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M I C R O B I O L O G Y

Negative feedback increases information transmission, 
enabling bacteria to discriminate sublethal  
antibiotic concentrations
Raul Ruiz, Fernando de la Cruz, Raul Fernandez-Lopez*

In the cell, noise constrains information transmission through signaling pathways and regulatory networks. There 
is growing evidence that the channel capacity of cellular pathways is limited to a few bits, questioning whether 
cells quantify external stimuli or rely on threshold detection and binary on/off decisions. Here, using fluorescence 
microscopy and information theory, we analyzed the ability of the transcriptional regulator TetR to sense and 
quantify the antibiotic tetracycline. The results showed that noise filtering by negative feedback increased infor-
mation transmission up to 2 bits, generating a graded response able to discriminate different antibiotic concen-
trations. This response matched the antibiotic subinhibitory selection window, suggesting that information 
transmission through TetR is optimized to quantify sublethal antibiotic levels. Noise filtering by negative feed-
back may thus boost the discriminative power of cellular sensors, enabling signal quantification.

INTRODUCTION
Environmental sensing is essential for cell survival, yet noise in sig-
nal reception and gene expression constrains the ability of signaling 
pathways to reliably convey information (1, 2). At the signal recep-
tion level, the stochastic nature of diffusion and binding imposes a 
limit on the ability of cell receptors to quantify the concentration of 
diffusible molecules (1, 3, 4). At the signal transduction level, gene 
expression noise generates fluctuations in the copy number of the 
RNAs and proteins responsible for transducing the signal (5). Sig-
nal transduction pathways are thus inherently noisy, and the ability 
of the cell to control its internal sensory machinery is itself limited (2).

Noisy pathways are subject to an upper limit on the amount of 
information they can transmit, a quantity known as the channel ca-
pacity. Determining the channel capacity of signaling pathways and 
regulatory networks is thus essential to evaluate the sensing ability 
and regulatory power of the cell (6). The amount of information 
encoded by a noisy channel can be quantified in terms of Shannon’s 
mutual information (MI), and it is usually measured in bits. Recent 
experiments have shown that signaling pathways exhibit low MI, 
with channel capacities of approximately 1 bit (7–11). The physio-
logical significance of these observations has been a matter of debate. 
Because 1 bit is the amount of information required for a binary 
switch, Cheong et al. (7) proposed that 1-bit information transmis-
sion reflected a decision-making process fundamentally limited to 
on/off responses. Under this interpretation, 1 bit is indicative of a 
sensor with two possible states, able to detect a signal but unable to 
quantify it. However, the same amount of information (1 bit) may 
be transmitted by a graded sensor suffering from an associated in-
ference error (12). Hence, observing 1 bit does not necessarily imply 
a digital controller. The ultimate question is whether signal transduc-
tion mechanisms are accurate enough to quantify external signals 
or whether molecular noise is so pervasive that the cell has no chance 
but to rely on threshold detection and on/off responses (Fig. 1A) 
(13). Answering this question has been complicated by the entan-

gled nature of eukaryotic regulation (14). Here, we investigate infor-
mation transmission by the prokaryotic transcriptional repressor TetR, 
a regulator of tetracycline (Tc) resistance, and a widely used workhorse 
for controlled gene expression in synthetic gene networks.

TetR is the prototype of a large family of one-component signal 
transduction systems involved in responses against small molecules, 
such as antibiotics, quorum-sensing molecules, and metabolites. 
TetR regulates the expression of TetA, a protein conferring Tc resist
ance. Expression of TetA is deleterious to the host cell; hence, its 
production is tightly regulated and only occurs when Tc is present 
in the environment (15). Although the molecular mechanisms in-
volved in TetR regulation have been thoroughly described (Fig. 1B), 
whether this prototypic circuit responds to the antibiotic in a graded 
fashion or as an all-or-none switch is currently unknown. More-
over, in recent years, it has become clear that subinhibitory anti
biotic concentrations can exert selective pressure and elicit a variety 
of cellular responses (16). Determining what range of antibiotic con-
centrations is actively monitored by the cell, and with how much 
precision, might help us understand the overall impact of antibiotic 
pressure on microbial communities

Using fluorescence microscopy, single-cell analysis, and infor-
mation theory, we measured information transmission in the TetR 
senso-regulatory circuit. We analyzed the influence of network ar-
chitecture on information transmission and determined the overall 
ability of the system to quantify and respond to the signal (Tc). Our 
results show that TetR is able to convey up to 2 bits of information, 
being able to discriminate antibiotic levels below the minimal in-
hibitory concentration (MIC). In its natural setting, TetR engages in 
a negative feedback loop (NFL) that increases information transmis-
sion through the signaling pathway, enabling signal quantification.

RESULTS
TetR is a classical representative of one-component systems, the most 
prevalent pathways for signal transduction in prokaryotes (17). Like 
other one-component sensors, TetR has a dual role, acting simulta-
neously as a signal receptor (binding Tc) and as a signal transducer 
(regulating gene expression). TetR represses the expression of the 
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Tc resistance protein TetA by binding two operators (tetO1 and tetO2) 
located in the pA promoter (Fig. 1B). Upon binding to Tc, TetR suf-
fers a conformational change that prevents recognition of its cog-
nate operators. Thus, information about the signal (Tc) is conveyed 
to pA expression levels by the amount of inducer-free TetR. To 
quantify the MI between inducer-free TetR and pA expression lev-
els, we needed the output conditional distribution P(pA|TetR), that 
is, the distribution of pA expression levels produced in response to 
a gradient of inducer-free TetR. For this purpose, we generated a 
translational fusion between TetR and the red fluorescent protein 
mKate2, and a transcriptional fusion between pA and the green flu-
orescent protein (GFP) (Fig. 1C). This way, we could simultaneously 
monitor, in single cells, input TetRmkate2 and output pA::GFP levels 
(Fig. 1C).

TetRmkate2 is functional and does not increase noise in the 
signaling pathway
The translational fusion TetRmkate2 was fully functional and able to 
repress transcription from the pA promoter (fig. S2). The function-
ality of the FP fusion, however, did not guarantee a physiological 
behavior of the protein, because FP fusions are known to cause dis-
tribution artifacts. As shown by Landgraf et al. (18), FPs are “sticky” 
and may induce the formation of transitory aggregates when fused 
to other proteins. These aggregates are often functional, yet they 
decrease the effective number of protein particles that binomially 
partition between daughter cells during cell division. This increases 
the segregation error and the noise experienced by downstream pro-

cesses (18). Because information transmission is hampered by noise, 
this effect may result in an overall reduction in the observed channel 
capacity. To check for this possibility, we performed a fluctuation 
after cell division test (18). Briefly, this test consists in measuring 
the fluctuations exhibited by daughter cells, immediately after cell 
division, in a downstream process affected by the FP fusion (fig. S2). 
In our case, we compared the fluorescence produced by pA::GFP 
between daughter cells. We compared the results between strains 
that contained TetRmkate2 (RRG112) and cells containing wt TetR 
(RRG28). As shown in fig. S2, we did not detect any substantial in-
crease in pA::GFP fluctuations due to the mKate2 fusion. We con-
cluded, therefore, that the translational fusion was functional and 
did not cause any apparent increase in the overall noise levels of the 
signaling pathway.

Measuring MI between TetRmkate2 and pA
Measuring the MI between TetRmkate2 and its target promoter pA 
required sampling pA responses against the widest possible range of 
TetRmkate2 inputs (19). To this end, we cloned tetRmkate2 under the 
control of the inducible promoter pBAD (Fig. 1) (20). This allowed 
us to generate a continuous input gradient, which spanned approxi-
mately 100-fold (figs. S3 and S4). To determine whether the plasmidic 
or chromosomal location of the circuit had any effect on informa-
tion transmission, we cloned our experimental system in three dif-
ferent genomic settings (Fig. 1, D to F). Because plasmid copy number 
is also subject to random fluctuations (21), these different genomic 
settings allowed us to determine the impact of different noise regimes 

Fig. 1. Structure of TetR/TetA circuit and experimental setup. (A) Scheme of analog (graded) and digital (on/off) responses against a signal. (B) Scheme of TetR/TetA 
circuit. (C) Experimental design (right) showing TetRmkate2 fusion cloned under the transcriptional control of a regulatable pBAD promoter (INPUT) and GFP cloned under 
pA promoter (OUTPUT). Microphotographs show Escherichia coli cells carrying both reporters (left). Cells were grown on agarose pads, as described in Materials and 
Methods. Exposure times were 50 ms (phase) and 500 ms (mkate2 and GFP). (D to F) Each panel shows input (TetRmkate2) versus output (GFP) fluorescence levels (fluores-
cence arbitrary units) for 9000 individual cells, corresponding to different genomic constructions: input and output cloned in the same plasmid (D), on two separate 
plasmids (E), and into the chromosome (F). Lighter solid lines indicate population averages, and darker solid lines correspond to median values.
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Fig. 2. Extracting MI values from scatterplot data. Measuring entropy and MI from scatterplot data. (A) To measure MI, scatterplot data showing input and output 
values (upper left panel) must be transformed into a two-dimensional probability density plot (upper right panel). To do so, we used Grenander’s method of sieves, as 
discussed in Supplementary Results. The middle and bottom panels of the figure show the application of two sieves of different bin sizes. The middle panel shows a sieve 
with a low number of bins, while the bottom panel shows a sieve with a high number of bins. On the right of the figure, the probability density maps result from applying 
different sieves on the same scatterplot map. (B) Scatterplot of 9000, log-distributed, random input/output pairs used to test the performance of discretization methods. 
Because this dataset was randomly generated, discretization should result into 0 bits of MI. (C) MI values extracted from scatterplots from (B) using the discretization 
methods indicated in the figure. Blue, direct HML estimation; green, direct HML estimation under jackknife correction; red, HCML estimation (maximum likelihood with 
Miller’s correction). As shown in the figure, Miller’s correction was required to prevent information inflation due to increasing bin number. (D) Datasets of different sizes 
generated to test the effect of undersampling on MI estimation. From the experimental dataset shown in Fig. 1D, we randomly drew 2000, 1000, 500, and 250 cells, gen-
erating the four datasets shown in the figure. (E) Effect of sampling size on MI estimation with and without jackknife correction. On the left panel, lines indicate the MI 
estimation for different bin sizes (x axis), retrieved when applying HCML estimation with (green lines) and without (blue lines) jackknife correction. On the right panel, MI 
estimations for datasets shown in (D) with (green bars) and without (blue bars) jackknife correction. As detailed in Supplementary Results, jackknife correction provided 
only a marginal improvement of less than 1% of the MI.
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on TetR (fig. S5). A gradient of TetRmkate2 concentrations was then 
generated by differentially inducing pBAD, and input and output 
levels were measured by fluorescence microscopy (Fig. 1, D to F).

Determining MI between TetRmkate2 and pA also required trans-
forming input/output scatterplots into probability density maps 
[P(input,output)]. For that purpose, a mesh of variable size was ap-
plied to bin experimental data (Fig. 2A). Probabilities were then 
obtained using a maximum likelihood estimator (HML) (22, 23). As 
shown in Fig. 2A, decreasing the bin size should, in theory, improve 
our estimation of P(input,output). However, this procedure is known 
to artificially inflate MI as the number of bins is increased. To avoid 
this problem, we introduced Miller’s correction in our maximum 
likelihood estimator (HCML) (22, 23). We checked that this proce-
dure prevented artifactual MI inflation by applying it to a random 
distribution with a domain equivalent to that of our experimental 
results (Fig. 2B). This random distribution should show 0 bits of 
MI, but direct HML estimation generated MI inflation (Fig. 2C). In 
contrast, HCML correction prevented this problem, yielding the ex-
pected MI. When applied to experimental data, HCML approaches 
an asymptotic maximum that is taken as the true MI (Fig. 2E) (9). 
As described by Hansen and O’Shea (9), the error in MI estimation 

can be obtained from the SD of MI values in the asymptotic region. 
All our MI measurements showed SDs between 0.01 and 0.03 bits. 
Another common problem in determining MI from experimental 
data arises from undersampling, which reduces our ability to cor-
rectly assign probabilities to each bin. Jackknife resampling can be 
used to correct for this problem (7, 9, 23). However, our experimen-
tal sample sizes (>2000 cells in all cases) were well beyond the un-
dersampled regime (Fig. 2D). A complete description of the methods 
used for MI estimation can be found in Supplementary Results.

Input/output scatterplots were transformed into probability den-
sity maps, and from these maps, MI values were obtained as described 
before. The results showed MI values close to 1 bit, regardless of 
genomic location (Fig. 3, A to C). Because the input distribution ob-
tained from pBAD was not uniform across the overall induction 
range, we analyzed the output distribution (pA::GFP levels) under 
equiprobable inputs. For this purpose, from the datasets shown in 
Fig. 1 (D to F), we computationally generated uniform TetRmkate2 
distributions (Fig. 3, D to F). The resulting MI under equiprobable 
inputs (MIU) yielded 0.980 ± 0.02 bits for the one-plasmid system 
(RRS113), 1.06 ± 0.01 bits for the two-plasmid system (RRS112), 
and 0.88 ± 0.01 bits for the chromosomal insertion (RRS247). Thus, 

)
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P

)
(

P
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(

P

Fig. 3. Determining the MI between TetRmkate2 and pA. (A to C) MI values (top) and density maps (bottom) for the different genomic constructions. Input/output scat-
terplots were transformed into density plots by applying a mesh of variable bin sizes, as described in the main text. Upper chart shows MI values (y axis) as a function of 
the number of bins (x axis). Asymptotic MI values were taken as the lower bound of the MI. Density maps correspond to bin sizes yielding maximum MI. (D to F) Probabil-
ity density maps for equiprobable inputs. Upper charts shows TetRmkate input distributions. Lower charts show joint probability density maps P(TetRmkate, pA::GFP). Prob-
ability densities follow the color bars on the right.
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the results indicated that overall MIU levels were similar for the 
three genomic locations (Fig. 3, D to F). It is noteworthy, however, 
that the chromosomal construction displayed slightly lower MIU, 
despite showing lower output noise levels (fig. S5). This can be ex-
plained by the smaller TetRmkate2 induction range exhibited by this 
construction (compare x axis in Fig. 3). This difference in induction 
ranges is most likely due to the higher copy number achieved by 
plasmid constructions (which contain pSC101 replication origins) 
compared to the chromosome (21).

Once we obtained P(input, output) density maps, we could assess 
whether pA responses corresponded to an on/off binary switch or, 
alternatively, to an analogic sensor able to quantify the signal. Judg-
ing from MIU values and the probability density maps shown in 
Fig. 3, the answer was actually neither. Despite conveying 1-bit MI, 
the response could not be characterized as a pure on/off switch, be-
cause intermediate TetRmkate2 concentrations generated intermedi-
ate pA levels. These intermediate values, however, were so noisy that 
the ability of the sensor to quantify the signal was severely compro-
mised. Just moving 15% away from the on/off saturating pA values, 
MIU levels in RRS113 dropped from 1.06 ± 0.01 bits to 0.28 ± 0.03 
bits. Thus, the results indicated that the TetR/pA circuit could not 
be categorized as a strict digital switch or an effective analogic sensor.

Measuring MI between Tc, TetRmkate2, and pA
A gradient of TetR, artificially induced from the pBAD promoter, 
was able to convey 1 bit of information to its target promoter. Total 
TetR concentration, however, is not the natural input of the TetR/
TetA circuit. Rather, the inducer of the system, Tc, binds TetR, in-
activating it and preventing repression of pA. Therefore, in its nat-
ural setting, pA responds to changes in the levels of free TetR rather 
than to changes in its total concentration. Although the same TetR 
gradient can be generated by Tc inactivation or by TetR synthesis/
degradation, theory predicted that each of these mechanisms would 
exhibit different noise levels (Supplementary Calculations). Noise 
constrains information transmission (2); thus, MI values may de-
pend on the way the input gradient is generated. To test this possi-
bility, we measured MIU between Tc (input) and pA::GFP (output). 
To this end, TetRmkate2 was induced to saturating levels in RRS113 
cells. These cells were then subjected to a Tc gradient, imaged, and 
analyzed as described in Materials and Methods. From the (Tc, 
pA::GFP) scatterplot (Fig. 4A), we obtained the P(input,output) den-
sity map (Fig. 4B). In this case (and in all experiments using Tc), the 
number of input bins was fixed to the number of Tc induction levels. 
Output GFP levels were analyzed at variable binning, as described 
previously. The results demonstrated overall lower output noise 
levels (Fig. 5A) and a MIU value of 1.54 ± 0.02 bits. This latter value 
represented a 60% increase in the amount of information transmitted 
by a uniform Tc gradient compared to the uniform TetRmkate2 
gradient generated by arabinose induction. The output distribution 
showed a clear mode for the OFF state, but ON levels displayed a 
broader distribution, with one major peak and several local maxima 
(Fig. 4C). Overall, the results showed that Tc induction generated 
lower output noise levels, increasing information transmission.

A negative feedback on TetR increases  
information transmission
Tc induction generated lower pA output noise levels, yielding high-
er MI values. These findings motivated us to study the influence of 
network architecture, a well-known factor determining noise prop-

agation in transcriptional circuits (10). At its native location in the 
Tn10 transposon, TetR is transcribed from pR, a promoter overlap-
ping pA and oriented in the opposite direction (Fig. 4E). Expression 
from pR is repressed by TetR; thus, TetR engages in an NFL. This 
NFL implies that the effect of Tc on the circuit is twofold. On the 
one hand, Tc decreases the levels of free TetR, thus reducing its abil-
ity to repress pA transcription. On the other hand, lower levels of 
free TetR also increase pR transcription, increasing total TetR con-
centration. To analyze the overall impact of this NFL on the ability 
of TetR to discriminate Tc, we built the experimental system shown 
in Fig. 4E. In this construction, TetRmkate2 was cloned under its cog-
nate promoter pR, while GFP remained under the control of pA. 
E. coli cells carrying this construct (RRS129) were subjected to a 
gradient of Tc concentrations, and output pA::GFP levels were mea-
sured by fluorescence microscopy, as described in Materials and 
Methods. Input/output scatterplots (Fig. 4, E and I) were transformed 
into P(input,output) density maps, as described before. The results 
demonstrated that, under the same Tc gradient, the NFL circuit 
yielded MIU = 1.96 ± 0.01 bits, while the NFL-free circuit produced 
1.54 ± 0.02 bits. This increase in information transmission was ac-
companied by a substantial decrease in output noise (Fig. 5A). Noise 
filtering is a well-known property of NFLs, and it has been shown 
that some degree of feedback tends to improve information trans-
mission in signaling pathways (24, 25). However this noise-filtering 
power comes at the cost of reducing the system’s sensitivity to the 
input (26). This trade-off between input sensitivity and noise sup-
pression implies that the adaptive value of NFLs in signal reception 
cannot be taken for granted. To shed light on this question, we fol-
lowed Tkačik et al. (24) and analyzed theoretically how information 
transmission in a sensory circuit depended on the presence of a neg-
ative feedback. This required assuming that the overall circuit be-
havior can be approximated by a Gaussian channel (10, 19, 24, 27). 
Although noise in bacterial transcription and translation is generally 
non-Gaussian, this approximation has provided insights in qualita-
tive agreement with experimental results (10, 28). An analysis of the 
theoretical channel capacity of an ideal one-component sensory cir-
cuit, with and without feedback, is shown in Supplementary Calcu-
lations. The results revealed that a noncooperative negative feedback 
(n = 1) operating on the sensor (TetR, in this case) achieved higher 
channel capacities than its unregulated counterpart. Moreover, a non-
cooperative feedback was also observed to overperform NFLs dis-
playing cooperativity (n ≥ 2). Thus, theory predicted that a negative 
feedback on TetR, with n = 1, was optimal for MI transmission.

We then determined the apparent cooperativity of the NFL feed-
back operating on TetR. For this purpose, we measured the average 
responses of pR and pA promoters to Tc induction. The average re-
sponse by pA showed a sigmoidal curve, with apparent cooperativity 
n = 2. In contrast, the response from pR was observed to be hyper-
bolic, with n = 1. Therefore, TetR engages in a noncooperative feed-
back, the strategy predicted by theory to yield the best MI transmission 
(Fig. 5B). The results shown in Fig. 5B were also in full accordance 
with previous in vitro data showing that (i) TetR affinity for tetO1 is 
50% lower than for tetO2 and (ii) repression of pA requires binding 
to tetO1 and tetO2, while pR responds to tetO1 only (29).

TetR discriminates Tc concentrations in the  
subinhibitory range
Differences in information transmission and dynamic responses by 
pR and pA promoters translated into different sensing precision levels. 
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TetRmkate2 levels produced from pR could be divided into two re-
gions (H1 and H2 in Fig. 5C), which discriminated between Tc con-
centrations above and below 0.01 g/ml. Meanwhile, GFP levels 
produced from pA showed four discriminative quartiles, each one 
corresponding to a different Tc concentration range (Q1 to Q4 in 
Fig. 5C). Analysis of the impact of growing Tc concentrations on 
bacterial growth rates revealed a correlation between pA output levels 
and the antibiotic effect (Fig. 5E). Tc concentrations without detect-
able effects on bacterial growth did not elicit responses from pR/pA. 
Increasing concentrations above this threshold, however, pushed cells 
into higher pR/pA expression levels (Fig. 5D). The results demon-
strated that the 2-bit MI displayed by the system allowed the dis-
crimination of four Tc concentration ranges, corresponding to four 
different levels of antibiotic toxicity. Using rate-distortion methods, we 
used the conditional output distribution (Fig. 4K) to back-calculate 
the MI theoretical maximum (Supplementary Results). This theoretical 

maximum corresponds to the channel capacity of the pathway. The 
results showed that the TetR/TetA circuit uses 90% of its channel 
capacity, the system being optimized to discriminate antibiotic con-
centrations well below the MIC, between 5 and 25 nM (Fig. 5F).

DISCUSSION
Information transmission through biochemical networks is essen-
tial for cell survival, yet experimental measurements have revealed 
channel capacities around 1 bit (7, 8, 12). While these values do not 
imply that cells necessarily rely on binary computation (12), they 
nevertheless represent low channel capacities, poorly suited for ac-
curate signal quantification (30). Eukaryotes may solve this problem 
by using alternative signaling strategies, such as encoding information 
in transcription factor dynamics (8) or relying on collective decision-
making (31). In bacteria, however, these strategies have not been 
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Fig. 4. Measuring information transmission by the inducer, Tc. (A to D) Data for one-plasmid experimental system without NFL. (E to L) Data for one-plasmid system 
under TetR NFL. From these, (E) to (H) show data from pR::TetRmkate2 expression, while (I) to (L) correspond to pA::GFP values. (A, E, and I) Scatterplots showing fluorescence 
intensity (y axis, arbitrary fluorescence units) in response to increasing Tc concentrations (x axis, in g/ml). Solid lines correspond to average values. (B, F, and J) Density 
maps obtained using optimal bin sizes, as described in the main text. (C, G, and K) Histogram of input (top) and output levels (bottom). Upper chart shows uniform distri-
bution of input Tc concentrations. Lower chart shows the output fluorescence distribution produced from pR or pA promoters. (D, H, and L) Probability density maps for 
the joint input/output probability distributions. Probability densities are indicated according to the color bar.
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described, and with a few remarkable exceptions (25, 32, 33), the 
information capabilities of prokaryotic signaling pathways remain 
largely unexplored. Signal transduction in prokaryotes is mostly 
undertaken by one-component response regulators, proteins able to 
bind to specific molecules and modify gene expression accordingly 
(17). Here, we analyzed the ability of TetR, a canonical one-component 
regulator, to convey information about its cognate inducer, the 
antibiotic Tc.

The results showed that the TetR response against Tc was neither 
intrinsically digital nor analog but was heavily conditioned by the 
noise levels experienced by the signaling pathway. Noise filtering by 
negative feedback was key for the system to achieve a channel capac-
ity of 2 bits. While this channel capacity may not represent a marked 
increase over levels reported for other pathways, it was enough for 
the cell to discriminate between different antibiotic concentrations. 
The overall ability of TetR to quantify the signal may seem poor. 
However, one must take into consideration that sensors and trans-
ducing molecules are generally present at low copy numbers and that 
transcription factors are usually found in the nanomolar range. At 
these concentrations, noise is expected to severely constrain channel 
capacities, with upper limits predicted to be around 3 bits (34). While 

it is possible for the cell to improve information transmission by in-
creasing the concentration of sensors and transducing molecules, 
this strategy quickly leads to diminishing returns, demanding astro-
nomic investments to boost signal detection (2, 34). It is thus likely 
that the sensing ability of TetR and other cellular sensors is primarily 
constrained by cellular economy. The results showed that an NFL 
increased information transmission in TetR. Similarly, theory indi-
cated that a noncooperative NFL operating on the sensor optimizes 
the channel capacity of one-component response regulators. If econ-
omy is a critical factor limiting sensing precision, then the advantage 
of an NFL may be twofold. It not only increases information trans-
mission but also reduces the sensor concentration at the steady state 
when the signal is not present. An NFL operating on the sensor may 
thus increase information transmission while simultaneously reduc-
ing the metabolic burden imposed by the sensory pathway.

One of the key features of information transmission through the 
TetR circuit was its ability to discriminate antibiotic concentrations 
below the MIC (Fig. 5D). Sub-MIC antibiotic levels may not kill bacte-
ria, but this does not imply that they are innocuous. Subinhibitory 
antibiotic concentrations may damage the cell, decreasing the growth 
rate of susceptible populations (Fig. 5E). The sub-MIC selection 

n

t

Fig. 5. Discrimination of sublethal antibiotic concentrations. (A) Output pA::GFP noise levels, expressed as variance divided by squared average achieved by the 
one-plasmid system. Values shown in the figure correspond to the circuit without feedback under arabinose or Tc induction (orange and gray lines, respectively) and to 
the circuit with NFL under Tc induction (green line) (inset: MI values observed in each experimental condition; x axis corresponds to the number of bins for the output). 
(B) Tc transfer function for pA::GFP (green line) and pR::TetRmkate2 (red line) (y axis, promoter induction levels, expressed as % of the maximum; x axis, Tc concentration, in 
g/ml). (C) Discriminative regions in pR/pA expression levels. White lines indicate boundaries between expression levels that unambiguously correspond to different Tc 
concentrations. (D) Model of pR/pA responses versus Tc concentration. Bars indicate percentage of cells located in each of the pR/pA regions, as Tc concentration in-
creases (right). (E) Correlation between Tc effect and pR/pA activation levels. Upper chart shows increases in the doubling time (y axis, in minutes), plotted against Tc 
concentration (x axis, in g/ml). Middle and lower charts show the percentage of cells showing values within pR and pA expression levels, respectively. (F) Channel capac-
ity optimization. Top: Experimental MI values (green line) compared to the theoretical channel capacity (red line) calculated by rate-distortion methods. Bottom: Experi-
mental output distribution (green bars) compared to optimal output distribution calculated by rate-distortion methods (red line).
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window comprises all antibiotic concentrations below the MIC that 
produce a fitness deficit big enough to promote the evolution of 
resistant strains (16). In E. coli, the minimal selective concentration 
for Tc was found to be 15 ng/ml (35). The minimal informative con-
centration in our experiments was 10 ng/ml. Thus, our results sup-
port the idea that TetR-mediated resistance is primarily aimed 
against sublethal antibiotic doses that directly impair cell growth. In 
the environment, antibiotics rarely achieve the concentrations used 
in the clinical setting, yet sub-MIC levels are frequent, as a result of 
widespread antibiotic contamination (36). Quantifying the signal 
also makes sense in the context of repeated exposure to subinhibito-
ry levels of antibiotic. Concentrations over the MIC are lethal; thus, 
their effect on fitness is likely to be close to binary (dead/alive), de-
pending on whether bacteria express resistance. In contrast, subin-
hibitory levels have an incremental effect on growth rates (Fig. 5E). 
Because TetA expression is known to be metabolically expensive (15), 
it may pay off for the cell to invest in a sensory system able to adjust 
resistance levels to the fitness deficit caused by different sub-MIC 
antibiotic concentrations. Testing this hypothesis is complicated 
by the need for precise methods to quantify the fitness distribution, 
in single cells, under sublethal antibiotic levels. If achievable, how-
ever, this analysis may shed light on the elusive relationship be-
tween the sensory power of the cell and its overall impact on cellular 
fitness.

MATERIALS AND METHODS
Bacterial strains
All bacterial strains used in this study were derivatives of E. coli 
K-12 and are listed in table S1.

Plasmid construction
Plasmid pRRG13 (fig. S1A, upper right side) was generated by in-
serting the tetA promoter region (pA) in front of the gfp gene in 
plasmid pUA66. Promoter pA was polymerase chain reaction (PCR) 
amplified from the Tn10 region of the natural plasmid R100 using 
oligonucleotides pTetA1XhoI and pTetA2BamHI. The resulting band 
was inserted in pUA66 using Xho I and Bam HI restriction endonu-
cleases. The TetRmkate2 fusion protein was generated by binding the 
N terminus of protein mKate2 to the C-terminal end of TetR 
through a flexible linker made of Ser-Gly-Gly-Gly-Gly peptide. For 
this purpose, we constructed plasmid pRRG54. Plasmid pRRG54 
was built by Gibson assembly out of three DNA fragments. The first 
one was the PCR product of amplifying mkate2 with primers isom-
katefusdir and isomkate_rev from plasmid pRAF33. The second frag-
ment was PCR amplified using primers isotetRfusrev and isotetRfus_
dir using plasmid R100 as template, and contained tetR. The third 
fragment was generated by linearizing expression vector pBAD33 
using Xba I digestion. Plasmid pRRG62 (fig. S1A, upper left side) 
was constructed by substituting the replication origin of pRRG54 
(p15A) with the replication origin of plasmid pSEVA121 (RK2). 
This way, we constructed an expression vector for TetRmkate2 with a 
lower plasmid copy number, which allowed us to control TetR ex-
pression more tightly. To generate plasmid pRRG62, TetRmkate2 was 
PCR amplified from pRRG54 using primers pbadseva1 and pbadseva2. 
The resulting band was digested with Pac I and Spe I restriction 
endonucleases and inserted in pSEVA121 (37). Plasmid pRRG63 
(fig. S1A) contains TetRmkate2 and its target promoter pA::GFP tran-
scriptional fusion. To generate this plasmid, pA::GFP was PCR 

amplified from plasmid pRRG13 using primers pua66terb1007 
and ptetAgfpkm_revPacI. This PCR fragment was inserted into 
plasmid pRRG62 using Pac I and Hind III restriction endonucleases. 
This way, the bidirectional transcriptional terminator BBa_B1007 
(http://parts.igem.org) was inserted, isolating TetRmkate2 and pA::GFP 
cistrons. In plasmid pRRG74, TetRmkate2 is expressed from promoter 
pR, while the pA::GFP fragment is located in the region occupied by 
pA::TetA in Tn10. Plasmid pRRG74 was generated by Gibson as-
sembly, fusing three DNA fragments. The first one included mkate2, 
amplified using oligonucleotides pRRG74_mkatedir and pRRG74_
mkaterev from plasmid pRAF22. The second one, containing the 
gfp gene, was amplified from pUA66 using primers pRRG74_GFPdir 
and pRRG74_GFPrev. Last, the third one contained the Tn10 re-
gion that includes tetR, pR, and pA. It was amplified from plasmid 
R100 using primers pRRG74_ptetArev and pRRG74_TetRrev.

Strain generation
Strain RRG112 was generated by transforming plasmids pRRG13 
(Kmr) and pRRG62 (Ampr) into E. coli BW27783 by electropora-
tion. Strains RRS113 and RRS129 were generated by transforming 
plasmids pRRG63 (Kmr, Ampr) and pRRG74 (Ampr), respectively, 
into E. coli BW27783 by electroporation. Strain RRS247 was gener-
ated by inserting the region comprising the araC to km genes (both 
included) from plasmid pRRG63 into E. coli chromosome. This way, 
strain RRS247 is the chromosomal counterpart of strain RRS113 
(fig. S1A). The DNA fragment was PCR amplified from RRS113 us-
ing primers AraC_Wanner and Km_AraD_Wanner. These primers 
contained a homologous region to the ara operon such that the am-
plified fragment could be recombined into E. coli TB10 strain fol-
lowing the protocol described in (38). A P1 lysate was then prepared 
and transduced to strain BW27783 to yield strain RRS247.

Culture conditions
Unless otherwise stated, bacterial growth for DNA extraction and 
strain propagation was performed in LB, and cells were grown at 
37°C, with orbital shaking and supplemented with appropriate an-
tibiotic concentrations. Antibiotic concentrations used were as fol-
lows: ampicillin (Amp; 100 g/ml), chloramphenicol (Cm; 25 g/ml), 
and kanamycin (Km; 50 g/ml). Arabinose induction for pBAD-
regulated constructions used the concentrations shown in Supple-
mentary Results and fig. S4, following the protocol described in (39).

DNA purification
Plasmid DNA was purified using the GeneJet Plasmid Miniprep Kit, 
following the vendor’s instructions. Total DNA was extracted using 
Bio-Rad’s InstaGene Matrix, following the vendor’s instructions.

Growth rate determination
Growth rates were determined by measuring the absorbance in a 
Victor3 (PerkinElmer) microplate reader. Cells were grown in M9 
medium supplemented with casamino acids [0.2% (w/v)] as nitro-
gen source and glycerol or glucose (0.5%) as carbon source. Cells were 
pregrown in flasks at 37°C overnight and then subjected to a 1:1000-
fold dilution in fresh medium. A total of 150 l of these diluted cul-
tures were added to the wells of a 96-well microtiter plate (Deltalab). 
Absorbance values at 600 nm were taken every 7 min. These absorb
ance values were background subtracted and transformed into OD600 
(optical density at 600 nm) values by using a calibrating curve ob-
tained with a Shimadzu UV-1603 spectrophotometer. Growth rates 
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() were obtained by fitting the growth curve between OD600 = 0.1 
and OD600 = 0.3 to an exponential. Doubling times () were obtained 
from growth rates as  = ln(2)/. When inducers were added to the 
growth medium (either arabinose or Tc), pre-inoculums were sup-
plemented with the same concentration of inducer to be tested.

Fluorescence microscopy
Cell cultures were pregrown overnight, starting from a 1:1000 dilu-
tion from a master glycerol stock. Cells were grown at 37°C in M9 
medium (Fluka-Sigma M9 salts supplemented with 100 M CaCl2, 
20 mM MgSO4, 0.2% casamino acids, and 0.5% glucose or glycerol). 
Appropriate concentrations of arabinose/glucose/glycerol/Tc were 
added according to the experimental requirements. Overnight satu-
rated cultures were diluted 1:1000 in the same medium and incu-
bated at 37°C for 2 to 3 hours until they reached OD600 = 0.1 to 0.2. 
Thus, cells were grown for approximately 16 generations in the 
same growth medium before their analysis by fluorescence micros-
copy. A total of 2 l of cells were placed onto agarose pads contain-
ing the same growth medium used for preimaging growth. Agarose 
pads were generated by stacking an adhesive frame (Frame-Seal 
Incubation Chamber, Bio-Rad) onto a microscope slide. In the cav-
ity formed by the adhesive frame, a volume of 200 l of hot M9 
medium + 1.5% agarose was added. Another microscope slide was 
placed over the frame immediately after pouring M9 + agarose to 
obtain a uniform and leveled gel. M9 medium used to generate agar 
pads was supplemented with the appropriate arabinose/glucose/
glycerol/Tc concentrations. Pads were allowed to cool down for 
30 min at room temperature, and then, using a sterile scalpel, a square 
of about 0.25 cm2 of the agarose gel was cut. The rest of the agarose 
pad was removed, and 2 l of the appropriate culture was placed on 
top of the pad. The culture droplet was allowed to dry for approxi-
mately 5 min, and then, a coverslip was placed over the frame, seal-
ing it carefully. Sealed pads were transferred to the slide holder of a 
Leica AF6500 inverted epifluorescence microscope, inside an envi-
ronmental chamber that was kept at 37°C along the course of the 
experiment. Cells were allowed to adapt to the pad and temperature 
for 30 min before we started to image. Images were acquired with 
×630 magnification using HCX PL S-APO 63× 1.3 oil objective. We 
acquired images in phase contrast and in the green and red fluores-
cence channels. Filters used for fluorescence images were 562/40-nm 
excitation and 641/75-nm emission for mKate2 and 482/18-nm ex-
citation and 520/28-nm emission for GFP. A Leica EL6000 external 
light engine, equipped with a mercury vapor lamp (HXP Short Arc 
Lamp, Osram), was used for fluorescence excitation. All images were 
obtained using the excitation lamp at maximum power. Images were 
acquired using a 12-bit Andor iXon885 high-speed camera, without 
binning. For red fluorescence images, we used two exposure times 
(500 ms and 2 s) in all images taken. For the green fluorescence 
channel, variable exposure times were applied (10 ms, 100 ms, and 
1 s). To avoid fluorescence bleaching from previous exposures, snap-
shots were taken at least four fields of view away from each other. 
Linearity of the fluorescence emission with exposure time was 
checked using a set of predefined fluorescence beads (Rainbow Flu-
orescent Particle Slide, Spherotech) (fig. S1B).

Image analysis
Images were acquired using LAS AF software (Leica) and exported 
to TIF format. All image analysis procedures were performed using 
Matlab (MathWorks). First, a flat-field correction was applied to 

compensate for field curvature. For this purpose, at least 10 empty 
field images were taken using the same microscope and camera 
configurations used later in the corresponding experiment. Images 
were then averaged, and a correcting matrix was generated. This 
correcting matrix was applied on a second set of empty field images 
to check that it produced a flat field (fig. S1B). This correcting 
matrix was then used on the experimental images to correct for field 
curvature. Cell segmentation was generated from phase images us-
ing MicrobeTracker (40). Algorithm parameters were fine-tuned to 
obtain the best segmentation mask possible. Manual curation was 
nevertheless necessary, so each frame was manually corrected to 
guarantee proper segmentation masks. From these segmentation 
masks, we extracted cell length, area, and fluorescence intensities in 
all relevant channels. Cell size was used as a proxy to check the uni-
formity of growth conditions. For this purpose, cell size histograms 
were generated for all frames. Frames that produced cell size histo-
grams 1 SD outside the norm were discarded. Fluorescence shift 
with respect to phase images was checked by manually curating 
a set of segmentation masks and then comparing its resulting val-
ues to the original ones obtained without shift correction. Fluores-
cence values were background subtracted using MicrobeTracker 
algorithm (40). Fluorescence intensities were generated by normaliz-
ing fluorescence values by their corresponding cell area and expo-
sure time. All fluorescence intensities are thus reported in arbitrary 
units/(ms × m2).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaat5771/DC1
Supplementary Results
Supplementary Calculations
Fig. S1. Genetic constructions used in this work and signal calibration.
Fig. S2 Validation of TetRmkate2 translational fusion.
Fig. S3. Induction of TetRmkate2 from pBAD.
Fig. S4. TetRmkate2 induction histograms are gamma distributed.
Fig. S5. Average responses and noise levels in arabinose-inducible constructions.
Fig. S6. Output distributions and MI for equiprobable, arabinose-induced inputs.
Fig. S7. Influence of feedback cooperativity on MI.
Table S1. Bacterial strains and bacteriophages used in this work.
Table S2. Oligonucleotides used in this work.
Table S3. Bacterial plasmids used in this work.
Table S4. List of reagents used in this work.
Table S5. Image data depository.
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