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Abstract 

Exercise-induced muscle damage (EIMD) is characterised by symptoms that present both 

immediately and for up to 14 days after the initial exercise bout. The main consequence of 

EIMD for the athlete is the loss of skeletal muscle function and soreness. As such, numerous 

nutrients and functional foods have been examined for their potential to ameliorate the effects 

of EIMD and accelerate recovery, which is the purpose of many nutritional strategies for the 

athlete. However, the trade-off between recovery and adaptation is rarely considered. For 

example, many nutritional interventions described in this review target oxidative stress and 

inflammation, both thought to contribute to EIMD but are also crucial for the recovery and 

adaptation process. This calls into question whether long term administration of supplements 

and functional foods used to target EIMD is indeed best practice. This rapidly growing area of 

sports nutrition will benefit from careful consideration of the potential hormetic effect of long 

term use of nutritional aids that ameliorate muscle damage. This review provides a concise 

overview of what EIMD is, its causes and consequences and critically evaluates potential 

nutritional strategies to ameliorate EIMD. We present a pragmatic practical summary that can 

be adopted by practitioners and direct future research, with the purpose of pushing the field to 

better consider the fine balance between recovery and adaptation and the potential that 

nutritional interventions have in modulating this balance. 

 

 

Key words: Muscle, Nutrition, Exercise, Damage  
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Article 

1. Introduction 

Exercise-induced muscle damage (EIMD) is characterised by symptoms that 

present both immediately and for up to ~14 days after the initial exercise bout. The 

consequences of EIMD for the athlete is the direct impact on functional capacity, 

muscle soreness (Byrne, Eston, & Edwards, 2001), exercise capacity (Marcora & 

Bosio, 2007; Twist & Eston, 2009) and disturbed sense of force production and limb 

position (Paschalis et al., 2010). The magnitude and time course of these symptoms 

and their subsequent impact on performance are variable and depend on the intensity 

and duration of the damaging exercise and the individual’s susceptibility to the 

damaging stimulus (Reviewed by Douglas, Pearson, Ross, & McGuigan, 2017).  

The EIMD associated losses in muscle function and increases in muscle soreness 

are important to athletes given their potential to impair performance. Accordingly, the 

focus of many sports nutrition strategies is to maximise the recovery from exercise and 

prepare for the next exercise bout. Numerous nutrients and functional foods have been 

examined for their potential to ameliorate EIMD. However, few studies have examined 

the balance between adequate exercise stress to stimulate adaptation and the need 

to intervene to avoid inadequate recovery or maladaptation (a phenomenon termed 

hormesis), creating difficulty when making assumptions about chronic exposure to 

nutritional compounds. In this review, we provide an overview of EIMD, its causes and 

consequences and then critically evaluate nutritional strategies that have the potential 

to ameliorate muscle damage. We conclude by presenting future research directions 

and recommendations for the management of EIMD.  

 

2. Proposed mechanisms of EIMD 

High force eccentric muscle actions typically produce ultrastructural muscular 

disruption (i.e. Z-line streaming and fibre degradation), delayed onset muscle soreness 

(DOMS), increases in specific intramuscular proteins in circulation, swelling of the 

affected limb, decreased range of motion and impaired muscle force producing 

capacity (Byrne, Twist, & Eston, 2004; Hyldahl & Hubal, 2014; Mackey & Kjaer, 2017). 

Modes of exercise that usually result in these symptoms include: resistance training 

(Burt, Lamb, Nicholas, & Twist, 2014), prolonged running (Millet et al., 2011), downhill 

running (Chen, Nosaka, Lin, Chen, & Wu, 2009), and intermittent, high intensity 

exercise (Leeder et al., 2014). The magnitude of damage resulting from eccentric 
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actions is exacerbated when performed at longer muscle length (Child, Saxton, & 

Donnelly, 1998; Nosaka & Sakamoto, 2001), with greater forces (Nosaka & Sakamoto, 

2001) and at faster angular velocities (Chapman, Newton, Sacco, & Nosaka, 2006). A 

muscle’s susceptibility to damage might also be reduced for subsequent bouts where 

prior exposure to eccentric exercise has occurred (Stupka, Tarnopolsky, Yardley, & 

Phillips, 2001). This protective adaptation is known as the repeated bout effect; RBE 

(Reviewed in detail by Hyldahl, Chen, & Nosaka, 2017). 

The extent of muscle damage is typically assessed by measuring various indirect 

markers. Reduced muscle force after eccentric exercise is the most appropriate 

indirect marker (Damas, Nosaka, Libardi, Chen, & Ugrinowitsch, 2016; Paulsen, 

Mikkelsen, Raastad, & Peake, 2012; Warren, Lowe, & Armstrong, 1999). Depending 

on the factors described above, losses in force after exercise are between 15-60% of 

pre-damage values and can persist for ~2 weeks (Hyldahl, Olson, Welling, Groscost, 

& Parcell, 2014; Paulsen et al., 2012). The underlying mechanisms are complex and 

are attributed to physical damage to the sarcomere and sarcolemma from eccentric 

lengthening and excitation-contraction (E-C) coupling failure (see section 2.1). DOMS 

is the most commonly assessed marker (Warren et al., 1999), yet the underpinning  

mechanism for its appearance is unclear. Sensations of muscle soreness could result 

from a complex interaction of damage to the muscle structure, disrupted calcium (Ca2+) 

homeostasis, and sensitization of nocioceptors from inflammatory cell infiltrates 

(Hyldahl & Hubal, 2014). However, studies reporting increased muscle soreness after 

eccentric exercise in the presence of limited inflammation in both animal (Hayashi et 

al., 2017) and human models (Yu, Liu, Carlsson, Thornell, & Stal, 2013) challenges 

the origins of DOMS. DOMS typically appears between 8 - 24 h after muscle-damaging 

exercise, peaks between 24 - 48 h and usually subsides within 96 h (Damas et al., 

2016; Jones, Newham, & Clarkson, 1987). Finally, the appearance of muscle-specific 

proteins such as muscle-specific CK in plasma and myoglobin in serum, that peak 2-6 

days after the initial insult are typically reported (Byrne et al., 2004; Hyldahl et al., 2014; 

Warren et al., 1999). Membrane damage caused by eccentric lengthening leads to 

increased membrane permeability and leaking of muscle proteins in to circulation 

(Sorichter, Puschendorf, & Mair, 1999), particularly in the immediate EIMD aftermath. 

Circulating muscle-specific proteins do, however, show a poor temporal relationship 

with muscle function (Friden & Lieber, 2001) and are probably best served as a marker 

that tissue damage has occurred rather than to assess its magnitude. The complex 

mechanisms associated with EIMD can be simplified into two phases: (i) the initial 

phase or primary damage that occurs as a consequence of the mechanical work 
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performed; and (ii) secondary damage that proliferates tissue damage through 

processes associated with the inflammatory response.  

2.1 Primary muscle damage 

Although several metabolic factors have been proposed as mechanisms of 

primary damage during eccentric exercise (Tee, Bosch, & Lambert, 2007), mechanical 

loading of the muscle during exercise is a more likely candidate (Proske & Morgan, 

2001). Eccentric contractions have lower motor unit activation compared to isometric 

and concentric contractions for the same force (McHugh, Connolly, Eston, & Gleim, 

2000), which places greater mechanical stress on a smaller number of muscle fibers 

during eccentric work (Enoka, 1996). It is also thought that faster motor units are 

preferentially recruited during lengthening contractions (Nardone, Romano, & 

Schieppati, 1989) and consequently, evidence suggests fast-twitch fibres are 

damaged (Friden, Sjostrom, & Ekblom, 1983). Sarcomeres lengthen heterogeneously 

under tension in a non-uniform manner (so-called inhomogeneity) until they are 

beyond myofilament overlap (Morgan & Allen, 1999; Proske & Morgan, 2001). At this 

point, some sarcomeres experience “popping” (See “popping sarcomere hypothesis”; 

Morgan & Allen, 1999; Proske & Morgan, 2001) and increase tension on passive 

structures that result in deformation of non-contractile proteins that has previously 

been evidenced by Z-line streaming (Friden et al., 1983). Subsequent repetition of non-

uniform lengthening during eccentric contractions then leads to greater fibre disruption 

(Morgan & Allen, 1999; Proske & Allen, 2005). 

Failure of the excitation-contraction (E-C) coupling process also contributes to 

the primary damage phase (Hyldahl & Hubal, 2014). Reduced force production 

immediately and in the days after eccentric exercise have been observed in animal 

models alongside reduced sarcoplasmic reticulum (SR) Ca2+ release (Balnave & Allen, 

1996; Ingalls, Warren, Williams, Ward, & Armstrong, 1998; Warren, Hayes, Lowe, & 

Armstrong, 1993a). Treatment of damage isolated muscle fibers with caffeine, which 

acts to stimulate SR Ca2+ release, rescues force lending support to the E-C failure 

hypothesis (Warren et al., 1993b). Similarly, ‘low-frequency fatigue’ (LFF) after 

damaging exercise in humans is characterized by losses of force at low (10 - 20 Hz) 

compared to higher (50 – 100 Hz) surface electromyostimulation frequencies 

(Clarkson & Hubal, 2002; Jones, 1996) that suggest reduced SR Ca2+ release 

(Dundon, Cirillo, & Semmler, 2008). However, reduced force at low stimulation 

frequencies also occurs in over-extended sarcomeres (Allen, 2001), suggesting LFF 

might be attributable to structural damage to the myofibril rather than E-C coupling 



 6 

failure (Allen, 2001; Clarkson & Hubal, 2002; Jones, 1996). Although there are 

competing theories to explain this phenomenon, it is generally acknowledged that the 

initial event after eccentric contraction disrupts the contractile and non-contractile 

apparatus, which is followed by membrane damage and subsequent E-C coupling 

dysfunction (Proske & Morgan, 2001). 

2.2 Secondary muscle damage 

After the primary phase, an uncontrolled movement of Ca2+ into the cytoplasm 

causes further damage (Armstrong, 1984; Ebbeling & Clarkson, 1989). High 

intracellular Ca2+ concentration activates Ca2+-dependent proteolytic and 

phospholipase A2 pathways that result in the degradation of structural proteins (Gissel, 

2005; Gissel & Clausen, 2001). Mitochondria maintain homeostasis by excess Ca2+ 

uptake (For a detailed review see Ebbeling & Clarkson, 1989; Gissel, 2005). However, 

mitochondrial Ca2+ overload can lead to inner mitochondrial membrane 

permeabilization and opening of the permeabilization transition pore, ultimately 

resulting in a large efflux of Ca2+ from the mitochondria, increasing intracellular Ca2+ 

and causing apoptosis or necrosis (Gissel, 2005). Increased intracellular Ca2+ could 

also cause uncontrolled muscle contraction that might be one explanation for 

increases in passive tension observed after EIMD (Allen, 2001; Morgan & Allen, 1999; 

Proske & Allen, 2005; Proske & Morgan, 2001). 

The subsequent inflammatory cascade is a vital process that clears damaged 

tissue, and initiates tissue repair and adaptation (Chazaud, 2016). A number of 

immune cell types infiltrate the damaged tissue, including mast cells, neutrophils, T 

regulatory lymphocytes, eosinophils and CD8 T lymphocytes (Burzyn et al., 2013; 

Castiglioni et al., 2015; Cote, Tremblay, Duchesne, & Lapoite, 2008; Heredia et al., 

2013; Zhang et al., 2014) to carry out specific roles in a highly organised, temporal 

manner.  

Neutrophils are probably the first group of immune cells to infiltrate muscle at 

the site of injury (Reviewed by Hyldahl & Hubal, 2014), activated by Ca2+-stimulated 

proteolysis (Gissel & Clausen, 2001) and increased intracellular Ca2+ signaling pro-

inflammatory cytokine release (Butterfield, Best, & Merrick, 2006). Neutrophils 

phagocytose necrotic myofibres and cellular debris (Pizza, Peterson, Baas, & Koh, 

2005). However, neutrophils can also produce high concentrations of cytolytic and 

cytotoxic molecules through NADPH oxidase derived - superoxide anion dependent 

mechanisms that can aggravate existing damage and are, therefore, implicated in the 
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secondary damage process (Nguyen & Tidball, 2003).  

Like neutrophils, macrophages are also capable of producing cytotoxic 

enzymes and reactive species (e.g. superoxide anion) that subsequently promote 

tissue degradation (Nguyen & Tidball, 2003). However, once engaged by damaged 

tissue, macrophages can convert into anti-inflammatory phenotypes responsible for 

releasing growth factors such as transforming growth factor β1 (Arnold et al., 2007). 

These observations suggest that macrophages do not contribute to membrane 

disruption during the inflammatory response, but instead have a role in facilitating 

tissue recovery and adaptation (Butterfield et al., 2006).  

 2.3 Satellite cell involvement in muscle repair 

Myofibres lack intrinsic regenerative capacity, so muscle fibre regeneration 

relies on resident muscle stem cells, termed satellite cells. Satellite cells reside 

juxtaposed to the muscle fibre, between the sarcolemma and basal lamina (Mauro, 

1961). Satellite cells remain quiescent until activated by appropriate cues ranging from 

intracellular signaling events to local interactions with the extracellular matrix and 

circulating systemic factors including inflammatory cells and nitric oxide (Reviewed in 

detail by Yin, Price, & Rudnicki, 2013).  

 

The activation and expansion of satellite cells after strenuous muscle activity is 

well-documented in humans. Cermak et al. (2013) reported that 24 hours after 300 

eccentric contractions, satellite cell content of type II fibres was increased. Similarly, 

single bouts of intense resistance exercise such as 45 cm drop jumps combined with 

maximal eccentric knee flexions on an isokinetic dynamometer (Crameri et al., 2004), 

high volume maximal unilateral eccentric dynamometry of the knee flexors (Dreyer, 

Blanco, Sattler, Schroeder, & Wiswell, 2006) and electrical stimulation (Mackey & 

Kjaer, 2017) all increase satellite cell activity. As these studies typically employ 

eccentric contractions, it has been suggested that it is exclusively eccentric 

contractions that lead to satellite cell activation. In a recent trial, a work-matched bout 

of repeated sets of eccentric or concentric contractions was employed (40 kJ work total 

per condition). The main finding was a 27% increase in satellite cell content at 24 hours 

after exercise in the eccentric but not the concentric exercise group, suggesting that 

satellite cells are differentially activated depending on contraction type (Hyldahl et al., 

2014).  
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Collectively, satellite cells are necessary for the remodeling of untrained skeletal 

muscle, possibly to maintain an adequate DNA:protein ratio. Since only non-trained or 

sub-elite athletes have typically been recruited in existing studies, whether such 

observations apply to elite groups is unclear. Interestingly, during periods of 

unloading/detraining, the nuclei accumulated by myofibres as a result of satellite cell 

activation remain for up to 60 days in humans (Kadi et al., 2004) and mice (Bruusgaard, 

Johansen, Egner, Rana, & Gundersen, 2010). These findings indicate that sustained 

satellite cell activation provides the muscle with the potential capacity to mount an 

augmented response to a repeated challenge to myofibre homeostasis. Facilitating 

satellite cell activity in response to damaging exercise may be a route through which 

nutritional interventions can modulate recovery.  

 

3. Dietary Solutions for Exercise-Induced Muscle Damage  

3.1 Protein and Amino Acids 

Dietary protein intake is undoubtedly a crucial factor in the regulation of muscle 

protein turnover, particularly in response to exercise. Adaptive processes to both 

resistance and endurance type exercise are enhanced when protein is fed around the 

exercise bout (Reviewed in detail by Phillips & Van Loon, 2011). Whether protein 

intake around intense/damaging exercise can alleviate aspects of muscle damage is 

less clear (Tipton, 2015). Evidence suggests protein or free amino acids fed around 

exercise can alleviate markers of muscle damage and accelerate recovery of force 

(Buckley et al., 2010; Cockburn, Stevenson, Hayes, Robson-Ansley, & Howatson, 

2010; Nosaka, Sacco, & Mawatari, 2006). However, others have not found comparable 

effects (Blacker, Williams, Fallowfield, Bilzon, & Willems, 2010; Wojcik, Walber-

Rankin, Smith, & Gwazdauskas, 2001). A recent systematic review concluded that 

when protein supplements are provided, acute increases in post-exercise protein 

synthesis and anabolic intracellular signalling have not resulted in measureable 

reductions in muscle damage and enhanced recovery of muscle function. This is 

logical as adaptations in muscle protein turnover are slow (Tipton, Borsheim, Wolf, 

Sanford, & Wolfe, 2003) and do not parallel the acute changes in muscle damage 

associated with protein supplementation, that typically occur within hours after 

damage. However, heterogeneity in study design and markers selected to monitor 

muscle damage and recovery of function may account for the lack of a clear 

consensus. So, whilst protein is undoubtedly important for adaptive remodelling of 

skeletal muscle after any form of exercise, and should never be compromised in the 
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diet, it is unclear whether supplementing with protein after EIMD accelerates recovery.  

3.2 Functional Foods 

So-called ‘functional foods’ have the potential to exert a positive physiological 

effect that is related to improved or preserved human health and disease prevention 

(Bell, McHugh, Stevenson, & Howatson, 2014). Exercise scientists, practitioners and 

athletes have identified these foods as potential synergistic solutions to manage the 

negative effects associated with strenuous physical activity. This is of particular 

interest for sports where muscle damage can impact upon subsequent training and 

competition. This section of the review will focus on the evidence derived from 

selected, contemporary and emerging functional foods applied in exercise recovery 

paradigms, with particular reference to foods (or their analogues) that contain dietary 

polyphenols and n3 fatty acids.  

 3.2.1 Dietary polyphenols 

Dietary polyphenols are present in numerous fruits and vegetables that are 

consumed as part of a balanced diet and have been shown to possess antioxidant 

properties, in vitro (Seeram et al., 2008; Traustadottir et al., 2009; Wang, Cao, & Prior, 

1997) and anti-inflammatory properties (Seeram, Momin, Nair, & Bourquin, 2001; Tall 

et al., 2004; Wang et al., 1999). In addition, many possess the ability to attenuate the 

arachadonic acid pathways by inhibiting cyclo-oxygenase (COX) 1 and 2 production 

(Seeram et al., 2001) to a similar magnitude to over-the-counter non-steroidal anti-

inflammatory drugs or NSAIDs (Bondesen, Mills, Kegley, & Pavlath, 2004). Polyphenol 

enriched nutrients include tea, coffee, grapes, cocoa, nuts, blueberries, cherries, and 

pomegranates. Here, we will review whether polyphenol supplementation influences 

EIMD before considering potential mechanisms.  

From an EIMD perspective, a dietary intervention is unlikely to interact with the 

primary phase of the mechanical stress during the exercise bout (Bell et al., 2014; 

Howatson & van Someren, 2008). What is more likely is an interaction with the 

secondary cascade, which results in inflammation and the production of reactive 

oxygen species (ROS) after the damaging exercise; consequently, further 

exacerbation of damage may be modulated and aid the subsequent recovery process. 

Quercetin is a polyphenol in the group of flavonol compounds present in berries, 

grapes, tomatoes and teas. Quercetin has good bioavailability in plasma after 

consumption (Egert et al., 2008) and could therefore exert positive effects in vivo. 
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However, limited evidence supports its use in managing EIMD. After three days of high 

intensity cycling for 3 hours per day, increases in exercise-induced inflammation and 

oxidative stress were reported (McAnulty et al., 2008). Despite 6 weeks of 

supplementation, quercetin performed no better than the placebo. Although cycling 

could be considered non-damaging, these data concur with previous work examining 

quercetin in an EIMD setting (Nieman et al., 2007a; Nieman et al., 2007b; O'Fallon et 

al., 2012). Despite some evidence of attenuated pro-inflammatory cytokine mRNA 

expression (Nieman et al., 2007b), quercetin failed to improve muscle function or 

reduce inflammation, oxidative stress and muscle soreness (Nieman et al., 2007a; 

Nieman et al., 2007b; O'Fallon et al., 2012).   

Catechins and their derivatives are commonly found in tea and have the 

potential to enhance recovery from damaging exercise, although the literature on this 

flavonoid is scarce. One study has shown a modest change in post-exercise muscle 

soreness, but all other indices of muscle function or muscle damage remained 

unaltered compared with a control (Kerksick, Kreider, & Willoughby, 2010). Catechins 

and quercetin warrant greater research efforts to elucidate their potential, but at 

present their application in managing EIMD is unsupported. 

An emerging food of interest for managing EIMD is tart Montmorency cherries 

(Prunus cerasus). The first study to investigate the efficacy of tart cherries in exercise 

recovery used heavy eccentric contractions to induce unilateral muscle damage to the 

elbow flexors in a placebo-controlled, randomized, cross-over design with a two-week 

washout, whereby the contralateral limb was used as the placebo control (Connolly, 

McHugh, Padilla-Zakour, Carlson, & Sayers, 2006). Participants consumed two 

servings per day of a cherry juice blend (fresh pressed Montmorency cherries and 

proprietary apple juice) for a total of eight days (four days before the damaging bout 

and for the duration of recovery period). An accelerated rate of muscle function 

recovery and reduced soreness post EIMD was observed. The investigators 

speculated that the positive effects were attributable to modulating the secondary 

damage phase. However, the influence of the proprietary apple juice in the blend 

cannot be excluded as a contributing factor for these positive observations. In addition, 

an important, but nonetheless often-overlooked limitation in this study (and many other 

damage studies) was the use of a crossover design in a damaging paradigm, which 

has been shown to confer a contralateral RBE and hence influence the damage in the 

contralateral limb (Howatson & van Someren, 2007; Newton, Sacco, Chapman, & 

Nosaka, 2013; Starbuck & Eston, 2012; Xin, Hyldahl, Chipkin, & Clarkson, 2014). In a 



 11 

subsequent study, the same Montmorency cherry juice blend was investigated in a 

similar supplementation regimen, but used an independent group design and recorded 

measures of oxidative stress and inflammation before and after a marathon (Howatson 

et al., 2010). Like Connolly et al. (2006), this study showed an accelerated recovery of 

muscle function in the days after the marathon, but importantly indices of inflammation 

(interleukin-6; IL-6 and C-reactive protein; CRP) and lipid peroxidation (thiobarbituric 

acid; TBARS) were attenuated and hence concluded that the phytochemicals were 

modulating EIMD; with the caveat that TBARS is now considered an assay with 

marked limitations (Cobley, Close, Bailey, & Davison, 2017; Margaritelis et al., 2016a). 

The positive effects of tart cherries on recovery from strenuous damaging exercise 

have subsequently been demonstrated with Montmorency cherry juice blends (Kuehl, 

Perrier, Elliot, & Chesnutt, 2010), a Montmorency cherry concentrate (Bell et al., 2014; 

Bell, Walshe, Davison, Stevenson, & Howatson, 2015; Bowtell, Sumners, Dyer, Fox, 

& Mileva, 2011) and other Montmorency cherry analogues (Kastello et al., 2014) after 

different exercise paradigms. At the time of this review all published studies data 

examining Montmorency cherries as an intervention showed some positive effects. 

How these compounds exert beneficial effects is, however, unclear.  

Pomegranate and its extracts are a polyphenol-rich fruit that principally contain 

ellagitannins (Medjakovic & Jungbauer, 2013). To our knowledge only two studies, 

from the same laboratory have examined the application of pomegranate on EIMD 

(Trombold, Barnes, Critchley, & Coyle, 2010; Trombold, Reinfeld, Casler, & Coyle, 

2011). The first of these studies used elbow flexion eccentric contractions to induce 

damage in recreationally active males. In a placebo controlled trial, the authors showed 

that the consumption of a pomegranate extract, in the days before and after the 

damaging exercise bout, improved recovery of muscle function; however, no other 

index of damage or inflammation was different between groups. The second study 

damaged both the elbow flexors and the knee extensors in resistance-trained males. 

In support of their initial work, an accelerated recovery elbow flexor function, that was 

accompanied by less muscle soreness in the pomegranate group. Finally, both studies 

used a cross-over design which has previously been highlighted as a potential 

limitation owing to the contralateral RBE. Notwithstanding, the positive results with 

pomegranate suggest it could be an effective intervention for recreational and well-

trained individuals to promote recovery from EIMD.  

From a mechanistic perspective, how polyphenols exert their effects is unclear. 

Polyphenols react with free radicals (e.g. superoxide anion, peroxyl radical, aloxyl 
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radical and hydroxyl radical) in vitro to yield polyphenol radicals. While polyphenols 

generally have favorable kinetics, whether they accumulate in sufficient amounts to 

scavenge free radicals is debatable (not to mention whether scavenging free radicals 

is even desirable). For example, copper zinc superoxide dismutase (CuZnSOD) reacts 

rapidly with superoxide anion and is present at ~20 µM (Halliwell & Gutteridge, 2015). 

Plasma concentrations of “free” polyphenols rarely exceed 1 µM, even assuming a 

tissue concentration of 1 µM CuZnSOD still outcompetes polyphenols, which 

questions the plausibility of scavenging mechanisms (Schaffer & Halliwell, 2012). Note 

tissue polyphenol concentrations above the nanomolar range are unlikely (Forman, 

Davies, & Ursini, 2014; Schaffer & Halliwell, 2012). A situation abetted by the fact that 

polyphenol metabolism via methylation, sulphation and glucoronidation abrogates their 

activity towards free radicals (Goszcz, Duthie, Stewart, Leslie, & Megson, 2017; 

Halliwell & Gutteridge, 2015). Further, it is unlikely that polyphenols accumulate at the 

sites of free radical generation in an EIMD setting because inflammatory cell infiltrates 

release superoxide anion and other reactive species into the phagosome (Winterbourn 

et al, 2016), which imposes a spatial restriction. For these reasons, we disfavor 

scavenging mechanisms. Instead, we favor the hypothesis that small amounts of 

polyphenols are metabolized to electrophiles (e.g. quinones), that then activate the 

cyto-protective endogenous antioxidant response via Nrf-2 signaling (Forman et al., 

2014; Goszcz, Deakin, Duthie, Stewart, & Megson, 2017). As reviewed in Forman et 

al, 2014, electrophiles can activate Nrf-2 signaling by conjugating reactive cysteine 

residues within KEAP-1—an inhibitory protein responsible for sequestering Nrf-2 in the 

cytoplasm  —via Michael addition. For investigators wanting to disambiguate the 

mechanism, limited mechanistic insight can be derived from evaluating oxidized 

macromolecule adduct levels at the circulating level (Cobley et al., 2015a; Cobley, 

Moult, Burniston, Morton, & Close, 2015c; Cobley et al., 2014; Margaritelis et al., 

2016a, b).  

Pharmacological interventions are often consumed in doses that are well in 

excess of the recommended daily allowance that could result in unwanted side-effects, 

and importantly for athletic populations, increases the risk of consuming contaminated 

supplements. The use of polyphenolic-rich foods is growing in interest and represents 

a realistic alternative for numerous areas of sport and exercise nutrition, not least in 

managing muscle damage and exercise recovery. Other polyphenol-rich foods (for 

example, chokeberry, beetroot, acai, Concord grapes and blackcurrants) that have not 

been explored could provide effective interventions to manage signs and symptoms 

associated with EIMD. A caveat to the polyphenol literature discussed here is that 
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many of the studies have removed polyphenols from the diet in order to control the 

study and observe whether potential effects are due to the polyphenol supplement. 

Whether these effects would persist as a supplement to a polyphenol rich diet is 

unknown. At worst, these foods provide vital nutrients; at best, exercise recovery could 

be augmented. Pragmatically, a diet rich in polyphenols (fruit and vegetables) may be 

the best strategy to augment recovery from damaging exercise. 

3.2.2 Omega-3 Polyunsaturated fatty acids 

Omega-3 polyunsaturated fatty acids (n-3 PUFA), specifically n-3 PUFA 

eicosapentaenoic acid (EPA) and docasahexaenoic acid (DHA) are a group of 

nutrients that possess anti-inflammatory properties (Mickleborough, 2013). n-3 PUFA 

occur in natural abundance in nuts and oily fish like salmon, mackerel and tuna (Sousa 

et al., 2014). Multiple investigations have examined the effects of n-3 PUFA on muscle 

function, inflammation and oxidative stress induced by damaging exercise. For the 

most part, these have shown a positive effect (DiLorenzo, Drager, & Rankin, 2014; 

Gray, Chappell, Jenkinson, Thies, & Gray, 2014; Jouris, McDaniel, & Weiss, 2011; 

Marques et al., 2015; Phillips, Childs, Dreon, Phinney, & Leeuwenburgh, 2003; 

Tartibian, Maleki, & Abbasi, 2009, 2011) on one or more variables associated with 

EIMD. All of these studies tend to use a loading phase of several days that can extend 

up to a month, which might go some way to explaining the discrepancies in meaningful 

findings. The most comprehensive study to assess loading demonstrated that a 

minimum of 2 weeks supplementation with 5 g/day of fish oil capsules (providing 3500 

mg EPA and 900 mg DHA) is necessary to permit detectable increases in muscle n-3 

PUFA lipid composition (McGlory et al., 2014). Only one study (Lenn et al., 2002) 

showed n-3 PUFA to have no effect on muscle function, inflammation or oxidative 

stress after damaging eccentric contractions. Taken collectively these studies support 

the efficacy of n-3 PUFA as a promising intervention to manage EIMD. 
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3.3 Vitamin D 

Vitamin D is a seco-steroid hormone predominantly obtained in humans by exposure 

to ultraviolet B radiation (UVB; sunlight) . Lack of sunlight exposure and predominantly indoor 

life styles have led to a large number of vitamin D deficiency cases worldwide (defined as <30 

nmol/L 25[OH]D) (reviewed recently in Palacios & Gonzalez, 2014). Professional athletes also 

exhibit low 25[OH]D concentrations (Close et al., 2013; Hamilton, Grantham, Racinais, & 

Chalabi, 2010; Morton et al., 2012). The canonical role for vitamin D is its role in Ca2+ 

homeostasis and thus bone mineralization (Holick, 2004). It is now understood that the 

biological effects of the seco-steroid are much wider than Ca2+ homeostasis. Of particular 

relevance to this review are the emerging data that imply a role in muscle regeneration and 

remodeling as vitamin D exerts potent effects on the innate and acquired immune system, as 

well as, directly within skeletal muscle.   

 

Few data exist to couple vitamin D’s potential role in modulating the immune response 

to EIMD, despite a plethora of data that show vitamin D is a robust regulator of the immune 

system (Hewison, 2012). In one trial, the anti-inflammatory cytokine response after intense 

exercise correlated with individual’s serum 25[OH]D (Barker et al., 2014). Although serum IL-

10 and IL-13 responses to muscle damage were increased in the vitamin D sufficient group, 

the immediate and persistent peak isometric force and peak power output deficits caused by 

the intense single leg exercise protocol remained, despite vitamin D sufficiency. In another 

observational study, the inflammatory cytokine TNF-α was increased in runners with low 

serum 25[OH]D (Willis, 2012), which could be detrimental for cellular homeostasis in muscle. 

But this remains speculative in the absence of functional measures.  

 

Data suggest vitamin D may be important in the intrinsic repair process after muscle 

damage. Initial insights were provided in a randomized controlled study that assessed the 

potential relationship between vitamin D and functional recovery of muscle after strenuous 

exercise. After 10 sets of 10 repetitive eccentric-concentric jumps on a custom horizontal plyo-

press at 75% of body mass with a 20 second rest between sets, individuals with higher 

circulating 25[OH]D, the main marker of vitamin D status, demonstrated a faster recovery of 

maximal force in the recovery phase after exercise (Barker, Schneider, Dixon, Henriksen, & 

Weaver, 2013). Using a systems approach in young, recreationally active vitamin D insufficient 

males, we later confirmed that supplemental vitamin D (4,000 IU/day) could augment the 

recovery of maximal force after eccentric unilateral exercise compared to a placebo control 

group (Owens et al., 2015). Moreover, skeletal myoblasts were obtained via a muscle biopsy 

from the vitamin D insufficient participants and demonstrated improved migration, fusion and 

hypertrophic capacity of skeletal myoblasts in the presence of 1α,25-dihydroxyvitamin D3 (the 
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active vitamin D metabolite). These data provided good evidence for a role of vitamin D in 

muscle repair at the whole muscle and cellular level. With regards to muscle soreness, 

nociceptors also express the vitamin D receptor (VDR) making them a potential vitamin D 

target. Indeed, vitamin D deficiency may lead to selective alterations in target innervation, 

resulting in possible nociceptor hyper-innervation of skeletal muscle, which in turn is likely to 

contribute to muscular hypersensitivity and pain (Tague et al., 2011). 

 

It appears that a daily as opposed to weekly or monthly vitamin D supplementation 

strategy is more effective and doses up to 4,000 IU/day vitamin D3 during the winter months 

are adequate (Owens et al., 2017). Higher doses and mega bolus supplementation protocols 

often implemented are likely to produce unwanted effects due to negative feedback in the 

vitamin D metabolic pathway (Owens et al., 2017).  

 

3.4. Vitamin C and Vitamin E 

 Vitamin C (i.e. ascorbic acid, AA) and vitamin E (α-tocopherol, α-TOC) are two 

essential nutrients, with pleiotropic redox-dependent and independent biochemical 

functionality (reviewed in Cobley, McHardy, Morton, Nikolaidis, & Close, 2015b; Niki, 2014). 

Several studies have investigated whether AA and α-TOC supplementation in combination or 

isolation ameliorates EIMD in humans, on the theoretical premise that they prevent cell 

damage inflicted by inflammatory cell infiltrates by scavenging free radicals. With few 

exceptions, the general consensus is that AA and α-TOC have limited ability to offset EIMD 

induced decrements in muscle function (reviewed in McGinley, Shafat, & Donnelly, 2009). For 

example, AA supplementation fails to improve muscle function, as assessed by isokinetic 

dynamometry (IKD), post EIMD (Thompson et al., 2004; Thompson et al., 2003; Thompson et 

al., 2001). The literature is mixed with regards to muscle soreness, some studies report no 

effect and others positive effects (reviewed in Close, Ashton, McArdle, & Maclaren, 2005). 

Whether potentially improving muscle soreness justifies their use to improve EIMD against a 

background of negligible effects on muscle function is debatable; especially when AA 

supplementation can delay recovery from EIMD (Close et al., 2006).  

 From a mechanistic perspective, use of AA and α-TOC is primarily based on their 

ability to “scavenge” free radicals—both nutrients have limited reactivity with non-radicals to 

generate a less reactive AA and α-TOC radical owing to electron delocalisation (Halliwell & 

Gutteridge, 2015). With a few exceptions (e.g. rapid reaction of α-TOC with lipid peroxyl 

radicals in the cell membrane Niki, 2014) whether they react with biologically meaningful free 

radicals near their site of generation and with a sufficient rate constant to outcompete 

endogenous reactants is unclear (Cobley et al., 2015b). In an EIMD setting, spatial constraints 

are particularly important. For example, α-TOC would have to accumulate at phagosome 
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membranes. If it did, it would likely protect the invading inflammatory cell infiltrate from 

oxidative damage, which may promote superoxide anion generation. Likewise, AA may 

potentiate superoxide anion generation by reducing Fe3+ to Fe2+ in NADPH oxidase (NOX) 

thereby enabling NOX to bind and reduce oxygen. Resolving the influence of AA and α-TOC 

is complicated by the difficulties associated with measuring free radical and non-radical 

species (Cobley et al., 2017; Halliwell & Whiteman, 2004). Notwithstanding, we suggest that 

AA and α-TOC are unlikely to directly scavenge free radicals in the phagosome to significantly 

interfere with the inflammatory responses.  

 

 Overall, no evidence based rationale exists to justify their use in an adaptive setting in 

AA and α-TOC sufficient athletes (Close & Jackson, 2014). It has been suggested that vitamin 

C and E could be considered for their use to offset muscle soreness during competitive 

situations when maximising adaption is inconsequential (Cobley, McGlory, Morton, & Close, 

2011). However, a recent Cochrane review suggests only moderate to low quality evidence 

supports the use of ‘antioxidant’ supplements in reducing DOMS (Ranchordas, Rogerson, 

Soltani, & Costello, 2017). The use of vitamin C and E supplements in an EIMD setting 

therefore appears to lack support, especially when AA and α-TOC may interfere with certain 

exercise adaptations to non-damaging exercise (Gomez-Cabrera et al., 2008; Paulsen et al., 

2014a; Paulsen et al., 2014b; Ristow et al., 2009). A graphical representation of the muscle 

damage-repair process and nutritional interventions that may interact with one or more of these 

events to augment recovery can be found in Figure 1. 

 

3.4 Creatine Monohydrate 

 Creatine monohydrate supplementation shows positive effects on satellite cell number and 

myonuclear content in response to heavy resistance exercise. When administered at a dose of 24 

g (4 x 6 g servings) per day for 7 days followed by 6 g per day for the following 15 weeks, satellite 

cell number and myonuclear content were increased above that of a 20 g whey protein supplement 

or a no training/no supplement control (Olsen et al., 2006). The signaling mechanism by which this 

occurs is still elusive; however, the data are supported by in vitro insights that show creatine 

monohydrate induces differentiation (myotube formation) of skeletal myoblasts (Vierck, Icenoggle, 

Bucci, & Dodson, 2003). 

 

<<< FIGURE 1 HERE >>> 

 

4. Practical nutritional considerations to modulate exercise-induced muscle 

damage 
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The long-term use of recovery strategies on adaptation to training and athletic 

development is an area of interest, and perhaps concern. The basis for this is predominantly 

concerned with interventions reducing the exercise-induced stress response, which may 

reduce adaptive potential—assuming the two are related. Many of the nutritional interventions 

highlighted here may modulate oxidative stress and inflammation, which are known to be 

important in the adaptive response to an exercise stimulus. As an example, blunting the pro-

inflammatory phase of the repair process may be problematic as a decrease in the number of 

immune cell infiltrates leads to a decrease in the diameter of new myofibers and to the 

development of fibrosis (Bondesen et al., 2004; Shen, Li, Tang, Cummins, & Huard, 2005). 

This calls in to question whether long-term supplementation might bring about a maladaptive 

response and affect long-term athletic development.   

 

With pragmatism in mind, a balanced diet that is rich in fruits and vegetables is always 

necessary. However, when training and competition stress is high and recovery is unlikely to 

be achieved before the next competition or high intensity training session, there is certainly 

rationale to supplement with additional foods that could help manage the negative effects of 

the exercise stressor. If the primary aim is to maximize the training stimulus, then a degree of 

caution is needed, whereby athletes and practitioners need to consider a periodised approach 

to nutrition to adequately support training and competition to maximize the potential for 

adaptation (see Figure 2). This notion can be conceptualized with the idea of hormesis, which 

was first applied to exercise paradigms by (Radak, Chung, & Goto, 2005). This idea suggests 

that biological systems respond in a bell-shaped fashion, where a positive adaptive response 

is experienced when exposed to a stimulus. However, when the exposure becomes too great 

(i.e. when EIMD impairs function for an extended period) a need to intervene to negate 

potential negative effects exists. Given that EIMD can shape our fundamental understanding 

of skeletal muscle adaptation (Hyldahl et al., 2017), ascertaining how nutritional strategies 

might impact differently on adaptation to damaging resistance and endurance training is 

important.  

 

<<< FIGURE 2 HERE >>> 

 

5. Future directions 

The field of sports nutrition is rapidly growing, and we are gaining greater insights into how 

nutrition interacts with physiological phenomena that are important for athletic development 

and performance. However, there is still much to be unveiled regarding nutrition as it relates 

to muscle damage and repair. Particularly lacking is our understanding of the underpinning 
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mechanisms of how functional foods and their derivatives exert their effects. Understanding 

these mechanisms will allow researchers and practitioners to better identify how nutritional 

interventions may be applied to maximize recovery and avoid performance impairments. 

 

It is also important to understand whether foods with anti-inflammatory properties 

negatively interfere with the pro-inflammatory phase of muscle repair and consequently blunt 

the repair process. The same can be said for foods with “antioxidant” properties, as recent 

research highlights the fundamental importance of oxidative stress in exercise adaptations 

(Margaritelis et al., 2017). A major challenge to the field will be in defining how nutritional 

interventions targeted to alleviate muscle damage and accelerate repair should be translated 

to the real-world setting, in which the aim of nutrition interventions is highly dependent upon 

the goal of the session and whether it is more important to recover quickly or adapt. 

 

Future studies must employ appropriate test measures when investigating functional foods 

and muscle function. We have highlighted how important the selection of laboratory assays 

can be for redox exercise biology studies (Cobley et al., 2017). Given many of the nutritional 

strategies described here are purported to have an impact on redox processes, particular 

attention should be paid to assay/method selection.  

 

 
6. Conclusion 

This review sought to provide a concise overview of what EIMD is, its causes and 

consequences and to critically evaluate potential nutritional strategies to ameliorate muscle 

damage. It is clear that the aetiology of EIMD is complex and some of the contributing factors 

are a double-edged sword. On the one hand, oxidative stress and inflammation may amplify 

tissue damage, but on the other hand both processes play important roles in the resolution of 

function and in adaptation. With this in mind, the majority of nutritional strategies presented 

here should be adopted with pragmatism. It is crucial to find the balance between recovery 

and adaptation and for this reason, a periodised approach to nutrition should yield the greatest 

benefit for the athlete. 

  



 19 

Figure Legends 

 

Figure 1. A) Time course of events following a bout of muscle damaging exercise and B) nutritional 

interventions that may interact with one or more of these events to augment recovery. Coloured 

spheres in figure 1B related to figure 1A to denote where the interventions may target. The strength 

of evidence for these interventions is expressed with stars on a scale of 0-3 depending on the 

depth and consistency of evidence. 

 

Figure 2. Theoretical framework for the hormesis theory in the context of nutritional interventions 

for the management of EIMD. This framework suggests that the adaptive response to EIMD 

presents as a bell-shaped curve; A positive effect of the exercise stress exists to a point when the 

exposure becomes too great, thereafter there is an impaired adaptive response. Using this theory, 

we suggest a conceptual region for intervention (yellow text box) where the exercise stress impairs 

timely return to training & competition or is detrimental to adaptation. 
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