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Abstract

A new high-order finite difference scheme to approximate the Caputo fractional derivative 1
2

(
C
0 D

α
t f(tk) +

C
0 D

α
t f(tk−1)

)
, k = 1, 2, . . . , N, with the convergence order O(∆t4−α), α ∈ (1, 2) is obtained when f ′′′(t0) = 0,

where ∆t denotes the time step size. Based on this scheme we introduce a finite difference method for solving
fractional diffusion wave equation with the convergence order O(∆t4−α+h2), where h denotes the space step
size. Numerical examples are given to show that the numerical results are consistent with the theoretical
results.
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1. Introduction

In this paper, we introduce a new high-order finite difference scheme to approximate 1
2

(
C
0 D

α
t f(tk) +

C
0 D

α
t f(tk−1)

)
, k = 1, 2, . . . , N, where the Caputo fractional derivative C

0 D
α
t f(t), 1 < α < 2 is defined by

C
0 D

α
t f(t) =

1

Γ(2− α)

∫ t

0

(t− τ)1−αf ′′(τ) dτ, (1)

and f ′′(τ) denotes the second order derivative of f . Based on this scheme, we construct a new finite difference
method for solving the following fractional diffusion wave equation, with 1 < α < 2,

C
0 D

α
t u(x, t) =

∂2u(x, t)

∂x2
+ F (x, t), x ∈ (0, 1), t ∈ (0, T ], (2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), (3)

u(0, t) = φ(t), u(1, t) = ϕ(t), t ∈ (0, T ], (4)

where F (x, t), u0(x), u1(x), φ(t) and ϕ(t) denote the source term, boundary conditions and the initial con-
ditions, respectively.

The system (2)-(4) can be used to model many physical problems, see [25], [22], [26] and the references
therein. The theoretical analysis can be found, for example, in [1], [2], [9], [10], [11], [20], [21].
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In general, it is not possible to obtain the analytic solution of the system (2)-(4). Therefore we need to
design some numerical methods for solving (2)-(4). Since the fractional derivative is a nonlocal operator,
the fractional derivative of f at time t depends on all the previous values of f(s) for 0 < s < t. Compared
with the discretization of the integer-order derivative, the computation of the fractional derivative needs
more time and requires more computer memory to store the data. In recent years, designing some efficient
high-order numerical methods for solving fractional related differential equation is a very active research
topic.

Let us review some schemes to approximate the Caputo fractional derivative C
0 D

α
t f(t), 1 < α < 2 in

literature. Let 0 = t0 < t1 < · · · < tN = T be a time partition on [0, T ] and let ∆t denote the time step
size. One way to approximate the Caputo fractional derivative C

0 D
α
t f(tk), k = 1, 2, . . . , N with 1 < α < 2 is

by using the direct method. More precisely, we write the Caputo fractional derivative (1) as

C
0 D

α
t f(tk) =

1

Γ(2− α)

k∑
j=1

∫ tj

tj−1

f ′′(τ)dτ

(tk − τ)α−1
. (5)

On [tj−1, tj ], we approximate f ′′(τ) by
f(tj−1)−2f(tj)+f(tj+1)

∆t2 and obtain the following L2 method, [24], [16],

C
0 D

α
t f(tk) ≈ ∆t−α

Γ(3− α)

k−1∑
j=0

bj [f(tk−j−1)− 2f(tk−j) + f(tk−j+1)],

where
bj = (j + 1)2−α − j2−α.

If we use the four-point discretization
(f(tj+1)−f(tj))−(f(tj−1)−f(tj−2))

2∆t2 to approximate f ′′(τ) on [tj−1, tj ],
we get the following L2C method, [24], [16],

C
0 D

α
t f(tk) ≈ ∆t−α

Γ(3− α)

k−1∑
j=0

bj [
(
f(tk−j−2)− f(tk−j−1)

)
−
(
f(tk−j)− f(tk−j+1)

)
],

where f(t−1) for k = 1 can be considered as in [24]. Both L2 and L2C method has the convergence order
O(∆t3−α), 1 < α < 2.

Another way to approximate the Caputo fractional derivative C
0 D

α
t f(tk), k = 1, 2, . . . , N with 1 < α < 2

is by using the relation between the Caputo fractional derivative and the Riemann-Liouville fractional
derivative. More precisely, we use the following approximation scheme

C
0 D

α
t f(tk) = R

0 D
α
t

[
f(t)− f(0)− f ′(0)

1!
t
]∣∣∣
t=tk

= −
f(0)t−αk
Γ(1− α)

−
f ′(0)t1−αk

Γ(2− α)
+D2

(
R
0 D
−(2−α)
t f

)
(tk)

≈ −
f(0)t−αk
Γ(1− α)

−
f ′(0)t1−αk

Γ(2− α)
+

1

∆t2

(
R
0 D
−(2−α)
t f(tk+1)− 2R0 D

−(2−α)
t f(tk) +R

0 D
−(2−α)
t f(tk−1)

)
,

where R
0 D

β
t f(t) denotes the Riemann-Liouville fractional derivative (β > 0) or Riemann-Liouville fractional

integral (β < 0) and D2v(t) = v′′(t) denotes the second order derivative of v(t). Here the second order
derivative of D−(2−α)f(t) at tk is approximated by using the central difference formula. Further if we use

the piecewise linear interpolation polynomial to approximate the Riemann-Liouville integral R0 D
−(2−α)
t f(t) at

tl, l = k−1, k, k+1, then a second-order scheme to approximate the Caputo fractional derivative is obtained,
see, e.g., [4], [27]. There are other approaches to approximate the Caputo fractional derivative, for example,
by using the Lubich method [19], the weighted and shifted Grünwald-Letnikov difference (WSGD) [30], the
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Hadamard finite-integral method [8], etc. In this paper, we shall use the direct method to approximate the
Caputo fractional derivative, see Section 2 below.

Let us now review some finite difference methods for solving (2)-(4). Sun and Wu [29] considered a
finite difference method for solving (2)-(4) with the convergence order O(∆t3−α + h2) and the stability and
error estimates are proved by using the energy method, where h denotes the space step size. Du et al. [7]
considered a finite difference method for solving (2)-(4) with the convergence order O(∆t3−α +h4) by using
the compact finite difference scheme. By using the equivalent integro-differential form of (2)-(4), Huang et
al. [13] introduced two finite difference methods for solving (2)-(4). Zeng [35] proposed some finite difference
schemes of second-order accuracy in both time and space for solving (2)-(4) by using the fractional multistep
methods developed by Lubich [19] in time and central difference formula in space. The stability and error
estimates are proved by using the Fourier method. Other finite difference methods for solving (2)-(4) can
be found in, e.g., , [5], [12], [31], [34], [4], [32], [6], etc.

In [28], Sun and Gao introduced a finite difference scheme to approximate the Caputo fractional deriva-
tive 1

2

(
C
0 D

α
t f(tk) + C

0 D
α
t f(tk−1)

)
with the convergence order O(∆t3−α), 1 < α < 2 and applied this scheme

to solve the fractional diffusion wave equation (2)-(4). In this paper, we introduce a new high-order ap-
proximation scheme with the convergence order O(∆t4−α), 1 < α < 2 when f ′′′(t0) = 0 to approximate
the Caputo fractional derivative 1

2

(
C
0 D

α
t f(tk) + C

0 D
α
t f(tk−1)

)
and apply this scheme to obtain a high-order

numerical method for solving the fractional diffusion wave equation (2)-(4). The properties of the weights
in the proposed approximation scheme are studied and the truncation errors of the proposed numerical
methods for solving diffusion wave equation are derived. For the high-order schemes to approximate the
Caputo fractional derivative C

0 D
α
t f(tk) with 0 < α < 1, we refer to [17], [3], [15], [14], [23], [33], [18] and the

references therein. Since the approximation of the Caputo fractional derivative C
0 D

α
t f(tk) with 1 < α < 2

involves the approximation of the second order derivative f ′′(t) which is more challenging than the approx-
imation of the Caputo fractional derivative with 0 < α < 1 where one only need to approximate the first
order derivative f ′(t).

The paper is organized as follows. In Section 2, we consider the approximation of the Caputo fractional
derivative and the truncation error of the approximation scheme is derived. In Section 3, we consider the
finite difference method for solving the fractional diffusion wave equations and the properties of the weights
in the approximation scheme to the Caputo fractional derivative are studied. Finally in Section 4, we give
some numerical examples to show that the numerical results are consistent with the theoretical results.

In this paper, we denote C as a positive constant independent of the functions and parameters concerned,
but not necessarily the same at different occurrences.

2. A high-order scheme to approximate the Caputo fractional derivative

In this section, we will introduce an approximate scheme to Caputo fractional derivative C
0 D

α
t f(t) at

t = tk, k = 2, 3, . . . , N . Let g(τ) = f ′(τ), then (6) can be written as, with k = 2, 3, . . . , N ,

C
0 D

α
t f(tk) =

1

Γ(2− α)

k∑
j=1

∫ tj

tj−1

g′(τ)dτ

(tk − τ)α−1
. (6)

We shall use the linear interpolation polynomial P1,1g to approximate g on the first small interval [t0, t1]
and the quadratic interpolation polynomial P2,jg to approximate g on the interval [tj−2, tj ], j ≥ 2, where

P1,1g(t) = g(t0)
t1 − t

∆t
+ g(t1)

t− t0
∆t

, t ∈ [t0, t1],

and, on [tj−2, tj ], j ≥ 2,

P2,jg(t) =
g(tj−2)

2∆t2
(t− tj−1)(t− tj) +

g(tj−1)

∆t2
(t− tj−2)(tj − t) +

g(tj)

2∆t2
(t− tj−1)(t− tj−2).

The following error estimates hold:
3



g(t)− P1,1g(t) =
g′′(ξ)

2
(t− t0)(t− t1), t ∈ [t0, t1], ξ ∈ (t0, t1), (7)

and

g(t)− P2,jg(t) =
g′′′(ςj)

6
(t− tj−2)(t− tj−1)(t− tj), ςj ∈ (tj−2, tj). (8)

Let us now introduce the standard notations, with j ≥ 1,

tj−1/2 =
tj + tj−1

2
, δtgj− 1

2
=
g(tj)− g(tj−1)

∆t
, δ2

t gj =
δtgj+ 1

2
− δtgj− 1

2

∆t
.

Then we have, with k = 2, 3, . . . , N ,

C
0 D

α
t f(tk) =

1

Γ(2− α)

(∫ t1

t0

g′(τ)dτ

(tk − τ)α−1
+

k∑
j=2

∫ tj

tj−1

g′(τ)dτ

(tk − τ)α−1

)

=
1

Γ(2− α)

(∫ t1

t0

(P1,1g(τ))′dτ

(tk − τ)α−1
+

k∑
j=2

∫ tj

tj−1

(P2,jg(τ))′dτ

(tk − τ)α−1

)
+Rk

=
1

Γ(2− α)

(
δtg 1

2

∫ t1

t0

(tk − τ)1−αdτ +

k∑
j=2

∫ tj

tj−1

(tk − τ)1−α[δtgj− 1
2

+ (τ − tj− 1
2
)δ2
t gj−1

]
dτ
)

+Rk

=
1

Γ(2− α)

( k∑
j=1

δtgj− 1
2

∫ tj

tj−1

(tk − τ)1−α dτ +

k∑
j=2

δ2
t gj−1

∫ tj

tj−1

(tk − τ)1−α(τ − tj− 1
2
) dτ

)
+Rk,

(9)

where Rk denotes the truncation error which satisfies

Rk =
1

Γ(2− α)

(∫ t1

t0

g′(τ)− (P1,1g(τ))′

(tk − τ)α−1
dτ +

k∑
j=2

∫ tj

tj−1

g′(τ)− (P2,jg(τ))′

(tk − τ)α−1
dτ
)
. (10)

Note that ∫ tj

tj−1

(tk − τ)1−αdτ =
1

2− α
b
(α)
k−j∆t

2−α,∫ tj

tj−1

(τ − tj− 1
2
)(tk − τ)1−αdτ =

1

2− α
e

(α)
k−j∆t

3−α, 2 ≤ j ≤ k,

where b
(α)
l and e

(α)
l , l ≥ 0 are defined by

b
(α)
l = (l + 1)2−α − l2−α, (11)

and

e
(α)
l =

1

3− α
(
(l + 1)3−α − l3−α

)
− 1

2

(
(l + 1)2−α + l2−α

)
. (12)

We obtain, by (9),

C
0 D

α
t f(tk) =

∆t2−α

Γ(3− α)

( k∑
j=1

b
(α)
k−jδtgj− 1

2
+

k∑
j=2

e
(α)
k−jδtgj− 1

2
−
k−1∑
j=1

e
(α)
k−j−1δtgj− 1

2

)
+Rk

=
∆t1−α

Γ(3− α)

(
w

(α)
0 g(tk)−

k−1∑
j=1

(w
(α)
k−j−1 − w

(α)
k−j)g(tj)− w(α)

k−1g(t0)
)

+Rk, (13)

4



where w
(α)
l , l ≥ 0 are defined as follows:

For k ≥ 2, we have

w
(α)
l =


b
(α)
0 + e

(α)
0 , l = 0,

b
(α)
l + e

(α)
l − e(α)

l−1, 1 ≤ l ≤ k − 2,

b
(α)
l − e(α)

l−1, l = k − 1.

(14)

Hence we get, for k ≥ 2,

1

2

(
C
0 D

α
t f(tk) +C

0 Dα
t f(tk−1)

)
=

∆t1−α

Γ(3− α)

(
w

(α)
0

g(tk) + g(tk−1)

2
−
k−1∑
j=2

(w
(α)
k−j−1 − w

(α)
k−j)

g(tj) + g(tj−1)

2

− (w
(α)
k−2 − w

(α)
k−1)

g(t1) + g(t0)

2
− w(α)

k−1g(t0)
)

+
Rk +Rk−1

2
. (15)

Next lemma shows the properties of the weights w
(α)
l , 0 ≤ l ≤ k− 1 defined in (14). For simplicity of the

notations, we only consider the case k ≥ 3 from now on. Similarly one can consider the case for k = 2.

Lemma 2.1. Let k ≥ 3. For any α ∈ (1, 2), the weights w
(α)
l , 0 ≤ l ≤ k − 1 defined in (14) satisfy

w
(α)
0 > |w(α)

1 |, (16)

w
(α)
l > 0, l 6= 1, (17)

w
(α)
2 ≥ w(α)

3 ≥ · · · ≥ w(α)
k−1 for k ≥ 4, (18)

w
(α)
0 > w

(α)
2 , (19)

k−1∑
l=0

w
(α)
l = ∆t2−α. (20)

Proof: The proof is similar to the proof of [10, Lemma 2.2] where the authors considered the approximation
of the Caputo fractional derivative C

0 D
α
t f(tk) for 0 < α < 1. We omit the proof here.

�

To estimate
g(tj)+g(tj−1)

2 , j = 1, 2, . . . k, k ≥ 3 in (15), where g(τ) = f ′(τ), we shall apply the following
lemma.

Lemma 2.2. Let k ≥ 3. Assume that f ∈ C4[0, T ], then we have

f ′j + f ′j−1

2
=

1

12

(
13δtfj− 1

2
− 2δtfj+ 1

2
+ δtfj+ 3

2

)
+O(∆t3), j = 1, (21)

f ′j + f ′j−1

2
=

1

12

(
δtfj+ 1

2
+ 10δtfj− 1

2
+ δtfj− 3

2

)
+O(∆t4), 2 ≤ j ≤ k − 1, (22)

f ′j + f ′j−1

2
=

1

12

(
13δtfj− 1

2
− 2δtfj− 3

2
+ δtfj− 5

2

)
+O(∆t3). j = k. (23)

Proof: See the Appendix.

�
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Applying Lemma 2.2, we have, by (15), with k ≥ 3,

1

2

(
C
0 D

α
t f(tk) +C

0 Dα
t f(tk−1)

)
=

∆t1−α

Γ(3− α)

[ 1

12
w

(α)
0

(
13δtfk− 1

2
− 2δtfk− 3

2
+ δtfk− 5

2

)
−
k−1∑
j=2

1

12
(w

(α)
k−j−1 − w

(α)
k−j)

(
δtfj+ 1

2
+ 10δtfj− 1

2
+ δtfj− 3

2

)
− 1

12
(w

(α)
k−2 − w

(α)
k−1)

(
13δtf 1

2
− 2δtf 3

2
+ δtf 5

2
)− w(α)

k−1f
′(t0
)]

+
∆t1−α

Γ(3− α)

[
w

(α)
0 O(∆t3)−

k−1∑
j=2

(w
(α)
k−j−1 − w

(α)
k−j)O(∆t4)− (w

(α)
k−2 − w

(α)
k−1)O(∆t3)

]
+
Rk +Rk−1

2

=
∆t−α

Γ(3− α)

( k∑
j=0

djfk−j − w(α)
k−1f

′(t0)
)

+Rk−
1
2 , (24)

where, by using the properties of the weights in Lemma 2.1,

Rk−
1
2 =

∆t1−α

Γ(3− α)

(
w

(α)
0 O(∆t3)−

k−1∑
j=2

(w
(α)
k−j−1 − w

(α)
k−j)O(∆t4)− (w

(α)
k−2 − w

(α)
k−1)O(∆t3)

)
+
Rk +Rk−1

2

=O(∆t4−α) +
Rk +Rk−1

2
. (25)

Here dk are determined by the following formula:
For k = 3, 

d0 = w
(α)
0 + 1

12w
(α)
2 ,

d1 = −2w
(α)
0 + w

(α)
1 − 1

4w
(α)
2 ,

d2 = w
(α)
0 − 2w

(α)
1 + 5

4w
(α)
2 ,

d3 = w
(α)
1 − 13

12w
(α)
2 .

For k = 4, 

d0 = w
(α)
0 + 1

12w
(α)
1 ,

d1 = −2w
(α)
0 + 2

3w
(α)
1 + 1

12w
(α)
3 ,

d2 = w
(α)
0 − 3

2w
(α)
1 + w

(α)
2 − 1

4w
(α)
3 ,

d3 = 2
3w

(α)
1 − 2w

(α)
2 + 5

4w
(α)
3 ,

d4 = 1
12w

(α)
1 + w

(α)
2 − 13

12w
(α)
3 .

For k = 5, 

d0 = w
(α)
0 + 1

12w
(α)
1 ,

d1 = −2w
(α)
0 + 2

3w
(α)
1 + 1

12w
(α)
2 ,

d2 = w
(α)
0 − 3

2w
(α)
1 + 2

3w
(α)
2 + 1

12w
(α)
4 ,

d3 = 2
3w

(α)
1 − 3

2w
(α)
2 + w

(α)
3 − 1

4w
(α)
4 ,

d4 = 1
12w

(α)
1 + 2

3w
(α)
2 − 2w

(α)
3 + 5

4w
(α)
4 ,

d5 = 1
12w

(α)
2 + w

(α)
3 − 13

12w
(α)
4 .

6



For k = 6, 

d0 = w
(α)
0 + 1

12w
(α)
1 ,

d1 = −2w
(α)
0 + 2

3w
(α)
1 + 1

12w
(α)
2 ,

d2 = w
(α)
0 − 3

2w
(α)
1 + 2

3w
(α)
2 + 1

12w
(α)
3 ,

d3 = 2
3w

(α)
1 − 3

2w
(α)
2 + 2

3w
(α)
3 + 1

12w
(α)
5 ,

d4 = 1
12w

(α)
1 + 2

3w
(α)
2 − 3

2w
(α)
3 + w

(α)
4 − 1

4w
(α)
5 ,

d5 = 1
12w

(α)
2 + 2

3w
(α)
3 − 2w

(α)
4 + 5

4w
(α)
5 ,

d6 = 1
12w

(α)
3 + w

(α)
4 − 13

12w
(α)
5 ,

For k ≥ 7, 

d0 = w
(α)
0 + 1

12w
(α)
1 ,

d1 = −2w
(α)
0 + 2

3w
(α)
1 + 1

12w
(α)
2 ,

d2 = w
(α)
0 − 3

2w
(α)
1 + 2

3w
(α)
2 + 1

12w
(α)
3 ,

d3 = 2
3w

(α)
1 − 3

2w
(α)
2 + 2

3w
(α)
3 + 1

12w
(α)
4 ,

dj = 1
12w

(α)
j−3 + 2

3w
(α)
j−2 − 3

2w
(α)
j−1 + 2

3w
(α)
j + 1

12w
(α)
j+1(4 ≤ j ≤ k − 4),

dk−3 = 1
12w

(α)
k−6 + 2

3w
(α)
k−5 −

3
2w

(α)
k−4 + 2

3w
(α)
k−3 + 1

12w
(α)
k−1,

dk−2 = 1
12w

(α)
k−5 + 2

3w
(α)
k−4 −

3
2w

(α)
k−3 + w

(α)
k−2 −

1
4w

(α)
k−1,

dk−1 = 1
12w

(α)
k−4 + 2

3w
(α)
k−3 − 2w

(α)
k−2 + 5

4w
(α)
k−1,

dk = 1
12w

(α)
k−3 + w

(α)
k−2 −

13
12w

(α)
k−1.

(26)

Now we turn to the truncation error Rk−
1
2 in (25). We have

Theorem 2.3. Let k ≥ 3. Assume that f ∈ C4[0, T ]. For any α ∈ (1, 2), the truncation error Rk−
1
2 defined

in (25) satisfies

|Rk− 1
2 | ≤C∆t4−α +

1

Γ(2− α)

(α− 1

12
max

t0≤t≤t1
|f (3)(t)|∆t3−α

+
( 1

12
+

(α− 1)(6− α)

6(2− α)(3− α)(4− α)

)
max

t0≤t≤tk
|f (4)(t)|∆t4−α

)
. (27)

Proof: By (7) and (8), we have

|Rk| =
∣∣∣ 1

Γ(2− α)

(∫ t1

t0

(g(τ)− P1,1g(τ))′(tk − τ)1−αdτ +

k∑
j=2

∫ tj

tj−1

(g(τ)− P2,jg(τ))′(tk − τ)1−αdτ
)∣∣∣

=
∣∣∣ α− 1

Γ(2− α)

(∫ t1

t0

(g(τ)− P1,1g(τ))(tk − τ)−αdτ +

k∑
j=2

∫ tj

tj−1

(g(τ)− P2,jg(τ))(tk − τ)−αdτ
)∣∣∣, (28)

where ∣∣∣ ∫ t1

t0

(g(τ)− P1,1g(τ))(tk − τ)−αdτ
∣∣∣ =

1

2

∣∣∣ ∫ t1

t0

g′′(ξ)(τ − t0)(τ − t1)(tk − τ)−αdτ
∣∣∣

≤ 1

12
max

t0≤t≤t1
|f (3)(t)|(tk − t1)−α∆t3,

≤ 1

12
max

t0≤t≤t1
|f (3)(t)|∆t3−α, ξ ∈ (t0, t1), (29)
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and∣∣∣ k−1∑
j=2

∫ tj

tj−1

(g(τ)− P2,jg(τ))(tk − τ)−αdτ
∣∣∣ =

1

6

∣∣∣ k−1∑
j=2

∫ tj

tj−1

g(3)(ςj)(τ − tj−2)(τ − tj−1)(τ − tj)(tk − τ)−αdτ
∣∣∣

≤ 1

12(α− 1)
max

t0≤t≤tk−1

|f (4)(t)|∆t4−α, ςj ∈ (tj−2, tj), (30)

and∫ tk

tk−1

(g(τ)− P2,kg(τ))(tk − τ)−αdτ = −1

6
g(3)(ςk)

∫ tk

tk−1

(τ − tk−2)(τ − tk−1)(tk − τ)1−αdτ

= − 6− α
6(2− α)(3− α)(4− α)

f (4)(ςk)∆t4−α, ςk ∈ (tk−2, tk). (31)

Substituting (29), (30) and (31) into (28), we get

|Rk| ≤
1

Γ(2− α)

[α− 1

12
max

t0≤t≤t1
|f (3)(t)|(tk − t1)−α∆t3 +

( 1

12
+

(6− α)(α− 1)

6(2− α)(3− α)(4− α)

)
max

t0≤t≤tk
|f (4)(t)|∆t4−α

]
,

(32)

which implies that∣∣∣Rk +Rk−1

2

∣∣∣ ≤ 1

Γ(2− α)

[α− 1

12
max

t0≤t≤t1
|f (3)(t)| (tk − t1)−α + (tk−1 − t1)−α

2
∆t3

+
( 1

12
+

(6− α)(α− 1)

6(2− α)(3− α)(4− α)

)
max

t0≤t≤tk
|f (4)(t)|∆t4−α

]
≤ 1

Γ(2− α)

[α− 1

12
max

t0≤t≤t1
|f (3)(t)|(tk−1 − t1)−α∆t3

+
( 1

12
+

(6− α)(α− 1)

6(2− α)(3− α)(4− α)

)
max

t0≤t≤tk
|f (4)(t)|∆t4−α

]
. (33)

Together these estimates with (25) completes the proof of Theorem 2.3.

�

Next we will show that when f ′′′(t0) = 0, the approximate scheme (24) actually has the convergence
order O(∆t4−α), 1 < α < 2 with k ≥ 3. To see this, let us assume that g(t) is well defined on t ∈ [t−1, T ]
and we approximate g in (6) by using the quadratic interpolation polynomial P2,jg on all the subinterval
[tj−1, tj ], j ≥ 1. (Recall that, in (9), we approximate g on [t0, t1] by using the linear interpolation polynomial
P1,1g and by P2,jg on other subintervals.) Then we have, with k = 2, 3, . . . , N ,

C
0 D

α
t f(tk) =

1

Γ(2− α)

k∑
j=1

∫ tj

tj−1

g′(τ)dτ

(tk − τ)α−1

=
1

Γ(2− α)

k∑
j=1

∫ tj

tj−1

(P2,jg(τ))′dτ

(tk − τ)α−1
+ R̄k

=
1

Γ(2− α)

( k∑
j=1

∫ tj

tj−1

(tk − τ)1−α[δtgj− 1
2

+ (τ − tj− 1
2
)δ2
t gj−1

]
dτ
)

+ R̄k

=
1

Γ(2− α)

( k∑
j=1

δtgj− 1
2

∫ tj

tj−1

(tk − τ)1−α dτ +

k∑
j=1

δ2
t gj−1

∫ tj

tj−1

(tk − τ)1−α(τ − tj− 1
2
) dτ

)
+ R̄k,

(34)
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where

R̄k =
1

Γ(2− α)

k∑
j=1

∫ tj

tj−1

g′(τ)− (P2,jg(τ))′

(tk − τ)α−1
dτ. (35)

After some calculations, we obtain, with k ≥ 2,

C
0 D

α
t f(tk) =

∆t2−α

Γ(3− α)

( k∑
j=1

b
(α)
k−jδtgj− 1

2
+

k∑
j=1

e
(α)
k−jδtgj− 1

2
−
k−1∑
j=0

e
(α)
k−j−1δtgj− 1

2

)
+ R̄k

=
∆t1−α

Γ(3− α)

(
w

(α)
0 g(tk)−

k−1∑
j=1

(w
(α)
k−j−1 − w

(α)
k−j)g(tj)− w(α)

k−1g(t0)− e(α)
k−1(g(t1) + g(t−1)− 2g0)

)
+ R̄k

=
∆t1−α

Γ(3− α)

(
w

(α)
0 g(tk)−

k−1∑
j=1

(w
(α)
k−j−1 − w

(α)
k−j)g(tj)− w(α)

k−1g(t0)
)

+Rk, (36)

where b
(α)
l , e

(α)
l , w

(α)
l are defined as in (13) and

Rk = − ∆t1−α

Γ(3− α)
e

(α)
k−1

(
g(t1) + g(t−1)− 2g(t0)

)
+ R̄k. (37)

We remark that for simplicity, we use the same notation Rk in both (10) and (37) although it takes the
different formulas in these two different cases.

We therefore obtain the same approximation formula as in (24) and (25), but with the different Rk. We
have the following theorem:

Theorem 2.4. Let k ≥ 3. Assume that f ∈ C4[t−1, T ] and f ′′′(t0) = 0. Let Rk−
1
2 be the truncation error

defined in (25) where Rk is defined by (37). Then we have, with α ∈ (1, 2),

|Rk− 1
2 | ≤ C∆t4−α +

1

Γ(2− α)

( 1

12
+

(α− 1)(6− α)

6(2− α)(3− α)(4− α)

)
max

t0≤t≤tk
|f (4)(t)|∆t4−α. (38)

Proof: By (37), we have

Rk = − ∆t1−α

Γ(3− α)
e

(α)
k−1

(
g(t1) + g(t−1)− 2g(t0)

)
+ R̄k,

where R̄k is defined by (35). Since g′′(t0) = f ′′′(t0) = 0, we have, by Taylor expansion at t0, with ξ ∈ (t−1, t1),

g(t1) + g(t−1)− 2g(t0) = g′′(t0)∆t2 +
1

6
g(4)(ξ)∆t4 =

1

6
g(4)(ξ)∆t4.

Further we have, by (12), with some suitable positive constant C,

|e(α)
k−1| =

∣∣∣ 1

3− α
(
k3−α − (k − 1)3−α)− 1

2

(
k2−α + (k − 1)2−α)∣∣∣

=
∣∣∣ 1

3− α

∫ k+1

k

(3− α)s2−α ds− 1

2

(
k2−α + (k − 1)2−α)∣∣∣

≤ C(k + 1)2−α.
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Thus, noting that k∆t ≤ T for k = 3, 4, . . . , N ,

|Rk| ≤
∣∣∣ ∆t1−α

Γ(3− α)
e

(α)
k−1

(
g(t1) + g(t−1)− 2g(t0)

)∣∣∣+ |R̄k|

≤ C(k + 1)2−α∆t1−α∆t4 + |R̄k| ≤ C∆t3 + |R̄k|

≤ C∆t3 +
∣∣∣ 1

Γ(2− α)

k∑
j=1

∫ tj

tj−1

(g(τ)− P2,jg(τ))′(tk − τ)1−αdτ
∣∣∣

= C∆t3 +
∣∣∣ α− 1

Γ(2− α)

k∑
j=1

∫ tj

tj−1

(g(τ)− P2,jg(τ))(tk − τ)−αdτ
∣∣∣, (39)

Note that∣∣∣ k−1∑
j=1

∫ tj

tj−1

(g(τ)− P2,jg(τ))(tk − τ)−αdτ
∣∣∣ =

1

6

∣∣∣ k−1∑
j=1

∫ tj

tj−1

g(3)(ςj)(τ − tj−2)(τ − tj−1)(τ − tj)(tk − τ)−αdτ
∣∣∣

≤ 1

12(α− 1)
max

t−1≤t≤tk−1

|f (4)(t)|∆t4−α, ςj ∈ (tj−2, tj), (40)

and∫ tk

tk−1

(g(τ)− P2,kg(τ))(tk − τ)−αdτ = −1

6
g(3)(ςk)

∫ tk

tk−1

(τ − tk−2)(τ − tk−1)(tk − τ)1−αdτ

= − 6− α
6(2− α)(3− α)(4− α)

f (4)(ςk)∆t4−α, ςk ∈ (tk−2, tk). (41)

Substituting (40) and (41) into (39), we get

|Rk| ≤C∆t3 +
1

Γ(2− α)

( 1

12
+

(6− α)(α− 1)

6(2− α)(3− α)(4− α)

)
max

t−1≤t≤tk
|f (4)(t)|∆t4−α, (42)

which implies that∣∣∣Rk +Rk−1

2

∣∣∣ ≤ C∆t3 +
1

Γ(2− α)

( 1

12
+

(6− α)(α− 1)

6(2− α)(3− α)(4− α)

)
max

t−1≤t≤tk
|f (4)(t)|∆t4−α (43)

Together these estimates with (25) completes the proof of Theorem 2.4.

�

Remark 2.1. By Theorem 2.4, when f ′′′(t0) = 0 we obtain a high-order scheme O(∆t4−α), 1 < α < 2 to
approximate 1

2

(
C
0 D

α
t f(tk) + C

0 D
α
t f(tk−1)

)
with k ≥ 3. For k = 1, 2, we may approximate C

0 D
α
t f(tk) sepa-

rately. In general, we may approximate C
0 D

α
t f(tk), k = 1, 2 by using some lower order approximate schemes

with the partition 0 = t̃0 < t̃1 < · · · < t̃M = tk, k = 1, 2 and the step size ∆̃t for some suitable positive
integer M . We may choose ∆̃t = ∆tγ for some suitable γ > 1 such that the required convergence order
O(∆t4−α) of the approximation of the Caputo fractional derivative C

0 D
α
t f(tk) with k = 1, 2 is reached. In

some special cases, we may use some simple ways to approximate the Caputo fractional derivative C
0 D

α
t f(tk)

with k = 1, 2. For example, when f ′′′(t0) = 0, we may use the following way to approximate C
0 D

α
t f(t) at

t = t1.

C
0 D

α
t f(t1) =

1

Γ(2− α)

∫ t1

t0

(t1 − s)1−αf ′′(s) ds ≈ 1

Γ(2− α)

∫ t1

t0

(t1 − s)1−αf ′′(t0) ds =
f ′′(t0)

Γ(3− α)
t2−α1 ,

(44)
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which has the convergence order

C
0 D

α
t f(t1)− f ′′(t0)

Γ(3− α)
t2−α1 =

1

Γ(2− α)

∫ t1

t0

(t1 − s)1−α(f ′′(s)− f ′′(t0)
)
ds

=
1

Γ(2− α)

∫ t1

t0

(t1 − s)1−αf (4)(ξ)s2 ds = O(∆t4−α), ξ ∈ (t0, t1).

Similarly we may approximate C
0 D

α
t f(t) at t = t2 by using the same idea.

3. A high-order numerical method for solving fractional diffusion wave equation

In this section, we will introduce a new finite difference method for solving fractional diffusion wave
equation (2)-(4) with the convergence order O(∆t4−α + h2), 1 < α < 2, where ∆t and h denote the time
and space step sizes, respectively.

Let 0 = x0 < x1 < · · · < xM = 1 be the space partition on [0, 1] and h the space step size. At (xi, tk)
with i = 1, 2, . . . ,M − 1 and k ≥ 3, we use the central difference scheme to approximate the second order
spatial derivative

∂2u(xi, tk)

∂x2
=
u(xi+1, tk)− 2u(xi, tk) + u(xi−1, tk)

h2
+O(h2), (45)

and use (24) to approximate the time Caputo fractional derivative, that is, with k ≥ 3,

1

2

(
C
0 D

α
t u(xi, tk) +C

0 Dα
t u(xi, tk−1)

)
=

∆t−α

Γ(3− α)
(d0u(xi, tk) + d1u(xi, tk−1) + d2u(xi, tk−2) + d3u(xi, tk−3) +

k−4∑
j=4

dju(xi, tk−j)

+ dk−3u(xi, t3) + dk−2u(xi, t2) + dk−1u(xi, t1) + dku(xi, t0)− w(α)
k−1u1(xi)) +O(∆t4−α). (46)

Omitting the truncation error terms in (45) and (46), and replacing u(xi, tk) by its numerical approximation
Uki , we define the following finite difference scheme for solving (2)-(4), with k ≥ 3, 1 < i < M − 1,

∆t−α

Γ(3− α)

( k∑
j=0

djU
k−j
i − w(α)

k−1u1(xi)
)

=
1

2

(Uki+1 − 2Uki + Uki−1

h2
+
Uk−1
i+1 − 2Uk−1

i + Uk−1
i−1

h2

)
+
F ki + F k−1

i

2
, (47)

U0
i = u0(xi), 0 ≤ i ≤M − 1, (48)

Uk0 = φ(tk), UkM = ϕ(tk). (49)

Remark 3.1. Note that the numerical method (47)-(49) are defined for k ≥ 3 which means that we need
to determine the starting approximations Uki with k = 1, 2 and i = 0, 1, · · · ,M before we use this method
to calculate the approximations Uki for k ≥ 3. We may use other numerical methods to obtain the starting
approximations Uki with k = 1, 2 and i = 0, 1, . . . ,M with the required accuracy.

The following two lemmas provide the properties of the weights dj in the numerical method (47)-(49).

Lemma 3.1. Let k = 3. We have

d0 > 0, d1 < 0, d2 > 0, d3 < 0, d1 + d2 + d3 = −d0.

Proof: The proof is obvious and we omit the proof here.
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Lemma 3.2. Let k ≥ 4. The weights dj , 0 ≤ j ≤ k in (47)-(49) satisfy the following properties

d0 =
5

6
+

1

24
· 22−α +

1

12(3− α)
· 23−α ∈ (1.0833, 1.4583), (50)

d1, d3 < 0, (51)

dj > 0, j 6= 1, 3, 4, (52)

d4 < 0 for k = 5, while d4 > 0 for k 6= 5 and α ∈ (1, 1.5878), (53)

k∑
j=0

dj = 0. (54)

Proof: The estimate (50) is obvious and we omit this proof here. Let us now consider (51). For k = 4, we
have

d1 =− (
5

3
− 3

8
· 22−α)− 1

3− α
(
10

3
− 3

4
· 23−α)− 1

12
(
1

2
· 32−α +

1

3− α
· 33−α − 42−α)

=−A(α)− 1

3− α
B(α)− 1

12
D(α),

where A(α) = 5
3 −

3
8 · 2

2−α, B(α) = 10
3 −

3
4 · 2

3−α, D(α) = 1
2 · 3

2−α + 1
3−α · 3

3−α− 42−α. It is easy to see
that A(α) and B(α) are monotonically increasing for 1 < α < 2. Thus we have

A(α) > A(1) =
11

12
> 0, B(α) > B(1) =

1

3
> 0,

and

D(α) =(
9

2
+

27

3− α
)3−α − 16 · 4−α > 9(9− α)

2(3− α)
3−α − 16 · 3−α

=(
27

3− α
− 23

2
)3−α > D(1) =

2

3
> 0,

which implies that d1 < 0 and

d3 =
1

24(3− α)

(
284(7− α)2−α − 351(9− α)3−α + 480(3− α)4−α − 40(5− α)

)
=

1

24(3− α)
F (α),

where
F (α) = 284(7− α)2−α − 351(9− α)3−α + 480(3− α)4−α − 40(5− α),

and

F ′(α) = 284
(
− 1− (7− α) ln 2

)
2−α + 351

(
1 + (9− α) ln 3

)
3−α + 480

(
− 1− (3− α) ln 4

)
4−α + 40.

By a direct calculation, one can find that α̃ = 1.2307 is the unique zero point of F ′(α) = 0 for α ∈ (1, 2).
Thus F ′(α) > 0 for (1, α̃) and F ′(α) < 0 for (α̃, 2), which implies that α̃ is the only maximum of F (α).
Since F (α̃) = −3.8948 < 0, we have F (α) < 0 for all α ∈ (1, 2). Hence we get d3 < 0. For k ≥ 5, we can
prove d1 < 0, d3 < 0 in a similar way.

For (52), we first prove d2 for the different k. When k = 4, we have

d2 =
1

8(3− α)

(
− 60(7− α)2−α + 45(9− α)3−α − 32(3− α)4−α + 20(5− α)

)
=

1

8(3− α)
H(α),
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where
H(α) = −60(7− α)2−α + 45(9− α)3−α − 32(3− α)4−α + 20(5− α).

Furthermore, we have

H ′(α) = −60
(
− 1− (7− α) ln 2

)
2−α + 45

(
− 1− (9− α) ln 3

)
3−α − 32

(
− 1− (3− α) ln 4

)
4−α − 20,

and

H ′′(α) =− 60 ln 2
(

2 + (7− α) ln 2
)

2−α − 45 ln 3
(
− 2− (9− α) ln 3

)
3−α − 32 ln 4

(
2 + (3− α) ln 4

)
4−α

=Ā(α) · 2−α + B̄(α) · 4−α − D̄(α) · 3−α,

where
Ā(α) = −60 ln 2

(
2 + (7− α) ln 2

)
,

B̄(α) = −32 ln 4
(

2 + (3− α) ln 4
)
,

D̄(α) = −45 ln 3
(

2 + (9− α) ln 3
)
.

By the simple calculations, we get

Ā(α) < 0, B̄(α) < 0, D̄(α) < 0 for 1 < α < 2.

Note that

H ′′(α) =Ā(α) · 2−α + B̄(α) · 4−α − D̄(α) · 3−α =
Ā(α)

4
· 22−α +

B̄(α)

16
· 42−α − D̄(α)

9
· 32−α

=
Ā(α)

4
32−α(1− 1

3
)2−α +

B̄(α)

16
32−α(1 +

1

3
)2−α − D̄(α)

9
32−α

=
Ā(α)

4
32−α

[
1− 2− α

3
+

(2− α)(1− α)

2!
(−1

3
)2 +

(2− α)(1− α)(−α)

3!
(−1

3
)3 + · · ·

]
+
B̄(α)

16
32−α

[
1 +

2− α
3

+
(2− α)(1− α)

2!
(
1

3
)2 +

(2− α)(1− α)(−α)

3!
(
1

3
)3 + · · ·

]
− D̄(α)

9
32−α

=32−α
[ Ā(α)

4
+
B̄(α)

16
− D̄(α)

9
+ (− Ā(α)

4
+
B̄(α)

16
)
2− α

3
+

(2− α)(1− α)

2!

( Ā(α)

4
+
B̄(α)

16
+

(−α)

3 · 3
(− Ā(α)

4
+

+
B̄(α)

16
)
)

(
1

3
)2 +

(2− α)(1− α)(−α)(−α− 1)

4!

( Ā(α)

4
+
B̄(α)

16
+

(−α− 2)

5 · 3
(− Ā(α)

4
+
B̄(α)

16
)
)

(
1

3
)4 + · · ·

]
=32−α

[ (12Ā(α) + 15B̄(α)− 16̄(α)) + 3(4Ā(α)− B̄(α))α

144

+

∞∑
k=1

(2− α)(1− α)(−α)
(
− α− (2k − 3)

)
(2k)!

( Ā(α)

4
+
B̄(α)

16
+

(
− α− (2k − 2)

)
(2k + 1) · 3

(− Ā(α)

4
+
B̄(α)

16
)
)

(
1

3
)2k
]

=32−α
[ (12Ā(α) + 15B̄(α)− 16D̄(α)) + 3(4Ā(α)− B̄(α))α

144

+

∞∑
k=1

−(2− α)
(
α+ (2k − 3)

)(
4(8k + 1 + α)Ā(α) + (4k − α+ 5)B̄(α)

)
48(2k + 1)!

(
1

3
)2k
]

=32−α
(
q(α) + Sα

)
.

Here

q(α) =(12Ā(α) + 15B̄(α)− 16D̄(α)) + 3(4Ā(α)− B̄(α))α

=336(ln 2)2α2 +
(
− 1248(ln 2)2 − 720(ln 3)2 − 1056(ln 2)

)
α

− 10800(ln 2)2 + 6480(ln 3)2 + 1440(ln 3)− 3360(ln 2),

13



and

Sα =

∞∑
k=1

Vα(k)(
1

3
)2k,

where

Vα(k) =
−(2− α)

(
α+ (2k − 3)

)(
4(8k + 1 + α)A+ (4k − α+ 5)B

)
48(2k + 1)!

.

By the tedious calculations, we see that q(α) is decreasing for 1 < α < 2. Since q(1) = −153.9759 < 0,
we therefore get q(α) < q(1) = −153.9759 for all 1 < α < 2. Noting that

Vα(k) < Vα(1) =
−(2− α)(α− 1)

(
4(9 + α)Ā(α) + (9− α)B̄(α)

)
288

,

we have

Sα <

∞∑
k=1

Vα(1) · (1

3
)2k = Vα(1)

1
9

1− 1
9

=
1

8
Vα(1).

By mathematical analysis, we find that ¯̄α = 1.4900 is the only maximum point of Vα(1). Since V ¯̄α(1) =
9.9948, we have

Sα <
1

8
V ¯̄α(1) = 1.2494.

Thus we conclude that H ′′(α) < 0 for 1 < α < 2 which implies that H ′(α) is decreasing for 1 < α < 2. Hence
we get H ′(α) > H ′(2) = 8.3072 > 0 for 1 < α < 2, which implies that H(α) is increasing on 1 < α < 2.
Since H(1) = 4, we get H(α) > H(1) = 4 > 0 which implies that d2 > 0. Similarly we may show d2 > 0 for
k ≥ 5.

Now we consider dj , j > 4. When k ≥ 5, we have

w
(α)
l =b

(α)
l + e

(α)
l − e(α)

l−1

=
[ 1

3− α
(
(l + 1)3−α − l3−α

)
+

1

2

(
(l + 1)2−α − l2−α

)]
−
[ 1

3− α
(
l3−α − (l − 1)3−α)+

1

2

(
l2−α − (l − 1)2−α)]

=h(l + 1)− 2h(l) + h(l − 1),

where

h(x) =
1

3− α
x3−α +

1

2
x2−α for x ≥ 5.

Thus we get

w
(α)
j+1 − 2w

(α)
j + w

(α)
j−1 = h(j + 2)− 4h(j + 1) + 6h(j)− 4h(j − 1) + h(j + 2) = h(4)(ξ),

where ξ ∈ (j − 2, j + 2), 4 < j ≤ k − 2.
Noting that

h′(x) = x2−α +
1

2
(2− α)x1−α > 0,

h′′(x) = (2− α)x1−α +
1

2
(2− α)(1− α)x−α = (2− α)x−α[x− 1

2
(α− 1)] > 0,

h(3)(x) = (2− α)(α− 1)x−α−1[
α

2
− x] < 0,

h(4)(x) = (2− α)(α− 1)αx−α−2(x− α+ 1

2
) > 0,

14



we obtain w
(α)
j+1 + w

(α)
j−1 > 2w

(α)
j . Based on the above results, we see that w(α)(x) is a convex function. We

therefore obtain, with 4 < j ≤ k − 2,

dj =
1

12
(w

(α)
j−3 + w

(α)
j+1) +

2

3
(w

(α)
j−2 + w

(α)
j )− 3

2
w

(α)
j−1 >

1

12
· 2w(α)

j−1 +
2

3
· 2w(α)

j−1 −
3

2
w

(α)
j−1 = 0. (55)

For j = k − 3, k − 2, k − 1, k, we have

dk−3 =
1

12
b
(α)
k−6 +

2

3
b
(α)
k−5 −

5

2
b
(α)
k−4 +

2

3
b
(α)
k−3 +

1

12
b
(α)
k−1

− 1

12
e

(α)
k−7 −

7

12
e

(α)
k−6 +

19

6
e

(α)
k−5 −

19

6
e

(α)
k−4 +

2

3
e

(α)
k−3 −

1

12
e

(α)
k−2,

dk−2 =
1

12
b
(α)
k−5 +

2

3
b
(α)
k−4 −

3

2
b
(α)
k−3 + b

(α)
k−2 −

1

4
b
(α)
k−1

− 1

12
e

(α)
k−6 −

7

12
e

(α)
k−5 +

13

6
e

(α)
k−4 −

5

2
e

(α)
k−3 +

5

4
e

(α)
k−2,

dk−1 =
1

12
b
(α)
k−4 +

2

3
b
(α)
k−3 − 2b

(α)
k−2 +

5

4
b
(α)
k−1 −

1

12
e

(α)
k−5 −

7

12
e

(α)
k−4 +

8

3
e

(α)
k−3 −

13

4
e

(α)
k−2,

dk =
1

12
b
(α)
k−3 + b

(α)
k−2 −

13

12
b
(α)
k−1 −

1

12
e

(α)
k−4 −

11

12
e

(α)
k−3 +

25

12
e

(α)
k−2.

Similarly, we can show dl > 0 for l = k − 3, k − 2, k − 1, k. Hence (52) holds.
We now consider (53). For k = 4, by mathematical analysis, there exists a unique point α1 = 1.8047,

such that

−3

2
22−α +

25

24
32−α − 13

12
42−α +

5

6(3− α)
− 3

3− α
23−α +

25

12(3− α)
33−α = 0, α ∈ (1, 2),

which implies that d4 > 0 if α ∈ (1, α1).
For k = 5, it is not difficult to show that

d4 =
1

12
b
(α)
1 +

2

3
b
(α)
2 − 2b

(α)
3 +

5

4
b
(α)
4 − 1

12
e

(α)
0 − 7

12
e

(α)
1 +

8

3
e

(α)
2 − 13

4
e

(α)
3

=
5− α

4(3− α)
− 13(7− α)

2(3− α)
2−α +

213(9− α)

8(3− α)
3−α − 26(11− α)

3− α
4−α +

125

4
5−α.

By tedious calculations, one can obtain that d4 ∈ (−0.0417, 0) which implies that d4 < 0.
For k = 6, we have

d4 =− 11

8
22−α +

1

4
− 11

4(3− α)
23−α +

1

2(3− α)
+

7

3
32−α +

14

3(3− α)
33−α

− 15

8
42−α − 15

4(3− α)
43−α +

5

8
52−α +

5

4(3− α)
53−α − 1

4
62−α.

By mathematics analysis, there exists a unique α2 = 1.6628, such that d4(α2) = 0, which implies that d4 > 0
if α ∈ (1, α2).

For k = 7, we have

d4 =
1

12
b
(α)
1 +

2

3
b
(α)
2 − 3

2
b
(α)
3 +

2

3
b
(α)
4 +

1

12
b
(α)
5 − 1

12
e

(α)
0 − 7

12
e

(α)
1 +

13

6
e

(α)
2 − 13

6
e

(α)
3 +

2

3
e

(α)
4 − 1

12
e

(α)
5 .

By calculation, there exists a unique α3 = 1.5878, such that d4(α3) = 0, which implies that d4 > 0 if
α ∈ (1, α3).

For k > 7, one can easily show that d4 > 0 for all α ∈ (1, 2). Together these estimates we conclude that
d4 > 0 if α ∈ (1, 1.5878).

Finally (54) follows directly from equations (26).
Together these estimates complete the proof of Lemma 3.2.
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4. Numerical simulations

In this section, we will give some numerical examples to illustrate our approximate schemes.

4.1. Three test examples

In this section, we will consider three numerical examples to test the approximate scheme (24).

Example 4.1. Let f(t) = t4+α, 1 < α < 2, we have

C
0 D

α
t f(t) =

Γ(5 + α)

24
t4.

Let 0 = t0 < t1 < t2 < · · · < tN = 1 be a partition on [0, 1] and ∆t the step size. We will consider
the approximation scheme (24) at tN = 1. Choosing the different step size ∆t = 1

K with K = 10 × 2l, l =
0, 1, . . . , 7, in Table 1, we obtain the computational errors and numerical convergence orders with the different
α = 1.1, 1.5, 1.9 for the approximation at tN = 1 in (24). From the results presented in Table 1, we observe
that the convergence order is ∆t4−α as we expected.

α K = 10 K = 20 K = 40 K = 80 K = 160 K = 320 K = 640 K = 1280 order
1.1 1.64e-2 2.40e-3 3.38e-4 4.68e-5 6.42e-6 8.76e-7 1.19e-7 1.62e-8 2.88
1.5 1.32e-1 2.61e-2 4.90e-3 8.90e-4 1.60e-4 2.86e-5 5.09e-6 9.03e-7 2.49
1.9 8.33e-1 2.19e-1 5.43e-2 1.30e-2 3.10e-3 7.26e-4 1.70e-4 3.97e-5 2.10

Table 1: The convergence orders with the different α ∈ (1, 2) at tN = 1 in (24) in Example 4.1

Example 4.2. Let f(t) = e2t − 2t− 2t2 − 4
3 t

3 − 2
3 t

4, 1 < α < 2. We have

C
0 D

α
t f(t) = 2t1−αE1,2−α(2t)−

4∑
n=1

2ntn−α

Γ(n+ 1− α)
,

where Eα,β(z) is the Mittag-Leffler function with two parameters defined by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
.

α K = 10 K = 20 K = 40 K = 80 K = 160 K = 320 K = 640 K = 1280 order
1.1 1.08e-2 1.70e-3 2.43e-4 3.42e-5 4.73e-6 6.49e-7 8.86e-8 1.22e-8 2.86
1.5 5.72e-2 1.17e-2 2.20e-3 4.14e-4 7.50e-5 1.34e-5 2.39e-6 4.25e-7 2.49
1.9 2.51e-1 6.72e-2 1.68e-2 4.10e-3 9.63e-4 2.27e-4 5.31e-5 1.24e-5 2.10

Table 2: The convergence orders with the different α ∈ (1, 2) at tN = 1 in (24) in Example 4.2

We use the same notations as in Example 4.1. We also observe that, in Table 2, the convergence order
of the approximate scheme (24) is O(∆t4−α) as we expected.

The functions of the above two examples all satisfy the condition f ′′′(t0) = 0. In the following example,
we shall consider a function f which does not satisfy the condition f ′′′(t0) = 0.

16



Example 4.3. Let f(t) = t3, 1 < α < 2. We have

C
0 D

α
t f(t) =

Γ(4)

Γ(4− α)
t3−α,

α K = 10 K = 20 K = 40 K = 80 K = 160 K = 320 K = 640 K = 1280 order
1.1 3.88e-5 1.04e-5 2.79e-6 7.46e-7 1.99e-7 5.36e-8 1.43e-8 3.85e-9 1.85
1.5 1.21e-4 3.24e-5 8.69e-6 2.33e-6 6.24e-7 1.67e-7 4.48e-8 1.19e-8 1.44
1.9 4.22e-5 1.13e-5 3.03e-6 8.12e-7 2.18e-7 5.83e-8 1.56e-8 4.18e-9 1.05

Table 3: The convergence orders with the different α ∈ (1, 2) at tN = 1 in (24) in Example 4.3

Using the same notations as in Example 4.1, we can observe from Table 3, although the errors are
relatively small for the different values of α, the convergence order indeed can not reach O(∆t4−α), 1 < α < 2
which is consistent with Theorem 2.4. In other words, the approximation scheme (24) has the convergence
order O(∆t4−α), 1 < α < 2 only for the function f with f ′′′(t0) = 0.

4.2. A high-order numerical method for solving time fractional diffusion wave equation

In this subsection, we will use the numerical method (47)-(49) to solve the time fractional diffusion wave
equation (2)-(4).

Example 4.4. In (2)-(4), we choose F (x, t) = Γ(4+1)
Γ(4+1−α) t

4−α(x − x2) + 2t4, φ(t) = 0, ϕ(t) = 0, u0(x) =

0, u1(x) = 0.
The exact solution is u(x, t) = t4x(1− x), 0 < x < 1, 0 < t < T with T = 1.

To verify the temporal numerical accuracy, we will choose M = 26 sufficiently big such that the spatial
error is negligible as compared to the temporal error. The numerical results are computed under the different
time step sizes ∆t = 1

K using the numerical method (47)-(49) at tN = 1. The solution errors in discrete L2

norm and numerical convergence orders for T = 1 with the different α = 1.1, 1.5, 1.9 are tabulated in Table
3.

The data in Table 3 show that the numerical accuracy of the difference scheme (47)-(49) achieves 4− α
in temporal direction.

α K = 24 K = 25 K = 26 K = 27 K = 28 order
1.1 1.60e-5 2.25e-6 3.10e-7 4.00e-8 1.00e-8 2.88
1.5 1.35e-4 2.26e-5 3.80e-6 7.00e-7 1.00e-7 2.58
1.9 8.37e-4 2.24e-4 5.30e-5 1.23e-5 2.90e-6 2.11

Table 4: Time convergence orders with the different α ∈ (1, 2) at T = 1 in (47)-(49) in Example 4.4

As an exceptional application, in order to further verify the ability of the new formula to solve the
fractional diffusion equations, we consider the Caputo-type time fractional diffusion wave equation, which
have non-zero boundary conditions.

Example 4.5. In (2)-(4), we choose F (x, t) = ext4
(Γ(5+α)

24 − tα
)
, φ(t) = t4+α, ϕ(t) = et4+α, u0(x) =

0, u1(x) = 0.
The exact solution is u(x, t) = ext4+α, 0 < x < 1, 0 < t < 1.
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To obtain the convergence order with respect to time, similar to Example 4.4, we choose the space step
size h = 1/26 and the various time step sizes ∆t = 1/23, 1/24, 1/25, 1/26, 1/27 respectively. The numerical
errors and convergence orders with the different temporal step sizes are listed in Table 5. From Table 5, we
observe that the convergence order of (47)-(49) in temporal direction is O(∆t4−α) as we expected.

α ∆t Error order
1.1 1/23 4.50e-3 -

1/24 6.00e-4 2.6808
1/25 1.00e-4 2.8133
1/26 1.42e-5 2.8119

1.5 1/23 2.69e-2 -
1/24 6.00e-3 2.1550
1/25 1.10e-3 2.4313
1/26 2.00e-4 2.4521

1.9 1/24 3.49e-2 -
1/25 8.90e-3 1.9731
1/26 2.10e-3 2.0492
1/27 5.00e-4 2.0740

Table 5: Time convergence orders with the different α ∈ (1, 2) at T = 1 in (47)-(49) in Example 4.5

5. Conclusion

In this paper, a new finite difference scheme to approximate the Caputo fractional derivative with the
convergence order O(∆t4−α), 1 < α < 2 was constructed when f ′′′(t0) = 0. This new scheme was obtained
by using the piecewise interpolation polynomial to approximate the integrand g(t) = f ′(t), which can also be
seen as an improvement to the L2 and L2C schemes discussed in the Induction section. The computational
and storage cost of the proposed numerical scheme to approximate the Caputo fractional derivative in this
paper does not increase much compared with the lower convergence order numerical scheme available in
literature. The properties of the weights and the truncation error in the approximate scheme are analyzed.
Three numerical examples are carried out to effectively confirm the computational validity and numerical
accuracy of the proposed numerical scheme for approximating the Caputo fractional derivative. In addition,
we also consider two numerical examples for solving time fractional diffusion wave equations on a bounded
spatial domain by using the proposed new scheme for approximating Caputo fractional derivative.

From the numerical results, it is easy to see that the new scheme developed in this paper to approximate
the Caputo fractional derivative has the convergence order O(∆t4−α), 1 < α < 2 when f ′′′(t0) = 0, which
is better than L2 and L2C schemes. This new difference scheme can be applied to many other equations
involving the Caputo fractional derivative. In our future work, we will consider the stability and error
estimates for the proposed numerical method in this paper for solving fractional diffusion wave equation.
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6. Appendix

Proof of Lemma 2.2: We first consider the case for 2 ≤ j ≤ k − 1, by Taylor expansion, we have,

fj = fj− 1
2

+
1

2
∆tf ′j− 1

2
+

1

2!

∆t2

4
f ′′j− 1

2
+

1

3!

∆t3

8
f ′′′j− 1

2
+

1

4!

∆t4

16
f
(4)

j− 1
2

+O(∆t5), (56)
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and

fj−1 = fj− 1
2
− 1

2
∆tf ′j− 1

2
+

1

2!

∆t2

4
f ′′j− 1

2
− 1

3!

∆t3

8
f ′′′j− 1

2
+

1

4!

∆t4

16
f
(4)

j− 1
2

+O(∆t5). (57)

Subtracting (57) from (56), we get

fj − fj−1 = ∆tf ′j− 1
2

+
∆t3

24
f ′′′j− 1

2
+O(∆t5),

which implies that

f ′j− 1
2

=
fj − fj−1

∆t
− ∆t2

24
f ′′′j− 1

2
+O(∆t4). (58)

In addition, we have

f ′j = f ′j− 1
2

+
1

2
∆tf ′′j− 1

2
+

1

2!

∆t2

4
f ′′′j− 1

2
+

1

3!

∆t3

8
f
(4)

j− 1
2

+
1

4!

∆t4

16
f
(5)

j− 1
2

+O(∆t5), (59)

and

f ′j−1 = f ′j− 1
2
− 1

2
∆tf ′′j− 1

2
+

1

2!

∆t2

4
f ′′′j− 1

2
− 1

3!

∆t3

8
f
(4)

j− 1
2

+
1

4!

∆t4

16
f
(5)

j− 1
2

+O(∆t5). (60)

By (59) and (60), we get

f ′j + f ′j−1 = 2f ′j− 1
2

+
∆t2

4
f ′′′j− 1

2
+O(∆t4).

Substituting (58) into the above equation implies that

f ′j + f ′j−1

2
=f ′j− 1

2
+

∆t2

8
f ′′′j− 1

2
+O(∆t4) =

fj − fj−1

∆t
+

∆t2

12
f ′′′j− 1

2
+O(∆t4). (61)

Noting that

fj+1 = fj− 1
2

+
3

2
∆tf ′j− 1

2
+

1

2!

9∆t2

4
f ′′j− 1

2
+

1

3!

27∆t3

8
f ′′′j− 1

2
+

1

4!

81∆t4

16
f
(4)

j− 1
2

+O(∆t5), (62)

and

fj−2 = fj− 1
2
− 3

2
∆tf ′j− 1

2
+

1

2!

9∆t2

4
f ′′j− 1

2
− 1

3!

27∆t3

8
f ′′′j− 1

2
+

1

4!

81∆t4

16
f
(4)

j− 1
2

+O(∆t5). (63)

we have, by (56), (57), (62), (63),

afj+1 + bfj + cfj−1 + dfj−2

=(a+ b+ c+ d)fj− 1
2

+ (
3

2
a+

1

2
b− 1

2
c− 3

2
d)∆tf ′j− 1

2

+ (
9

4
a+

1

4
b+

1

4
c+

9

4
d)

∆t2

2!
f ′′j− 1

2
+ (

27

8
a+

1

8
b− 1

8
c− 27

8
d)

∆t3

3!
f ′′′j− 1

2

+ (
81

16
a+

1

16
b+

1

16
c+

81

16
d)

∆t4

4!
f
(4)

j− 1
2

+O(∆t5). (64)

To make the right side of (64) have the third order accuracy, we assume

a+ b+ c+ d = 0,

3

2
a+

1

2
b− 1

2
c− 3

2
d = 0,

9

4
a+

1

4
b+

1

4
c+

9

4
d = 0,

27

8
a+

1

8
b− 1

8
c− 27

8
d = 1,

which implies that

a = 1/6, b = −1/2, c = 1/2, d = −1/6.

Thus we have, by (64),
1

6
fj+1 −

1

2
fj +

1

2
fj−1 −

1

6
fj−2 =

∆t3

3!
f ′′′j− 1

2
+O(∆t5). (65)
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Substituting (65) into (61), we obtain

f ′j + f ′j−1

2
=

1

12
(δtfj+ 1

2
+ 10δtfj− 1

2
+ δtfj− 3

2
) +O(∆t4), (66)

which shows (22).

Next we consider (21), for j = 1, we have, by Taylor expansion

f 1
2

= f0 +
1

2
∆tf ′0 +

1

8
∆t2f ′′0 +

1

48
∆t3f ′′′0 +O(∆t4), (67)

and

f 1
2

= f1 −
1

2
∆tf ′1 +

1

8
∆t2f ′′1 − 1

48
∆t3f ′′′1 +O(∆t4). (68)

Subtracting (67) from (68), we get

f ′0 + f ′1
2

= δtf 1
2

+
∆t

8
(f ′′1 − f ′′0 ) − ∆t2

48
(f ′′′1 + f ′′′0 ) +O(∆t3), (69)

where

f ′′1 − f ′′0 = ∆tf ′′′0 +
∆t2

2
f
(4)
0 +O(∆t3).

Hence we have, by (69) and noting that f ′′′1 − f ′′′0 = ∆tf
(4)
0 +O(∆t2),

f ′0 + f ′1
2

= δtf 1
2

+
∆t2

48
(f ′′′0 − f ′′′1 ) +

1

12
∆t2f ′′′0 +O(∆t3)

= δtf 1
2

+
∆t2

12
f ′′′0 +O(∆t3). (70)

Noting that

f1 = f0 + ∆tf ′0 +
∆t2

2
f ′′0 +

∆t3

6
f ′′′0 +O(∆t4), (71)

f2 = f0 + 2∆tf ′0 + 2∆t2f ′′0 +
4∆t3

3
f ′′′0 +O(∆t4), (72)

f3 = f0 + 3∆tf ′0 +
9

2
∆t2f ′′0 +

9∆t3

2
f ′′′0 +O(∆t4), (73)

we get

3f1 − 3f2 + f3 = f0 + ∆t3f ′′′0 +O(∆t4). (74)

By (70) and (74), we have
f ′1 + f ′0

2
=

1

12
(13δtf 1

2
− 2δtf 3

2
+ δtf 5

2
) +O(∆t3),

which shows (22).

Finally we consider (23), for j = k, we have

f ′k + f ′k−1

2
=

1

12
(13δtfk− 1

2
− 2δtfk− 3

2
+ δtfk− 5

2
) +O(∆t3).

Together these estimates complete the proof of Lemma 2.2.
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