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Abstract 19 

Chitosan and fish gelatin, by-products from marine industry, were used to prepare active 20 

biobased films containing an antioxidant (coumarin). After drying, the films were irradiated at 40 21 

and 60kGy by electron beam accelerator. The effect of irradiation on the film properties as well 22 

as the antioxidant release mechanism were investigated and compared with the control.  Electron 23 

Spin Resonance (ESR) unravelled free radical formation during irradiation in films containing 24 

coumarin. After antioxidant addition and/or irradiation treatment, only a shift of amide A, and 25 

amide B peak was observed for all the films, and a shift of amide II band for the control film 26 

after 60kGy irradiation dose. Irradiation allowed to improve the thermal stability of the control 27 

films. Both addition of coumarin and irradiation increased the surface wettability (increase of the 28 

polar component of the surface tension). From the water barrier analysis, neither irradiation nor 29 

coumarin addition influenced the permeability at the lower RH gradient used (0-30% RH). Using 30 

the higher RH gradient (30-84%) induced a rise of the WVP of all films (containing or not 31 

coumarin) after irradiation treatment. At 60kGy, the tensile strength of only the control films 32 

increased significantly. Finally, even if functional and structural properties are only weakly 33 

affected, it is enough to modify the release kinetics of the antioxidant into aqueous medium. The 34 

apparent diffusion coefficient of coumarin is two times reduced after irradiation. Irradiation also 35 

allowed to better protecting the encapsulated antioxidant. Indeed, the amount of coumarin in the 36 

non-irradiated film was significantly lowered Compared to the initial quantity, which is probably 37 

due to degradation. Coumarin in irradiated films is more protected considering this aspect.  38 

 39 
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1. Introduction 44 

Maintaining food quality, improving safety, and reducing storage losses waste are key objectives 45 

of a sustainable food system. Nowadays, the modern food industry is facing new challenges one 46 

of which being related to the food packaging to extend shelf life. Currently, a great number of 47 

research works are focused on the use of bio-based films with good water and oxygen barrier 48 

properties to protect food (Fabra et al., 2011). Since the consumer demand has shifted to safe 49 

materials, especially from renewable agriculture by-products and food processing industry 50 

wastes (Tharanathan, 2003), natural polymers (proteins, polysaccharides) are the main 51 

components of edible films (Gontard & Guilbert, 1994). They are considered as active packaging 52 

when they incorporate active compounds, such as antimicrobials, preservatives or antioxidants, 53 

which allow to improve food quality and safety (Han, 2002). Chitosan is a natural polymer from 54 

fish industry waste obtained by the deacetylation of chitin. It is a nontoxic material, 55 

biocompatible, and biodegradable that manifests antibacterial properties. In acidic environment 56 

the amino groups are protonated and their positive charges can interact with polyanions such as 57 

alginate, carrageenan, gelatin, etc. forming polyelectrolyte complexes (PEC) increasingly used in 58 

the encapsulation of various biocomponents. Due to these characteristics, chitosan has been 59 

widely used for the production of edible films as well as bio-compatible polymeric materials 60 

(Aider, 2010; Rivero et al., 2010). Gelatin is another widely used bio-based material obtained by 61 

the controlled hydrolysis of the insoluble fibrous collagen present in the bones and skin 62 

generated as waste during animal slaughtering and fish processing. Its excellent film forming 63 

ability is well-known (Hoque et al, 2011). Gelatin-based films are used for coating or packaging 64 

in order to maintain the quality of foods during storage, due to its good barrier to oxygen, light 65 

and prevention of dehydration and lipid oxidation (Jongjareonrak et al, 2006). Most research on 66 

gelatin film has focused on gelatin derived from mammalian sources such as bovine and porcine. 67 

Recently, there has been more interest in using fish as alternative sources of gelatin, due to 68 



religious considerations or fear of bovine spongiform encephalopathy (Pérez-Mateos et al., 69 

2009). 70 

Chitosan and gelatin have been shown to be compatible due to the ability to associate through 71 

electrostatic and hydrogen bonding. Specifically, when chitosan is positively charged and gelatin 72 

is negatively charged under appropriate conditions of pH. This is particularly important to 73 

improve the final network properties as compared to those obtained from the pure polymers 74 

(Benbettaieb et al., 2015a). Thus, many investigations focused on their possible use as a matrix 75 

to obtain bio-packaging materials. In this sense and to make films even more useful, functional 76 

edible films that contain active compounds have been developed, to enhance food quality and 77 

product shelf-life (Suppakul et al, 2003). The incorporation of antioxidants in these 78 

biodegradable and edible polymers is an interesting alternative to food preservation, since 79 

oxidation is one of the major problems affecting food quality as well as film biopolymer stability 80 

during ageing (Martins et al, 2012). The use of natural, non-toxic antioxidants such as ferulic 81 

acid or α-tocopherol to preserve the consumer health has been investigated (Fabra et al, 2011). 82 

Several researchers have previously reported on the potential benefits of using naturals 83 

antimicrobials and antioxidants compounds in edible and bio-based films for extending food 84 

shelf life (Oussalah et al., 2004; Ouattara et al., 2000). However, little information exists about 85 

the influence of these compounds on films structural and physicochemical properties. 86 

 Recently, Tammineni et al.(2014) reported that mechanical and barrier properties of bovine 87 

gelatin films were improved after tannic acid incorporation. Furthermore, crosslinking bovine 88 

gelatin films with tannic acid results in reduction of film solubility by about 80% (Zhang et al., 89 

2010). Kavoosi et al. (2014) studied antioxidant and antibacterial activity of gelatin films 90 

incorporated with Zataria multiflora essential oil (2 to 8% w/w of gelatin). They reported that 91 

beside their excellent antibacterial properties against both Gram-positive and Gram-negative 92 

bacteria, bioactive films have new functional properties. Peng and Li. (2014) demonstrated that 93 



water vapour permeability of chitosan films decrease while the tensile strength inversely 94 

increases when essentials oils are incorporated. Therefore, we were interested in encapsulating 95 

these natural compounds into chitosan-gelatin blend edible films. Moreover, physical methods 96 

including dehydrothermal treatment, ultraviolet, heat and gamma irradiation (Bigi et al., 1998) 97 

help to modify the polymeric network through the cross-linking of the polymer chains and also 98 

help to improve the functionality of polysaccharide (Sabato et al., 2000) or protein (Vachon et 99 

al., 2000) based films. Indeed, irradiation treatments have been described to enhance water 100 

barrier and mechanical properties of protein-polysaccharides complexes (Lacroix et al., 2002; 101 

Lee et al., 2004; Jo et al., 2005; Inamura et al., 2013). The structural modifications induced by 102 

irradiation could increase the capacity of cross-linked edible films to control the release of 103 

embedded active compounds. In the current literature there is a lack of detailed studies dealing 104 

with the effects of polymers structure, in particular chitosan-gelatin films, on the retention and 105 

release properties of the added antioxidant compounds (Papadokostaki et al, 1997). Very few 106 

studies have been published on the impact of irradiation on the release of active compounds from 107 

natural biopolymers. Indeed, Tin Wui et al. (2002) showed that the release-retarding property of 108 

alginate and alginate–chitosan beads is significantly enhanced after the beads irradiated by 109 

microwave. In the same way, Lacroix et al. (2002) displayed that gamma-irradiation induces 110 

cross-links in calcium caseinate edible films and thus allows a better control of enzyme and 111 

active compounds release. Previous works displayed that ferulic acid, quercetin or tyrosol 112 

addition affected differently the functional properties of gelatin-chitosan films according the 113 

irradiation dose (Benbettaieb et al, 2015b).Irradiation accentuated the wettability and the 114 

hydrophilicity of the film containing antioxidants whereas oxygen barrier and thermal stability 115 

were enhanced.  116 

The aim of this study is to further investigate the effect of coumarin addition and electron beam 117 

irradiation on the mechanical, thermal, barrier and structural properties of chitosan-fish gelatin 118 



edible films. The effect of irradiation on the coumarin release in liquid medium was also 119 

investigated. 120 

 121 

2. Materials and methods 122 

2.1. Materials and reagents 123 

Commercial grade chitosan (CS) (France Chitine, , MW=165 kDa, low viscosity, 85%, 124 

deacetylation degree, France) and commercial grade fish gelatin (G) (Rousselot 200 FG 8 with a 125 

180 Bloom degree, a viscosity of 4 mPa.s at 45°C and with the concentration of  6.67% ,in water,  126 

and a pH=5.4) were used as film-forming matrix. Anhydrous glycerol (GLY) (Fluka Chemical, 127 

98% purity, Germany) was used as a plasticizer in order to improve the mechanical properties of 128 

the films. Glacial acetic acid (Sigma, 99.85% purity) was used to prepare the solvent for chitosan 129 

and helped to improve their solubility. Silica gel and potassium chloride saturated salt solution 130 

(KCl, Sigma-Aldrich, France) were used to fix the relative humidity at <2% and 84% for water 131 

vapour permeability measurements. Coumarin (minimum purity 99%, Sigma Aldrich, molecular 132 

weight = 146 g.mol-1, molar volume = 117 cm3.mol-1, melting point = 70°C, LogP = 1.39, 133 

solubility in water = 1.9 g.L-1 (at 25°C), boiling point =298°C (à 101325 Pa), surface tension= 134 

46.4 mN.m-1 (at 25°C), saturated vapour pressure = 1.33 Pa (at 25°C), data from 135 

Chemspider.com,) was used as  a model of natural antioxidant molecule.  136 

 137 

2.2. Film formation  138 

20 grams of the chitosan powder was dispersed in 1 L of a 1% (v/v) aqueous acetic acid to obtain 139 

a 2% (w/v) film forming solution. The solution was homogenized at 1200 rpm with high shear 140 

homogeniser (Ultra Turrax (RW16 basic- IKA-WERKE) at 25°C. As a clear film-forming 141 

solution was obtained, no more treatment has been applied to the chitosan solution for improving 142 

the solubilisation. Then, 2.2 grams of glycerol (10% w/w dry matter) was added to this solution, 143 



under stirring. The pH of the chitosan solution was about 4.9±0.2. A 60 grams of fish gelatin 144 

powder was separately solubilized in 1 L of distilled water under continuous stirring and heating 145 

at 70°C for 30 min to obtain a 6% w/v solution (pH≈6.5). 6.6 grams of Glycerol (10% w/ dry 146 

matter) was added to this film forming solution after complete solubilisation of gelatin.  147 

Subsequently, equal weight of the respective solution was mixed at 1:1 ratio and stirred for 30 148 

min and pH was adjusted to 5.6 with acetic. This condition was specifically designed to obtain a 149 

polyelectrolyte complex between chitosan and gelatin since the iso-electric point of gelatin (Ip= 150 

4.5-5.2) while the pKa of the amino group (pH=6.2-6.5) of chitosan. At this condition, therefore, 151 

gelatin is negatively charged while chitosan is positively charged thus avoiding any phase 152 

separation upon mixing. Coumarin was added to the final film forming solution at a 153 

concentration of about 50 mg /g polymer (corresponding to a 47 mg/g total dry weight of film). 154 

The aqueous dispersions were homogenized at 1200 rpm using the Ultra Turrax until complete 155 

dissolution.  156 

30 mL of the film forming solution (FFS) in the presence and absence of coumarin was then 157 

poured into plastic Petri dishes (13.5 cm diameter). A minimum of 30 films (ie 30 Petri dishes) 158 

have been prepared for each formulation. Aqueous solvent was removed by drying in a 159 

ventilated climatic chamber (KBF 240 Binder, ODIL, France) at 25°C and 45% RH for 18 to 160 

24h. After drying, films were peeled off from the surface and stored up to equilibrium in a 161 

ventilated climatic chamber (KBF 240 Binder, ODIL, France) at 50% RH and 25°C before each 162 

measurements. 163 

 164 

2.3. Radiation treatment  165 

Irradiation was carried out in the AERIAL pilot plant (Innovation Park, Illkirch, Strasbourg, 166 

France), using a linear electron accelerator at ambient temperature (20±0.5ºC). Thin dried films 167 

(70 to 85µm thickness) were irradiated for 40 and 60kGy using a 2.2 MeV energy electron beam 168 



at a dose rate of 0.3 kGy/sec. One batch of film formation was preserved as non-irradiated 169 

reference. We selected a maximum of 60kGy doses that can yield a high density of crosslinking 170 

in proteins and in the range of authorized doses in food and packaging. Moreover, according to 171 

the Codex General Standard for Irradiated Foods (CAC, 2003), ionizing radiations foreseen for 172 

food processing are recommended to be limited to 60kGy. Dosimetry was performed using 173 

alanine pellet dosimeters calibrated according to ASTM/ ISO 51607 (2004).  174 

 175 

2.4. Film characterizations 176 

2.4.1. Thickness measurement 177 

Film thickness was measured with an electronic gauge (PosiTector 6000, DeFelsko Corporation, 178 

USA). Five measurements were taken for each film sample, one from the center and four close to 179 

the perimeter. Mean value was used in further calculations. The film thickness according the 180 

sample and formulation ranges between 70 and 85  181 

2.4.2. Mechanical properties 182 

A universal traction testing machine (TA.HD plus model, Stable MicroSystems, Haslemere, 183 

England) with a 300 N load cell was used to determine tensile strength (TS, MPa), Young’s 184 

modulus (YM, MPa) and percentage of elongation at breakpoint (E, %), according to ASTM 185 

method D882 (1992). Rectangular film samples (2.5×8 cm2) were cut using a special precision 186 

sample cutter (Thwing-Albert JDC Precision Sample Cutter) in order to get tensile test piece 187 

with an accurate width and parallel sides throughout the entire length. Before testing, all samples 188 

were equilibrated for two weeks at 25°C and 50% relative humidity (RH). Equilibrated film 189 

samples were then placed in the extension grips of the testing machine and stretched uniaxially at 190 

a rate of 50 mm/min until breaking. TS, YM and E were determined from stress–strain curves. 191 

Measurements were carried out at room temperature (25±2°C) and five samples for each 192 

formulation were tested. 193 



2.4.3. Water vapour permeability 194 

The water vapour permeability (WVP) was determined according to the gravimetric method 195 

described in the ASTM E96-80 (1980) and adapted to edible and bio-based films by Debeaufort, 196 

Martin-Polo and Voilley (1993). Two relative humidity gradients were used: 0-30% and 30-84%. 197 

Prior to WVP measurements, all film samples were equilibrated at 25 ± 0.5°C and 30% relative 198 

humidity for 72 h. The average value of five thickness measurements per type of film was used 199 

in the WVP calculations (statistical error on the film thickness was taken into account in WVP 200 

uncertainty). The film samples (6.44 cm² discs) were placed between two teflon rings on the top 201 

of the glass cell containing silica gel (0% RH) for the first RH gradient (0-30%) or a salt solution 202 

of KCl (84% RH) for the second RH gradient (30-84%). The second RH gradient was selected to 203 

obtain an average water content of film at the stationary state of permeation that corresponds to 204 

the RH of 50% used for mechanical property characterizations and FTIR analysis. Those 205 

permeation cells were then introduced into a climatic chamber (KBF 240 Binder, ODIL, France) 206 

maintained at 30% RH and 25±0.5°C and periodically weighed.  207 

The WVP (g.m-1.s-1.Pa-1) calculation was based on the change in the absolute value in weight 208 

loss of the permeation cell versus time once the steady state was reached (Benbettaieb et al, 209 

2015a). Five replicates for each film formulation were performed.  210 

2.4.4. Surface properties 211 

2.4.4.1. Water contact angle 212 

The sessile drop method was used for contact angle measurement, with a DGD-DX goniometer 213 

(GBX, Romans-sur-Isere, France), equipped with the DIGIDROP image analysis software 214 

(GBX, Romans-sur-Isere, France),  according to Karbowiak et al. (2006). A droplet of liquid (~ 215 

1.5 µL) was deposited on the film surface with a precision syringe. Then, the method is based on 216 

image processing and curve fitting for contact angle measurement from a theoretical meridian 217 

drop profile, measuring contact angle between the baseline of the drop and the tangent at the 218 



drop boundary. The contact angles with water and diiodomethane at 0 and 20 s were measured 219 

from both sides of the drop and averaged. The measurement was carried on over 120 s. Five 220 

replicates per film were carried out.  221 

2.4.4.2. Surface tension 222 

The surface tension (γ�) of the film and its polar (���) and dispersive (���) components were 223 

calculated using diiodomethane (γ�		 � 53 mN/m; 	γ�� 	� 50.8	mN/m and	γ�� � 0	mN/m) and 224 

water (γ�		 � 72	mN/m ; 	γ�� 	� 21.8	mN/m and 	γ�� � 51	mN/m) knowing their surface 225 

tension (γ�		) and respective dispersive (	γ��) and polar components (	γ��) given by Strom et 226 

al.(1987) and  according the following equations established by Owens and Wendt (1969) :  227 

γ� � γ��	 � 	γ�� ………………………………………………… Eq.1 228 

γ���1 � ���θi� � 2�		�γ��	  	γ��� 	� 	�γ��	  	γ���   ] ………Eq.2  229 

where the subscripts S and L refers to the solid (the film surface) and the liquid, respectively. As 230 

only two liquids have been used for the regression, the accuracy of values obtained from this 231 

analysis has been considered at the p-level of 0.01. 232 

2.4.4.3. Swelling index and swelling rate with water 233 
 234 
Swelling index was obtained from the water drop volume kinetics using the following equation: 235 

Swelling index (%) =  !∆#$%& . 100 � !#'()*#%#% & . 100	                                                      Eq.3 236 

where ∆V is the droplet volume variation (µL) measured on the film sample (over the first 20s). 237 

Vmax  is the maximal apparent volume (µL) of the droplet and V0 is the initial volume (µL) of the 238 

droplet. 239 

Swelling rate was obtained from the drop volume kinetics using the following equation: 240 

Swelling rate (µL/s) = !∆$+,&	=$'()*$-.-	/0,'()*,-.-	/0                                                                          Eq.4 241 



Where ∆V is the droplet volume variation (µL) during ∆t time (s) measured on the film sample, 242 

assuming a linear regression. 243 

V345: maximum swelling volume, V676	�8: initial volume of swelling, t345: time of maximum 244 

swelling, t676	�8: initial time corresponding to the beginning of swelling 245 

 246 

2.4.5. GPC-MALLS system 247 

The GPC-MALLS system consisted of a degasser ERC-3215- α (ERC, Japan), a constametric ® 248 

3200 MS pump (Thermo Separation Products, FL), an injection valve with 100 µL loop 249 

(Reodyne 7725i) fitted inside a temperature regulated oven (Gilson, Model 831, UK) maintained 250 

at 40oC ±1oC and a DAWN-DSP multi-angle light scattering photometer (Wyatt Technology, 251 

Santa Barbara, CA, USA) equipped with He–Ne laser (9= 633 nm). Simultaneous concentration 252 

detection was performed using a calibrated differential refractometer (RI 2000, Schambek, 253 

Germany). A refractive index increment dn/dc value of 0.180 mL/gm was used in the 254 

calculations   255 

The mobile phase was made to contain 0.15M ammonium acetate, 0.2M acetic acid and 0.1M 256 

sodium chloride and was filtered through 0.2 µm pore size cellulose nitrate membrane.  The 257 

samples injected were subjected to prior filtration through a nylon filter of 0.45 µm pore size. A 258 

set of two columns SB-803HQ and SB-806HQ (8 mm × 300 mm, Shodex OHpak, Japan, 259 

exclusion limits 1 × 105 and 2 × 107 g/mol) , housed inside the oven, was used for the separation. 260 

The flow rate for the eluent was 0.45 mL/min. The Berry fitting method with linear fit was used 261 

for data processing in ASTRA software (Version 4.90.08). For the measurement of molecular 262 

weight, about 27mg (30mg of films containing about 12% water content) of chitosan-gelatin film 263 

incorporated with coumarin 5% (w/w polymer) was dissolved in 10mL of mobile phase. The 264 

solution was then heated in a water bath for 20 min at 45°C and subsequently centrifuged for 265 



5min at 25000 rpm at 25°C. The soluble fraction was removed from the respective solution and 266 

was heated at 45°C for 5 min prior to injection into the GPC-MALLS system.  267 

The entire GPC-MALLS system was maintained at 40 ± 1°C. Temperature control was achieved 268 

using the in-house heating methodology provided thermostatic heating to all pipework between 269 

the detectors.   270 

2.4.6. Thermogravimetric analysis 271 

Thermogravimetric analysis (TGA) was used to evaluate the thermal stability of the samples. 272 

Measurements were performed using a TA instrument (TA instruments Discovery TGA New-273 

Castle, USA), from 25 to 800°C, at a heating rate of 20°C/min, under nitrogen atmosphere. The 274 

weight of the film sample (initially around 8 mg) was constantly measured with an accuracy of 275 

0.01 mg. Films were stored at 25°C and 50% RH for two weeks before TGA measurements. 276 

2.4.7. Attenuated Total Reflectance - Fourier Transforms Infrared (FTIR-ATR) spectroscopy 277 

The Fourier Transform Infrared spectra from each film were obtained using a spectrometer 278 

(Perkin-Elmer, Spectrum 65, France) using Attenuated Total Reflectance (ATR) with ZnSe 279 

crystal. For each measurement, 32 scans in the wave length range 400-4000 cm-1 with a 4 cm-1 280 

resolution were co-added before the Fourier transform. The spectra were collected in duplicate. 281 

This analysis aimed at determining the modifications at the molecular scale induced between 282 

active molecules and polymers after electron beam irradiation. 283 

2.4.8. Electron spin resonance (ESR) 284 

The ESR technique allows measuring the presence of free radicals. ESR signals were recorded at 285 

room temperature on a Bruker EMX spectrometer (Bruker, Berlin, Germany) controlled with a 286 

Bruker ER 041 XG microwave bridge operating at X-band (~9 GHz). 50mg of each film was cut 287 

and placed in the sampling tube. ESR spectra were carried out using 100 kHz magnetic field with 288 

6G modulation amplitude, 20.12 mW microwave power, 9.49 GHz frequency and 5 scans.  289 

2.5. Release of coumarin in aqueous medium  290 



Prior to release experiments, the real concentration of coumarin in the films was determined. A 291 

film sample of about 60 mg (about 5x5 cm²) was immersed up to fully dispersion in 100 mL of 292 

acetic acid solution at pH 4 under stirring at 50°C in order to fully solubilized the polymers and 293 

the coumarin. The amount of coumarin in the liquid medium was determined by UV-vis 294 

spectrophotometry (Biochrom Libra S22) at 278 nm (previously determined from the absorbance 295 

spectrum of the pure coumarin in water). A series of standard solutions for this antioxidant (1, 2, 296 

4, 5, 10, 25 and 50 mg/L) was used for calibration, according to the Beer-Lambert’s law. This 297 

concentration was then compared to the theoretical content introduced in the films when 298 

prepared. The measured initial concentration was used to calculate the percentage of retention in 299 

the film after the release kinetics. 300 

The release of the coumarin was carried out in triplicate using the rotating paddle dissolution 301 

apparatus (AT7 Smart type II, Sotax, Basel). 600 mg of each film were incorporated at time 0 in 302 

1 L of the dissolution medium (water adjusted at pH=7 using 0.1 M of NaOH). 3 mL samples 303 

were withdrawn and assayed for antioxidant release periodically up to equilibrium. The amount 304 

of coumarin in the release medium was determined by UV-vis spectrophotometry (Biochrom 305 

Libra S22) as previously described.  306 

The effective diffusion coefficient of coumarin in the film (D) was also determined from the 307 

release kinetics assuming a Fick’s law (Eq.5), and considering the transient state of the transfer. 308 

:;
:< � = :>;

:?>		                        Eq.5 309 

Where C is the concentration of this antioxidant in the film  over the time t, x is the thickness of 310 

the film and D is the effective diffusion coefficient. 311 

The experimental method chosen corresponds to the case of diffusion of the solute from a plane 312 

sheet (film) into a stirred solution of limited volume (Crank, 1975). As the solution is constantly 313 

stirred, we assumed there is no boundary layer effect on diffusion. Therefore, the concentration 314 

of coumarin in the solution, initially zero, is considered to be uniform in the release medium 315 



according to Crank (1975). The concentration of this antioxidant in the film is also assumed to be 316 

uniformly distributed within the film at time zero. We also consider a unidirectional diffusion of 317 

the coumarin in the film, and a D which does not depend on the concentration or on the time. 318 

This mass transfer equation (Eq.5) can thus be solved using the following analytic solution to the 319 

second Fick’s law applied to transient state (Crank, 1975): 320 

@<@A � 1 BC
2D�1 � D�
1 � D � DEFGE

A

GHI
expMB=FGENOE P 																				Eq. 6 

Where, Ct is the concentration of coumarin determined in the dissolution medium over time, as 321 

previously detailed; C∞ is the maximum concentration of this antioxidant determined in the 322 

dissolution medium when equilibrium is achieved;  D � 	TU VW  TXY⁄ 	 with TU the volume of 323 

solution (m3), TX the volume of the film (m3) and K the partition factor;  FG are the non-zero 324 

positive roots of tan�FG� � BαFG using n values between 1 and 6.  325 

D is the effective diffusion coefficient (m2.s-1), and l is the half thickness of the film (m). 326 

This model was applied to the release experimental kinetics (up to equilibrium) in order to 327 

determine the effective diffusion coefficient of coumarin in the film, by minimising the sum of 328 

the square of the differences between measured and predicted values, using the Levenberg–329 

Marquardt algorithm, and taking D as adjustable parameter. Modeling was performed using 330 

Matlab software (The Mathworks, Natick, MA). 331 

 332 

2.6. Statistical analyses 333 

The data were analyzed using an independent sample t-test with the statistical software SPSS 334 

13.0 (SPSS Inc., Chicago, IL). A standard deviation (p-value < 0.05) at the 95% confidence level 335 

was used to compare all parameters analysed (water vapour permeability, mechanical properties, 336 

surface properties and parameters of the kinetics of release) between irradiated and non-337 

irradiated films in the presence and absence of coumarin. 338 



 339 

3. Results and discussion 340 

3.1. How irradiation and coumarin addition influence chemical and structural organisation 341 

of polymer-blend network 342 

3.1.1. Free radical generation 343 

Electron spin resonance (ESR) is an appropriate tool to detect and identify the generation of free 344 

radicals in a polymer structure. The ESR spectra of chitosan-gelatin blend film incorporated with 345 

coumarin before and after irradiation (60kGy) are displayed in Fig.1. A very weak ESR signal is 346 

detected, at 3365 G, in the case of non-irradiated films. Contrarily, just irradiated film displays a 347 

prominent peak at the same position suggesting the presence of free radical species induced by 348 

the irradiation treatment. This peak remains visible even after 3 months of storage  revealing that 349 

free radicals are still present in the films.  350 

Recently, we reported that the peak intensity, determined at 3500 G, for irradiated chitosan-351 

gelatin film increases with increasing the irradiation dose Benbettaieb et al. (2015a).  352 

The analysis of the peak to peak amplitude between film containing or not containing coumarin 353 

shows that, after irradiation at  60kGy, the peak amplitude is 2 to times higher for irradiated 354 

films compared to non-irradiated ones, for film without coumarin and for film containing 355 

coumarin, respectively. 356 

The detection of free radicals generated within the films may contribute to clarify the role of 357 

these reactive species to initiate the reaction sequence inducing change in the chemical and 358 

structural organisation of the biopolymer-blend network. A new arrangement in the structure is 359 

expected after irradiation, which could favour the linkage between the biopolymers chains or 360 

between the biopolymers chains and the active compound. Even if the water content of film was 361 

quite low (about 12%), possible hydroxyl-coumarin obtained after hydroxylation reaction by OH 362 

radical produced from water radiolysis could react with polysaccharide and protein network. As 363 



coumarin is a phenolic substance made of fused benzene and alpha pyrone ring, their phenolic 364 

groups can be easily converted to quinone in presence of peroxide radicals (produced by 365 

irradiation), via quinone-mediated reactions. Indeed, ahe slight change in the film colour after 366 

irradiation is observed. This could be more probably attributed to quinone generation from 367 

antioxidants more than Maillard reaction because the temperature involved in the film making 368 

and irradiation process remained lower than 50°C. In addition to providing a source of stable free 369 

radicals, quinones are known to complex irreversibly with nucleophilic amino acids in protein. 370 

The reaction mechanism involves an initial oxidization of phenolic structures to quinones, which 371 

can readily react with nucleophiles from reactive amino acid groups in protein: sulfuhydryl 372 

group in cystein, amino group of lysine and arginine, amide group from aspartic and glutamic 373 

acids, indole ring of tryptophan and imidazole ring from histidine (Zhang et al., 2010).This tends 374 

to be confirmed as our films gain a yellowish colour after irradiation. Sahu et al. (2009) showed 375 

the efficiency of microwave irradiation for the oxidation of phenol to quinone after free radicals 376 

generation in the presence of hydrogen peroxide. Casimiro et al. (2010) showed that, in acidic 377 

medium, NH3
+ groups (from deacetylated units) of chitosan are able to be involved in some 378 

interactions during irradiation. As displayed by Madeleine-Perdrillat et al. (2015), even at low 379 

water content, molecular mobility in chitosan films remains quite high and allows the supposed 380 

free radical mobility in the film. Knowing free radicals are present after irradiation, they could 381 

originate sequences of reactions within and between polymer chains and antioxidant which could 382 

in turn affect the structural properties of the final network. These structural and functional 383 

properties modifications have been assessed in the followings.  384 

 385 

3.1.2. Changes in chemical structure by molecular interaction analysis 386 

GPC-MALLS was used to determine the molecular weight parameters of chitosan-gelatin film 387 

before after irradiation and in the presence of coumarin. The typical elution profile (15 – 19 mL) 388 



of chitosan-gelatin film was monitored by the light scattering (detector 90° degree), refractive 389 

index and UV at 280nm detectors (data not shown). The results are tabulated in Table 1. The 390 

weight average molecular weight for chitosan gelatin film in the presence and absence of 391 

coumarin was similar and almost an identical value was obtained following irradiation at 60kGy.  392 

The results given in Table 1 show that there is no significant difference of for the molecular 393 

weight, the polydispersity and the z-radius between irradiated (and non-irradiated films are 394 

observed for the control). So irradiation induce neither covalent reticulation nor biopolymer 395 

degradation under the conditions employed in this study. The incorporation of coumarin has no 396 

additional effect on the molecular size of the biopolymers even when coupled with irradiation 397 

process  398 

 399 

Fourier transform infrared spectroscopy (FTIR) was used in order to assess the possibility of 400 

interactions and the nature of linkage between polysaccharide-protein network and coumarin 401 

following irradiation treatment. FTIR spectra of irradiated and non-irradiated chitosan-fish 402 

gelatin blend films in the presence and absence of coumarin are displayed in Fig. 2. The 403 

spectrum of non-irradiated control film showed characteristic peaks: 3300-3360 cm−1, assigned 404 

to νOH stretching of free water and νNH stretching of amide A, 2915-2935 cm−1, assigned to νCH  405 

asymmetric/symmetric stretching of amide B, 1550-1680 cm−1, assigned to C=C and C=O 406 

stretching of primary and secondary amine NH band of amide I, 1550-1610 cm−1, assigned to 407 

δNH of amide II and 1240-1340 cm−1, assigned to aromatic primary amine, CN stretch of amide 408 

III (Coates, 2000; Benbettaieb et al., 2015a). The peak observed in 1034 cm-1 is related to 409 

possible interactions arising between plasticizer (OH group of glycerol) and polymer structure 410 

via hydrogen bonds (Cerqueira et al, 2012). The amide B νCH (2932 cm-1) is slightly shifted to 411 

higher wavenumber (2941 cm-1) after incorporation of coumarin. However, no change is 412 

observed on amide-I, amide-II and amide-III peak position. Similar results was founded by 413 



Benbettaieb et al.(2015b) after incorporation of ferulic acid in chitosan-gelatin film. Contrarily, 414 

other author found a shift on amide I band, attributed to interaction between chitosan (amide) 415 

and starch or ferulic acid (hydroxyls) in the case of starch-chitosan blend film incorporating 416 

ferulic acid (Mathew and Abrahman, 2008); or to caffeic acid oxidation inducing protein 417 

crosslinking (Nuthong et al, 2009); or to crosslinking in gelatin gel after UV irradiation (Bahat 418 

and Karim, 2009). Therefore, FTIR analysis only shows a weak modification in the structure of 419 

the final network without new significant linkage. Only the amide A and amide B (and amide II 420 

for control film) groups exhibit a shift after both antioxidant addition and irradiation treatment. 421 

 422 

3.1.3. Thermo-gravimetric analysis (TGA) 423 

Thermo-gravimetric analysis was performed in order to study the effect of coumarin addition 424 

before and after irradiation on the thermal stability of blend chitosan-fish gelatin films. Fig. 3 425 

shows two main stages of weight loss events for all films. The first stage occurs over a 426 

temperature range of around 51-121°C and results in a weight loss (∆w1) of approximately 5.2-427 

7.4%. It is associated with the loss of acetic acid and free water sorbed in the film. These results 428 

are in agreement with Inamura et al. (2013), who observed similar behavior for biocomposite 429 

films prepared with gelatin and nut wastes as fiber source (46-140°C). Barreto et al. (2003) and 430 

Pena et al. (2010) also showed similar results for gelatin film, from 25 to 200°C. These 431 

temperature ranges differences can be attributed to the variation of the initial water content as 432 

well as the plasticizer used. The second stage of weight loss (∆w2= 42.3-53.8%) occurs in the 433 

temperature range from 215 up to 330°C. This is most likely due to to the degradation of the 434 

polysaccharide and protein backbones as well as the evaporation and thermal degradation of 435 

glycerol (from 177-211°C up to 450°C (Maturana and Pagliuso, 2011)) and also structurally 436 

bound water evaporation. Pure coumarin (powder) exhibits a single stage in weight loss, with 437 

decomposition starting at 160-180°C and finishing at about 230°C (Fig. 3). Only weak 438 



difference was observed regarding thermal decomposition temperatures and weight loss (∆w1 439 

and ∆w2) when control film is compared to the films with coumarin due to the low coumarin 440 

content (47mg/g). Opposite results were observed in the case of skin gelatin after addition of star 441 

anise extracts (Hoque et al., 2011) and green tea extract (Wu et al., 2013). They suggested that 442 

interactions occurring between phenolic compounds and gelatin yielded to a stronger film 443 

network and therefore a higher heat resistance of the films. The above studies are comparable to 444 

those we recently reported on the same gelatin- chitosan film which showed improved thermal 445 

stability following the addition of quercetin (Benbettaieb et al., 2015b). After irradiation, thermal 446 

degradation temperature of the control film is improved, associated with a decrease observed on 447 

weight loss (∆w1 and ∆w2). This result suggests the apparition of new bonds, thermally more 448 

resistant to heat than initial bonds existing before irradiation which enhances the thermal 449 

properties. Similar result was found by Inamura et al. (2013) in the case of composite gelatin-nut 450 

shell fiber after 40 kGy irradiation dose. Inversely, we cannot observe any significant 451 

modification of thermal stability for film containing coumarin after irradiation. Benbettaieb et al. 452 

(2015b) showed a reverse tendency for chitosan-gelatin film containing ferulic acid after 60kGy 453 

irradiation dose. Finally, from the above structural and thermal analysis, we can conclude that 454 

the interaction between coumarin and polymer chains is very weak and no covalent or strong 455 

linkage occurred following irradiation. For this reason, a complementary analysis must be 456 

undertaken to better understand the effect of both irradiation and coumarin addition on functional 457 

properties of films. 458 

 459 

3.2. Impact of both irradiation and coumarin addition on functional film properties 460 

3.2.1. Surface properties and wettability 461 

The contact angle (θ) value obtained after deposition of a water drop on the film surface 462 

indicates the surface hydrophobicity. To estimate the resistance of films to liquid water, the 463 



swelling index and swelling rate were also determined from the droplet volume kinetics, along 464 

with the contact angle values at the initial time of deposit (0 s) and at a considered metastable 465 

equilibrium (20 s). Results for all films are summarized in Fig. 4. For untreated films, the contact 466 

angles (at 0 and 20s) significantly decrease (p<0.05) after incorporation of coumarin. 467 

Furthermore, no swelling is observed for the control film. Swelling index and swelling rate 468 

significantly (p<0.05) increase to 52±4% and to 68±24x10-3 
µL/s, respectively after addition of 469 

coumarin. After irradiation, the contact angles (at 0 and 20s) significantly decrease for all films 470 

(decreases is not significant only for the contact angle at 20s for coumarin film). Whereas, 471 

swelling index and swelling rate tend to increase for all films, but they are only significant 472 

(p<0.05) for the control films. To better understand the effect of coumarin on film surface 473 

properties under electron beam irradiation, the surface tension was also determined. Surface 474 

tension does not show significant modification after incorporation of coumarin. However, a 475 

slight increase is observed in the polar component. The presence of this antioxidant seems to 476 

slightly contribute to the hydrophilicity of the film. Similar behaviour was recently reported by 477 

Benbettaieb et al.(2015b) in our study on the same film but in the presence of ferulic acid. 478 

Irradiation induces a decrease of the contact angle value with water, concomitant to an increase 479 

in the polar component of the surface tension for all films. It can be attributed to a reorientation 480 

of polar groups at the film surface, hence increasing the polar component of the surface tension. 481 

Thus irradiation increases wettability of the films. 482 

 483 

3.2.2. Water vapour permeability 484 

Table 2 displays the WVP of non-irradiated and irradiated films in the presence and absence of 485 

coumarin for the two RH gradients studied (0-30 % and 30-84 %). For the 0-30%RH gradient, the 486 

WVP of non-irradiated film containing coumarin (0.47±0.03 x10-11 g.m-1.s-1.Pa-1) is in the same 487 

range to that of control film (0.52±0.1x10-11 g.m-1.s-1.Pa-1). Inversely, Wu et al. (2013) noticed a 488 



decrease of 16 % in the WVP for films composed of silver carp (Hypophthalmichthys molitrix) 489 

skin gelatin containing green tea extract (0.7%). Other authors did not observed any change in 490 

the water vapour permeability when ferulic acid was added to to gelatin films (Cao et al. 2007), 491 

to soy protein films (Ou et al. (2005), or to caseinate based films (Fabra et al., 2011). After 492 

irradiation we did not observed any modification in WVP (0-30% RH gradient) for control film 493 

and for film containing coumarin. Furthermore, the 0-30% RH gradient correspond to water 494 

activity average equal to 0.15, which is in the BET domain (water contained in the film is only 495 

involved in the structure organisation and not available for reaction), thus we propose that only 496 

water involved in structure with weak plasticization of the network by water. In this domain, 497 

neither irradiation nor coumarin addition affects the water barrier properties of the films. On the 498 

other hand, higher RH gradient of 30-84% induces a rise of the WVP of all films (with or 499 

without coumarin addition) after irradiation treatment. WVP increases from 2.41±0.44 to 500 

23.06±0.85 x10-11 g.m-1.s-1.Pa-1 and from 2.23±0.65 to 24.8±2.11 x10-11 g.m-1.s-1.Pa-1, 501 

respectively for control film and film with coumarin after 60kGy irradiation dose. Due to the 502 

effect of irradiation, the barrier properties are mainly related to the increasing the water content 503 

that induces the plasticization of the film during permeation. The 30-84% RH gradient 504 

corresponds to a mean water activity average equal to 0.57, which is in the plasticization domain 505 

of the network by water. But the effect of coumarin addition in the network on the transfer 506 

phenomena is not significant.  507 

 508 

3.2.3. Mechanical properties  509 

Mechanical parameters (tensile strength (TS), Young’s Modulus (YM) and elongation at break 510 

(E)) of all studied films are given in Table 2. TS, YM and E of control film (non-irradiated, 511 

without coumarin) were 25.9±3.9 MPa, 1523±266MPa and 2.2±0.4%, respectively. Jridi et al. 512 

(2014) found similar value of %E (2.7±0.5%) but higher value of TS (44.3±1.2 MPa) for 513 



chitosan-skin fish gelatin blend film (50:50 w/w) that could be due to film thickness or molar 514 

mass of polymer. Compared to the control film, no significant modification is observed on the 515 

mechanical parameters (TS, YM and %E) after coumarin addition. An opposite tendency was 516 

observed by Benbettaieb et al. (2015b) who showed that TS increases significantly when ferulic 517 

acid was added in to the chitosan-gelatin film.  Only the TS of control film increases 518 

significantly with the increasing dose at a 60kGy. When irradiation doses (40 and 60kGy) were 519 

applied on film containing coumarin, no significant (p<0.05) modification of mechanical 520 

parameters was observed. This increase of film stiffness and resistance is in accordance with the 521 

improvement of thermal stability of control film after 60kGy irradiation dose, previously 522 

observed from TGA analysis.   523 

Finally, results from functional and structural properties are still less consistent to make any 524 

hypothesis related to the crosslinking reaction between polymers chains and coumarin under 525 

irradiation. Only few interactions occur (probably modified by hydrogen bonds) between the 526 

different reactive compounds and some orientation of polar groups to the surface, which enhance 527 

the film wettability and hydrophilicity. The interactions between polymer and coumarin after 528 

irradiation, even if they seem to be weak could nevertheless affect the release of the antioxidant 529 

into aqueous medium. 530 

 531 

3.3. Influence of irradiation on the coumarin release in aqueous media 532 

The release experiments were performed three months after film irradiation. All data are 533 

summarized in Table 3. The amount of coumarin in the non-irradiated film (10.1±1.5 mg/g of 534 

film) determined after complete solubilisation of films in acetic acid solution (experimental 535 

value) was significantly (p<0.05) lower than the theoretical value (47.1±4.7 mg/g of film) 536 

calculated from the film formulation. This means that, about 80% of coumarin disappeared, 537 

probably due to oxidation during storage (Table 3). After irradiation, measured (real) amount of 538 



coumarin in the films is far less reduced, as only 35% is lost. Thus, irradiation protects coumarin 539 

against degradation during the time of storage (3 months). It could be that coumarin make some 540 

interaction with polymers and/or with free radical and thus is less available to be oxidized during 541 

storage period. This result suggests that irradiation may act as a safeguard method of antioxidant 542 

when this later is encapsulated in hydrocolloid films. This can be considered as a good way to 543 

protect active compound and to ensure its quality until final consumer. As the difference 544 

observed between theoretical and experimental content of coumarin in the film, only the 545 

experimental concentration is considered for the study of the release. The release kinetics of 546 

coumarin from chitosan-gelatin based films (non-irradiated and irradiated at 40 and 60kGy) in 547 

water medium (at pH=7) are displayed in Fig.5. Release kinetics of coumarin exhibited the 548 

typical shape of non-time-dependent and non-concentration-dependent diffusion. The content of 549 

coumarin remaining in the film after release significantly (p <0.05) increased from 1.7±0.6 to 550 

7.17±0.5 and to 12.6 ±1.7 mg/g of film, respectively after 40 and 60kGy irradiation doses. This 551 

could be explained by the interaction between the polymer chains and this antioxidant, favoured 552 

by the irradiation process and because the initial concentration is higher. This could therefore 553 

modify the film structure organisation and the release mechanisms of antioxidant from the film. 554 

Furthermore, the effective diffusion coefficients (D) of the coumarin in the films were calculated 555 

from the release kinetics by fitting experimental data using Eq.6 and are given in Table 3. The 556 

diffusivity is related to the molecular mobility within the polymeric network and could be related 557 

to several factors such as molecular weight, structural characteristics of the matrix and solubility 558 

of this antioxidant. We considered here that the partition coefficient did not affect the transfer as 559 

the concentrations involved are always much lower that the solubility limit of the coumarin in 560 

water media. As it can be observed, the effective diffusion coefficient of coumarin significantly 561 

decreased (p<0.05) from 3.26±0.74 to 1.87±0.48 and to 2.04 ±0.05x10-11m2.s-1 respectively after 562 

40 and 60kGy irradiation doses. This is also in agreement with the increase of the coumarin 563 



content remaining in the film after the release (by chemical or physical entrapment).This 564 

decrease of diffusion coefficient could be related to the irradiation treatment which limits the 565 

mobility of coumarin and therefore decreases the apparent diffusivity. Tin Wui et al. (2002), 566 

worked on the influence of microwave irradiation on the drug release properties of 567 

polysaccharide beads and showed that the release-retarding property of alginate and alginate–568 

chitosan beads was significantly enhanced by subjecting the beads to microwave irradiation. 569 

They showed that microwave technology can be employed in the design of solid dosage forms 570 

for controlled-release application without the use of noxious chemical agents. In our case, 571 

irradiation could favor the interaction between coumarin and biopolymer via free radical 572 

mediated mechanism. Hence, coumarin is more linked and consequently, more protected and less 573 

mobile. The effect of irradiation also modified the surface properties by increasing its polarity 574 

and then swelling phenomenon occurs too quickly to affect the diffusion determination.  575 

Despite the swelling, the film remains intact and no dissolution or network structure destruction 576 

was observed during the kinetic of release. In non-irradiated film, as the structure is less dense, 577 

water can easily enter into the network and favour the polymeric chain mobility and thus the 578 

coumarin diffusion through the hydrated films is greater. Irradiation allowed to delay by 50% the 579 

release time. So, film irradiation after optimization, would be an effective process for controlled 580 

release of active naturals antioxidants in aqueous foods or even for medical applications. 581 

 582 
4. Conclusions 583 

Chitosan and fish gelatin films encapsulating coumarin were prepared as an active biobased film. 584 

After film drying, irradiation using electron beam was applied at 40 and 60kGy. This work 585 

aimed to investigate the coupled effect of irradiation and of the presence of the active compound 586 

on the structure and functional properties of the films. Electron Spin Resonance (ESR) displayed 587 

the free radical formation during irradiation in films. Coumarin did not affect the thermal 588 

stability of films whereas irradiation slightly improved it. Both addition of coumarin and 589 



irradiation decreased the contact angle with water and increase the polar component of the 590 

surface tension of films, as well as the swelling index and rate. This is attributed to a 591 

reorientation of polar groups at the film surface. From water barrier analysis, neither irradiation 592 

nor coumarin addition affected the water vapour permeability at low RH gradient. However, a 593 

higher RH gradient (30-84%) induced a rise of the WVP of all the films after irradiation 594 

treatment that is mostly related to the surface properties and film wettability. Incorporation of 595 

coumarin did not affect the mechanical properties of films on the contrary to irradiation, but very 596 

weakly. The interactions between biopolymers and coumarin after irradiation affected the release 597 

of the antioxidant into the aqueous medium. The content of coumarin remaining in the film at 598 

equilibrium after release significantly increased when film were irradiated, from 17% to 32% 599 

mg/g of film, inversely, the effective diffusion coefficient of coumarin decreased by 1.6 times. 600 

Irradiation, also displayed that it is an efficient process to prevent coumarin degradation during 601 

the storage of films, as more than 60% of the antioxidant was preserved compared to non-602 

irradiated films. 603 
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 1 

Figure captions 2 

Figure 1: ESR spectra of chitosan-fish gelatin films containing coumarin and irradiated at 3 

60kGy at the dose rate of 300Gy/sec. Measurements were performed at 25°C and 50% RH, 3 4 

months after irradiation.  5 

Figure 2: FTIR spectra of non-irradiated and irradiated (60kGy) chitosan-fish gelatin film 6 

containing or not coumarin. All films were previously equilibrated at 50% RH and 25°C. 7 

Figure 3: TGA thermograms of irradiated and non-irradiated chitosan-fish gelatin film with and 8 

without coumarin. All films were previously equilibrated at 50% RH and 25°C.  9 

Figure 4: Water contact angle at 0 and 20s, swelling index, swelling rate and surface tension 10 

(γ�) with dispersive (γ�
�	) and polar components ( 	γ�

�) of irradiated and non-irradiated chitosan-11 

fish gelatin film with and without coumarin. Measurements were done at room conditions 12 

(~20°C, ~50%RH).  13 

Figure 5:  Kinetic release of coumarin in water medium at pH=7 and 25°C, for control (0kGy) 14 

and irradiated (40 and 60kGy) chitosan-fish gelatin films. Ct: concentration of coumarin released 15 

in the aqueous dissolution medium at time t; C∞: the maximum concentration of coumarin 16 

released. Symbols are experimental values (mean+standard deviation) and solid line corresponds 17 

to a Fickian data modeling using Eq (6). 18 

 19 

Tables captions 20 

Table 1: Number and weight average molar mass (Mn, Mw), polydispersity (Mw/Mn) and z-21 

average mean square radius (Rz) for irradiated and non-irradiated control films and for irradiated 22 

coumarin films, determined from SEC-MALLS analysis.  23 

Table 2: Thickness, water vapour permeability (WVP) and mechanical properties (Tensile 24 

strength (TS), Young’s Modulus (YM) and elongation at break (% E)) of irradiated and non-25 

*Captions
Click here to view linked References

http://ees.elsevier.com/foodhyd/viewRCResults.aspx?pdf=1&docID=6514&rev=0&fileID=264835&msid={02EC2BCD-D135-41E8-90DB-B4B94E488058}


irradiated chitosan-fish gelatin film with and without coumarin. Water vapour permeability was 26 

measured at 25ºC under (0-30) % and (30-84) % RH differentials. Mechanical properties were 27 

measured at 25°C and 50% RH.  28 

Table 3: Kinetics release parameters of coumarin from irradiated and non-irradiated chitosan-29 

fish gelatin film. All parameters were determined during release and from release kinetics profile 30 

(up to total release) of coumarin from irradiated and non-irradiated films. Dissolution medium is 31 

water at pH=7 and 25°C.  32 

 33 
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Figures 1-5
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Figure 3 7 
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Figure 5 13 
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1 

Table 1 1 

Films 

Mw 

(10
5 

g/mol) 

Mn 

(10
4 

g/mol) 

Polydispersity Rz (nm) 

Control 0kGy 1.36 (2%) 8.39 (2.4%) 1.62 (3.2%) 17.3 (24%) 

Control 60kGy 1.20 (1.9%) 5.37 (5%) 2.23 (5%) 17.9 (21%) 

Coumarin 60kGy 1.35 (2%) 5.09 (6%) 2.66 (7%) 18.1 (22%) 

Mean (relative error%) 2 

 3 

Tables 1-3



2 

Table 2 4 

 5 

Films 

Irradiation 

dose 

(kGy) 

Thickness 

(μm) 

WVP (10
-11

 g.m
-1

.s
-1

.Pa
-1

) 
TS 

(MPa) 

YM 

(MPa) 
%E 

∆RH= (0-30)% ∆RH= (30-84)% 

 Control  

0 65±8 
a
 0.52±0.10 

a,b
 2.41±0.44 

a
 25.89±3.92 

a
 1523±266 

a
 2.2±0.4 

a
 

40 65±8
 a
 0.59±0.04 

b,c
 22.46±0.7 

b
 28.54±3.76 

a
 1221±235 

a,b
 3.1±0.9 

a,b
 

60 65±8
 a
 0.56±0.03 

b,c
 23.06±0.85 

b,c
 39.20±8.32 

b
 1270±23 

a,b
 4.1±2.1 

a,b
 

 Coumarin  

0 77±12 
a
 0.47±0.03 

a,d
 2.23±0.65 

a
 30.95±0.83 

a,b
 1328±185 

a,b
 4.7±0.5 

a,b
 

40 77±12 
a
 0.47±0.02 

a,d
 25.13±1.25 

d
 28.65±5.02 

a
 1006±115 

b
 3.2±0.3 

a,b
 

60 77±12 
a
 0.50±0.04 

a,c
 24.80±2.11 

d,c
 31.35±5.64 

a,b
 1187±201 

a,b
 3.0±0.4 

a,b
 

Values are given as mean ± standard deviation. Means with the same Arabic letter in the same column are not significantly different at p<0.05. 6 

  7 



3 

Table 3 8 

 9 

 0kGy 40kGy 60kGy 

Theoretical content of coumarin in film (mg/g of film) 47.1±4.7 47.1±4.7 47.1±4.7 

Initial Content of coumarin in film prior to release (mg/g of film) 10.1±1.5 
a
 31±0.4 

b
 39.2±4 

c
 

Content of coumarin remaining in the film after release at 

equilibrium (mg/g of film) 
1.7±0.6 

a
 7.2±0.5 

b
 12.6±1.7 

c
 

Diffusion coefficient (10-11 m2/s) 3.26±0.74 
b
 1.87±0.48 

a
 2.04±0.05 

a
 

 10 

Values are given as mean ± standard deviation. Means with the same Arabic letter in the same line are not significantly different at p<0.05. 11 

 12 

 13 




