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Abstract. We study the propagation properties of nonnegative and bounded solutions of the
class of reaction-diffusion equations with nonlinear fractional diffusion: ut+(−Δ)s(um) = f(u). For
all 0 < s < 1 and m > mc = (N − 2s)+/N , we consider the solution of the initial-value problem
with initial data having fast decay at infinity and prove that its level sets propagate exponentially
fast in time, in contrast to the traveling wave behavior of the standard KPP case, which corresponds
to putting s = 1, m = 1, and f(u) = u(1 − u). The proof of this fact uses as an essential ingredient
the recently established decay properties of the self-similar solutions of the purely diffusive equation,
ut + (−Δ)sum = 0.
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1. Introduction. We consider the following reaction-diffusion problem:

(1.1)

{
ut(x, t) + Lsu

m(x, t) = f(u) for x ∈ R
N and t > 0,

u(x, 0) = u0(x) for x ∈ R
N ,

where Ls = (−Δ)s is the fractional Laplacian operator with s ∈ (0, 1). We are inter-
ested in studying the propagation properties of nonnegative and bounded solutions of
this problem in the spirit of the Fisher-KPP theory. Therefore, we assume that the
reaction term f(u) satisfies

(1.2) f ∈ C1([0, 1]) is a concave function with f(0) = f(1) = 0, f ′(1) < 0 < f ′(0).

For example, we can take f(u) = u(1−u). Our results will depend on the parameters
m and s, according to the ranges mc < m < m1, m1 < m ≤ 1, and m > 1, where

mc =
(N − 2s)+

N
, m1 =

N

N + 2s
.

1.1. Perspective. The traveling wave behavior. The problem with stan-
dard diffusion goes back to the work of Kolmogorov, Petrovskii, and Piskunov [23],
which presents the most simple reaction-diffusion equation concerning the concentra-
tion u of a single substance in one spatial dimension,

(1.3) ∂tu = Duxx + f(u).

The choice f(u) = u(1 − u) yields Fisher’s equation [20], which was originally used
to describe the spreading of biological populations. The celebrated result says that
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3242 DIANA STAN AND JUAN LUIS VÁZQUEZ

the long-time behavior of any solution of (1.3), with suitable data 0 ≤ u0(x) ≤ 1
that decay fast at infinity, resembles a traveling wave with a definite speed. When
considering (1.3) in dimensions N ≥ 1, the problem becomes

(1.4) ut −Δu = f(u) in (0,+∞)× R
N ,

which corresponds to (1.1) in the case when Ls = −Δ, the standard Laplacian. This
case has been studied by Aronson and Weinberger in [3, 4], where they prove the
following result.

Theorem AW. Let u be a solution of (1.4) with u0 �= 0 compactly supported in
R

N and satisfying 0 ≤ u0(·) ≤ 1. Let c∗ = 2
√
f ′(0). Then,

1. if c > c∗, then u(x, t) → 0 uniformly in {|x| ≥ ct} as t → ∞;
2. if c < c∗, then u(x, t) → 1 uniformly in {|x| ≤ ct} as t → ∞.

In addition, problem (1.4) admits planar traveling wave solutions connecting 0 and 1,
that is, solutions of the form u(x, t) = φ(x · e+ ct) with

−φ′′ + cφ′ = f(φ) in R, φ(−∞) = 0, φ(+∞) = 1.

This asymptotic traveling wave behavior has been generalized in many interesting
ways. Of concern here is the consideration of nonlinear diffusion. De Pablo and
Vázquez study in [17] the existence of traveling wave solutions and the property of
finite propagation for the reaction-diffusion equation

ut = (um)xx + λun(1 − u), (x, t) ∈ R× (0,∞)

with m > 1, λ > 0, n ∈ R, and u = u(x, t) ≥ 0. Similar results hold also for other
slow diffusion cases, m > 1, studied by de Pablo and Sánchez [16].

1.2. Nontraveling wave behavior. Departing from these results, King and
McCabe examined in [22] a case of fast diffusion, namely,

ut = Δum + u(1− u), x ∈ R
N , t > 0,

where (N −2)+/N < m < 1. They showed that the problem does not admit traveling
wave solutions. Using a detailed formal analysis, they also showed that level sets of the
solutions of the initial-value problem with suitable initial data propagate exponentially
fast in time. They extended the results to all 0 < m < 1.

On the other hand, and independently, Cabré and Roquejoffre in [11, 12] studied
the case of fractional linear diffusion, s ∈ (0, 1) and m = 1, and they concluded in the
same vein that there is no traveling wave behavior as t → ∞, and indeed the level sets
propagate exponentially fast in time. The fast propagation is not surprising because
of the long-distance dispersal, even if the diffusion is linear.

Motivated by these two examples of break of the asymptotic traveling wave struc-
ture, we study here the case of a diffusion that is both fractional and nonlinear,
namely, problem (1.1) in the range s ∈ (0, 1) and m > mc. The initial datum
u0(x) : R

N → [0, 1] and satisfies a growth condition of the form

(1.5) 0 ≤ u0(x) ≤ C|x|−λ(N,s,m) ∀x ∈ R
N ,

where the exponent λ(N, s,m) is stated explicitly in the different ranges, mc < m <
m1 and m1 < m. In this paper we establish the negative result about traveling wave
behavior, more precisely, we prove that an exponential rate of propagation of level
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KPP EQUATION WITH NONLINEAR FRACTIONAL DIFFUSION 3243

sets is true in all cases. We also explain the mechanism for it in simple terms: the
exponential rate of propagation of the level sets of solutions (with initial data having a
certain minimum decay for large |x|) is a consequence of the power-like decay behavior
of the fundamental solutions of the diffusion problem studied in [26]. Therefore, we
obtain two main cases in the analysis, mc < m < m1 and m > m1, depending on that
behaviour.

1.3. Main results. The existence of a unique mild solution of problem (1.1)
follows by semigroup approach. The mild solution corresponding to an initial datum
u0 ∈ L1(RN ), 0 ≤ u0 ≤ 1, is in fact a positive, bounded, strong solution with classical
regularity. In the appendix we give a brief discussion of these properties. Let us
introduce some notation. Throughout the paper we will consider m > mc. Once and
for all, we put

β = 1/(N(m− 1) + 2s),(1.6)

σ1 =
1−m

2s
f ′(0), σ2 =

1

N + 2s
f ′(0), σ3 =

1 + 2(m− 1)βs

N + 2s
f ′(0).

The value σ1 appears for mc < m < m1 and then σ1 > σ2. Notice also that σ2 < σ3

for m > 1. Here is the precise statement of our main results for the solutions of the
generalized KPP problem (1.1).

Theorem 1.1. Let N ≥ 1, s ∈ (0, 1), f satisfying (1.2) and m1 < m ≤ 1. Let u
be a solution of (1.1), where 0 ≤ u0(·) ≤ 1 is measurable, u0 �= 0, and satisfies

(1.7) 0 ≤ u0(x) ≤ C|x|−(N+2s) ∀x ∈ R
N .

Then
1. if σ > σ2, then u(x, t) → 0 uniformly in {|x| ≥ eσt} as t → ∞;
2. if σ < σ2, then u(x, t) → 1 uniformly in {|x| ≤ eσt} as t → ∞.

Theorem 1.2. Let N ≥ 1, s ∈ (0, 1), f satisfying (1.2) and mc < m < m1. Let
u be a solution of (1.1), where 0 ≤ u0(·) ≤ 1 is measurable, u0 �= 0, and satisfies

(1.8) 0 ≤ u0(x) ≤ C|x|−2s/(1−m) ∀x ∈ R
N .

Then
1. if σ > σ1, then u(x, t) → 0 uniformly in {|x| ≥ eσt} as t → ∞;
2. if σ < σ1, then u(x, t) → 1 uniformly in {|x| ≤ eσt} as t → ∞.

Theorem 1.3. Let N ≥ 1, s ∈ (0, 1), f satisfying (1.2) and m > 1. Let u be a
solution of (1.1), where 0 ≤ u0(·) ≤ 1 is measurable, u0 �= 0, and satisfies

0 ≤ u0(x) ≤ C|x|−(N+2s) ∀x ∈ R
N .

Then
1. if σ > σ3, then u(x, t) → 0 uniformly in {|x| ≥ eσt} as t → ∞;
2. if σ < σ2, then u(x, t) → 1 uniformly in {|x| ≤ eσt} as t → ∞.

Remarks. In all ranges of parameters m > mc, there appear critical values of σ
with an influence on the behavior of the level sets.

• In the case m1 < m < 1, the case σ = σ2 is still open. This critical exponent
is the same as in the case of the linear diffusion m = 1, proved in [12].

• In the range mc < m < m1, the case σ = σ1 is still open. In particular, for
the classical case s = 1 and f(u) = u(1 − u) we get σ1 = 1−m

2 , which is a
critical speed found by King and McCabe [22]. In this way, we complete their
result with rigorous proofs to all s ∈ (0, 1).
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(1,1)

m

s

N/(N+2)

(0,0)

(N-2)+/N

R1 R2 R3

(1,0)

s=1

m=1

Fig. 1. Ranges of parameters m and s: we study the cases R1 = {s ∈ (0, 1), (N − 2s)+/N <
m < N/(N + 2s)}, R2 = {s ∈ (0, 1), N/(N + 2s) < m ≤ 1}, R3 = {s ∈ (0, 1), m > 1}.

• In the case m > 1, we do not cover the entire interval [σ2, σ3]. If we could
prove that the behavior in this interval is the same as in the case σ > σ3,
then the results of Theorems 1.1 and 1.3 would agree.

• The result of Theorems 1.1 and 1.2 is true also in the case m = m1, where
σ1 = σ2. The outline of the proof is the same, but there are a number of
additional technical difficulties, typical of borderline cases. We have decided
to skip the lengthy analysis of this case because of the lack of novelty for our
intended purpose.

Our main conclusion is that exponential propagation is shown to be the common oc-
currence, and the existence of traveling wave behavior is reduced to the classical KPP
cases mentioned at the beginning of this discussion (see the dotted line in Figure 1).

As we have mentioned, one of the motivations of the work was to make clear the
mechanism that explains the exponential rate of expansion in simple terms, even in
this situation that is more complicated than [12]. In fact, due to the nonlinearity, the
solution of the diffusion problems involved in the proofs does not admit an integral
representation as the casem = 1. Instead, we will use as an essential tool the behavior
of the fundamental solution of the fractional porous medium equation (FPME), also
called the Barenblatt solution, recently studied in [26]. To be precise, the decay
rate of the tail of these solutions as |x| → ∞ is the essential information we use
to calculate the rates of expansion. This information is combined with more or less
usual techniques of linearization and comparison with sub- and supersolutions. We
also need accurate lower estimates for positive solutions of the FPME and a further
self-similar analysis for the linear diffusion problem.

1.4. Organization of the proofs. In section 4, under the assumption of initial
datum with the decay (1.5), we prove convergence to 0 in the outer set {|x| ≥ eσt}
by constructing a supersolution of the linearized problem with reaction term f ′(0)u.
The arguments hold for σ larger than the corresponding critical velocity.

In section 5 we prove convergence to 1 on the inner sets {|x| ≤ eσt} in various
steps. We only assume 0 ≤ u0 ≤ 1, u0 �= 0. We first show that the solution reaches
a certain minimum profile for positive times, thanks to the analysis of Theorem 1.4
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below; we then perform an iterative proof the conservation in time of this minimum
level, and finally convergence to 1 is obtained by constructing a supersolution to the
problem satisfied by 1− um. Therefore, we deal with a problem of the form

a(x, t)wt(x, t) + Lsw(x, t) + b0 w(x, t) ≥ 0.

A suitable choice for constructing the supersolution w is represented by self-similar
solutions of the form U(x, t) = tα

′
F (|x|t−β′

) of the linear problem

(1.9) Ut + LsU = 0

with radial increasing initial data. This motivates us to derive a number of properties
of the linear diffusion problem (1.9), also known as the fractional heat equation.
In particular, we need to show that the profile F mentioned above has the same
asymptotic behavior as the initial data. In order to establish such a fact we have to
review (section 6) the properties of the fundamental solution of problem (1.9):

Ks(x, t) = t−
N
2s f(t−

1
2s |x|), f(r) ∼ r−(N+2s).

We perform a further analysis of the profile f by proving that rf ′ ∼ r−(N+2s).
Remark. As a consequence of the exponential propagation of the level sets, we

immediately obtain the nonexistence of traveling wave solutions of the form u(x, t) =
ϕ(x+t ·e). However, our results amount to the existence of a kind of logarithmic trav-
eling wave behavior, that is, a kind of wave solutions that travel linearly if we measure
distance in a logarithmic scale. This whole issue deserves further investigation.

1.5. New estimates for the fractional diffusion problem. The study of
the sub- and supersolutions is strongly determined by the existence of suitable lower
parabolic estimates for the associated diffusion problem, the FPME

(1.10)

{
ut(x, t) + Lsu

m(x, t) = 0 for x ∈ R
N and t > 0,

u(x, 0) = u0(x) for x ∈ R
N .

In section 3, we devote a separate study to the case m > 1 of the behavior of the
solution when |x| → ∞, more precisely, its rate of decay, for small times t > 0. Our
main result says that roughly speaking

u(x, t) ∼ t |x|−(N+2s)

when |x| is large and t small. The precise result is as follows.
Theorem 1.4. Let m > 1. Let u(x, t) be a solution of problem (1.10) with initial

data u0(x) ≥ 0 such that u0(x) ≥ 1 in the ball B1(0). Then there is a time t1 > 0 and
constants C∗, R > 0 such that

(1.11) u(x, t) ≥ C∗ t |x|−(N+2s)

if |x| ≥ R and 0 < t < t1.
The fact that solutions of the FPME with nonnegative initial data become im-

mediately positive for all times t > 0 in the whole space has been proved in [13, 14].
Such result is true not only for 0 < s < 1 and m > 1, but also for 0 < s < 1 and
m > mc = (N − 2s)+/N , this lower restriction on m aimed at avoiding the possibility
of extinction in finite time.
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Precise quantitative estimates of positivity for t > 0 on bounded domains of RN

have been obtained in the recent paper [9]. The estimates of that reference are also
precise in describing the behavior as |x| → ∞ when m < 1 (fast diffusion), but they
are not relevant to establishing the far-field behavior for m > 1. We recall that with
the limit s → 1 with m > 1 fixed we get the standard porous medium equation,
where positivity at infinity for all nonnegative solutions is false due to the property of
finite propagation; cf. [27]. This explains that some special characteristic of fractional
diffusion must play a role if positivity is true.

1.6. Remarks on the reaction problem. (a) As further evidence of the in-
fluence of the tail of the data on the propagation rate, we consider the purely reactive
problem (no diffusion)

(1.12) ut = f(u), x ∈ R
N , t > 0,

with initial datum u0 and f(u) ∼ u(1 − u) ∼ f ′(0)u as u → 0. It is easy to see that
when we simplify f(u) to f ′(0)u = au, the exact solution is

u(x, t) = u0e
f ′(0)t.

Let us examine the level sets in two particular cases.
(b) Exponential decay. By considering initial datum of the form u0(x) ∼ e−x2

for
large |x|, then the solution u(x, t) satisfies a similar behavior

u(x, t) ∼ e−(x2−at) for large x.

The level sets u(x, t) = constant are characterized by x =
√
at+ c.

(c) Power decay. By considering initial datum of the form u0(x) ∼ |x|−(N+2s) for
large |x|, then the solution u(x, t) is such that

u(x, t) ∼ eat|x|−(N+2s).

The level sets u(x, t) = constant are characterized by |x| ∼ e
a

N+2s t.
(d) Conclusion. For |x| large, the solution of the reaction-diffusion problem (1.1)

behaves like the solution of problem (1.12), that is, the nondiffusion case. The frac-
tional diffusion term (−Δ)sum does not change the basic behavior of the solution for
large |x|. This fact has also been observed by King and McCabe in [22] in the fast
diffusion case with the standard Laplace operator.

1.7. Comment on applications and mathematical motivation. Anoma-
lous diffusion processes with long-range effects connected to Levy flights in stochastic
processes are usually modeled with nonlocal operators, in particular with the frac-
tional Laplacian. They describe different phenomena in physics, finance, biology, and
many others. Equations involving anomalous diffusion may take a nonlinear form.
(See [9] for a more detailed summary.)

The reaction-diffusion problem (1.1) with linear diffusion m = 1, recently studied
by Cabré and Roquejoffre [12], appears in population dynamics (see [6]). The nonlocal
character of the diffusion operator generates the following event: the stable state u = 1
invades faster (with exponential speed) the unstable state u = 0. This behavior was
seen already in the case of local nonlinear diffusion with nonlinearity m < 1 (fast
diffusion) by King and McCabe [22]. The study of the problem involving nonlinear
fractional diffusion and KPP reaction is motivated by such preceding works. We show
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that the exponential invasion of the unstable state by the stable one is a quite general
phenomenon that holds for a wide range of equations combining nonlinearity and
KPP reaction. As a conclusion, the traveling wave with constant speed of the original
KPP model looks in that respect like a very special phenomenon.

2. Preliminaries.

2.1. Nonlinear diffusion. The FPME. We recall some useful results concern-
ing the porous medium equation with fractional diffusion (FPME). We refer to [14],
where the authors develop the basic theory for the general problem

(2.1)

{
ut = −Ls(|u|m−1u) for x ∈ R

N and t > 0,

u(0, x) = u0(x) for x ∈ R
N ,

with data u0 ∈ L1(RN ) and exponents 0 < s < 1 and m > 0. Existence and
uniqueness of a weak solution is established for m > mc = (N − 2s)+/N giving rise
to an L1-contraction semigroup. Recently in [15], the classical regularity was proved.
Positivity of the solution for any m > 0 corresponding to nonnegative data has been
proved in [9]. We give a brief discussion on these facts in the appendix.

2.2. Barenblatt solutions of the FPME. An important tool that we use
in the paper is represented by the so-called Barenblatt solutions of the FPME. In
[26], Vázquez proves existence, uniqueness, and main properties of such fundamental
solutions of the equation

(2.2) ut + (−Δ)sum = 0,

taking as initial data a Dirac delta u(x, 0) = Mδ(x), where M > 0 is the mass of the
solution. We will give here a short description of these functions and recall their main
properties we need in the paper. Next, we recall Theorem 1.1 from [26].

Theorem 2.1. For every choice of parameters s ∈ (0, 1) and m > mc =
max{(N − 2s)/N, 0}, and every M > 0, (2.2) admits a unique fundamental solu-
tion with initial condition Mδ(x); it is a nonnegative and continuous weak solution
for t > 0 and takes the initial data in the sense of Radon measures. Such solution has
the self-similar form

(2.3) BM (x, t) = t−αFM (|x|t−β)

for suitable α and β that can be calculated in terms of N and s in a dimensional way,
precisely

(2.4) α =
N

N(m− 1) + 2s
, β =

1

N(m− 1) + 2s
.

The profile function FM (r), r ≥ 0, is a bounded and Hölder continuous function, it is
positive everywhere, it is monotone, and it goes to zero at infinity.

In what follows we denote by FM the profile corresponding to the Barenblatt
soluton with mass M , as stated in the above theorem. By Theorem 2.1 there exists a
unique self-similar solution B1(x, t) with mass M = 1 of problem (2.2) and, moreover,
it has the form B1(x, t) = t−αF1(|x|t−β). Let BM (x, t) the unique self-similar solution
of problem (2.2) with mass M . Such function will be of the form

BM (x, t) = MB1

(
x,Mm−1t

)
,
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which can be written in terms of the profile F1 as

BM (x, t) = M1−(m−1)αt−αF1

(
(Mm−1

1 t)−β|x|).
Moreover, the precise characterization of the profile FM is given by Theorem 8.1
of [26].

Theorem 2.2. For every m > m1 = N/(N+2s) we have the asymptotic estimate

(2.5) lim
r→∞FM (r)rN+2s = C1M

σ,

where M =
∫
F (x)dx, C1 = C1(m,N, s) > 0 and σ = (m −m1)(N + 2s)β. On the

other hand, for mc < m < m1, there is a constant C∞(m,N, s) such that

(2.6) lim
r→∞FM (r)r2s/(1−m) = C∞.

The case m = m1 has a logarithmic correction. The profile FM has the upper bound

(2.7) FM (r) ≤ Cr−N−2s+ε ∀r > 0

for every ε > 0 and the lower bound

(2.8) FM (r) ≥ Cr−N−2s log r ∀ large r.

We state now some properties of the profile FM (r), r ≥ 0, obtained as conse-
quences of formula (2.5) that we will use in what follows. Let us consider first the case
m > m1.

1. F1 attains its maximum when r = 0, i.e., FM (r) ≤ FM (0), for all r ≥ 0.
2. There exists K1 > 0 such that

(2.9) FM (r) ≤ K1r
−(N+2s) ∀r > 0.

3. There exists K2 > 0 such that

(2.10) FM (r) ≥ K2(1 + rN+2s)−1 ∀r ≥ 0.

Similar estimates hold also in the case mc < m < m1, and the corresponding tail
behavior is different, FM (r) ∼ r−2s/(1−m). This will have an effect in the different
results we get for the generalized KPP problem.

As a consequence, Vázquez also proves that the asymptotic behavior of general
solutions of problem (2.1) is represented by such special solutions as described in
Theorem 10.1 from [26].

Theorem 2.3. Let u0 = μ ∈ M+(R
N ), M = μ(RN ) and let u be the solution of

(2.1) and BM be the self-similar Barenblatt solution with mass M . Then we have

lim
t→∞ |u(x, t)−BM (x, t;M)| = 0

and the convergence is uniform in R
N .
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2.3. Lower estimates for nonnegative solutions in the case mc < m < 1.
We recall the notation mc = (N − 2s)+/N , β = 1/[2s+N(m− 1)] > 0 for m > mc.
The results we quote are valid for initial data in a weighted space u0 ∈ L1(RN , ϕdx),
where ϕ satisfies the following conditions.

Assumption (A). The function ϕ ∈ C2(RN ) is a positive real function that is
radially symmetric and decreasing in |x| ≥ 1. Moreover ϕ satisfies

0 ≤ ϕ(x) ≤ |x|−α for |x| � 1 and N − 2s

1−m
< α < N +

2s

1−m
.

We recall now Theorem 4.1 from [9] giving local lower bounds for the solution of the
diffusion problem.

Theorem 2.4 (local lower bounds). Let R0 > 0, mc < m < 1, and let 0 ≤
u0 ∈ L1(RN , ϕdx), where ϕ is as in Assumption (A). Let u(·, t) ∈ L1(RN , ϕdx) be a
very weak solution to the Cauchy problem (2.1), corresponding to the initial datum
u0. Then there exists a time

(2.11) t∗ := C∗R
1
β

0 ‖u0‖1−m
L1(BR0)

such that

(2.12) inf
x∈BR0/2

u(x, t) ≥ K1R
− 2s

1−m

0 t
1

1−m if 0 ≤ t ≤ t∗

and

(2.13) inf
x∈BR0/2

u(x, t) ≥ K1

‖u0‖2sβL1(BR0 )

tNβ
if t ≥ t∗.

The positive constants C∗, K1, K2 depend only on m, s, and N ≥ 1.
The previous estimates, computed for t = t∗, are rewritten as

(2.14) inf
x∈BR0/2

u(x, t) ≥ K1C
1

1−m∗ ‖u0‖L1(BR0 )
R−N

0 .

Then, if R0 increases, the lower bound will decrease.
Concerning quantitative lower estimates, we recall Theorem 4.3 from [9].
Theorem 2.5 (global lower bounds when m1 < m < 1). Under the conditions

of Theorem 2.4 we have in the range m1 < m < 1

(2.15) u(x, t) ≥ C(t)

|x|N+2s
when |x| � 1,

valid for all 0 < t < T with some bounded function C > 0 that depends on t, T and
on the data.

Theorem 2.6 (global lower bounds when mc < m < m1). Under the conditions
of Theorem 2.4 we have in the range mc < m < m1

(2.16) u(x, t0) ≥ C(t)|x|−2s/(1−m)

if |x| ≥ R and 0 < t < t0.
The lower estimates for exponents m > 1 need a new analysis that we supply in

the next section.
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3. Lower parabolic estimate in the case m > 1. We consider the FPME
(with no reaction term) for x ∈ R

N and t > 0 with nonnegative and integrable initial
data

(3.1) u(x, 0) = u0(x),

and we also assume that u0 is bounded and has compact support or decays rapidly
as |x| → ∞. We want to describe the behavior of the solution u(x, t) > 0 as |x| → ∞,
more precisely, its rate of decay, for small times t > 0. We take m > 1 since the study
of positivity for m ≤ 1 was dealt with in previous results.

The first step in our asymptotic positivity analysis of solutions of (2.2) is to ensure
that solutions with positive data remain positive and they have a precise tail behavior
from below, which is based on a delicate subsolution construction.

Theorem 3.1. Let m > 1 and let u(x, t) be a solution to (2.2) with initial data
u0(x) ≥ 0 such that u0(x) ≥ 1 in the ball B1(0). Then there is a time t1 > 0 and
constants C∗, R > 0 such that

(3.2) u(x, t) ≥ C∗ t |x|−(N+2s)

if |x| ≥ R and 0 < t < t1.
Proof. By comparison we may consider some smaller initial data u0 such that

0 ≤ u0(x) ≤ 1 and u0(x) = 1 in the ball of radius 2. Moreover, u0 is smooth. By the
results of [14] we know that u(x, t) ∈ Cα(RN × [0, T ]) and u(x, t) > 0 for all x ∈ R

N

and t > 0. We have that u(x, t) ≥ 1/2 in the ball of radius 1/2 for all small times
0 < t < t0.

• We want to construct a subsolution of the form

Um(x, t) = G(|x|) + tm Fm(|x|).
We want to choose G ≥ 0 and F ≥ 0 in such a way that U will be a formal sub-
solution of the FPME in a domain of the form Q = {|x| ≥ 1/2, 0 < t < t1}, i.e., we
want Ut + (−Δ)sUm ≤ 0 in Q. Note that

Ut = (G(|x|) + tm Fm(|x|))(1/m)−1tm−1Fm(|x|) ≤ F (|x|).
We also have, with Ls = (−Δ)s,

LsU
m = LsG(|x|) + tmLsF

m(|x|).
We take F positive, smooth and F (r) ∼ r−(N+2s) as r → ∞ to get the desired
conclusion after the comparison argument: u(x, t) ≥ U(x, t) ≥ ct r−(N+2s) if r is large
and t ∼ 0. For later use, let us say that F ≤ C2r

−(N+2s) for r > 1/2. Since m > 1 we
can choose F smooth so that LsF

m = O(r−(N+2s)) for r > 1/2 (use the asymptotic
estimates like the first lemma in [9]).

We will takeG(r) = 0 for r = |x| ≥ 1/2 so that U(x, t) = t F (|x|) there. IfG is also
smooth we have LsG bounded and LsG ∼ −C1r

−(N+2s) as r → ∞. By contracting
G in space, G̃(x) = G(kx), k > 0, we may then say that LsG ≤ −C1r

−(N+2s) for
r > 1/2. Then we will have for r > 1/2 and 0 < t  1 that

Ut + LsU
m ≤ F + LsG+ tmLsF

m ≤ C2r
−(N+2s) − C1r

−(N+2s) + tmLsF
m

≤ (C2 + ε)r−(N+2s) − C1r
−(N+2s) ≤ 0

if C1 > C2. We can choose G large so that C1 is large enough.
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• We now want to use the viscosity method to compare u(x, t) with U(x, t) in
the region Q = {|x| ≥ 1/2, 0 < t < t1}, and this will prove that U(x, t) ≤ u(x, t) in
Q. Apart from the subsolution condition that we have checked, we need a suitable
comparison of the boundary conditions at r = 1/2,

U(1/2, t) = tF (1/2) ≤ 1/2.

This ends the construction if the comparison result is justified. The contradiction
argument at the first point of contact between u and U will be justified as in [9]
(where it was applied to fast diffusion equations of fractional diffusion type) if the
solution we have is a bit smooth: ut and Lsu

m must be continuous and the equation
must be satisfied pointwise there. This regularity is true and the proofs are under
study now.

Alternatively, we may use implicit time discretization with a sequence of approx-
imations. The justification of the method in the elliptic case is done in the paper [28]
on symmetrization techniques.

Remark. The level u0(x) ≥ 1 in the ball B1(0) can be replaced by u0(x) ≥ ε > 0
in any other ball by means of translation and scaling. In this way the result is true
for all continuous and nonnegative initial data u0 and is of course nontrivial.

4. Evolution of level sets of solutions to problem (1.1). In this section
we start the proof of the main result of the paper on evolution of level sets with
exponential speed of propagation. In a first step we prove the convergence to zero on
outer sets. Since the decay assumption on the initial data is the same for m1 < m < 1
and m > 1, we will treat both cases, as well as m = 1, in the following lemma.

Lemma 4.1. We consider m > m1 and let u be the solution of problem (1.1) with
initial datum u0(x) ∈ L1(RN ), 0 ≤ u0 ≤ 1. We assume that u0 satisfies the decay
property

(4.1) u0(x) ≤ C|x|−(N+2s) ∀x ∈ R
N .

Then, for σ > σ3 if m > 1 (respectively, for σ > σ2 if m1 < m ≤ 1), we have

(4.2) u(x, t) → 0 as t → ∞
uniformly for |x| ≥ eσt.

Proof. We consider the solution u(x, t) of the linearized problem

ut + Lsu
m = f ′(0)u, u(0, x) = u0(x).

Since f is a concave function, we have f ′(0)s ≥ f(s) for all s ∈ [0, 1], and thus u is a
supersolution of problem (1.1), which implies the upper estimate

u(x, t) ≤ u(x, t) for t ≥ 0, x ∈ R
N .

Next, we define ṽ(x, τ) by

(4.3) ṽ(x, τ) = e−f ′(0)tu(x, t)

and new time

τ =
1

(m− 1)f ′(0)
[
e(m−1)f ′(0)t − 1

]
if m > 1,(4.4)

τ =
1

(1−m)f ′(0)
[
1− e−(1−m)f ′(0)t] if m < 1,(4.5)
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and τ = t for m = 1. It is immediate to check that ṽ(x, τ) is a solution of the FPME
(1.10) with initial datum ṽ0 = u0. Let BM (x, τ) the Barenblatt solution with mass M
of the FPME, as defined in section 2.2. By virtue of the properties of the Barenblatt
solutions and assumption (4.1) on the initial data, we conclude there exists M > 0
big enough and τ0 > 0 such that

ṽ0(x) ≤ BM (x, τ0).

By the maximum principle

ṽ(x, τ) ≤ BM (x, τ + τ0) ∀x ∈ R
N , t > 0.

Now, using the characterization of the decay of the Barenblatt profile given by relation
(2.5), we obtain that there exists K1 > 0 such that FM (r) ≤ K1r

−(N+2s) for all r ≥ 0.
We obtain the following upper estimate on the solution u of problem (1.1):

u(x, t) ≤ u(x, t) = ef
′(0)tṽ(x, τ)

≤ ef
′(0)tBM (x, τ + τ0) = ef

′(0)t(τ + τ0)
−αFM (|x|(τ + τ0)

−β)

≤ ef
′(0)t(τ + τ0)

−αK1(|x|(τ + τ0)
−β))−(N+2s)

= K1e
f ′(0)t(τ + τ0)

2βs|x|−(N+2s).

Case m > 1. In order to continue the estimate, we remark that for large times t,
the term τ2βs has an influence on the result only in the casem > 1. Then (τ+τ0)

2βs ≤
e(m−1)f ′(0)t for large t. Let us assume that |x| ≥ eσt. Then one has

u(x, t) ≤ CK1e
f ′(0)tτ2βse−σ(N+2s)t = CK1e

[f ′(0)+2f ′(0)(m−1)βs−σ(N+2s)]t.

We want to have f ′(0)+2f ′(0)(m− 1)βs−σ(N +2s) < 0, which is just the condition

σ >
1 + 2(m− 1)βs

N + 2s
f ′(0) = σ3.

We have obtained the convergence of u(x, t) to 0 as t → ∞ for |x| ≥ eσt.
Case m ≤ 1. In this case, the term (τ + τ0)

2βs is bounded for every t > 0, as we
can see from (4.5). As before, we assume |x| ≥ eσt. Then, we get

u(x, t) ≤ CK1e
f ′(0)te−σ(N+2s)t = CK1e

[f ′(0)−σ(N+2s)]t.

For σ > σ2 = f ′(0)
N+2s , the exponent is negative f ′(0) − σ(N + 2s) < 0 and we obtain

the convergence of u(x, t) to 0 as t → ∞.
Lemma 4.2. We consider mc < m < m1. Let u be the solution of problem (1.1)

with initial datum u0(x) ∈ L1(RN ), 0 ≤ u0 ≤ 1, and we assume u0 satisfies the decay
property

u0(x) ≤ C|x|−2s/(1−m) ∀x ∈ R
N .

Then, for σ > σ1 we have

u(x, t) → 0, t → ∞,

uniformly for |x| ≥ eσt.
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Proof. The proof follows that of Lemma 4.1 since the Barenblatt solutionBM (x, τ) =
τ−αFM (|x|τ−β) of the diffusion problem satisfies FM (r) ∼ r−2s/(1−m) according to
Theorem 2.2. Therefore, we obtain the estimate

u(x, t) ≤ ef
′(0)t(τ + τ0)

−αK1(|x|(τ + τ0)
−β))−2s/(1−m)

= K1e
f ′(0)t(τ + τ0)

1/(1−m)|x|−2s/(1−m).

Since m < 1, the term (τ + τ0)
1/(1−m) is controlled by ef

′(0)t and then for |x| ≥ eσt

we obtain

u(x, t) ≤ K1e
f ′(0)t−2sσt/(1−m).

For σ > 1−m
2s f ′(0) = σ1 we obtain the desired convergence to 0 as t → ∞.

Remarks.
I. When m = 1 we recover the minimal speed σ2 = f ′(0)/(N + 2s) obtained by

Cabré and Roquejoffre in [12]. The proof is similar, but in the nonlinear case
we have to make an exponential change of time variable. Note also that we
only use the decay properties of the fundamental solution.

II. The value of the critical exponent σ2 can be easily obtained from the following
formal study of the level lines of u(x, t). Thus, the set {u(x, t) ∼ ε} can be
written in terms of ṽ(x, τ) defined in (4.3) as

(4.6) ef
′(0)tṽ(x, τ) ∼ ε.

By Theorem 2.3, ṽ(x, τ) behaves like the Barenblatt solution of the FPME
(2.1) (we discuss only the case m > m1):

ṽ(x, τ) ∼ B(x, τ) = τ−αF (r), F (r) ∼ r−(N+2s), r = |x|τ−β .

From [26], we know that B(x, τ) ∼ τ−α+β(N+2s)|x|−(N+2s), thus ṽ(x, τ)∼
τ2βs|x|−(N+2s). At this moment, (4.6) implies ef

′(0)tτ2βs|x|−(N+2s) ∼ ε.
For instance, in the m > 1 case, it follows that

|x| ∼
(
1

ε
e(1+2βs(m−1))f ′(0)t

)1/(N+2s)

∼ e
1+2βs(m−1)

N+2s f ′(0)t,

and we deduce an exponential behavior of the level sets |x| ∼ eσ3t, where

σ3 = 1+2βs(m−1)
N+2s f ′(0). Similarly, in the m1 < m < 1 case, we get that

|x| ∼
(
1

ε
ef

′(0)t
)1/(N+2s)

∼ eσ2t, σ2 =
f ′(0)
N + 2s

.

5. Evolution of level sets II. Convergence to 1 on inner sets. In this
section, we will prove the convergence to 1 of the solution u(x, t) of problem (1.1),
i.e., the second part of the statements of our main theorems, Theorems 1.1, 1.2,
and 1.3.

5.1. Case m > m1. We will present this case in full detail. The proof for the
case mc < m < m1 being similar, we will sketch it at the end of this section. We have

N ≥ 1, s ∈ (0, 1), m > m1, f satisfies (1.2), and σ2 = f ′(0)
N+2s as defined in (1.6).

Proposition 5.1. Let N ≥ 1, s ∈ (0, 1), m1 < m, f satisfying (1.2). Let u be
a solution of problem (1.1) with initial datum 0 ≤ u0(·) ≤ 1, u0 �= 0. Then for every
σ ∈ (0, σ2), u(x, t) → 1 uniformly on {|x| ≤ eσt} as t → ∞.
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Proof. We fix σ ∈ (0, σ2). Proving the convergence of u(x, t) to 1 is equivalent to
proving the convergence of 1 − um to 0. Therefore, we fix λ > 0 and we need to find
a time tλ large enough such that 1− um(x, t) ≤ λ for all t ≥ tλ and |x| ≤ eσt.

• Let us accept for the moment the following lower estimate that will be proved
later as Lemma 5.5: given ν ∈ (σ, σ2), there exist ε ∈ (0, 1) and t0 > 0 such that

(5.1) u ≥ ε for t ≥ t0 and |x| ≤ eνt.

We now proceed with the last part of the argument, where the effect of the nonlinear
diffusion is most clearly noticed. We take t1 ≥ t0 and consider the inner sets where

ε ≤ u ≤ 1 for (x, t) ∈ ΩI := {t ≥ t1, |x| ≤ eνt}.
Let v = 1− um. Then v satisfies the equation

(5.2)
1

m
(1− v)

1
m−1vt + Lsv + f(u) = 0,

which we write in the form

(5.3) a(x, t)vt + Lsv + b(x, t)v = 0, a(x, t) =
1

m
u1−m, b(x, t) =

f(u)

v
.

Moreover, we estimate a(x, t) as

a0 =
1

m
ε1−m ≤ a(x, t) ≤ a1 :=

1

m
in ΩI if m < 1,

respectively,

a0 =
1

m
≤ a(x, t) ≤ a1 :=

1

m
ε1−m in ΩI if m > 1.

We argue similarly for b(x, t) in ΩI :

b(x, t) =
f(u)

1− um
=

f(u)

(1− u)mξm−1
≥ b0, ξ ∈ (u, 1),

where

b0 =
1

m

f(ε)

1− ε
ε1−m if m < 1 and b0 =

1

m

f(ε)

1− ε
if m > 1.

In particular, v satisfies

(5.4) a(x, t)vt + Lsv + b0v ≤ 0 in ΩI .

• We look for a supersolution w to problem (5.3) that will be found as a solution
to a linear problem with constant coefficients, and we also need that wt ≤ 0. More
precisely, we consider w solution of the concrete problem

(5.5)

{
a1wt(x, t) + Lsw(x, t) + b0w = 0 for x ∈ R

N and t > t1,

w(x, t1) = 1 + 1
C2

|x|γ for x ∈ R
N ,

where the exponent γ taken such that

(5.6) 0 < γ :=
1

ν

b0
a1

< 2s.
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We can eventually consider a smaller ε for this inequality to hold. Equation (5.5) is
linear, and the solution can be computed explicitly,

w(x, t) = e−
b0
a1

(t−t1)w(x, τ), τ =
1

a1
(t− t1),

where w(x, τ) solves the linear problem

wτ (x, τ) + Lsw(x, τ) = 0, w(0) = 1 +
1

C2
|x|γ .

We observe that w̃ can be written in the form

(5.7) w(x, τ) = 1 +
1

C2
U(x, τ + θ1),

where

U(x, τ) = τα1F (|x|τ−β1 ), α1 =
γ

2s
, β1 =

1

2s
,

is the self-similar solution of the linear problem

Uτ (x, τ) + LsU(x, τ) = 0, U(x, 0) = |x|γ .

The properties of the self-similar solutions U(x, τ) deserve a separate study, which is
done in detail in section 6. Thus, by Lemma 6.3 the profile F is nondecreasing and
U(x, τ) has a spatial decay as |x|γ for large |x|τ−1/2s:

(5.8) C2|x|γ ≤ U(x, τ) ≤ C1|x|γ ∀ |x|τ−1/2s ≥ K1.

We will consider a suitable delay time τ1 in the definition of w stated in (5.7). In
what follows we will use the notation η = |x|τ−β1 . We check that the derivative wt is
negative:

wt(x, t) =
d

dt

[
e
− b0

a1
(t−t1)(1 + C−1

2 U(x, τ + τ1))
]

= e−
b0
a1

(t−t1)

[
− b0

a1
(1 + C−1

2 (τ + τ1)
α1F (η))

+C−1
2 (τ + τ1)

α1−1 (α1F (η) − β1ηF
′(η))

dτ

dt

]
= e−

b0
a1

(t−t1) 1

a1C2

[− b0C2 + (−b0(τ + τ1) + α1)(τ + τ1)
α1−1F (η)

− β1(τ + τ1)
α1−1ηF ′(η)

]
.

Since F ′(η) > 0 for all η > 0, we get that wt(x, t) ≤ 0 for all t ≥ t1 if τ + τ1 ≥ α1/b0,
which is true for a suitable choice of τ1.

• Now we can compare w and v by applying the maximum principle stated in
Lemma 7.1 of the appendix, as in [12]. Define v = v − w and ensure the hypothesis
of the lemma are satisfied.

(H1) We check that w(x, t1) ≥ v(x, t1) for all x ∈ R
N :

w(x, t1) ≥ 1 > v = 1− um ∀x ∈ R
N .
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3256 DIANA STAN AND JUAN LUIS VÁZQUEZ

(H2) We check that w ≥ v in
(
(t1,∞)× R

N
) \ΩI , that is, t ≥ t1 and |x| ≥ eνt.

At this point, we use the estimates (5.8). We ensure that eνt ≥ K1(τ + τ1)
1/2s for all

t ≥ t1, which is true by choosing eventually a larger t1. Therefore

w(x, t) = e−
b0
a1

(t−t1)w(τ, x) ≥ e−
b0
a1

(t−t1)

(
1 +

1

C2
C2|x|γ

)
≥ e−

b0
a1

(t−t1)(1 + eγνt) ≥ 1 ≥ v(x, t) ∀ t ≥ t1, |x| ≥ eνt

since γ satisfies (5.6). By the previous computation v ≤ 0 in ((t1,∞)× R
N )\ΩI .

(H3) The next step is to prove that v is a subsolution of problem (5.4). Indeed,
we have that

a(x, t)vt + Lsv + b0v = a(x, t)vt + Lsv + b0v − [a1wt + Lsw + b0w]

+ (a1 − a(x, t))wt ≤ 0

in ΩI . By Lemma 7.1 we obtain that v ≤ 0 in [t1,∞) × R
N for t1 taken to be large

enough. Thus,

v(x, t) ≤ w(x, t) = e−
b0
a1

(t−t1)(1 + C−1
2 U(x, τ + τ1)) ≤ e−

b0
a1

(t−t1)

(
1 +

C1

C2
|x|γ

)
.

• Let us consider the inner set (x, t) ∈ {t ≥ tλ, |x| ≤ Cλe
νt}. We have

v(x, t) ≤ e−
b0
a1

(t−t1)

(
1 +

C1

C2
Cγ

λe
γνt

)
≤ e−

b0
a1

(tλ−t1) +
C1

C2
e

b0
a1

t1Cγ
λ ≤ λ

for Cλ small enough and tλ large enough.
Finally, since σ < ν, then eσt ≤ Cλe

νt for every t ≥ tλ with tλ large enough, and
the previous inequality implies that

1− um(x, t) = v(x, t) ≤ λ for t ≥ tλ, |x| ≤ eσt,

which concludes the proof of the uniform convergence to the level u = 1.
To complete the proof of the result of this subsection, we need to supply the proof

of the lower estimate (5.1). This will be done in three steps.
Step I. Starting with arbitrary initial datum 0 ≤ u0 ≤ 1, u0 �= 0, we obtain a

lower bound for u with the desired tail u ≥ c |x|−(N+2s) for large |x|. The result
corresponds to Lemma 5.2.

Step II. We prove that given an initial data taking the value ε in the ball of
radius ρ0 and decaying like that |x|−(N+2s) for large |x|, the corresponding solution
of problem (1.1) will be raised to at least the same level ε in a larger ball ρ1 and in a
later time that is estimated. The sizes are important. This will be Lemma 5.3.

Step III. By combining the previous two results, we conclude that u ≥ ε on the
inner sets for a certain ε > 0. This will be Lemmas 5.4 and 5.5.

Steps II and III follow the ideas of [12] in the linear case, with a long technical
adaptation to nonlinear diffusion.

Lemma 5.2 (long tail behavior). Let N ≥ 1, s ∈ (0, 1), m > m1, f satisfying
(1.2) and σ ∈ (0, σ2). Let u be the solution of problem (1.1) with initial datum
u(0, ·) = u0, where 0 ≤ u0 ≤ 1, u0 �= 0. Then for any fixed t0 > 0 there exist
ε ∈ (0, 1), a0 > 0, ρ0 > 1 such that

u(x, t) ≥ v0(x) :=

{
a0|x|−(N+2s), |x| ≥ ρ0,

ε = a0ρ
−(N+2s)
0 , |x| ≤ ρ0,

for all t ∈ [t0, 2t0], x ∈ R
N .
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Proof. We recall that σ2 = f ′(0)/(N+2s). The idea is to view u(x, t) the solution
of problem (1.1) as a supersolution of the homogeneous problem with the same initial
datum u0, that is, the FPME. Therefore,

u(x, t0 + t) ≥ u(x, t) ∀t ≥ 0, x ∈ R
N ,

where u is the solution of the FPME with initial datum u0

(5.9)

{
ut(x, t) + Lsu

m(x, t) = 0 for x ∈ R
N and t > 0,

u(x, 0) = u0(x) for x ∈ R
N .

We will estimate u from below by using the local and global estimates on the FPME
given in Theorems 2.4 and 2.5 for m < 1, respectively, Theorem 3.1 for m > 1. The
decay in case m = 1 is well known; see section 6 for a review. More exactly, in all
cases m > m1, there exist a time T > 0 and constant R > 0 such that

u(x, t) ≥ C(t)|x|−(N+2s) ∀|x| ≥ R, 0 < t < T.

Then, for a fixed t∗ ∈ (0, T ) which also satisfies t∗ < t0, we can find a Barenblatt
solution BM (x, t) and a time t2 > 0 such that

u(x, t∗) ≥ BM (x, t2) ∀x ∈ R
N ,

and therefore, by the comparison principle

u(x, t+ t∗) ≥ BM (x, t+ t2) ∀x ∈ R
N , t ≥ 0.

In particular, we can choose ε > 0 such that

u(x, t) ≥ v0(x) :=

{
a0|x|−(N+2s), |x| ≥ ρ0,

ε = a0ρ
−(N+2s)
0 , |x| ≤ ρ0,

for all x ∈ R
N , t ∈ [t0, 2t0].

Lemma 5.3 (positivity for a sequence of times). Let m > m1. For every σ < σ2

there exist t0 ≥ 1 and 0 < ε0 < 1 depending only on N , s, f , and σ for which
the following holds: given ρ0 ≥ 1 and 0 < ε ≤ ε0, letting a0 > 0 be defined by

a0ρ
−(N+2s)
0 = ε, if we take

(5.10) v0(x) =

{
a0|x|−(N+2s), |x| ≥ ρ0,

ε = a0ρ
−(N+2s)
0 , |x| ≤ ρ0,

then the solution v of problem (1.1) with initial condition v0 satisfies

(5.11) v(x, kt0) ≥ ε for |x| ≤ ρ0e
σkt0

for all k ∈ {0, 1, 2, 3, . . .}.
Proof of Lemma 5.3 in the case m > 1. I. Preliminary choices. From the beginning

we fix σ ∈ (0, σ2). We take δ ∈ (0, 1) small enough such that

(5.12)
f(δ)

(N + 2s)δ
≥ σ,

f(δ)

(N + 2s)δ
≥ N(m− 1)βσ2.
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3258 DIANA STAN AND JUAN LUIS VÁZQUEZ

For example, take δ such that

f(δ)

(N + 2s)δ
=

1

2
(σ2 +max{σ,N(m− 1)βσ2}) .

This choice will be explained later. Next we take t0 sufficiently large depending only
on N , s, u0, and σ such that

(5.13) et02βs
f(δ)
δ ≥ (1 + t0/c2)

Nβ
K3, (K2/2K1)

1/(N+2s) e
f(δ)

(N+2s)δ
t0 ≥ eσt0 ,

where K2 < 2K1 are constants describing the properties of the profile F1 of the
Barenblatt function with mass 1 given in (2.9) and (2.10), and we recall for convenience
that

K2(1 + rN+2s)−1 ≤ F1(r) ≤ K1r
−(N+2s) ∀r > 0.

Throughout the proof there will appear several expressions involving the three pa-
rameters K1, K2, and F1(0). We introduce here the notation used:

(5.14)

c1 = K
− N

N+2s

1 F1(0)
− 2s

N+2s , c2 = K
− 2s

N+2s

1 F1(0)
m−1+ 2s

N+2s , K3 = 2F1(0)K
−1
2 .

Define now ε0 by

(5.15) ε0 = δ e−(f(δ)/δ) t0 .

Now, we fix 0 < ε < ε0 and ρ0 > 1.
II. First step of the iteration k = 1. We will do a very detailed analysis of the

case k = 1, which is then iterated for the rest of values of k.
IIa. Construction of subsolutions to problem (1.1). Let w be a solution of the

problem with linearized reaction

(5.16)

{
wt(x, t) + Lsw

m(x, t) = f(δ)
δ w for x ∈ R

N and t > 0,

w(0, x) = v0(x) for x ∈ R
N .

We define w(x, τ) by

w(x, τ) = e−
f(δ)
δ tw(x, t)

with a new time

(5.17) τ =
1

(m− 1)f(δ)/δ

[
e(m−1) f(δ)

δ t − 1
]
if m > 1,

so that τ = t in the limit m = 1. Then, w is a solution of the FPME with initial
datum v0

(5.18)

{
wτ (x, τ) + Lsw

m(x, τ) = 0 for x ∈ R
N and τ > 0,

w(x, 0) = v0(x) for x ∈ R
N .

IIb. Comparison with a Barenblatt solution. Lower bound for v(x, t0). We prove
that there exist M1 > 0 and θ1 > 0 such that

(5.19) v0(x) ≥ BM1(x, θ1) ∀x ∈ R
N ,
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KPP EQUATION WITH NONLINEAR FRACTIONAL DIFFUSION 3259

where BM1(x, τ) is the Barenblatt solution of problem (1.10) with mass M1 given by
Theorem 2.1:

(5.20) BM1(x, τ) = M1B1(x,M
m−1
1 τ).

Now, BM1(x, τ) can be written in terms of the profile F1 as

(5.21) BM1(x, τ) = M
1−(m−1)α
1 τ−αF1

(
(Mm−1

1 τ)−β |x|).
We will use the properties of the profile F1 stated in (2.9) and (2.10). With this infor-
mation, we will find the constantsM1 > 0 and θ1 > 0 such that inequality (5.19) at the

initial time holds true. For |x| ≤ ρ0 we have that BM1(x, θ1) ≤ M
1−(m−1)α
1 θ−α

1 F1(0).
Note that 1− (m− 1)α = 2βs > 0. We impose the first condition

(5.22) M2βs
1 θ−α

1 F1(0) ≤ ε.

Next we look at the tail |x| ≥ ρ0. Since we have

BM1(x, θ1) ≤ M2βs
1 θ−α

1 K1

(
(Mm−1

1 θ1)
−β |x|)−(N+2s)

in order to use this inequality for large |x| we also impose the condition

(5.23) K1M
1+2βs(m−1)
1 θ2βs1 ≤ a0, where a0 = ερN+2s

0 .

Conditions (5.22) and (5.23) are sufficient for inequality (5.19) to hold. Then, by the
comparison principle we get

(5.24) BM1(x, τ + θ1) ≤ w(x, τ) ∀ |x| ∈ R
N , τ > 0.

Putting equality in the inequalities (5.22) and (5.23) we get

(5.25) M1 = c1ερ
N
0 , θ1 = c2ε

1−mρ2s0

(with c1, c2 positive constants not depending on ε or ρ0). We can easily see that the
expressions are dimensionally correct. The constants c1 and c2 were defined in (5.14).
In particular, (Mm−1

1 θ1)
β = c3ρ0 with c3 = (F1(0)/K1)

−1/(N+2s).

Since v0 ≤ ε in R
N , then w(x, τ) ≤ ε for all x ∈ R

N , τ > 0, and then in terms of
w(x, t) we obtain the following bound:

0 ≤ w(x, t) ≤ e
f(δ)
δ t0ε ≤ ef

′(0)t0ε0 = δ ∀t ≤ t0.

Since f(δ)
δ ξ ≤ f(ξ) for 0 ≤ ξ ≤ δ, then w is a subsolution of problem (1.1) in

[0, t0] × R
N . By the comparison principle and estimate (5.24) we obtain that at the

moment t0

(5.26) v(·, t0) ≥ w(·, t0) = e
f(δ)
δ t0w(·, τ0) ≥ e

f(δ)
δ t0BM1(·, τ0 + θ1) in R

N ,

where we use the notation τ0 = τ(t0) defined by (5.17).
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IIc. We will now prove that estimate (5.26) with the choices (5.25) for M1 and θ1
implies the lower bound (5.11) stated in Lemma 5.3 in the case k = 1, m > 1. Indeed,
we have

v(x, t0) ≥ e
f(δ)
δ t0BM1(x, τ0 + θ1)

(5.27)

= e
f(δ)
δ t0M2βs

1 (τ0 + θ1)
−αF1

(
M

−(m−1)β
1 (τ0 + θ1)

−β |x|)
≥ e

f(δ)
δ t0M2βs

1 (τ0 + θ1)
−αK2

(
1 + (M

−(m−1)β
1 (τ0 + θ1)

−β |x|)(N+2s)
)−1

.

Our aim now is to be able to continue this estimate until we reach a bound v1(x) of
the form (5.10) for the same ε and a larger radius ρ1. We will choose some ρ1 and
then check that the lower bound for v(x, t0) is larger than ε at |x| = ρ1. In order
to simplify the estimate of the last parenthesis in formula (5.27), we will impose the
condition

(5.28) M
−(m−1)β
1 (τ0 + θ1)

−βρ1 ≥ 1

which is natural since the radius ρ1 in the iteration process will increase. Then we
only need to have

(5.29) v(x, t0) ≥ (K2/2)e
f(δ)
δ t0M

1+2(m−1)βs
1 (τ0 + θ1)

2βsρ
−(N+2s)
1 ≥ ε for |x| = ρ1.

Notice that M
−(m−1)β
1 (τ0 + θ1)

−βρ1 = c−1
3 (1 + (τ0/θ1))

−β
(ρ1/ρ0). Hence the first

condition (5.28) is equivalent to

ρ1/ρ0 ≥ c3 (1 + (τ0/θ1))
β
,

while, taking into account that M
1+2(m−1)βs
1 θ2βs1 = a0/K1 and a0 = ερN+2s

0 , the
second, (5.29), means that

(5.30) (ρ1/ρ0)
(N+2s) ≤ (K2/2K1)e

f(δ)
δ t0 (1 + (τ0/θ1))

2βs .

Both conditions are compatible iff

(5.31) e
f(δ)
δ t0 (1 + (τ0/θ1))

−Nβ ≥ K3,

where K3 := 2K1K
−1
2 cN+2s

3 = 2F1(0)/K2. Now recall that θ1 depends on ρ0 by
(5.25), ρ0 ≥ 1, and θ1 is bounded below by τ∗ = ε1−mc2, the value for ρ0 = 1. Since
m ≥ 1, ε < 1, then θ1 ≥ τ∗ ≥ c2. We see this condition as a way of choosing t0.
Let us find a simpler condition for t0 such that the required inequality (5.31) holds
true. To this aim, observe that τ0 = τ(t0) ≤ t0 e

(m−1)(f(δ)/δ) t0 , which can be seen by
definition (5.17). Then, it will be enough for t0 to satisfy

e
f(δ)
δ t0 ≥

(
1 +

t0
c2

e(m−1)(f(δ)/δ)t0

)Nβ

K3.

This inequality is possible when the exponents are ordered, i.e., if (m − 1)Nβ < 1,
which is true since 1− (m− 1)Nβ = 2βs. In particular, we can take t0 large enough
such that

e2βs
f(δ)
δ t0 ≥

(
1 +

t0
c2

)Nβ

K3.
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This last choice of t0 is a sufficient for condition (5.31) to hold true. It is independent
of ρ0 and ε, and this will be used below.

Once this is guaranteed, we choose the largest possible ρ1 satisfying (5.30),
which is

(5.32)
ρ1
ρ0

= (K2/2K1)
1/(N+2s) e

f(δ)
(N+2s)δ

t0 (1 + (τ0/θ1))
2sβ/(N+2s) := L0.

Hence formula (5.29) takes place with equality in the second inequality.
Comments on the new radius ρ1. Notice that ρ1 ≥ eσt0ρ0 since t0 satisfies

(5.13).
IId. With this choice of ρ1 and t0, estimate (5.29) holds. In conclusion, we have

v(x, t0) ≥ e
f(δ)
δ t0BM1(x, τ(t0) + θ1) ≥ ε for |x| = ρ1,

and thus since the profile F1 is nonincreasing we get that

v(x, t0) ≥ ε ∀|x| ≤ ρ1.

The behavior for large |x| is as follows. For |x| ≥ ρ1 we haveM
−(m−1)
1 (τ0+θ1)

−β |x| ≥
1 according to (5.29) and (5.32) we get that

v(x, t0) ≥ ερN+2s
1 |x|−(N+2s) ∀|x| ≥ ρ1.

Remark that ρ0e
σt0 ≤ ρ1. Finally, we define a1 := ερN+2s

1 and thus v(·, t0) ≥ v1(·),
where v1 is given by the expression

v1(x) =

{
a1|x|−(N+2s), |x| ≥ ρ1;

ε = a1ρ
−(N+2s)
1 , |x| ≤ ρ1.

The proof is complete for m > 1 and k = 1. (See Figures 2 and 3 for the construction
of v1.)

III. The iteration. We are now ready to address the next delicate step. Once we
have proved that v(x, t0) ≥ v1(x) for all x ∈ R

N , where v1 is defined above, we apply
the same proof and result to obtain

v(x, 2t0) ≥ (solution of KPP with initial data v1(x))(t0) ≥ v2(x),

Fig. 2. Step IIb.
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Fig. 3. Step IIc.

where v2(x) has the same construction as v0(x) and v1(x) but with parameters ρ2 and
a2. Since ρ1 > ρ0 the previous choice of t0 is still valid to get to a similar conclusion.
The argument continues for all k = 3, 4, . . . .

Let us check more closely the quantitative part of the iteration in order to get an
improvement. In the process we keep ε fixed but we replace ρ0 by ρk, k ≥ 1, so that
the formula (5.32) becomes

ρk+1

ρk
= Lk := (K2/2K1)

1/(N+2s) e
f(δ)

(N+2s)δ
t0 (1 + (τ0/θ1(ρk)))

2sβ/(N+2s)
.

Now, if we are given some σ < σ2 = f ′(0)/(N + 2s), we define

L∞ = (K2/2K1)
1/(N+2s) e

f(δ)
(N+2s)δ t0

and impose that L∞ ≥ eσt0 by changing the definition of t0. (Note that this is com-
patible.) Then we have Lk ≥ L∞ ≥ eσt0 for every k, so that as k → ∞ we have
ρk → ∞ in an exponential way. The conditions we put on δ and t0 can be summa-
rized in (5.12) and (5.13), and they are independent on the parameters θk, ρk of the
iteration. This ends the proof for m > 1.

Proof of Lemma 5.3 in the case m < 1. The outline of the proof is similar to that
for case m > 1. We explain the differences that appear and that are not technically
trivial.

I. Preliminary choices. From the beginning we fix σ ∈ (0, σ2) and ρ0 � 1. We
take δ ∈ (0, 1) small enough such that

f(δ)

(N + 2s)δ
> σ.

We take t0 large enough such that

K2

2
e

f(δ)
δ t0 ≥ F1(0)2

βN , (K2/2K1)
1/(N+2s) e

f(δ)
(N+2s)δ

t0 ≥ eσt0 .

Notice that (i) δ depends only on σ; (ii) t0 depends only on σ, δ and some constants
appearing in the characterization of the Barenblatt function.

In this case we introduce the new time τ via

(5.33) τ =
1

(1−m)f(δ)/δ

[
1− e−(1−m)

f(δ)
δ t

]
if m < 1.
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Therefore, for each t we have a new bounded time τ(t) ≤ τ∞ = 1/((1 − m)f(δ)/δ).
For t = t0 we denote the corresponding τ(t0) =: τ0.

Next, we define ε0 by e(f(δ)/δ)t0ε0 = δ. Fix 0 < ε < ε0. At this moment, we
ensure that the first radius ρ0 appearing in the proof is large enough; more exactly,
we ask ρ0 to satisfy

(5.34)
1

(1−m)f(δ)/δ
ε−(1−m) ≤ c2 ρ2s0 .

This condition says that ρ0 = ρ0(ε) is sufficiently large depending on ε.
These values are set before starting the proof of the first step k = 1. Hence, these

values will be the same during the iteration process.
II. First step k = 1. We consider the initial data v0 defined by (5.10). We take

M1 and θ1 satisfying conditions (5.22) and (5.23):

M2βs
1 θ−α

1 F1(0) = ε, K1M
1+2βs(m−1)
1 θ2βs1 = ερN+2s

0 .

Therefore M1 = c1ερ
N
0 and θ1 = c2ε

1−mρ2s0 . In what follows, we will need ρ0 large
enough such that

(5.35) τ0 ≤ θ1.

Hence, it is sufficient to have τ∞ ≤ θ1 which is satisfied for ρ0 = ρ0(ε) large enough
according to the previous choice (5.34).

Then, at point IIc of the previous proof we have

v(x, t0) ≥ e
f(δ)
δ t0M2βs

1 (τ0 + θ1)
−αF1(M

−(m−1)β
1 (τ0 + θ1)

−β |x|)
≥ e

f(δ)
δ t0M2βs

1 (τ0 + θ1)
−αK2

(
1 + (M

−(m−1)β
1 (τ0 + θ1)

−β |x|)(N+2s)
)−1

.

Our purpose is to find suitable ρ1 such that v(x, t0) ≥ v1(x) for all x ∈ R
N , where

v1(x) is defined as

(5.36) v1(x) =

{
a1|x|−(N+2s), |x| ≥ ρ1,

ε = a1ρ
−(N+2s)
1 , |x| ≤ ρ1,

Since the profile F1 is nonincreasing, the idea is to find ρ1 such that when |x| = ρ1

v(x, t0) ≥ e
f(δ)
δ t0M2βs

1 (τ0 + θ1)
−αK2

(
1 + (M

−(m−1)β
1 (τ0 + θ1)

−βρ1)
(N+2s)

)−1

≥ a1ρ
−(N+2s)
1 = ε.

In particular if we take

(5.37) M
−(m−1)β
1 (τ0 + θ1)

−βρ1 ≥ 1,

then for |x| = ρ1

v(x, t0) ≥ e
f(δ)
δ t0M2βs

1 (τ0 + θ1)
−αK2

(
2(M

−(m−1)β
1 (τ0 + θ1)

−βρ1)
(N+2s)

)−1

=
K2

2
e

f(δ)
δ t0M

2βs+(m−1)β(N+2s)
1 (τ0 + θ1)

−α+β(N+2s)ρ
−(N+2s)
1

=
K2

2
e

f(δ)
δ t0M

1+2βs(m−1)
1 (τ0 + θ1)

2βsρ
−(N+2s)
1 .
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We take ρ1 the largest value satisfying

(K2/2)e
f(δ)
δ t0M

1+2βs(m−1)
1 (τ0 + θ1)

2βsρ
−(N+2s)
1 ≥ ε,

that is, we take ρ1 such that

(5.38)
K2

2
e

f(δ)
δ t0M

1+2βs(m−1)
1 (τ0 + θ1)

2βsρ
−(N+2s)
1 = ε.

Then for |x| = ρ1 we have

v(x, t0) ≥ ε = a1ρ
−(N+2s)
1 , a1 :=

K2

2
e

f(δ)
δ t0M

1+2βs(m−1)
1 (τ0 + θ1)

2βs.

For |x| ≤ ρ1 we have v(x, t0) ≥ ε and for |x| ≥ ρ1 we have v(x, t0) ≥ a1|x|−(N+2s)

justified as in the previous case m > 1.
It remains to check that conditions (5.37) and (5.38) are compatible, that is, we

need t0 such that

K2

2
e

f(δ)
δ t0M

1+2βs(m−1)
1 (τ0 + θ1)

2βsε−1 = ρN+2s
1 >

(
(M

(m−1)β
1 (τ0 + θ1)

β
)N+2s

.

This is equivalent to

K2

2
e

f(δ)
δ t0M2βs

1 θ−βN
1 ε−1 ≥

(
1 +

τ0
θ1

)βN

.

According to the definition of M1 and θ1 this is rewritten as

K2

2
e

f(δ)
δ t0 ≥ F1(0)

(
1 +

τ0
θ1

)βN

.

Since τ0/θ1 ≤ 1, then a sufficient condition for t0 would be

K2

2
e

f(δ)
δ t0 ≥ F1(0)2

βN .

Notice that this condition on t0 is independent on ε and ρ0. Hence t0 is the same in
the iteration, that is, done as before.

Comments on the new radius ρ1. By the definition formula (5.38) we have(
ρ1
ρ0

)N+2s

=
K2

2K1
e

f(δ)
δ t0

(
1 +

τ0
θ1

)2βs

.

Now, if t0 is such that (K2/2K1)e
f(δ)
δ t0 ≥ e(N+2s)σt0 , then we get that

ρ1/ρ0 ≥ eσt0 .

III. The iteration. We point out that for the next step k = 2, the first radius is
ρ1. The value of ρ1 was defined in (5.38) and satisfies ρ1 > ρ0. Hence, ρ1 satisfies the
preliminary condition (5.34) and is a good candidate for the initial radius.

The rest of the proof follows as in the case m > 1.
Remark. We summarize the results proved so far as follows: for small ε fixed, we

found a ρ0 sufficiently large (depending on ε) such that the line v(x, t) = ε propagates
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with exponential speed σ. When taking a smaller ε and a larger value of ρ0, the proof
also works. Hence, the result of exponential propagation is true for all small ε < ε0.

Proof of Lemma 5.3 in the case m = 1. No change of the time variable is needed
in this case, that is, τ = t. The proof follows similarly to the case m > 1. We do not
give more details here, since the result for m = 1 has been proved in [12].

Lemma 5.4 (expansion of uniform positivity for all times). Let N ≥ 1, s ∈ (0, 1),
m1 < m, f satisfying (1.2) and σ ∈ (0, σ2). Let t0 > 0 from Lemma 5.3. Then for
every measurable initial datum u0 with 0 ≤ u0 ≤ 1, u0 �= 0, there exist ε ∈ (0, 1) and
b > 0 (both depending on u0) such that the solution u of problem (1.1) with initial
datum u(0, ·) = u0 satisfies

u(x, t) ≥ ε ∀ t ≥ t0 and |x| ≤ beσt.

Proof. Let t0 defined in Lemma 5.3. Then by Lemma 5.2 there exist ε > 0, a0 > 0,
ρ0 > 1 such that u(x, t) is bounded from below by a function v0 with the long tail
behavior at infinity

u(x, t) ≥ v0(x) :=

{
a0|x|−(N+2s), |x| ≥ ρ0,

ε = a0ρ
−(N+2s)
0 , |x| ≤ ρ0,

for all x ∈ R
N , t ∈ [t0, 2t0]. In this way v0 can be taken as the initial datum (5.10)

in Lemma 5.3. If necessary, we make a0 smaller and ρ0 larger to fit in the context
of Lemma 5.3. We recall the necessary conditions: ε ≤ ε0 in (5.15) and ρ0 ≥ ρ(ε)
in (5.34).

Therefore, by applying Lemma 5.3, the solution u will be raised an ε at a large
time τ0+ t0 and this holds true for all τ0 ∈ [t0, 2t0]. More exactly, by (5.11), for every
k = 0, 1, 2, . . . one has

u(x, τ0 + kt0) ≥ ε ∀ |x| ≤ eσkt0ρ0, τ0 ∈ [t0, 2t0],

which is rewritten as

(5.39) u(x, t) ≥ ε ∀ |x| ≤ eσkt0ρ0, t ∈ [(k + 1)t0, (k + 2)t0].

But for t ∈ [(k + 1)t0, (k + 2)t0] we get eσkt0 = eσkt0−σteσt ≥ e−2σt0eσt and then
(5.39) implies, in particular, that

u(x, t) ≥ ε ∀ |x| ≤ e−2σt0eσtρ0, t ∈ [(k + 1)t0, (k + 2)t0].

Since the union the intervals [(k+1)t0, (k+2)t0] with k = 0, 1, 2, . . . cover all [t0,∞),
we deduce that

u(x, t) ≥ ε if t ≥ t0 and |x| ≤ ρ0e
−σ2t0eσt.

The proof of the lemma follows by denoting b = ρ0e
−σ2t0 .

Lemma 5.5. Let N ≥ 1, s ∈ (0, 1), m > m1, and f satisfying (1.2). Let

σ2 = f ′(0)
N+2s . Let u be a solution of problem (1.1) with initial datum 0 ≤ u0(·) ≤ 1,

u0 �= 0. Then for every σ < σ2 there exist ε ∈ (0, 1) and t > 0 such that

u(x, t) ≥ ε ∀ t ≥ t and |x| ≤ eσt.

Proof. We apply Lemma 5.4 with σ replaced by σ′ ∈ (σ, σ2). Since eσt ≤ beσ
′t

for t large, where b is the constant in the statement of Lemma 5.4, we deduce that

u(x, t) ≥ ε for t ≥ t and |x| ≤ eσt.
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5.2. Case mc < m < m1. In a similar way, we can prove the convergence to
1 on the inner sets also in the range of parameters mc < m < m1.

Proposition 5.6. Let N ≥ 1, s ∈ (0, 1), mc < m < m1, f satisfying (1.2). Let
σ1 = 1−m

2s f ′(0). Let u be a solution of problem (1.1) with initial datum 0 ≤ u0(·) ≤ 1,
u0 �= 0. Then for every σ ∈ (0, σ1), u(x, t) → 1 uniformly on {|x| ≤ eσt} as t → ∞.

Proof. We argue in a similar way as in the case m > m1 proved in Proposition
5.1. The difference appears when obtaining the positivity on inner sets. To this aim,
we start with nontrivial initial data 0 ≤ u0 ≤ 1 and we prove the analogue of Lemma
5.4. The key ingredient is to use the quantitative lower estimates for the solution
u(x, t) of the fractional fast diffusion equation stated in Theorem 2.6 to obtain an
estimate of the form

u(x, t) ≥ v0(x) ∀t ∈ [t0, 2t0], x ∈ R
N ,

where v0(x) is defined as

(5.40) v0(x) =

{
a0|x|−2s/(1−m), |x| ≥ ρ0,

ε = a0ρ
−2s/(1−m)
0 , |x| ≤ ρ0.

Afterward, we can prove an analogue result to Lemma 4.1 starting with initial data
of the form (5.40). Since the Barenblatt solution has a long tail decay of the form
|x|−2s/(1−m), then we find M1 > 0 and θ1 > 0 such that

v0(x) ≥ BM1(x, θ1) ∀x ∈ R
N .

6. The linear diffusion problem. We will need a number of facts about the
linear diffusion equation for 0 < s < 1,

(6.1) Ut + (−Δ)sU = 0 for x ∈ R
N and t > 0.

This problem has been studied, mainly by probabilists [2, 7], (see also [25]), and many
results are known. When considering initial data U0 ∈ L1(RN ), or more generally,

(6.2) U(0, x) = U0(x) for x ∈ R
N ,

the solution of problem (6.1)–(6.2) has the integral representation

(6.3) U(x, t) =

∫
RN

Ks(x− z, t)U0(z)dz,

where the kernel Ks has Fourier transform K̂s(ξ, t) = e−|ξ|2st. If s = 1, the function
K1(x, t) is the Gaussian heat kernel.

6.1. The fundamental solution. Further results on the asymptotics for
large |x|. We need some detailed information on the behavior of the kernel Ks(x, t)
for 0 < s < 1. In the particular case s = 1/2, the kernel is explicit, given by the
formula

K1/2(x, t) = CN t(|x|2 + t2)−(N+1)/2.

In general, we know that the kernel Ks(x, t) is the fundamental solution of problem
(6.1), that is, Ks(x, t) solves the problem with initial data the Delta function

lim
t→0

Ks(x, t) = δ(x).
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It is known that the kernel Ks has the form

Ks(x, t) = t−N/2sf(|x|t−1/2s)

for some profile function, f(r), that is positive and decreasing, and behaves at infinity
like f(r) ∼ r−(N+2s); cf. [8].

We perform now a further analysis of the properties of the fundamental solution.
Our aim is to prove the following result.

Proposition 6.1. For every s ∈ (0, 1), the fundamental solution Ks(x, t) of
problem (6.1) is a increasing function in time

d

dt
Ks(x, t) ≥ 0 for all large values of |x|/t1/2s.

This property is known to be satisfied for the fundamental solution of various types
of diffusion equations of evolution type: the Gaussian profile for the heat equation,
the Barenblatt solution for the fast diffusion equation.

The analysis of the derivative d
dtKs(x, t) involves not only the characterization of

the profile f for large r, but also a similar property for the derivative f ′. In fact, we
will prove that f(r) and rf ′(r) have the same behavior for large arguments. This is
due to the power decay property of the profile f .

We recall that this property is clearly true in the explicit case s = 1/2 where
f(s) = (1 + s2)−(N+1)/2. But it is not true in the limit s → 1, i.e., in the case of the

Gaussian profile of the heat equation G(s) = e−s2/4. Indeed, we cannot obtain the
same behavior for G(s) and sG′(s) since in this case the profile has an exponential
expression.

Proof of the proposition. We recall that [8]

(6.4) Ks(x, t) = t−
N
2s f2s(1, t

− 1
2s |x|),

where f2s(1, x) is a continuous strictly positive function on R
N of radial type, which

is explicitly given by the expression

f2s(1, x) =
[
(2π)N/2|x|N2 −1

]−1
∫ ∞

0

e−ω2s

ω
N
2 Jν(|x|ω)dω

=
1

(2π)N/2|x|N
∫ ∞

0

e−(
ω
|x| )

2s

ω
N
2 Jν(ω)dω, ν = (N − 2)/2,

where Jμ denotes the Bessel function of first kind of order μ. For simplicity, we denote
f(r) = f2s(1, x), r = |x| since f2s(1, ·) is a radial function:

(6.5) f(r) =
1

(2π)N/2
r−N

∫ ∞

0

e−(
ω
r )

2s

ω
N
2 Jν(ω)dω, ν = (N − 2)/2.

Next, we prove an intermediate result, concerning the behavior of the derivative f ′.
Lemma 6.2. Let s ∈ (0, 1) and let f(r) = f2s(1, x) be defined by (6.5). Then

lim
r→∞ rN+2s(Nf(r) + rf ′(r)) = −s222s+1 1

π1+N/2
(sinπs)Γ(s)Γ

(
s+

N

2

)
.

In particular, we prove that rf ′(r) ∼ −r−(N+2s) for large r.
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Proof. We compute the derivative with respect to r

f ′(r) =
1

(2π)N/2
r−N−1

∫ ∞

0

(
−N + 2s

(ω
r

)2s
)
e−(

ω
r )

2s

ω
N
2 Jν(ω)dω.

Therefore

rf ′(r) = −Nf(r) +
1

(2π)N/2
r−N

∫ ∞

0

2s
(ω
r

)2s

e−(
ω
r )

2s

ω
N
2 Jν(ω)dω = (I) + (II),

where (I) = −Nf(r), and (II) is given by

(II) = 2s
1

(2π)N/2
r−(N+2s)

∫ ∞

0

e−(
ω
r )

2s

ω2s+N
2 Jν(ω)dω.

According to formula (7.4), we can write

ωJN
2 −1(ω) = NJN

2
(ω)− ωJN

2 +1(ω),

and therefore

(II) = 2Ns
1

(2π)N/2
r−(N+2s)

∫ ∞

0

e−(
ω
r )

2s

ω2s+N
2 −1JN

2
(ω)dω

− 2s
1

(2π)N/2
r−(N+2s)

∫ ∞

0

e−(
ω
r )

2s

ω2s+N
2 JN

2 +1(ω)dω.

Then, according to Pólya (see Blumenthal and Geetor [8])

lim
r→∞

∫ ∞

0

e−(
ω
r )

2s

ω2s+N
2 −1JN

2
(ω)dω =

2

π
sinπs

∫ ∞

0

ω2s+N
2 −1KN

2
(ω)dω

and

lim
r→∞

∫ ∞

0

e−(
ω
r )

2s

ω2s+N
2 JN

2 +1(ω)dω =
2

π
sinπs

∫ ∞

0

ω2s+N
2 KN

2 +1(ω)dω.

Here the functions Kμ are described in the paper of Erdélyi et al. [18] (not to be
confused with Ks(x, t)). Moreover [18, p. 51], we have

L1 =

∫ ∞

0

ω2s+N
2 −1KN

2
(ω)dω = 22s+

N
2 −2Γ

(
s+

N

2

)
Γ(s).

L2 =

∫ ∞

0

ω2s+N
2 KN

2 +1(ω)dω = 22s+
N
2 −1Γ

(
s+

N

2
+ 1

)
Γ(s).

Therefore,

lim
r→∞rN+2s (rf ′(r) +Nf(r)) = −2sC1(N, s),

where

(6.6) C1(N, s) := s22s
1

π1+N/2
(sinπs)Γ(s)Γ

(
s+

N

2

)
.

If we write this result as

rN−1 (rf ′(r) +Nf(r)) ∼ −2sC1(N, s)r−2s−1

D
ow

nl
oa

de
d 

09
/2

9/
14

 to
 1

55
.9

7.
17

8.
73

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

KPP EQUATION WITH NONLINEAR FRACTIONAL DIFFUSION 3269

by integrating we obtain rNf(r) ∼ C1(N, s)r−2s, that is,

f(r) ∼ C1(N, s)r−(N+2s),

which is exactly the result proved in [8]. Moreover, we obtain that

lim
r→∞ rN+2srf ′(r) = −(N + 2s)C1(N, s),

that is,

rf ′(r) ∼ −r−(N+2s) for large r.

We complete the proof of Proposition 6.1 on the behavior of the fundamental
solution for large values of η = |x| t−1/2s.

Proof. The fundamental solution is given by

Ks(x, t) = t−
N
2s f(t−

1
2s |x|).

We compute the derivative in the t variable. According to the scaling formula (6.4)
we obtain

d

dt
Ks(x, t) = −N

2s
t−

N
2s−1f(t−

1
2s |x|)− 1

2s
t−

N
2s− 1

2s−1|x|f ′(t−
1
2s |x|)

= − 1

2s
t−

N
2s−1 [Nf(η) + ηf ′(η)] , η = t−

1
2s |x|.

By Lemma 6.2 we know that

Nf(η) + ηf ′(η) ∼ −2sC1(N, s)η−(N+2s) for large η,

where C1(N, s) is a positive constant given by formula (6.6). Therefore,

d

dt
Ks(x, t) ∼ t−

N
2s−1C1(N, s)η−(N+2s) = C1(N, s)|x|−(N+2s) for large η.

6.2. Self-similar solutions of the linear diffusion problem. We study the
existence, uniqueness, and properties of self-similar solutions of the form

(6.7) U(x, t) = tα1F (tβ1 |x|)
of the linear problem

(6.8)

{
Ut + (−Δ)sU = 0 for x ∈ R

N and t > 0,

U(0, x) = U0(x) = C |x|γ for x ∈ R
N ,

where C > 0, and 0 < γ < 2s is given. The constants α1, β1 ∈ R will be determined
such that U(x, t) is a self-similar solution of problem (6.8).

Existence of a solution U to Problem (6.8) follows from the representation formula
(6.3) since Ks(x − z, t)u0(z) ∼ |z|−(N+2s−γ) for large |z|, where γ < 2s, and then
Ks(x− z, t)u0(z) is integrable away from the origin.

Let η = tβ1 |x|. Then,
Ut(x, t) = α1t

α1−1F (η) + β1t
α1−1ηF ′(η),

(−Δ)sU(x, t) = tα1(−Δ)s(F (tβ1 |x|)) = tα1t2β1s(−Δ)sF (η).

We obtain a first relation on the parameters: α1− 1 = α1+2β1s, and then β1 = − 1
2s .
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Equation. The profile F satisfies the equation

α1F (η) + β1ηF
′(η) + (−Δ)sF (η) = 0.

Self-similarity condition. The equation is invariant under transformations of
the form

TλU(x, t) = λ−α1U(λ−β1x, λt).

Therefore we impose U = TλU. We apply this to the initial data

TλU(x, 0) = λ−α1U(λ−β1x, 0) = λ−α1−β1γ |x|γ

and then α1 = −γβ1. We obtain the exact value of the similarity exponents

(6.9) α1 =
γ

2s
, β1 = − 1

2s
.

Notice that α1 > 0 and β1 < 0. As a solution of the linear problem (6.8), U(x, t) can
be computed as a convolution with the kernel Ks(·, t),

U(x, t) = (Ks(·, t) � U0)(x) =

∫
RN

Ks(y, t)U0(x− y)dy.

Since the initial data is a radial function U0(x) = |x|γ , then by the properties of the
kernel Ks, U will also be a radial function, and therefore the profile F is radial.

Lemma 6.3 (properties of the profile). The profile F is monotone nondecreasing
and it satisfies ηF ′ ≤ c2F for all η ≥ 0.

Proof. I. Monotonicity property. In order to prove the positivity of F we will
make use of the Alexandrov symmetry principle and we prove that U(x, t) is radially
nondecreasing in the space variable x ∈ R

N .
We start with nondecreasing radial initial data U0(x) = |x|γ . We approximate

U0 with a sequence of radially symmetric and bounded functions U0n ∈ L∞(RN )
such that U0n(r) → C nγ as r → ∞ and v0n(r) = C nγ − U0n(r) ∈ L1(RN ). Let
vn the solution of problem (6.8) with initial datum v0n. We may apply the Alexan-
drov symmetry principle (which we explain in detail below) to vn to conclude that
it is radially symmetric and nonincreasing w.r.t. the space variable. We then put
Un(x, t) = C nγ − vn(x, t), which is radially symmetric and increasing and solves
(6.8) with initial datum U0n. We pass now to the limit n → ∞ to get the same
conclusion for U .

Applying the Alexandrov symmetry principle. We fix two points x and x′ in R
N

such that |x| < |x′|. Let H denote the hyperplane perpendicular on the line xx′.
Let Ω1 and Ω2 be the two sets delimited by the hyperplane H such that the origin
is contained in Ω1. Let Π the symmetry with respect to H that maps Ω1 into Ω2.
Clearly, Π(x) = x′, x ∈ Ω1. Then one can prove that for every y ∈ Ω1 |y| < |y′|,
where y′ = Π(y). Since v0n is radially nonincreasing, we get that v0n(y) ≥ v0n(Π(y))
for all y ∈ Ω1. By applying the Alexandrov symmetry principle stated in Theorem
7.2 we obtain that vn(x) ≥ vn(x

′). The arguments we used can be done for every pair
of points |x| < |x′|; therefore vn is radially increasing.

II. Decay at infinity. This follows from the initial data of the solution U . In
fact, fixing x and letting t → 0 we get U(x, t) → U0(x) = C|x|γ as t → 0, which
can be written as tγ/2s|F (t−1/2sx) − C((t−1/2s|x|)γ | → 0 as t → 0. In other words,
F (η)/ηγ → C as η → ∞.
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This characterization of the profile F gives us the following spatial decay for
U(x, t) for large times:

C2|x|γ ≤ U(x, t) ≤ C1|x|γ for large |x|t−1/2s.

Moreover, we will prove the following relation between F ′ and F :

|γF (η)− ηF ′(η)| ≤ ηγ for large η > 0.

As a consequence we can characterize the derivative Ut:

Ut(x, t) = tα1−1 1

2s
(γF (η)− ηF ′(η)) , η = t−1/2s|x|,

Ut(x, t) ∼ t−1|x|γ for large values of t−1/2s|x|.

The first step will be to obtain a formula for the profile F (η). Therefore

U(x, t) = Ks(x, t) � U0(x) = t−
N
2s

∫
RN

f(t−
1
2s |x− y|)|y|γdy, z = t−

1
2s y,

= t
γ
2s

∫
RN

f(t−
1
2sx− z)|z|γdz.

Since U(x, t) has the self-similar form (6.7), then

F (t−
1
2sx) =

∫
RN

f(t−
1
2sx− z)|z|γdz = (f � U0)(t

− 1
2sx) ∀x ∈ R

N , t > 0,

that is,

F (η) =

∫
RN

f(η − z)|z|γdz ∀η ∈ R
N .

Let us continue using the notation

F (|η|) = F (η), f(|η|) = f(η).

We fix η ∈ R
N . Let |η| = η̄ and η = η̄e for a vector e ∈ R

N with |e| = 1. Then

F (η̄) =

∫
RN

f(|z|)|η − z|γdz = η̄N+γ

∫
RN

f(|η̄y|)|e − y|γdy, z = η̄y.

We differentiate in η̄

F ′(η̄) = η̄N+γ−1

∫
RN

[(N + γ)f(|η̄y|) + η̄yf ′(|η̄y|)] |e− y|γdy.

Therefore

η̄F ′(η̄)− γF (η̄) = η̄N+γ

∫
RN

[Nf(|η̄y|) + η̄yf ′(|η̄y|)] |e − y|γdy, z = η̄y,

η̄F ′(η̄)− γF (η̄) = η̄γ
∫
RN

[Nf(|z|) + zf ′(|z|)]
∣∣∣∣e − z

η̄

∣∣∣∣γ dz.D
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We know that Nf(r) + rf ′(r) ∼ −C1r
−(N+2s) for large r. Since we deal with a

convolution we will use the information only in the sense of modulus. We fix R > 0
such that

C1r
−(N+2s) ≤ |Nf(r) + zf ′(r)| ≤ C2r

−(N+2s) ∀r ≥ R.

The values of R,C1, C2 depend on the profile f of the heat kernel Ks(x, t). They are
independent of the variable η used in this proof. Then,

η̄−γ |η̄F ′(η̄)− γF (η̄)| ≤
∫
RN

|Nf(|z|) + zf ′(|z|)| ·
∣∣∣∣e− z

η̄

∣∣∣∣γ dz = I + II,

where

I =

∫
|z|≤R

|Nf(|z|) + zf ′(|z|)| ·
∣∣∣∣e− z

η̄

∣∣∣∣γ dz
≤ C

∫
|z|≤R

∣∣∣∣e− z

η̄

∣∣∣∣γ dz ≤ C

(
1 +

R

η̄

)γ

RN .

The second term is estimated as follows:

II =

∫
|z|≥R

|Nf(|z|) + zf ′(|z|)| ·
∣∣∣∣e− z

η̄

∣∣∣∣γ dz ≤ C2

∫
|z|≥R

|z|−(N+2s)

∣∣∣∣e− z

η̄

∣∣∣∣γ dz
≤ C2

∫
|z|≥R

|z|−(N+2s)

(
1 +

|z|
η̄

)γ

≤ C2

∫
|z|≥R

|z|−(N+2s) (2γ + (2|z|/η̄)γ) dz,

= 2γC2

∫
|z|≥R

|z|−(N+2s)dz + 2γC2 η̄
−γ

∫
|z|≥R

|z|−(N+2s)+γdz, we know γ < 2s,

= C3R
−2s + C3

1

η̄γ
Rγ−2s, where C3 = C3(C2, γ,meas(∂B1)) > 0.

We conclude that

I + II ≤ C4 + C5
1

η̄γ
,

where the constants C4 and C5 depend on R, γ, C1, C2. Now, recall that
|η̄F ′(η̄)− γF (η̄)| ≤ η̄γ(I + II). Therefore we have proved that

η̄−γ |η̄F ′(η̄)− γF (η̄)| ≤ C4 + C5 for large η̄ ≥ 1.

7. Appendix.

7.1. Concept of solution to problem (1.1). According to [14] there exists a
unique mild solution of problem (2.1) corresponding to the initial datum u0 ∈ L1(RN ),
0 ≤ u0 ≤ 1, constructed by means of the tools of semigroup theory. Moreover, such
u is in fact a strong solution of the equation. In the case m > 1, the Cα regularity
of the solution follows from [5], and this has been extended to m < 1 up to the
extinction time (if there is one). Quantitative estimates of positivity of the solution
for any m > 0 corresponding to nonnegative data have been proved in [9]. Recently,
the classical regularity of strong solutions was proved in [15].

As a consequence one obtains by rather standard methods the existence, unique-
ness, and regularity properties of the solution to problem (1.1) corresponding to the
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initial datum u0 ∈ L1(RN ), 0 ≤ u0 ≤ 1. In order to prove the existence of a solution
of the problem ut + Lsu

m = f(u), we use that f is Lipschitz and the semigroup
approach of the diffusion equation ut +Lsu

m = 0. Standard properties, like the max-
imum principle, hold also in our setting.

A more detailed analysis of these properties is beyond the purpose of this work.

7.2. A version of the maximum principle. We need an interesting version of
the maximum principle proved by Cabré and Roquejoffre in [12, Lemma 2.9], suitable
for comparisons in which fractional Laplacian operators are involved.

For 0 ≤ γ < 2s we consider functions v : RN → R such that

|v(x)| ≤ C(1 + |x|γ) in R
N for some constant C,(7.1) {

for every ε > 0 there exists δ > 0 such that

if x ∈ R
N and |z| ≤ δ, then |u(x+ z)− u(x)| ≤ ε(1 + |x|γ).(7.2)

We define Xγ = {u : RN → R : u satisfies (7.1) and (7.2)} and Dγ is the domain of
the operator Ls = (−Δ)s in Xγ .

Lemma 7.1. Let N ≥ 1, s ∈ (0, 1), 0 ≤ γ < 2s. Let v ∈ C1([0,∞);Xγ) satisfy
v(·, t) ∈ Dγ for all t > 0. Let r : (0,∞) → (0,∞) be a continuous function and define

ΩI = {(x, t) ∈ R
N × (0,∞) : |x| < r(t)}.

Assume in addition the following:
(H1) v(·, 0) ≤ 0 in R

N .
(H2) v ≤ 0 in (RN × (0,∞))\ΩI .
(H3) a(x, t)vt + Lsv ≤ b v in ΩI .
Then v ≤ 0 in R

N × (0,∞).
Although the equation we have is different, the proof as in [12] still works (with

inessential modifications).

7.3. Alexandrov reflection principle. We recall the version of Alexandrov’s
symmetry principle that holds in the case of the nonlinear parabolic problem

(7.3) ut = Lsu
m, u(0, x) = u0(x),

posed in R
N , with Ls = (−Δ)s, m > 0, u0 ∈ L1(RN ). Let us take a hyperplane H

that divides R
N into two half-spaces Ω1 and Ω2 and consider the symmetry Π with

respect to H that maps Ω1 into Ω2. The following result is proved as Theorem 15.2
in [26].

Theorem 7.2. Let u be the unique solution of problem (7.3) with initial data u0.
Under the assumption that

u0(x) ≥ u0(Π(x)) in Ω1

we have that for all t > 0

u(x, t) ≥ u(Π(x), t) for x ∈ Ω1.

7.4. Bessel functions of first kind. The Bessel function Jμ of first kind can
be introduced through a series expansion (cf. [1]),

Jμ(z) =
∞∑
k=0

(−1)k

k! Γ(k + μ+ 1)

(z
2

)2k+μ

.
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We mention the following recurrence formulas:

J ′
μ(z) =

1

2
(Jμ−1(z)− Jμ+1(z)) for μ �= 0.

J ′
0(z) = −J1(z),

Jμ(z) =
z

2μ
(Jμ−1(z) + Jμ+1(z)) ,(7.4) ∫ ∞

0

Ka(t)t
b−1dt = 2b−2Γ

(
b + a

2

)
Γ

(
b− a

2

)
, Re(b± a) > 0.(7.5)

The modified Hankel functions (cf. [18, p. 82]) are defined by

(7.6) Kν(z) =

∫ ∞

0

e−z cosh t cosh(νt) dt for Re(z) > 0.

Then Kν(z) ∈ R when ν ∈ R is real and z ∈ R+. When ν = n+ 1
2 , n ∈ N, then

Kn+1/2(z) =
( π

2z

)1/2

e−z
n∑

m=0

(2z)−m Γ(n+m+ 1)

m! Γ(n+ 1−m)
.

Comments and open problems.
• There are critical values of the speed σ which we do not cover in this work:
σ1 for mc < m < m1; σ2 for m1 < m ≤ 1; respectively, (σ2, σ3) for m > 1.
The analysis of those cases leads to long new developments.

• Is there a definite profile function that represents up to translation the shape
of the solution in the region where it varies in a marked way to join the level
u = 1 to the level u = 0? Maybe for s = 1/2 this question is easier.

• For reasons of length and novelty, the casem < mc is not studied. For the cor-
responding fractional fast diffusion equation there appears the phenomenon
of extinction in finite time. King and McCabe in [22] give an idea on the
asymptotics in this range of parameters.

• A detailed numerical treatment of these problems for the case m �= 1 is
needed; see in this respect [24].

• There are other interesting directions in this class of problems. Thus, in a
recent paper [10], the authors investigate the model

ut(x, t) + Au(x, t) = μ(x)u − u2, x ∈ R
N , t > 0,

where the function μ is supposed periodic in each spatial variable xi and
satisfy 0 < minμ ≤ μ(x).

• Initial data with slow decay. The decay of the initial data plays an important
role in the propagation of level sets. The slower the decay, the faster the
propagation. We comment on some recent work on the issue:

– In [21], Hamel and Roques consider the one-dimensional classical Fisher-KPP
problem ut = uxx + f(u) with initial data u0 that are assumed to decay
at infinity more slowly than any exponentially decaying function. A precise
quantitative estimate of the level sets of the solution is obtained in terms of the
decay of the initial data, and this implies an exponential rate of propagation
of level sets.

– As for the Fisher-KPP with fractional diffusion, the case of slowly decaying
initial conditions has been recently treated by Felmer and Yangari in [19] for
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the linear case ut + Lsu = f(u). Assuming the initial data satisfy u0(x) ≥
|x|−b with b ∈ (0, 2s), they prove that the level sets of the solution propagate
exponentially with a faster speed, thus completing the case studied by Hamel
and Roques to all s ∈ (0, 1).

As far as we know, slowly decaying initial data have not been considered for
nonlinear fractional diffusion cases. For our model, the proof of the convergence to
1 still works, since the pure diffusion problem, whose solutions are subsolutions for
problem (1.1), reaches a tail-type behavior at a larger time. As for the convergence
to 0 in the far field, we mention that our proof does not adapt to slower decay data
since the main technique is using the long tail behavior of the Barenblatt solution.

Acknowledgment. We thank the anonymous referees for useful comments that
resulted in a real improvement of the presentation.
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