2.2) and the nonlinear one (2.3). Both models

were built to address mathematical and biological limitations of the pre-existing models. Our key

idea based on the fact that the total number of CpG dyads in a region of investigation is always

constant. The linear model (2.2) demonstrated the methylation levels in any region of the genome,

from CpG islands, to the whole genome. Each transition rate kj was considered constant over time.355

The linear model, however, was unable to predict possible changes in methylation levels caused by

perturbations in the enzymes taking part in the methylation processes. In order to address this

limitation we constructed the nonlinear model (2.3). Transition rates, for the latter model, were

considered as functions of populations xi and thus varied over time. The outcomes of the nonlinear

model are in agreement with experimental work, namely, the observed bistable methylation states360

found in gene promoters can be predicted.

As the existing models (McGovern et al., 2012) (Jeltsch & Jurkowska, 2014), both linear

and nonlinear model were constructed considering continuous and deterministic dynamics. The

advantage of the assumption that the transition rates vary over time is that the obtained nonlinear

system possesses two stable equilibrium points, each one representing a stability state of methylation365

in the region of investigation. Past models were only able to attribute a single - sometimes trivial -

equilibrium point, failing to portray the potentiality of change in methylation levels of CpG islands.

Furthermore, McGovern and colleagues introduced the incorporation of hydroxymethylation by the

Ten-eleven Translocation (TET ) enzymes; we considered active demethylation rates instead, to

account for the action of TET enzymes. In addition, another key difference between our nonlinear370

model and the model by Jeltsch & Jurkowska is the consideration of CpG dyads as the variables of

our system, in contrast to the proposal of regarding CpG sites as the main variables in their work.

In our opinion, investigating the methylation levels in CpG dyads provides a better understanding

of the processes underlying DNA methylation; Moreover, we were able to dynamically simulate our

model, mathematically analyze the stability of the equilibrium points and examine the sensitivity375

of the parameters of the system.
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Additionally, one of the key predictions of our model it that DNA methylation dynamics do

not alter when the quantity of DNA methylation enzymes changes. A worthwhile way to test the

validity of this prediction would be to perform methylation assays using the three methylation en-

zymes, DNMT1, DNMT3a and DNMT3b. In fact methylation assays for each of these enzymes380

have been identified (Poh et al., 2016). It would be relatively straightforward from an experimental

standpoint to design an investigation which quantifies DNA methylation levels based on the differ-

ent cellular concentration of each enzyme or to design an experiment which measures the level of

DNA methylation in response to varying concentrations of different combinations of these enzymes.

This experiment could be enriched further if conducted in tandem with a gene promoter whereby385

bistability has been observed. For instance, there is an array of genomic regions which display this

phenomenon (Zhang et al., 2009)

Although, our nonlinear model (2.3) provides new insights into the dynamics of DNA methy-

lation dynamics, it is important to recognize that it has a number of limitations that need to be

addressed. Notably intrinsic and extrinsic noise are acknowledged factors intracellularly. Therefore,390

a deterministic model, as (2.3), can predict up to a level of certainty the levels of methylation by

calculating the values of the variables of the system at any given time. Thus, uncertainty could be

introduced in the model to describe the presence of intrinsic and extrinsic noise. This way it would

be possible for models to account for the stochastic nature in cell dynamics. In addition, continuous

and deterministic models are very convenient to construct, but they have limitations for biological395

processes and specifically for DNA methylation dynamics. In this work we considered cell division

as a continuous process occurring over time although it only occurs in discrete time steps.

Moreover, it is possible to expand our model to include additional biological mechanisms.

Firstly, a worthwhile addition to the model would be to incorporate the functional forms which

describe the enzymatic reactions underpinning the rate laws in our model. For instance, the math-400

ematics which characterize the enzymatic mechanism of action of DNMT1 have previously been

proposed (Svedruzic, 2008). Secondly, we propose including the dynamics of folate cycle in our

model, as ultimately the folate cycle is the source of the methyl groups which attach to the DNA

molecule. Several ODE models of the folate cycle have been built previously and scope exists for

connecting our model to these (Sora and Mc Auley, 2016; Duncan et al., 2013; Nijhout et al., 2004;405

Reed et al., 2006).
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