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Abstract: In this paper, the transverse matrix (resin) cracking developed in multidirectional
composite laminates loaded in tension was numerically investigated by a finite element
(FE) model implemented in the commercially available software Abaqus/Explicit 6.10.
A theoretical solution using the equivalent constraint model (ECM) of the damaged
laminate developed by Soutis et al. was employed to describe matrix cracking
evolution and compared to the proposed numerical approach. In the numerical model,
interface cohesive elements were inserted between neighbouring finite elements that
run parallel to fibre orientation in each lamina to simulate matrix cracking with the
assumption of equally spaced cracks (based on experimental measurements and
observations). The stress based traction-separation law was introduced to simulate
initiation of matrix cracking and propagation under mixed-mode loading. The
numerically predicted crack density was found to depend on the mesh size of the
model and the material fracture parameters defined for the cohesive elements.
Numerical predictions of matrix crack density as a function of applied stress are in a
good agreement to experimentally measured and theoretically (ECM) obtained values,
but some further refinement will be required in near future work.

Response to Reviewers: Reviewers comments on paper ACMA-D-13-00409:
Interface cohesive elements to model matrix crack evolution in composite laminates
Y. Shi, C.Pinna and C. Soutis*

Specific comments:
1. “In abstract and elsewhere:  the sentence "assumption of equally spaced cracks (
based on experimental measurements…)…" should be revised. In fact at low crack
density the crack location is random and only at high crack density , close to the
"characteristic damage state" introduced by Reifsnieder  the crack distribution
becomes more uniform.”
Answer: We agree, and  But in this work the matrix cracking was attempted to model in
a macro-scale model. this is why it is mentioned as an assumption for the macro-scale
FE model.  In order to simulate the random location of matrix cracking generated, a
micro-scale FE model or other method such as Discrete Element Method (DEM) will be
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required which is not attempted in this paper. The current results for numerical
prediction of crack initiation and growth were reliable because the crack density was
always numerically predicted in the same stress range compared to experimental data,
even though the different meshing size was performed.  Therefore, this numerical
method can be accepted as an effective way to predict matrix cracking with  the
assumption of “equally spaced cracks".
2. “Why there are so many references to papers with impact loading?  Kind of
misleading regarding the subject. May be instead more papers with different
approaches to cracking evolution should be referred?”
Answer: In fact there are listed several papers on matrix cracking prediction, see Ref
13-14, 25-26,28 and Ref. 35-42. Papers on impact are included because of the
previous publication by the authors that focused on the prediction of impact induced
damage, and some related material properties used in the present paper, appeared in
that publication. In addition, the cohesive elements presented in the present study to
predict matrix cracking were used in the impact work to simulate delamination
(interlaminar cracking rather than intralaminar).
3. “Is it really + sign in eq (2)?”
Answer:  Yes, it is confirmed by the original publications on ECM.
4. “Eq (5) : definition h1 and h2  for ply thicknesses are not  given. Still not clear if h2 is
the whole 90-thickness or ½  of it. From the form of (5) and (6) and (10) seems to be
1/" “
Answer: In this work, the ply thickness is 0.132mm. The parameters h1 and h2 are
defined in the manuscript and represent the thickness of the off-axis plies and 90o
plies, respectively
5. “Before eq (11): the R-curve concept is very old and comes from individual crack in
metals when it becomes larger. In transverse cracking case all cracks (even at the high
stress) are of the same size. Therefore, the meaning of the R- curve should be
discussed/explained. Could it be reflecting the effect of statistical distribution of fracture
initiation/propagation properties in the specimen? “
Answer: True, the R-curve concept comes from the fracture of metals where a single
crack develops. This has been used extensively in the composites literature and
represents the resistance to grow multiple cracks within a ply. The mathematical
expression of Eq.11 simply describes initiation and growth of transverse cracking and
is expressed in terms of crack density D rather than crack length, which is explained in
the manuscript.
6. “In (12) Go and R are fitting parameters. It is clearly stated and the values are shown
in Fig. 5 and 6. What is difficult to accept, is that the values of parameters for the same
material are different if the cracked ply thickness change. This limits the application of
the approach significantly. Predictions are possible only for the given material with the
same ply thickness but in different laminate lay-ups”
Answer:  The fact that the fracture parameters for initiation and growth vary with lay-up
comes from experimental measurements and observations. The analytical model
simply is trying to capture the observations. The authors agree that the fracture
toughness should be material property but then composite laminates are not
homogeneous materials but rather structures and the stacking sequence does have an
effect on initiation and propagation. In the ECM model if the parameters remain
unchanged the stress for initiation and maximum crack density will be underestimated,
which of course will lead to a more conservative design, no harm there. This is better
explained in the revised manuscript.
7. “The description of the "numerical damage model" is not sufficiently clear. Definitions
are missing or "diffuse". Examples:
 After (14) "… the material stiffness" is actually the cohesive element stiffness
 Before (17): "… criterion [31] can be used…".  How do you know?
 After (17) : what is "beta"
 In (17) : is there also the R-curve for Gic used? If so, Gr should be written instead of
Gic. It should be told that Giic is not needed in the current paper”
Answer:  text has been amended, and it is the cohesive element stiffness.
Before (17): "… criterion [31] can be used…". Of course, other fracture criteria could be
used to simulate matrix crack formation, but in this study this BK law has been selected
and it appears that can successfully capture experimental observations.
After (17) : what is "beta": Parameter β is the mode mixity ratio and is defined in the
revised manuscript.
 In (17) : is there also the R-curve for Gic used? If so, Gr should be written instead of
Gic. It should be told that Giic is not needed in the current paper”
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Answer: In this section, the numerical model was introduced that employs cohesive
elements to simulate the matrix cracking (or delamination in the previous impact paper
by the authors). Parameters GIC and GIIC denote the fracture toughness of the
composite system used for  fracture modes I and II, respectively. The authors agree
that mode I may be the dominant one for the loading case examined but the FE model
to run requires both values to be defined. The FE model does not need the G0 and R
parameters used in the ECM approach as fitting parameters.
8. “Finite element model" gives more questions than answers:
 "what is depth of each individual ply"? Is it the size  y-direction or z-direction? The size
0.132 is like a thickness of a ply. Only one element in thickness direction?  Details
about the number of elements/nodes has to be given.
Answer:  The depth of each individual ply is 0.132 mm along the z direction, axes are
defined in the revised manuscript and a typical FE mesh is provided in the new figure
5.
Is it a 3-D analysis as stated in the first sentence or 2D? There is nothing about edge
effects (possible initiation at edges and propagation along fibers). Therefore I conclude
that the analysis was 2D.
Answer:  It is a 3D model. A figure to illustrate the 3D model with dimensions and
boundary conditions has been added in the manuscript, see Fig. 5.
 Was the whole specimen modeled or repeating elements of certain length (density)
considered
Answer:  The size of the model used is 10mm x 10mm to represent the area of cracks
generated based on a certain crack density which is needed to simplify the model and
reduce the computing time. It could be viewed as an RVE approach that uses
repeating elements of certain length.
How about the effective constraint? Was it used or each layer was modeled
separately? If so, boundary conditions have to be described that give "repeating
element"
Answer:  In this FE model, a displacement was applied at both ends of the plate, as
shown in Fig. 5. The applied displacement is calculated based on the material
properties and the stress value measured by the experiment. The corresponding
description was added in the first paragraph of section 3.2 in the manuscript.
 "all the 90-plies were located in the middle plane of the laminate" is an incorrect
expression
Answer:  The manuscript has been changed.
 "the stiffness will be gradually degraded" is the stiffness of the cohesive element not
the material
Answer:  Text has been corrected.
 "and a crack density of 2 cracks/mm was assumed…… which corresponds …. to 20
cracks per cm" is really a very deep and correct explanation. Should it be given?”
Answer:  Text has been modified
9. “Results and discussion and conclusions
 a.     "the fracture model was found to depend on this ratio, so the same fracture
parameters were used for both lay-ups" What does it mean?
Answer:  Based on the experimental measurement, the GIC, G0 and R will influence
the predicted accuracy using ECM for different thickness ratios. For the prediction of
[0/90]s and [25/-25/902]s the stacking sequence and thickness of laminates are
different but the thickness ratio is same (=1). So the same parameters of GIC, G0 and
R were used for ECM prediction of these two lay-ups, see also previous comments.
 b.     "mesh refinement can slightly improve the accuracy…". This is NOT what we see
in Fig. 7. We see that refinement is REDUCING THE  AGREEMENT with test data at
low crack density,
Answer:  For  the [0/90]s lay-up, the initial crack was found at a little higher stress value
when the refined model was used but the initial crack density value was reduced to 1
crack/cm which is well matched with experimental data than that predicted (2
cracks/cm) by the relatively coarse model. Moreover, it did also improve the crack
density for the [25/-25/902]s. But, improvements are relatively small and this is why the
coarser mesh is recommended that speeds up the solution and results are acceptable
taking into account the experimental uncertainties in measuring fracture parameters or
accurately measuring crack densities.
 c.     It is pointless to discuss 0.5mm or smaller distance between cohesive elements.
The distance is scaled with the size of the crack (90-layer thickness) and it has to be
discussed in these terms. By the way, the ply thickness should be given in Table 1. “
Answer:  For the FE method, due to the initial size of model (distance defined between
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cohesive elements) was determined based on the experimental observation, it needs
to be investigated the mesh size effect for the prediction for a different crack density
was defined at a saturation level. In addition, the mesh dependency of cohesive
elements were unknown for this simulation, it is more important to perform a refined
model with refined size of the whole model (including cohesive elements). The results
showed the refinement did not give much improvement but the crack density was
accurately predicted in the same stress range when compared to the experimental
data; this gives confidence to the proposed FE method, which is a reliable way to
predict crack density and identify parameters that have an effect when simulating
fracture of complex laminated structures. It is also a way of validating failure criteria,
stress and/or fracture based.
The ply thickness has been added in Table 1.
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Abstract 

In this paper, the transverse matrix (resin) cracking developed in multidirectional 
composite laminates loaded in tension was numerically investigated by a finite element 
(FE) model implemented in the commercially available software Abaqus/Explicit 6.10. A 
theoretical solution using the equivalent constraint model (ECM) of the damaged 
laminate developed by Soutis et al. was employed to describe matrix cracking evolution 
and compared to the proposed numerical approach. In the numerical model, interface 
cohesive elements were inserted between neighbouring finite elements that run parallel to 
fibre orientation in each lamina to simulate matrix cracking with the assumption of equally 
spaced cracks (based on experimental measurements and observations). The stress based 
traction-separation law was introduced to simulate initiation of matrix cracking and 
propagation under mixed-mode loading. The numerically predicted crack density was 
found to depend on the mesh size of the model and the material fracture parameters defined 
for the cohesive elements. Numerical predictions of matrix crack density as a function of 
applied stress are in a good agreement to experimentally measured and theoretically 
(ECM) obtained values, but some further refinement will be required in near future work. 

Keywords: Composite laminates; Finite element analysis; Cohesive elements; Crack 
density; Equivalent constraint model; Damage; Matrix cracking 

1. Introduction 

Advanced composite materials offer high specific strength and stiffness properties and 

have been widely used in the aerospace industry, especially for the fabrication of 

structural components in military and more recently civil aircraft. Fibre reinforced plastics, 

such as thermosets or thermoplastics reinforced with carbon or glass fibres have taken the 
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place of the conventional metal alloys in the aerospace industry [1]. However, composite 

laminates when subjected to quasi-static or tensile fatigue loading exhibit relatively brittle 

behaviour and poor damage resistance, especially those earlier composite systems with 

untoughened thermoset resins. This can be a critical design issue and limitation for 

structural applications requiring high damage resistance [2-3]. Failure of composite 

laminates is a complicated process including intra- and inter-laminar (delamination) 

damage, which leads to stiffness loss and load-carrying capability as the damage becomes 

more extensive [4]. In general, intra-laminar damage occurs within a single lamina in the 

form of tensile and/or compressive matrix damage, debonding between the fibre and resin 

interface and at higher applied loads tensile and/or compressive fibre breakage that leads 

to final failure of the laminated construction [5-7]. Matrix cracking (or intra-laminar 

cracking) and axial splitting along the fibre direction have been recognised as early damage 

mechanisms in transverse loading due to resin-dominated behaviour. Much attention has 

been paid to these damage modes due to the resulting stress concentration at the crack tip; 

this may induce delamination as inter-laminar damage that occurs between neighbouring 

plies, which may lead in fibre breakage and complete loss of load-carrying capability 

[8-12]. These modes of damage highlight the importance of investigating and 

understanding their initiation and evolution in composite laminates with the aim to select 

lay-up configurations that show better damage resistance and tolerance. 

A large number of theories have been published to predict matrix cracking based on 

stress-based failure criteria or damage/fracture mechanics. Polynomial failure criteria, 

such as the Tsai-Wu or Tsai-Hill, are based on the equivalent stress or strain. They are 

usually employed to describe the failure envelope of any given multidirectional laminate 

subjected to multiaxial loading. However, the damage mechanisms of different modes 

cannot be clearly identified using such failure criteria. Hashin developed an effective 

method to model matrix cracking as a plane problem [13, 14] and it was further 

developed by Nairn [15], Varna [16] and Berglund [17, 18]. For cross-ply laminates 

Soutis et al. applied the equivalent constraint model (ECM) to predict the crack density as 

a function of applied load and stiffness reduction based on a 2D shear-lag analysis [4, 

8-12, 19-20]. Continuum damage mechanics (CDM) initiated by the work of Kachanov 

[21] and Rabotnov [22] is also a popular way of modelling damage in composite laminates 



[23-26]. Shi and Soutis [27] attempted to combine different intra- and inter-laminar 

damage criteria with nonlinear shear behaviour to simulate impact induced damage. The 

matrix cracking and delamination were accurately captured by a numerical damage model 

subjected to different impact energy levels. Although methods have been published that 

predict the extent of the damaged area, there are few methods that simulate the process of 

matrix cracking within a damaged region. 

This paper presents a numerical model that was developed to simulate the growth of 

transverse matrix cracking by inserting cohesive elements in each lamina between adjacent 

finite elements along the fibre direction where ultimate crack density (saturation level) is 

selected based on experimental observations; this helps to define sufficient number of 

cohesive elements without unnecessarily slow down the numerical solution. Finite element 

(FE) models were built for composite laminates with various off-axis dominated stacking 

sequences, [±θm/90n]s. The optimal mesh size for the model was determined by 

experimentally measured crack density and uniform crack spacing in each ply was 

assumed, as shown in Fig. 1. The ECM was also used to estimate the crack density for these 

laminates and analytical and numerical predictions were validated by measurements. The 

advantage of employing FE is that other damage modes, like delamination and more 

complex loading conditions, such as multi-axial in plane and out-of-plane loading, can be 

simulated that is difficult to be achieved by analytical methods, concepts that are not 

considered in the current analysis.    

2. Theoretical model 

The equivalent constraint model (ECM) is a theoretical approach used to predict 

matrix cracking in multidirectional laminates under multiaxial in plane loading and a 

description of main assumptions and simplifications are discussed here for the reader’s 

benefit. It was assumed that cracks in a damaged lamina are uniformly spaced, which is 

crucial to solving problems by analysis of a representative volume element. A schematic 

typical ECM with a damaged lamina is shown in Fig. 2. The layer, k denotes the damaged 

lamina and all plies above and below the kth ply are replaced with homogeneous layers (I 

and II), which are governed by the equivalent constraint effect. The stiffness properties of 



equivalent constraint layers can be obtained by the laminate plate theory (LPT), which 

provides the stress and strain relationship.   

Due to the symmetry of a [±θm/90n]s laminate, as shown in Fig. 1(for a [0/90]s lay-up), the 

analysis was reduced to one quarter of the representative segment. Matrix cracking in the 

90o ply was expected to be the first damage mode to occur. Stresses can be calculated 

from the stiffness of the constrained homogeneous layers and the modified stiffness of the 

cracked ply. In order to determine stresses in the damaged ply, it was assumed that the 

total strain in the individual lamina was equivalent to that in the laminate (implying 

continuity). This is given by, 

 

( )
1,2

k
i i kε ε= =   (1) 

( )k
iε  and iε  denote the total strain vectors of the kth layer and laminate, respectively. 

Thus, the average constitutive equations of a damaged lamina can be expressed: 

 ( )( ) 0( )
1,2

k kk
i j jijQ kσ ε ε= + =   (2) 

where  represent the total stress vector of the constraint layers (k =1) and the 

damaged 90o ply (k =2), respectively.  is the residual thermal strain vector of the kth 

layer. k
ijQ  is the stiffness of the constraining layers (k =1) and modified reduced stiffness 

of the damaged 90o ply (k =2). The reduced stiffness matrix of the damaged ply can be 

derived by the in-situ damage effective function (IDEF), , as a function of crack 

density (a 2D shear lag stress analysis is followed) [19]. 

Then the laminate stress can be written using the classical laminate plate theory: 

 

(2) (1)1
( )
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χ
= +

+
  (3) 

where χ is the thickness ratio of the constraining layer over the thickness of the 90o layer. 

The constitutive relation of the cracked laminate is obtained by combining Eqs 2 & 3 

 ( )
p

i j jijQσ ε ε= −   (4) 



where ijQ  is the in-plane stiffness matrix of the damaged laminate. The 
p
jε  is a 

permanent strain, which represents the effect of interaction of damage and residual 

stresses and is defined as: 
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where ijS  is the in-plane compliance matrix. 

Consider a [±θm/90n]s laminate with a finite gauge length of 2l and width of w with 

transverse ply cracks. The potential energy is written as: 

 1 22( ) 2 i iPE U h h w lσ ε= − +   (6) 

where U is the total strain energy of the laminate. Using the constitutive relation defined 

in Eq. (2), the total strain energy is found 
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The energy release rate is defined as the first partial derivative of the potential energy 
corresponding to the crack surface area, A, with a fixed applied laminate stresses 
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Rearranging Eqs 4-7 and substituting them into Eq. 8 gives the energy release rate 

associated with matrix cracking, which can be derived and expressed as [20]: 
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where aD  denotes the total crack surface area per unit length and width of laminate: 

 22a
dD h C=   (10) 

In equation (10) dC  is the average crack density. The second and third terms inside the 

bracket on the right hand side in Eq. 9 represent the effect of the residual stresses and 



interaction with damage. The energy release rate shown in Eq. 9 is easily derived if the 

in-plane stiffness matrix of the cracked laminate is known for a given crack density. 

In general, the resistance of the composite to transverse matrix cracking increases with 

crack density when loaded under quai-static uniaxial tension. Thus, a resistance curve, 

analogous to the R-curve concept in fracture mechanics can be used to predict the 

resistance to propagation of transverse cracking [28-30].  

 ( , ) ( )a a
RG D G Dσ =   (11) 

where RG  is the laminate resistance to multiple transverse ply cracking. The R-curve 

was previously found to be dependent on the 90o ply thickness but independent of the 

stiffness of the constraining layers by investigating the relation between RG  and crack 

density Cd for different composite laminates. A simple mathematical expression for RG  

was derived by curve fitting [30]: 

 0(1 )RD
R ICG G G e−= + −   (12) 

where D is the crack density function, ICG  is the critical energy release rate associated 

with mode I matrix cracking, while 0G  and R are considered as material/laminate 

constants that capture the resistance to crack growth with increasing applied load/stress. 

3. Numerical damage model 

The commercial FE software package Abaqus/Explicit 6.10 was employed to predict 

transverse matrix cracking as a function of applied tensile stress by running a numerical 

program with cohesive elements. The traction-separation law was used to predict the 

growth of the matrix cracking under mixed-mode loading, section 3.1. An appropriate FE 

model was built with certain kinematic and loading boundary conditions that are 

discussed in section 3.2.  

3.1 Cohesive elements 



In recent work on impact induced damage by the authors [27], interlaminar cracking 

(delamination) was successfully modelled by numerical methods using cohesive elements. 

A quadratic stress failure criterion was employed to predict delamination initiation. 

Delamination propagation based on fracture mechanics was proposed by Camanho and 

Dávila [31] where cohesive elements were introduced at each interface of neighbouring 

plies in the composite model. The stress failure criterion used to estimate the onset of 

damage is given by:  

 

2 2 2

1n s t

N S T

σ σ σ
     + + =
     

     

  (13) 

where σi (i = n, s, t) denotes the traction stress vector in the normal n and shear directions, 

s and t, respectively, while N, S and T are defined as the corresponding inter-laminar 

normal and two shear strengths, Fig.3a.  

The traction stress σi can be calculated as given in the Abaqus manual [32] using the 

stiffness in Modes I, II and III and the opening and/or sliding displacements δi : 

 , , ,i i iK i n s tσ δ= =   (14) 

Once damage (in the form of a crack) has initiated, the stiffness of the cohesive element is 

gradually degraded in terms of a damage variable d ranged from zero, when damage 

initiates, to one when the interface element is completely damaged. Mixed-mode loading 

in terms of the energy release rates associated with Modes I, II and III is used to predict 

damage growth. For a linear softening process the damage variable d for evolution is 

defined as: 

( )
( )
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f
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f
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δ δ δ

δ δ δ

−
=

−
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where  refers to the maximum value of the mixed-mode displacement attained 

during the loading history. The δm parameter corresponds to the total mixed-mode 

displacement (normal, sliding, tearing) given by: 
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In Eq. (15) f
mδ  is the mixed-mode displacement at complete failure and 0

mδ  is the 

effective displacement at damage initiation. A Benzeggagh–Kenane (B-K) fracture 

energy based criterion [31] can be used to define the mixed-mode displacement for 

complete failure, : 
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            (17) 

where  is the B-K power law parameter that can be determined using a least-square fit 

from a set of mixed-mode bending experimental data;  with ξ taking values 

between zero and one. When ξ=0 the crack is mode I driven, while as ξ→1 fracture is 

mode II dominated (and this is also the case when exponent η=0). Parameter β above is 

the mode mixity ratio. 

A typical linear traction-separation model used for fracture Modes I, II and III is shown in 

Fig. 3b. Initially, the linear elastic response is represented using the stiffness terms Ki (i = n, 

s, t) until the normal and shear strengths are reached. Beyond these strength values, the 

stiffness will start to be linearly reduced according to the damage evolution variable d 

defined in Eq. (15) and finally complete damage occurs when the maximum displacement 

is reached. This damage modelling approach is implemented in the FE model described 

in section 3.2, but in this analysis the crack is within the transverse ply (intra-) rather than 

between plies (inter-laminar cracking or delamination). 

3.2 Finite element model 

A 3D FE model representing unidirectional tensile loading was built from eight-node 

linear brick elements, C3D8R. The depth of each individual ply was represented in the 

model by one element with a thickness of 0.132 mm. Cohesive elements, COH3D8, of 

zero-thickness were inserted between neighbouring finite elements parallel to the fibre 

orientation within the 90o ply(s), Fig. 4. Modelling parameters were determined by 

consideration of the convergence of computing and the accuracy of numerical prediction 



(when compared to measurements); a model that is too refined uses an excessively large 

number of solid and cohesive elements. Conversely, too small a model would 

underestimate stresses and introduce errors in the numerical prediction of the matrix 

crack density. Composite laminates with the stacking sequences of [0/90n]s and [±25/90j]s 

were investigated in this study, for which all the 90o plies were inner plies . Local 

coordinates were created to help define the orientation of each lamina and to build the 

layers of cohesive elements in each ply. As an example, a 3D FE model for a [0/90]s 

lay-up is shown in Fig.5, where an axial displacement is applied at both ends of the plate; 

the full model consists of 2205 nodes and 2360 elements (that includes both brick and 

cohesive elements), and was solved in approximately 30 minutes.  

A mixed-mode traction-separation law was used to define the evolution of transverse 

matrix cracking as discussed in section 3.1. If the damage criteria are not satisfied, 

separation (matrix cracking) does not occur and adjacent elements will be perfectly 

connected. Otherwise matrix cracking will initiate and the stiffness of the cohesive 

elements will be gradually degraded following the linear softening law described by 

equation (15).  

The mesh size of the model is a crucial issue that dictates the numerical efficiency and 

accuracy with which the transverse matrix crack formation and crack density can be 

modelled; here, the selected mesh density was based on experimental measurements and 

a crack density of 2 cracks/mm was assumed that could be reached at saturation level. 

The present analysis neglects cracks that could develop in other ±θ off-axis plies or local 

delamination, which could influence the predicted results.  

The composite laminates examined are made of a 934 epoxy resin reinforced with 

unidirectional T300 carbon fibres. Detailed material properties are listed in Table 1 [20]. 

The properties of the cohesive elements are also presented in Table 2 and include the 

elastic stiffness, strength and fracture energies [33-35]. The accuracy of the analysis 

strongly depends on the stiffness of the interface element [36]. High stiffness can prevent 

interpenetration of crack faces but might lead to numerical problems. Daudeville et al. 

[37] proposed normalisation of the interface stiffness in terms of a small thickness t (10-2 

mm) in the resin rich zone of the composite laminate from which a high relative stiffness 



can be obtained. Several authors have proposed different values for the interface stiffness 

and some of these were selected equal to 107 N/mm3 [38], 5.7 × 107 N/mm3 [39] and 108 

N/mm3 [40]. Zou et al. [41] proposed a value for the stiffness between 104 and 107 times 

the value of the strength of the interface per unit length. In the current work the interface 

stiffness was taken as 106 N/mm3 for the matrix crack mode, which has been shown [42] 

to give reasonable predictions for carbon/epoxy laminates. Damage evolution under 

mixed-mode loading was predicted by the Benzeggagh–Kenane fracture energy law [31], 

in which a factor of η=1.45 based on experimental data. This however may vary and need 

to be evaluated for a different composite material system. 

4. Results and discussion 

In this section, experimental results are compared to numerically predicted crack density 

as a function of applied stress to assess the validity of modelling transverse matrix 

cracking by using the cohesive elements; theoretical predictions by the ECM are also 

presented for comparison purposes.  

In Fig. 6 the FE predicted transverse matrix crack density is plotted against applied stress 

for [0/90]s and [25/-25/902]s laminates and compared to experimentally measured, and 

theoretically calculated results. The fracture parameters used in eq.(12) for the theoretical 

predictions were taken equal to: 

 GIC = 190 (Jm-2)   G0 = 125 (Jm-2)    R = 6.5 

For the [0/90]s lay-up the ECM gave an acceptable agreement with experimental data. It 

can be observed in figure 6 that the crack density rapidly increased after its initiation at 

an applied stress of around 550 MPa. Propagation slowed after the crack density rose 

above 10 cracks cm-1. A theoretical maximum crack density of 16 cracks cm-1 was 

obtained at approximately 844 MPa, whereas a maximum crack density value of 15.3 

cracks cm-1 was experimentally measured. The numerical predictions are also in a good 

agreement with experiment, especially at high crack densities; a maximum crack density 

of 16 cracks cm-1 was found at an applied stress of 830.1 MPa. FE and ECM results also 

compared favourably with experimental data for the [25/-25/902]s laminate, Fig.6. The 

maximum crack density was 6 cracks cm-1 predicted by the numerical model, compared 



to 5.3 cracks cm-1 obtained experimentally. The two laminates analysed in Fig. 6 have the 

same thickness ratio χ (=1). The fracture model was found to depend on this ratio, so the 

same fracture parameters were used for both lay-ups. 

In Fig.7 results are presented for the [0/902]s and [25/-25/904]s laminates, where χ =1/2. 

The numerical model gave a good prediciton for the [0/902]s lay-up, but underestimated 

the maximum crack density with a value of 9 cracks cm-1, compared to a measured value 

of 10.13 cracks cm-1. The FE model also accurately predicted the crack density for the 

[25/-25/904]s lay-up giving a maximum crack density of 4 cracks cm-1 that is closely to 

the experimentally measured 4.27 cracks cm-1. The ECM model underpredicted slightly 

the stress for crack initiation for both laminates, but crack growth is accuratelly captured . 

It should be noted though that the fracture parameters employed in Eq.(12) were altered 

to fit better the data presented in Fig.6, i.e., 

 GIC = 228 (Jm-2)   G0 = 178 (Jm-2)    R = 6.2 

Soutis et al [19, 20] emphasised that the critical energy release rate GIC and the R-curve 

values (G0 and R) differ for various lay-ups, explaining that crack initiation and 

accumulation are dependent on the thickness ratio χ, which is the thickness of the 

constraining layers over the thickness of the 90o plies. It should be said that if the fracture 

parameters applied for the theoretical prediction of lay-ups with χ =1/2, remain the same 

as those used for χ =1, then the predicted curve shifts to the left of the experimental data 

i.e., the stress for crack initiation is underestimated by 14% while the maximum crack 

density is lower than the measured value by 6.3% for [0/902]s lay-up; the initiation and 

maximum value of crack density are also underpredicted with a difference of 18.45% and 

7.3%, respectively, for the [25/-25/904]s laminate.   

Differences observed between ECM predicted and experimental results may be due to the 

assumption of uniform crack spacing, definition of fracture parameters and the fact that 

damage in the constraining plies and local delamination that usually appears at the matrix 

crack tip were neglected. Finite element modelling using cohesive elements gave 

reasonable predictions for initiation and accumulation of transverse cracks, especially for 

the cross-ply laminates. In addition the mesh density used can have an effect on the 



simulation of transverse matrix cracking. A coarse mesh used in the numerical model 

indicates an insufficient number of cohesive elements for accurate prediction of the crack 

density. However, a too refined mesh can prevent successful solution of the program. A 

cohesive element spacing of 0.5 mm (cohesive elements were inserted 0.5 mm apart) was 

used to obtain the above results, see schematic of Fig.4. In order to investigate the effect 

of mesh density, the model was refined with a cohesive element spacing of 0.25 mm and 

predictions are shown in Fig. 8 together with experimental data for the [0/90]s and 

[25/-25/902]s laminates. It can be seen that mesh refinement can slightly improve the 

accuracy, suggesting the initial mesh was good enough for predicting crack density as a 

function of applied stress.  

Experimental observations have shown that different types of internal transverse cracks 

existed in the laminates examined, i.e., straight cracks, partial angle cracks and curved 

cracks in addition to some local delaminations at the crack tip that developed at higher 

applied loads, nearer to ultimate failure. These damage mechanisms do dissipate energy 

and delay laminate fracture. Cohesive zone elements could be implemented at the ply 

interface to simulate delamination, but this is beyond the scope of the current analysis. It 

should be said though that the FE technique, assuming that the fracture parameters 

needed are carefully selected, can be used to account for the interaction of different 

damage modes observed in multidirectional laminates and accurately capture the damage 

evolution process as a function of applied load(s); further work is required. 

5. Concluding remarks 

A numerical method using cohesive elements to simulate the transverse matrix cracking 

was undertaken using the finite element software Abaqus/Explicit 6.10. The equivalent 

constraint model (ECM) was employed to theoretically predict the matrix crack density 

with the assumption of uniform crack spacing. The damage parameters used in the 

theoretical expression of Eq. (12) were obtained by curve fitting of experimental data and 

assumed constant for cross-ply and off-axis lay-ups with the same thickness ratio χ. In the 

FE analysis in order to simulate transverse matrix cracking, the cohesive elements were 

inserted in the interface between neighbouring elements parallel to the fibre direction in 

each 90o lamina and the crack spacing was that observed experimentally at saturation 



level to shorten the computational time. A traction-separation law was applied to predict 

the initiation and propagation of matrix cracking by appropriately selecting the interfacial 

stiffness, strength and fracture toughness. A crack spacing of 0.5 mm for positioning the 

interface elements within the transverse ply was found to give reasonable predictions 

when compared to crack density measured data. A relatively small improvement was 

registered for the finer mesh, but this is not recommended since an excessive time was 

required to build and compute the model. It is thus suggested that a crack spacing of 0.5 

mm is good enough, especially when resin cracking in the off-axis plies and local 

delamination were neglected in the analysis, which can result to further discrepancies. 

The present work demonstrated that FE with cohesive elements can be used to better 

understand the effect of certain fracture parameters and failure criteria on crack density 

evolution and that further work will be required to account for the presence and 

interaction of more complex damage mechanisms and their impact on stiffness/strength 

properties and laminate fatigue life.  

Reference 

1. Soutis C. Fibre reinforced cocmposites in aircraft constrction. Prog. Aerosp. Sci 2005; 41(2): 
143-51. 
2. Abrate S. Impact on composite structures. Cambridge University Press, Cambridge, UK, 1998. 
3. Davies GAO, Olsson R. Impact on composite structures. Aeronaut J 2004; 108(1089):541–63. 
4. Kashtalyan M, Soutis C. Analysis of composite laminates with intr- and interlaminar damage. 
Prog. Aerosp. Sci 2005; 41: 152-73 
5. Berbinau P, Soutis C, Goutas P, Curtis PT. Effect of off-axis ply orientation on 0o-fibre 
microbuckling. Composites Part A 1999; 30: 1197-207. 
6. Berbinau P, Soutis C, Guz IA. Compressive failure of 0o unidirectional carbon-fibre-reinforced 
plastic (CFRP) laminates by fibre micobuckling. Compos Sci Technol 1999; 59: 1451-55.  
7. Anderson TL. Fracture mechanics – fundamentals and applications. CRC Press, New York, 
1995. 
8. Kashtalyan M, Soutis C. The effect of delaminations induced by transverse cracks and splits on 
stiffness properties of composite laminates. Composites Part A 2000; 31: 107-19. 
9. Kashtalyan M, Soutis C. Analysis of local delaminations in composite laminates with angle-ply 
matrix cracks. Int J Solids Struct 2002; 39: 1515-37. 
10. Kashtallyan MY, Soutis C. Mechanisms of internal damage and their effect on the behaviour 
and properties of cross-ply composite laminates. Int Appl Mech 2002; 38(6): 641-57.  
11. Kashtalyan M, Soutis C. Stiffness degradation in cross-ply laminates damaged by transverse 
cracking and splitting. Composites Part A 2000; 31: 335-51. 
12. Zhang J, Soutis C, Fan J. Strain energy release rate associated with local delamination in 
cracked composite laminates. Composites 1994; 25(9): 851-62. 



13. Hashin Z, Rotem A. A fatigue failure criterion for fiber-reinforced materials. J Compos Mater 
1973; 7: 448-64. 
14. Hashin Z. Failure criteria for uni-directional fibre composites. J. Appl. Mech 1980; 47(1): 
329–34. 
15. Naim JA. The strain energy release rate of composite microcracking: a variational approach. J 
Compos Mater 1989; 23(11): 1106-29. 
16. Varna J, Berglund LA. Multiple transverse cracking and stiffness reduction in cross-ply 
laminates. J Compos Technol Res 1991; 13(2): 97-106. 
17. Varna J, Berglund LA. A model for prediction of the transverse cracking strain in cross-ply 
laminates. J Reinf Plast Compos 1992; 11(7): 708-28. 
18. Berglund LA, Varna J. Thermo-elastic properties of composite laminates with transverse 
cracks. J Compos Technol Res 1994; 16(1): 77-87. 

19. Zhang J, Fan J, Soutis C. Analysis of multiple matrix cracking in [ ]/ 90m n s
θ±  composite 

laminates. Part 1: In-plane stiffness properties. Composites 1992; 23(5):291–8. 

20. Zhang J, Fan J, Soutis C. Analysis of multiple matrix cracking in [ ]/ 90m n s
θ± composite 

laminates. Part 2: Development of transverse ply cracks. Composites 1992; 23(5):299–304. 
21. Kachanov LM. On the creep rupture time. Izv AN SSSR Otd Tekhn Nauk 1958; 8: 26-31. 
22. Rabotnov YN. On the equations of state for creep. Progress in Applied Mechanics, Prager 
Anniversary Volume. NewYork: Macmillan; 1963.  
23. Donadon MV, Iannucci L, Falzon BG, Hodgkinson JM, Almeida SFM. A progressive failure 
model for composite laminates subjected to low velocity impact damage. Comput Struct 2008; 86: 
1232-52. 
24. Faggiani A, Falzon BG. Predicting low-velocity impact damage on a stiffened composite panel. 
Composites Part A 2010; 41: 737-49. 
25. Iannucci L, Ankersen J. An energy based damage model for thin laminated composites. 
Compos Sci Technol 2006; 66: 934-51. 
26. Yokoyama NO, Donadon MV, Almeida SFM. A numerical study on the impact resistance of 
composite shells using an energy based failure model. Compos Struct 2010; 93: 142-52. 
27. Shi Y, Swati T, Soutis C. Modelling damage evolution in composite laminates subjected to 
low velocity impact. Compos Struct 2012; 94: 2902-13. 
28. Han Y, Hahn HT, Croman RB. A simplified analysis of transverse ply cracking in cross-ply 
laminates. Compos Sci Technol 1988; 31: 165-77. 
29. Hahn HT, Han YM, Kim RY. Resistance curves for ply cracking in composite laminates. Proc 
33rd Int SAMPE Symp 1998; 1101-8. 
30. Fan J, Zhang J. In-situ damage evolution and micro/macro transition for laminated 
composites. Compos Sci Technol 1993; 47(2): 107-18. 
31. Camanho PP, Dávila CG. Mixed-Mode decohesion finite elements for the simulation of 
delamination in composite materials. Tech. Rep. NASA/TM-2002-211737, 2002. 
32. ABAQUS. ABAQUS Version 6.10, Dessault systemes. Providence, RI; 2010. 
33. Turon A. Simulation of delamination in composites under quasi-static and fatigue loading 
using cohesive zone models. PHD Dissertation, Universitat de Girona, 2006. 



34. Ankersen J, Davies GAO. Interface elements–advantages and limitations in CPRP 
delamination modelling. In 17th International Conference on Composite Materials, Edinburgh, 
UK, 2009. 
35. Pinho ST, Iannucci L, Robinson P. Fracture toughness of the tensile and compressive fibre 
failure modes in laminated composites. Compos Sci Technol 2006; 66(13): 2069–79. 
36. Turon A, Dávila CG, Camanho PP, Costa J. An engineering solution for mesh size effects in 
the simulation of delamination using cohesive zone models. Engng Fract Mech 2007; 74: 
1665-82. 
37. Daudeville L, Allix O, Ladevèze P. Delamination analysis by damage mechanics: Some 
applications. Compos Engng 1995; 5(1): 17-24. 
38. Gonçalves JPM, de Moura MFSF, de Castro PMST, Marques AT. Interface element including 
point-to-surface constraints for three dimensional problems with damage propagation. Egngn 
Comput 2000; 17(1): 28-47. 
39. Mi Y, Crisfield MA. Analytical derivation of load/displacement relationships for mixed-mode 
delamination and comparison with finite element results. Imperial College, Department of 
Aeronautics, London, 1996. 
40. Schelleckens JCJ, de Borst R. On the numerical integration of interface elements. Int J Numer 
Methods Engng 1993; 36: 43-66. 
41. Zou Z, Reid SR, Li S, Soden PD. Modelling interlaminar and intralaminar damage in filment 
wound pipes under quasi-static indentation. J Compos Mater 2002; 36: 477-99. 
42. Camanho PP, Dávila CG, de Moura MF. Numerical simulation of mixed-mode progressive 
delamination in composite materials. J Compos Mater 2003; 37(16): 1415-38. 
43. Wang ASD. Fracture mechanics of sublaminate cracks in composite materials. Compos 
Technol Rev 1984; 6: 45-62. 
44. Crossman FW, Wang ASD. The dependence of transverse cracks and delamination on ply 
thickness in graphite-epoxy laminates. Damage Compos Mater op. ct. 118-39. 
 
 
 



Figure captions 
 
Fig. 1 Schematics of a composite laminate with transverse matrix cracking [4]. 

Fig . 2 A schematic of the Equivalent Constraint Model (ECM) of a damaged laminate (a) 

Laminate structure (b) ECM model [11]. 

Fig. 3 Intralaminar cracking represented by cohesive elements (a). Crack modes and 

coordinates used (b). A schematic of the assumed crack traction-opening or sliding 

displacement. 

Fig. 4 A model of a single transverse ply with interface cohesive elements, inserted at 0.5 
mm apart to simulate matrix crack evolution. The circles represent fictitious fibres to 
simply illustrate their relation to cohesive elements. The ply is modeled as homogeneous 
orthotropic.  
Fig. 5 A typical 3D FE model used for the analysis of a [0/90]s lay-up. 
Fig. 6 Experimental, theoretical and numerical crack densities vs. applied stress for 

[0/90]s and [25/-25/902]s laminates. 

Fig. 7 Experimental, theoretical and numerical crack densities vs. applied stress for 

[0/902]s and [25/-25/904]s laminates. 

Fig. 8 Crack density vs applied stress for two different cohesive element spacings (mesh 

size) for [0/90]s and [25/-25/902]s lay-ups. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table captions 
 
Table. 1: Material properties for a T300/934 unidirectional laminate [20]. 

Table. 2: Material parameters for the cohesive elements. [33-35]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Fig. 1 Schematics of a composite laminate with uniform transverse matrix cracking [4]. 

 

 

 

 

 

 

Fig. 2 A schematic of the Equivalent Constraint Model (ECM) of a damaged laminate (a) 

Laminate structure (b) ECM model [11]. 
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Fig .3 Intralaminar cracking  represented by  cohesive elements (a). Crack damage modes and 

coordinates used (b). A schematic of the assumed crack traction-opening or sliding displacement. 
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Fig. 4 A model of a single transverse ply with interface cohesive elements, inserted at 0.5 mm 

apart to simulate matrix crack evolution. The circles represent fictitious fibres to simply illustrate 

their relation to cohesive elements. The ply is modelled as homogeneous orthotropic. 

 

 

 

 

 

 
 

 

 

Fig. 5 A typical 3D FE model used for the analysis of a [0/90]s lay-up. 
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Fig. 6 Experimental, theoretical and numerical crack densities vs. applied stress for [0/90]s and 

[25/-25/902]s laminates.  

 

Fig. 7 Experimental, theoretical and numerical crack densities vs. applied stress for [0/902]s and 

[25/-25/904]s laminates.  
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Fig. 8 Crack density vs applied stress for two different cohesive element spacings (mesh size) for 

[0/90]s and [25/-25/902]s lay-ups. 



 

Table. 1  

Material properties for a T300/934 unidirectional laminate [20] 

Longitudinal Modulus 

(GPa) 

144.8 Longitudinal Thermal 

Expansion Coefficient 

(με
o
C

-1
) 

0.36 

Transverse Modulus 

(GPa) 

11.38 Transverse Thermal 

Expansion Coefficient 

(με
o
C

-1
) 

28.8 

In-plane Shear 

Modulus (GPa) 
6.48 

Temperature Difference (
o
C) 

-125 

Out-of-plane Shear 

Modulus (GPa) 
3.45 

Thickness of individual ply 

(mm) 
0.132 

Poisson’s ration 0.3  
 

 

Table. 2  

Material parameters for the cohesive elements used in the FE analysis. [33-35] 

 Direction, n Direction, s Direction, t
1 

Normalised elastic 

modulus (N/mm
3
) 

10
6 10

6
 10

6
 

Interface Strength 

(MPa) 

51.7 40 40 

Fracture toughness 

(J/m
2
) 

190
 

790 790
2 

Notes:  1) n=normal, s=shear, t=tearing, see Fig.3a 

2) This value may differ from that of direction s, but in this study the formation of cracks 

is mainly affected by modes I and II. 
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Reviewers comments on paper ACMA-D-13-00409: 

Interface cohesive elements to model matrix crack evolution in composite laminates 

Y. Shi, C.Pinna and C. Soutis* 

 

Specific comments: 

1. “In abstract and elsewhere:  the sentence "assumption of equally spaced cracks ( based 

on experimental measurements…)…" should be revised. In fact at low crack density the 

crack location is random and only at high crack density , close to the "characteristic damage 

state" introduced by Reifsnieder  the crack distribution becomes more uniform.” 

Answer: We agree, and  But in this work the matrix cracking was attempted to model in a macro-

scale model. this is why it is mentioned as an assumption for the macro-scale FE model.  In order to 

simulate the random location of matrix cracking generated, a micro-scale FE model or other method 

such as Discrete Element Method (DEM) will be required which is not attempted in this paper. The 

current results for numerical prediction of crack initiation and growth were reliable because the crack 

density was always numerically predicted in the same stress range compared to experimental data, 

even though the different meshing size was performed.  Therefore, this numerical method can be 

accepted as an effective way to predict matrix cracking with  the assumption of “equally spaced 

cracks". 

2. “Why there are so many references to papers with impact loading?  Kind of misleading 

regarding the subject. May be instead more papers with different  approaches to cracking 

evolution should be referred?” 

Answer: In fact there are listed several papers on matrix cracking prediction, see Ref 13-14, 25-

26,28 and Ref. 35-42. Papers on impact are included because of the previous publication by the 

authors that focused on the prediction of impact induced damage, and some related material 

properties used in the present paper, appeared in that publication. In addition, the cohesive elements 

presented in the present study to predict matrix cracking were used in the impact work to simulate 

delamination (interlaminar cracking rather than intralaminar).     

3. “Is it really + sign in eq (2)?” 

Answer:  Yes, it is confirmed by the original publications on ECM. 

4. “Eq (5) : definition h1 and h2  for ply thicknesses are not  given. Still not clear if h2 is the 

whole 90-thickness or ½  of it. From the form of (5) and (6) and (10) seems to be 1/" “ 

Answer: In this work, the ply thickness is 0.132mm. The parameters h1 and h2 are defined in the 

manuscript and represent the thickness of the off-axis plies and 90o plies, respectively 

5. “Before eq (11): the R-curve concept is very old and comes from individual crack in 

metals when it becomes larger. In transverse cracking case all cracks (even at the high 

stress) are of the same size. Therefore, the meaning of the R- curve should be 

discussed/explained. Could it be reflecting the effect of statistical distribution of fracture 

initiation/propagation properties in the specimen? “  

Answer: True, the R-curve concept comes from the fracture of metals where a single crack develops. 

This has been used extensively in the composites literature and represents the resistance to grow 

multiple cracks within a ply. The mathematical expression of Eq.11 simply describes initiation and 
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growth of transverse cracking and is expressed in terms of crack density D rather than crack length, 

which is explained in the manuscript.  

6. “In (12) Go and R are fitting parameters. It is clearly stated and the values are shown in 

Fig. 5 and 6. What is difficult to accept, is that the values of parameters for the same 

material are different if the cracked ply thickness change. This limits the application of the 

approach significantly. Predictions are possible only for the given material with the same 

ply thickness but in different laminate lay-ups” 

Answer:  The fact that the fracture parameters for initiation and growth vary with lay-up comes from 

experimental measurements and observations. The analytical model simply is trying to capture the 

observations. The authors agree that the fracture toughness should be material property but then 

composite laminates are not homogeneous materials but rather structures and the stacking sequence 

does have an effect on initiation and propagation. In the ECM model if the parameters remain 

unchanged the stress for initiation and maximum crack density will be underestimated, which of 

course will lead to a more conservative design, no harm there. This is better explained in the revised 

manuscript. 

7. “The description of the "numerical damage model" is not sufficiently clear. Definitions 

are missing or "diffuse". Examples: 

 After (14) "… the material stiffness" is actually the cohesive element stiffness 

 Before (17): "… criterion [31] can be used…".  How do you know? 

 After (17) : what is "beta" 

 In (17) : is there also the R-curve for Gic used? If so, Gr should be written instead of Gic. It 

should be told that Giic is not needed in the current paper” 

Answer:  text has been amended, and it is the cohesive element stiffness.  

Before (17): "… criterion [31] can be used…". Of course, other fracture criteria could be used to 

simulate matrix crack formation, but in this study this BK law has been selected and it appears that 

can successfully capture experimental observations.  

After (17) : what is "beta": Parameter β is the mode mixity ratio and is defined in the revised 

manuscript. 

 In (17) : is there also the R-curve for Gic used? If so, Gr should be written instead of Gic. It 

should be told that Giic is not needed in the current paper” 

Answer: In this section, the numerical model was introduced that employs cohesive elements to 

simulate the matrix cracking (or delamination in the previous impact paper by the authors). 

Parameters GIC and GIIC denote the fracture toughness of the composite system used for  fracture 

modes I and II, respectively. The authors agree that mode I may be the dominant one for the loading 

case examined but the FE model to run requires both values to be defined. The FE model does not 

need the G0 and R parameters used in the ECM approach as fitting parameters.  

8. “Finite element model" gives more questions than answers: 

 "what is depth of each individual ply"? Is it the size  y-direction or z-direction? The size 

0.132 is like a thickness of a ply. Only one element in thickness direction?  Details about the 

number of elements/nodes has to be given. 



Answer:  The depth of each individual ply is 0.132 mm along the z direction, axes are defined in the 

revised manuscript and a typical FE mesh is provided in the new figure 5. 

Is it a 3-D analysis as stated in the first sentence or 2D? There is nothing about edge effects 

(possible initiation at edges and propagation along fibers). Therefore I conclude that the 

analysis was 2D. 

Answer:  It is a 3D model. A figure to illustrate the 3D model with dimensions and boundary 

conditions has been added in the manuscript, see Fig. 5.  

 Was the whole specimen modeled or repeating elements of certain length (density) 

considered 

Answer:  The size of the model used is 10mm x 10mm to represent the area of cracks generated 

based on a certain crack density which is needed to simplify the model and reduce the computing time. 

It could be viewed as an RVE approach that uses repeating elements of certain length. 

How about the effective constraint? Was it used or each layer was modeled separately? If 

so, boundary conditions have to be described that give "repeating element" 

Answer:  In this FE model, a displacement was applied at both ends of the plate, as shown in Fig. 5. 

The applied displacement is calculated based on the material properties and the stress value 

measured by the experiment. The corresponding description was added in the first paragraph of 

section 3.2 in the manuscript.  

 "all the 90-plies were located in the middle plane of the laminate" is an incorrect 

expression 

Answer:  The manuscript has been changed. 

 "the stiffness will be gradually degraded" is the stiffness of the cohesive element not the 

material 

Answer:  Text has been corrected. 

 "and a crack density of 2 cracks/mm was assumed…… which corresponds …. to 20 cracks 

per cm" is really a very deep and correct explanation. Should it be given?”      

Answer:  Text has been modified 

9. “Results and discussion and conclusions 

 a.     "the fracture model was found to depend on this ratio, so the same fracture 

parameters were used for both lay-ups" What does it mean? 

Answer:  Based on the experimental measurement, the GIC, G0 and R will influence the predicted 

accuracy using ECM for different thickness ratios. For the prediction of [0/90]s and [25/-25/902]s the 

stacking sequence and thickness of laminates are different but the thickness ratio is same (=1). So 

the same parameters of GIC, G0 and R were used for ECM prediction of these two lay-ups, see also 

previous comments. 

 b.     "mesh refinement can slightly improve the accuracy…". This is NOT what we see in Fig. 

7. We see that refinement is REDUCING THE  AGREEMENT with test data at low crack 

density, 



Answer:  For  the [0/90]s lay-up, the initial crack was found at a little higher stress value when the 

refined model was used but the initial crack density value was reduced to 1 crack/cm which is well 

matched with experimental data than that predicted (2 cracks/cm) by the relatively coarse model. 

Moreover, it did also improve the crack density for the [25/-25/902]s. But, improvements are relatively 

small and this is why the coarser mesh is recommended that speeds up the solution and results are 

acceptable taking into account the experimental uncertainties in measuring fracture parameters or 

accurately measuring crack densities.  

 c.     It is pointless to discuss 0.5mm or smaller distance between cohesive elements. The 

distance is scaled with the size of the crack (90-layer thickness) and it has to be discussed 

in these terms. By the way, the ply thickness should be given in Table 1. “ 

Answer:  For the FE method, due to the initial size of model (distance defined between cohesive 

elements) was determined based on the experimental observation, it needs to be investigated the 

mesh size effect for the prediction for a different crack density was defined at a saturation level. In 

addition, the mesh dependency of cohesive elements were unknown for this simulation, it is more 

important to perform a refined model with refined size of the whole model (including cohesive 

elements). The results showed the refinement did not give much improvement but the crack density 

was accurately predicted in the same stress range when compared to the experimental data; this 

gives confidence to the proposed FE method, which is a reliable way to predict crack density and 

identify parameters that have an effect when simulating fracture of complex laminated structures. It is 

also a way of validating failure criteria, stress and/or fracture based.  

The ply thickness has been added in Table 1.  

  


