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ADAPTIVE PARAMETER SELECTION FOR DEEP BRAIN 

STIMULATION IN PARKINSON’S DISEASE 

ABSTRACT 

Each year, around 60,000 people are diagnosed with Parkinson’s disease (PD) and 

the economic burden of PD is at least $14.4 billion a year in the United States. 

Pharmaceutical costs for a Parkinson’s patient can be reduced from $12,000 to $6,000 per 

year with the addition of neuromodulation therapies such as Deep Brain Stimulation 

(DBS), transcranial Direct Current Stimulation (tDCS), Transcranial Magnetic Stimulation 

(TMS), etc. In neurodegenerative disorders such as PD, deep brain stimulation (DBS) is a 

desirable approach when the medication is less effective for treating the symptoms. DBS 

incorporates transferring electrical pulses to a specific tissue of the central nervous system 

and obtaining therapeutic results by modulating the neuronal activity of that region. The 

hyperkinetic symptoms of PD are associated with the ensembles of interacting oscillators 

that cause excess or abnormal synchronous behavior within the Basal Ganglia (BG) 

circuitry. Delayed feedback stimulation is a closed loop technique shown to suppress this 

synchronous oscillatory activity. Deep Brain Stimulation via delayed feedback is known 

to destabilize the complex intermittent synchronous states. Computational models of the 

BG network are often introduced to investigate the effect of delayed feedback high 
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frequency stimulation on partially synchronized dynamics. In this work, we developed 

several computational models of four interacting nuclei of the BG as well as considering 

the Thalamo-Cortical local effects on the oscillatory dynamics. These models are able to 

capture the emergence of 34 Hz beta band oscillations seen in the Local Field Potential 

(LFP) recordings of the PD state. Traditional High Frequency Stimulations (HFS) has 

shown deficiencies such as strengthening the synchronization in case of highly fluctuating 

neuronal activities, increasing the energy consumed as well as the incapability of activating 

all neurons in a large-scale network. To overcome these drawbacks, we investigated the 

effects of the stimulation waveform and interphase delays on the overall efficiency and 

efficacy of DBS. We also propose a new feedback control variable based on the filtered 

and linearly delayed LFP recordings. The proposed control variable is then used to 

modulate the frequency of the stimulation signal rather than its amplitude. In strongly 

coupled networks, oscillations reoccur as soon as the amplitude of the stimulus signal 

declines. Therefore, we show that maintaining a fixed amplitude and modulating the 

frequency might ameliorate the desynchronization process, increase the battery lifespan 

and activate substantial regions of the administered DBS electrode. The charge balanced 

stimulus pulse itself is embedded with a delay period between its charges to grant robust 

desynchronization with lower amplitude needed. The efficiency and efficacy of the 

proposed Frequency Adjustment Stimulation (FAS) protocol in a delayed feedback method 

might contribute to further investigation of DBS modulations aspired to address a wide 

range of abnormal oscillatory behaviors observed in neurological disorders.       
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Adaptive stimulation can open doors towards simultaneous stimulation with MRI 

recordings. We additionally propose a new pipeline to investigate the effect of Transcranial 

Magnetic Stimulation (TMS) on patient specific models. The pipeline allows us to generate 

a full head segmentation based on each individual MRI data. In the next step, the 

neurosurgeon can adaptively choose the proper location of stimulation and transmit 

accurate magnetic field with this pipeline.  
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CHAPTER 1: INRTODUCTION 

1.1 Research Problem and Scope 

In most of the neurodegenerative disorders such as PD, neuronal activities show 

synchronized dynamics. DBS has shown to improve various symptoms associated with PD 

by desynchronizing these oscillations [4]. However, the underlying mechanism of DBS is 

not fully understood. Through a surgically implanted DBS device, high frequency pulses 

(> 130 Hz) are delivered to a target cell within the Basal Ganglia (BG) causing an 

improvement in motor symptoms [5]. It has been hypothesized that HFS acts as a reversible 

lesion which stops the dysfunctional regions within the BG [6]. Whatever might cause DBS 

to outperform the medications must be thoroughly investigated by various DBS therapy 

paradigms. Improving the symptoms while reducing the side effects cannot cope with the 

shorter temporal dynamics of PD in an open loop stimulation paradigm [7]. Therefore, 

there is a need for dynamic stimulation systems such as closed loop or delayed feedback 

DBS, which are capable of continually adopting the stimulus based on the aggregated 

neuronal firing patterns. It has been shown that closed loop DBS ameliorates akinesia and 

abnormal Cortico-BG discharges [8], improves therapeutic efficiency, increases battery 

lifespan, decreases tissue damage, and adjusts the oscillatory patterns [9-11]. Closed loop 

models usually use the Local Field Potential (LFP) of the targeted region as the control 

variable since it is highly correlated with changes in the motor system [12-14]. LFP is then 
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filtered and analyzed to be fed in a feedback algorithm. The decision of the feedback 

algorithm will set the next parameters for the DBS signal. For higher performance, the 

stimulation amplitude is reduced according to the amplitude of the filtered LFP signal [15]. 

Unlike open loop stimulation, these methods constantly monitor the synchronized state 

(usually through the recorded LFP signal) and the stimulation strength is adjusted 

according to the extent of synchrony.  

1.2 Motivation behind the Research 

Each year, around 60,000 people are diagnosed with Parkinson’s disease (PD) and 

the economic burden of PD is at least $14.4 billion a year in the United States. 

Pharmaceutical costs for a Parkinson’s patient can be reduced from $12,000 per year to 

$6,000 per year with the addition of neuromodulation therapies such as Deep Brain 

Stimulation (DBS). In neurodegenerative disorders such as PD, deep brain stimulation 

(DBS) is a desirable approach when the medication is less effective for treating the 

symptoms. DBS incorporates transferring electrical pulses to a specific tissue of the central 

nervous system and obtaining therapeutic results by modulating the neuronal activity of 

that region. Recently, many studies have shifted towards adjusting the amplitude of DBS 

signals to improve the therapeutic efficacy. There are several limitations with adjusting the 

stimulation strength (amplitude) such as low energy efficiency and low performance in 

neuronal activation of sub populations within the targeted area [12]. Also, modulating the 

strength of the stimulation signal and especially, reducing it in case of highly fluctuating 

neuronal activities, increases the synchronization rather than suppressing it [16]. Therefore, 
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we propose a new method focused on adjusting the frequency of the stimulation signal in 

which the amplitude of the stimulation is kept constant for better desynchronization effects.  

There are other parameters that must be considered for optimum DBS effect such 

as selection of appropriate target cells that DBS is delivered to. Although targeting the STN 

or GPe neurons will reduce symptoms of PD such as dyskinesia, tremor and rigidity, the 

choice of DBS target is highly dependable on the patient’s symptoms [11, 17]. The 

stimulation waveform has also shown to be directly related to the desynchronization 

process and the total amount of energy consumed [9]. Choosing an appropriate stimulation 

signal can increase the battery lifespan and reduce the demand for costly battery 

replacement surgeries [14]. We have used a biphasic pulse for stimulation with a delay 

period between the cathodic and anodic phases to improve the desynchronization process 

[9, 18]. The amount of necessary stimulation amplitude for desynchronization significantly 

drops by the mean of an interphase delay. Accordingly, the risk of charge deposit into the 

targeted area and tissue damage would be much lower [19]. 

It has been shown that Low Frequency Stimulation (LFS) in the range of (60-80 

Hz) is more beneficial for patients with axial symptoms, while HFS is more applicable for 

tremor, rigidity and bradykinesia and neuronal oscillatory dynamics are mostly ameliorated 

by HFS due to the latching of the firing discharge time to the frequency of stimulation [20]. 

Moreover, the inhibition induced by HFS changes the mean firing rate of the STN neurons 

and alters the neurotransmitter release and antidromic activation of the BG cells. Since 

various symptoms of PD correlate with different ranges of stimulation frequencies, 

frequency adjustment might lead to more therapeutic effects. 
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Experimental studies investigated the effect of DBS on single cell level [21], but 

there are vast unknown information that can be extracted from neural network activity and 

its reaction to stimulation. There are several existing neural mass models aiming to 

understand ambiguities of DBS in the network level [3, 22]. The model in [23] focused on 

synaptic interaction between STN and GPe to be able to describe normal and PD 

conditions. Along all the computational models used in retrospective studies, we used a 

modified version of the BG network [3] to investigate the effect of DBS parameters. These 

biologically inspired models capture the characteristics of various nuclei, however, these 

models are computationally complex. Low dimensional models, on the other hand, reduce 

the computational costs while the lack of physiological implications make the LFP 

estimation and feedback control more challenging. To reduce the computational cost while 

considering neural interconnections and properties of each nuclei within the BG network, 

we propose new approaches to model BG neurons. Low cost computation of this model 

guarantees the simulation of large neuronal population. Additionally, the synaptic 

connections within all neurons must be incorporated into the models to examine the 

synchrony in the Cortico-BG network along with the LFP assessments.  

1.3 Contributions of the Proposed Research 

The contributions of this research are summarized as follows: 

1. Hypebolic Model: We propose a low cost computational model of spiking neurons. 

This model can help realize the neuronal interconnection issues which demonstrate various 

neuronal behavior observed in vivo through simple parameter modification. The behaviors 

include tonic and phasic spiking, tonic and phasic bursting, class 1 and class 2 excitability, 
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rebound spike, rebound burst, sub threshold oscillation, accommodated spiking along with 

inhibition neuron responses. We investigate the neuronal spiking patterns in Parkinson’s 

disease through our proposed model. Abnormal pattern of Subthalamic Nucleus (STN) in 

PD is studied through variations in the shape and frequency of firing patterns. Our proposed 

model introduces mathematical equations where these patterns can be derived and clearly 

differentiated from one another. The irregular and arrhythmic behavior of STN firing 

pattern under normal conditions can easily be transformed to those caused by PD through 

simple parameter modifications in the proposed model. This model can explicitly show the 

change of neuronal activity patterns in PD, which may eventually lead to effective 

treatment with deep brain stimulation devices. 

2. Novel DBS Waveforms: We used the new hyperbolic neuronal spiking 

formulation along with Hodgkin-Huxley equations [1] in a mass model of BG to investigate 

the effect of the stimulation waveform [9]. Additionally, we tested the effect of stimulation 

interphase delay on the suppression of pathological oscillations seen in the model of PD. 

Optimized waveforms could prolong battery life, reduce the frequency of recharge 

intervals and reduce the cost and risk of battery replacement surgeries. The combinational 

DBS waveform with a delay between the anodic and cathodic phases allows for energy 

consumption reduction in the BG network along with the reduction of the number of times 

that DBS waveform fails to elicit an action potential. Experimental results show that this 

new DBS waveform can activate the BG neurons with lower amplitude and shorter duration 

of delay compared to previously used DBS signals such as rectangular pulses. This new 

waveform modification also improves the synchrony of DBS pulses with firing of the BG 
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neurons; i.e. it was able to elicit an action potential on the applied neuron with almost every 

pulse of the DBS signal [9]. 

3. DBS Targets: Additionally, we investigate the effect of an optimized waveform 

such as Gaussian DBS signals on different targets of BG containing STN, GPe and GPi 

neurons. As has been studied by many researchers, Gaussian waveforms can elicit APs in 

the BG region with lower amount of energy consumption, which reduces the need of 

battery replacement surgeries. With our model and simulations, we observed that the 

neuronal response of PD patients with gait dyskinesia are better treated by GPi-DBS rather 

than STN-DBS due to the fact that higher Action Potentials (APs) caused by STN-DBS 

leads to dyskinetic side effects. Bradykinesia and akinesia symptoms of PD can be treated 

better with GPe-DBS, since it generates less APs. Both STN-DBS and GPi-DBS produced 

better results for the desynchronization of GPi neurons and therefore can be used to 

improve the axial and cardinal symptoms of PD patients. Additionally appropriate targets 

4. Frequency Adjustment Stimulation (FAS): To reduce the computational cost of 

BG models while considering neural interconnections and properties of each nuclei within 

the BG network, we propose a 3 dimensional model based on the Izhikevich formulation 

[2]. Low cost computation of this model guarantees the simulation of large neuronal 

population. Our model is able to generate the membrane voltages of the BG neurons, 

temporal firing patterns, and synchrony dynamics seen in experimental recordings[21]. 

Improving the symptoms while reducing the side effects cannot cope with the shorter 

temporal dynamics of PD in an open loop stimulation paradigm [7]. Therefore, there is a 

need for dynamic stimulation systems such as closed loop [24] or delayed feedback DBS, 
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which are capable of continually adopting the stimulus based on the aggregated neuronal 

firing patterns. 

We propose a new frequency adaptation stimulus according to the variation of LFP 

in a closed loop model. Our protocol adjusts the frequency of stimulation according to the 

level of synchrony observed by the LFP signal [25]. For instance, HFS is only applied at 

the peaks of the LFP signal where the synchronization is relatively high and the stimulation 

frequency declines as the synchronization level reduces. Closed loop adjustment of the 

frequency of stimulation shows better desynchronization while being energy efficient [26]. 

In addition, frequency adaptation has more therapeutic effects since various symptoms of 

PD correlate with different range of stimulation frequencies [27, 28]. Furthermore, a new 

pipeline for TMS navigation is proposed to improve the quality of patient specific models 

while providing a tool for clinicians to better target and stimulate brain regions. 
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CHAPTER 2: LITERATURE REVIEW  

2.1  DBS for Parkinson’s disease 

Neuromodulation is a fast growing field of study focusing on methods of 

interfering with neuronal activity. Electrical stimulation such as DBS influences a wide 

variety of mechanisms at neuronal and system level [29]. Parameter configuration of DBS 

differs from patient to patient and requires experimental and computation models for 

obtaining a decent efficiency [30]. DBS disrupts the oscillatory activity of cells within the 

basal ganglia [31, 32]. The previous hypotheses about the mechanism of DBS were based 

on the idea of regularizing pathological activity through entrainment and synaptic 

modifications [23, 33], while recent studies elucidated that DBS on STN causes complex 

changes in the firing rate of efferent structures [34]. 

High frequency DBS (more than 100 Hz) has more therapeutic effect than low 

frequency stimulations, and this effect would increase if pulses are given at a specific 

phase [35]. Efficient stimulus waveforms must be able to elicit action potentials that 

subsequently lead to release of neurotransmitter while minimizing the side effects such as 

tissue damage, charge injection decrease and increase in energy consumption [36, 37]. 

Recent stimulators have charge balanced waveforms with short duration, high amplitude 

followed by long duration, low amplitude pulses. One of the optimal DBS waveforms 

which decreases energy consumption is an exponentially growing pulse by [38].[14] 

found a Gaussian waveform using the genetic algorithm to be the most optimal waveform. 

Most of implanted stimulators generate a high frequency pulse train [39]. In order to have 
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a charge balanced efficient stimulus pulse for PD, these pulses should have an amplitude 

around 3V and a frequency of 130 Hz [40]. A prolonged delay between the two parts of 

the charge balanced stimulation pulse improves activation of the resting neurons while 

entrainment of the bursting neurons [15].  

There are several open loop stimulation protocols such as HFS and LFS where the 

stimulation parameters are fixed. More recent approaches tend to adjust the stimulation 

parameters in a closed loop paradigm. In this manner the recordings of BG is used as a 

control variable to adjust the stimulation parameters.  Computational or mathematical 

models of BG neurons are widely used to test these various stimulation protocols [3, 9, 

16, 18, 22, 41, 42]. 

2.2  Computational Neuroscience 

Computational neuroscience is the science of studying the brain function with 

computer science modeling, and looking at all of the activity of the human brain through 

the lens of computer science. Since any brain disorder involves a group of neurons, a 

computationally efficient neuron model can help understand the behavior of a large group 

of coupled neurons, while providing low computational complexity is of high significance 

[43].  Computational models of neuronal activity can be divided in two categories: 

 Biologically inspired models 

 Low computational cost models 

The biologically inspired models tend to define the neuronal activity based on the 

membrane potentials of a neuron. Although these models try to incorporate the 
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electrophysiological phenomena of a neuron, their large amount of differential equations 

make them difficult to be applied in neuronal population models [1].  On the other hand,  

the low computational cost models are defined to decrease the amount of computation,  

while generating similar firing patterns to biologically inspired or experimental recordings 

[2]. Here we explain 2 of the most used biologically inspired and low computational cost 

models for a single neuron. 

2.3 Hodgkin-Huxley Neuronal Equations 

Hodgkin and Huxley [1] proposed a simple biologically inspired model of a single 

neuron which eventually granted a Nobel Prize for the authors. Their model escribes 

how action potentials in neurons are initiated and propagated. They defined a set 

of nonlinear differential equations that approximates the electrical characteristics of 

excitable cells such as neurons. They showed that the chemical characteristics of a neuron 

can be represented by an electric circuit shown in Figure 2.1. In this Figure, each ion 

entering the neuron is faced by a resistor depicting the membrane resistance.  

 

 

 

Figure 2.1. The Hodgkin Huxley neuronal circuitry [1] 

The governing equations for defining the membrane voltage are defined as 

follows: 
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cm
d௏

dt
=Iext-INa-IK-Il (2.1) 

INa= gNam∞
3 ሺVሻhሺV-VNaሻ (2.2) 

IK= gKn4ሺV-VKሻ (2.3) 

IL= gL
ሺV-VLሻ (2.4) 

where the membrane voltage V of a neuron is defined by various intra and extra 

cellular currents and the membrane capacitance Cm. The IL, INa, IK and Iext  parameters 

represent leak, sodium, potassium and external currents, respectively. The governing 

equations for these currents are shown in Equations 2.2-2.4. The activation and 

inactivation parameters in Equations 2.2-2.4 are calculated according to the Equations 

below, assuming p can be any of the ሾn, m, hሿ parameters. 

φp

dp

dt
= (p∞ሺVሻ-p)/τp(V) 

(2.5) 

p∞ሺVሻ= 1/(1+e
൬-

V-θp
σp

൰
 

(2.5a) 

τpሺVሻ= τp
0+τp

1/(1+e
ቆ-

V-θp
τ

σp
τ ቇ

 
(2.5b) 

  The parameters n, m, and h are dimensionless quantities between 0 and 1 that are 

associated with potassium channel activation, sodium channel activation, and sodium 

channel inactivation, respectively. Although the Hodgkin-Huxley equations capture the 

main ionic currents of a cell, they show a very high computational cost. The number of 

floating points for 1 mS of simulation of the Hodgkin-Huxley model is shown to be 1,200 
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[2]. Also, in order to model the BG neurons such as STN we need to extend the Hodgkin 

Huxley formulation as below, which drastically increases the computational cost. 

Cm
dV

dt
= -IL-INa-ICa-IK-IT-Iahp-ISyn-Iapp                   (2.6) 

where the membrane voltage V of each neuron is defined by various intra and extra 

cellular currents and the membrane capacitance Cm. The IL, INa, ICa, IK, IT, Iahp, ISyn and 

Iapp parameters represent leak, sodium, high threshold calcium, potassium, low threshold 

calcium, after hyperpolarization potassium, synaptic and external currents, respectively. 

The governing equations for these currents are shown below: 

The numerical values for all parameters can be found in [18]. 

2.4 Izhikevich Model 

A computationally efficient model of cortical neuron was proposed by Izhikevich 

in 2004 [2]. With simple polynomial differential equations, Izhikevich was able to 

ICa= gCas∞
2 ሺVሻሺV-VCaሻ (2.7) 

IT/STN= gTa∞
3 ሺVሻb∞

2 ሺrሻሺV-VCaሻ (2.8) 

IT/GPe= gTa∞
3 ሺVሻrሺV-VCaሻ (2.9) 

Iahp= gahp
ሺV-VKሻሺCa/Ca+KIሻ,   ϵ

dCa

dt
= --ICa-IK-KcaCa 

(2.10) 

ISyn= gSyn൫V-VSyn൯෍ si

NSyn

i=1

 

(2.11) 
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generate 20 different firing patterns seen in experimental recordings of human brain cells, 

as shown in Figure 2.2.  

 

Figure 2.2 Various firing patters generated by Izhikevich Model [2] 

The number of floating points for 1 mS of simulation with Izhikevich formulation 

was as low as 13 [2]. The governing equations of this model are as follows: 

d௏

dt
ൌ Iext +0.04 ܸଶ ൅ 5ܸ ൅ 140 െ  (2.12) ݑ

dݑ
dt
ൌ ܽሺܾܸ െ  ሻݑ

(2.12a) 

If  V ൐ 30 ܸ݉   then  V = c       &      u = u+d (2.12b) 

where ܽ, ܾ, ܿ	and	݀ are set for the recovery time constant, resonance, potential 

reset value and outward minus inward currents activated during the spike and affecting 

the after-spike behavior, respectively (Figure 2.3). 
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                                Figure 2.3 Parameters of Izhikevich model [23] 

2.5 Computational models of BG 

There has been numerous computational models of BG in the literature that try to 

explain and understand the underlying mechanism of DBS [3, 22, 23]. Most of these 

models have used the Hodgkin Huxley equations to generate the neuronal activities of 

STN, GPe, GPi and Thalamic neurons with their synaptic connections. The problem with 

these models arises when one attempts to generate a large population of these neurons for 

instance 1,000 neurons in each nucleus. Therefore, new approaches have moved toward 

more robust and fast models such as Izhikevich formulation. The schematic of BG area 

and its corresponding population model is shown in Figure 2.4 [3]. Each neuron type in 

this Figure follows an extended version of Hodgkin-Huxley model and the synaptic 

connections between these nuclei are defined as below: 

௜௢௡ܫ ൌ 	݃௜௢௡݉ஶ
ெ݄ஶேሺܸ െ  ௜௢௡ሻ  (2.13)ܧ

where ݃௜௢௡ is the conductance variable of each ion to or from the cell and ݉ஶ
ெ and 

݄ஶே  are activation and inactivation functions varying slightly for each involving ion in the 

cell [1]. V is the membrane potential and  ܧ௜௢௡ is the equilibrium potential of the ion. 
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Figure 2.4 BG network model [3] 

More recent models tend to understand the effects of DBS on the axonal and 

afferent network. For these goals, volumetric models have been developed with the 

capability to show the effect of DBS in a wider range [44]. These models can be used with 

the Magnetic Resonance Images (MRI) of each patient to detect the optimal DBS lead 

location and provide better insight on how DBS is affecting the targeted region.  

2.6 DBS Target Selection 

The optimal target to implement DBS within the basal ganglia depends on 

intraoperative targeting, electrophysiology, and macro stimulation, while preoperative 

targeting could be influenced by the standard stereotactic coordinates [45]. STN and GPi 

are the most commonly known target sites in the brain for both DBS and lesioning. 

Targeting STN and GPi neurons for DBS enhances the cardinal features of PD, such as 

rigidity, bradykinesia and tremor [46]. DBS targeted at STN (STN-DBS) could increase 

the risk of dyskinetic more than GPi-DBS [47]. A recent analysis of patients' outcomes 

shows that there is a comparable improvement for patients under STN-DBS and GPi-DBS 

in motor function and in the performance of daily activities after the surgery [48]. Recent 

studies show that targeting GPe for DBS has improved the symptoms of PD patients in 

terms of bradykinesia, akinesia, and rigidity in comparison to GPi-DBS [49].  
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All STN-DBS, GPi-DBS or GPe-DBS use the rectangular stimulus waveforms. 

Although rectangular waveforms have proven themselves efficient for deployment in 

clinical utilities, non-rectangular waveforms have offered certain advantages for 

neuromodulation devices [37]. The principle of selecting the stimulus waveform is to 

enable the generation of an appropriate neural response with less risk of stimulation 

induced tissue damage and less energy consumption [50]. The waveforms used in clinical 

DBS surgeries are mostly symmetric and charge-balanced rectangular waveforms with a 

high-amplitude, short-duration cathodic phase followed by a low amplitude, long-duration 

anodic phase. Theoretical and experimental evidence show that non-rectangular pulses are 

the most energy efficient waveforms for activating neuronal firings. Recently, non-

rectangular waveforms and especially Gaussian signals have been studied for DBS due to 

their energy efficiency and neural stimulation performance [9]. But the effect of these 

non-rectangular waveforms on various target sites in the basal ganglia is not fully 

examined.  Although designing the optimal energy efficient waveform is of great interest 

in many fields along with neuromodulation [51], minimizing the risk of tissue damage 

must be considered along with the pulse shape design. Non-rectangular DBS pulses have 

been used in analytical membrane models, however their impact on neural population 

models have not been fully investigated. 

2.7 DBS waveform effects 

Many studies have attempted to examine the therapeutic effect of DBS waveforms 

on patients with Parkinson’s disease [21, 52, 53] along with more computationally based 

studies such as [3, 12, 14, 15, 22, 54]. However, the effect of DBS pulse modification with 
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a delay in a complex network of the basal ganglia has not been fully investigated. A typical 

waveform to be used as DBS is consisted of Cathodal pulse followed by a longer extent 

of an Anodal pulse [39]. In order to have a charge balanced wave, we must carefully define 

the cathodic to anodic pulse width ratio to guarantee enough time for the depolarization 

of the membrane potential to have the maximum efficiency of DBS. The main DBS 

waveforms used in literature are rectangular pulses, ramp, triangular and sinusoid [12]. 

All these waveforms are able to decrease the synchronization of GPe and GPi cells with a 

cathodic amplitude of 200 ܣߤ. The pulse duration of cathodic phases were 0.3 ms which 

is enough to elicit an action potential with minimum energy consumption [14] and for the 

anodic phase, the amplitude of -20 ܣߤ and duration of 1 ms was assigned. The delay of 

0.7 ms shows a promising value for the activation of resting neurons in our basal ganglia 

network. These values are used in previous studies [3, 12, 14, 22] and showed relatively 

acceptable results. In terms of energy consumption of the DBS device, sinusoid pulse 

consumed the lowest amount of energy, suggesting that these signals can be beneficial in 

terms of battery loss and replacement surgeries.  

Placing a delay between the cathodic and anodic phases had been studied by [15, 

18] with only a rectangular pulse gap pulse waveform implemented on a simple Hodgkin-

Huxley and a Morris-Lacar model, which does not consider the interactive behavior of the 

STN, GPe and GPi neurons [55]. They considered the effect of this DBS waveform by 

switching the cathodic and anodic phases, hence two waveforms of cathodic gap anodic 

(CGA) and anodic gap cathodic (AGC) were explored. The anodic phase must have lower 

amplitude with large duration to counter balance the effect of the short length but high 
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amplitude cathodic pulse. With this configuration, we can minimize the tissue damage of 

patients going under DBS implantation [56-58]. Interfering the DBS waveform with a 

delay between the cathodic and anodic parts also increases the threshold for the activation 

of neurons and will make the network less influenced by the anodic phase. Figure 2.5 

shows a charge balanced biphasic rectangular pulse used in clinical settings for DBS. 

 

Figure 2.5 DBS waveforms without interphase delay (left) and with interphase delay (Right) 

2.8 Closed Loop Deep Brain Stimulation 

The schematic of open loop and closed loop DBS are shown in Figure 2.6. The 

therapeutic effects of DBS are enhanced once it is used in a closed loop paradigm. The 

cortical and pallidal discharge patterns of neurons are more improved by closed loop DBS 

rather than traditional open loop stimulations [59]. DBS is mainly targeted at subthalamic 

nucleus (STN) or globus pallidus externa (GPe) cells to disrupt the thalamo-cortical 

synchronizations seen in PD. Therefore, the local field potential (LFP) recorded from a 

population of the STN cells is often used as the feedback variable for DBS 

parametrization. Retrospective studies mainly focused on adjusting the stimulation 

amplitude based on the recorded LFP [18]. However, adapting the frequency of 

stimulation might provide superior results in desynchronizing the coupling patterns of 
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STN-GPe. Adjusting the frequency of stimulation to a protocol where HFS is only used 

when high desynchronization is needed, can expand the battery lifespan and reduces the 

necessity of costly battery replacement surgeries [60]. 

 

Figure 2.6 Open and closed loop paradigms for DBS in PD 

It has been shown that closed loop DBS ameliorates akinesia and abnormal 

Cortico-BG discharges [59], improves therapeutic efficiency, increases battery lifespan, 

decreases tissue damage, and adjusts the oscillatory patterns [16, 41, 61, 62]. Closed loop 

models usually use the Local Field Potential (LFP) of the targeted region as the control 

variable since it is highly correlated with changes in the motor system [61, 63, 64]. LFP 

is then filtered and analyzed to be fed in a feedback algorithm. The decision of the 

feedback algorithm will set the next parameters for the DBS signal. For higher 

performance, the stimulation amplitude is reduced according to the amplitude of the 

filtered LFP signal [18]. Other studies compared linear and nonlinear feedback setups 

which yield different desynchronization results. Nonlinear feedbacks do not reinforce 

synchronization and act by compelling amplitude suppression of consecutive oscillations 

[65].  
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Due to the coupling dynamics of STN and GPe neurons, a synchronous burst firing 

is seen in the STN cells. This synchronized dynamic reflects a rhythmic activity in the 

STN neurons, which is observable from the LFP recordings and can be used to adjust the 

stimulation parameters. There are two approaches for closed loop DBS where both can 

optimize the stimulus signal to maintain a desired efficiency in terms of desynchronization 

as neuronal activities fluctuate. This is in contrast with open loop stimulation where a 

fixed HFS pulse train is applied to a target within the basal ganglia and in some cases, it 

causes tissue damage rather than alleviating the symptoms. The first approach for closed 

loop DBS defines a relationship between the measured output and the input stimulus. 

Since the stimulus is a function of the output (LFP) recordings only, other parameters such 

as the global interaction of cells with other regions of the brain are neglected. However, 

in delayed feedback closed loop DBS methods, the input stimulus is updated after the 

output recordings were put in a decision state. The decision state is where we define how 

to adjust the input stimuli according to the measured LFP signal for better therapeutic 

results. In this state, often one or a couple of parameters of the input stimulus are modified, 

considering more general features from the LFP signal such as power density of the 

recorded output and the oscillation frequencies. 

To date, most of the delayed feedback algorithms focus on updating the amplitude 

of the stimulation signal according to the measured LFP. It has been shown that the power 

spectral density of the LFP signal can be used in a phase response curve (PRC) measure 

in order to deliver the stimulus signal at optimum frequencies [13]. In this method, using 

the subthreshold amplitudes for stimulation provided more compelling reduction of 
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pathological oscillations. However, stimulation with a burst of subthreshold amplitude 

increases the amount of energy consumed by the DBS device. In recent studies, the 

amplitude of the DBS signal was adjusted based on the damped filtered LFP signal and a 

gap was inserted between the phases of each DBS pulse. By this pulsatile feedback, the 

stimulation amplitude would have a linear relation with the filtered LFP. The advantage 

of this method is its ability to increase the battery lifespan while providing an adequate 

desynchronization [18]. Moving from adjusting the amplitude in feedback loops towards 

frequency adaptation might contribute to superior tradeoff between the desynchronization 

performance and the battery lifetime. 

 

2.9 TMS and Neuronavigation Systems 

TMS is a non-invasive protocol for activation of neurons in brain. It can generate 

magnetic fields over the scalp by applying a short electric current into the TMS coil. The 

schematic of a TMS coil along with the generated magnetic field are shown in Figure 2.7. 

TMS mostly activates the cortical parts of brain [66] and has shown to improve the therapy 

of major depression [67]. TMS is also effective for attention deficit hyper activity 

disorder, Schizophrenia and post-traumatic stress disorder.  
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Figure 2.7 TMS device and simulated magnetic fields on the brain. TMS activation maps are run on 
SimNIBS. 

The magnetic fields generated by TMS coils follow the Maxwell’s equations as 

below [68]: 

 Dഥ=ρ   (2.14)׏ Hഥ=jωDഥ+Jത while׏

 Bഥ=0               (2.15)׏ Eഥ=-jωBഥ while׏

In these equations, ܪഥ is the magnetic field of a single TMS coil, ܧത is the electric 

field, ܤത  is the magnetic induction and ܦഥ is the electric induction. The charge and current 

densities are shown with ρ and ܬ ̅respectively [69]. 

The effects of these magnetic fields can be different from one subject to another 

due to the difference in size and shape of the human head. Many studies often tried to 

evaluate the effects of TMS on realistic head models [70, 71]. Recently a new quasi static 

boundary method was proposed, providing a real-time high-resolution stimulation tool 

[72]. Other studies have suggested multiple coils to stimulations to improve the 

therapeutic effects of TMS [73]. However, to achieve the optimal effects from TMS coils, 
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we need to move towards patient specific head models. There are several commercial and 

non-commercial software for MRI segmentation and head mesh generation such as 

Freesurfer [74], SimNIBS [75], Brain Voyager [76], etc . Although these software tools 

can generate reliable head meshes based on the MRI data of patients, they lack a robust 

algorithm to model abnormalities in the skull.  

Ideally these models can be used for neuronavigation systems [68]. 

Neuronavigation is consisted of computer assisted technologies to navigate through brain 

regions [77]. The MRI data of each patient can be used to generate a 3D model of brain 

volumes and surfaces such as skin, skull, scalp, Cerebrospinal Fluid (CSF), White Matter 

(WM) and Grey Matter (GM). Physicians can navigate through these meshes and define 

the optimal targets for TMS therapy as shown in Figure 2.8. Similar 3D modeling 

approaches have been used for patient specific stimulation in DBS, estimation of gait 

posture and tDCS [44, 78-80]. 

 

Figure 2.8 3D brain volume modeling from MR images. A) Sagittal view, B) Axial view, C) Coronal view. 
The generated WM, Pial surface and head mesh from MRIs are shown in D, E and F respectively. 
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2.10 Summary 

Computational models of neuronal populations have been extensively used to 

investigate the underlying mechanism of DBS. Neuronal modelling has taken various 

approaches in terms of complexity, biological reliability and region of interest 

characteristics. Magnetic field models have also been used to study the effects of DBS on 

axonal activations and white matter pathways [44]. DBS method itself can be used in open 

loop, closed loop (Adaptive) or on demand paradigms. Table 2.1 summarize some of the 

relevant research articles in the field of DBS for PD.                             

Table 2.1 Summary of the literature research 

Work Methodology  Advantages Disadvantages 
Cons 

Rubin & 
Terman. 2004 [23] 

Original Rubin 
and Terman (RT) 
model based on 
Hudgkin-Huxley 
equations. 

Able to reproduce 
both pathological and 
physiological activities 
of STN, GPe, GPi and 
Thalamic cells. 

Does not consider 
the effect of sensory 
motor cortex excitatory 
inputs. 

Miocinovic et al. 
2006 [10]  

Electric field 
model  of BG  

Capable of 
analyzing axonal 
activations 

STN dynamics 
showed discrepancy in 
terms of activations. 

Pirini et al. 2009 
[11] 

Enhanced Rubin 
and Terman (RT) 
model with the effect 
of Striatum cells on 
the network and 
Rectangular DBS on 
different neuronal 
targets.  

Representation of 
direct pathways of the 
basal ganglia cells.  

Some phenomena 
like electrode to neuron 
distance, effects of 
somas, dendrites and 
axons, synaptic 
activation/inactivation 
effects, and 
neurotransmitter 
depletion are not 
considered by this 
work 

Foutz & 
Mclntyre. 2010 [12] 

Energy efficient 
non- rectangular 
DBS waveform 

Examining the 
neuronal activation 
energy in both 
intracellular and 
extracellular 
stimulation. 

Proposed 
waveforms are 
hampered by increased 
charge requirements, 
which may limit 
potential savings in 
battery life. 

Wongsarnpigoon 
& Grill. 2010 [14] 

Gaussian energy 
efficient DBS 

Ability to find the 
optimal DBS 
waveform parameters 

Lack of DBS 
targeting consideration. 
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waveform with 
Genetic Algorithm 

with the Genetic 
Algorithm 

Hofmann et al. 
2011 [15] 

Charge balanced 
DBS waveforms with 
introduction of a gap 
between cathodic and 
anodic phases 

Modified DBS 
waveforms showed a 
considerably increased 
efficiency in terms of 
activation and 
entrainments of 
neuronal activities 

Considering these 
DBS waveforms on a 
single compartment 
model rather than 
neuronal population 
network. Only 
considers rectangular 
pulses. 

So et al. 2012 [3] Enhanced RT 
model with 
rectangular DBS 
waveforms. 

High ability to 
reconstruct the 
biological phenomena 
happening in the basal 
ganglia cells.  

The model does 
not consider 3 
dimensional 
orientations of different 
nuclei and the position 
of the stimulating 
electrode. 

Priori et al. 2013 
[63] 

Adaptive 
analysis of LFP for 
closed loop 
stimulation  

Showed LFP has 
correlation with motor 
and non-motor 
symptoms which makes 
it suitable as the control 
variable 

Beta activity is not 
always detectable from 
LFP especially in 
rodent models 

Summerson et 
al. 2015 [22] 

Various charge 
balanced DBS 
waveforms 
implemented on a 
new cortical model. 

High complexity 
and accuracy of model 
with considering the 
layer V into the model. 

Irregular DBS 
waveform used does 
not provide the mean 
to understand the effect 
of DBS waveforms 
parameters. 

Holt et al. 2016 
[13] 

Closed loop 
approach of Deep 
Brain Stimulation on 
the Hahn and 
McIntyre (HM) 
model 

Considers the 
closed loop phasic 
stimulation which 
enables applying the 
DBS waveform at a 
proper time. 

The complexity of 
neuronal network is 
not fully addressed by 
the model. 

Popovych et al. 
2017 [18] 

Closed loop 
approach based on 
Rubin and Terman 
model 

Showed that 
pulsatile stimulation 
can enhance the 
desynchronization 
process of  
pathological 
oscillations 

Model is 
simplified and has 
neuroanatomy and 
neurophysiology 
limitations 

Gunalan et al. 
2018 [44] 

Quantifying the 
axonal response due 
to DBS in a patient 
specific model 

Provides insight into 
the modulated brain 
circuitry and possible 
correlations with 
clinical outcomes 

The predictive 
capabilities of this 
model shows some 
limitations 
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CHAPTER 3: RESEARCH PLAN 

3.1 Overview 

As the first step of this work, we developed a low complexity model of single 

neurons [81]. This model can help realize the neuronal interconnection issues. The model 

can demonstrate various neuronal behavior observed in vivo through simple parameter 

modification. The behaviors include tonic and phasic spiking, tonic and phasic bursting, 

class 1 and class 2 excitability, rebound spike, rebound burst, sub threshold oscillation, 

accommodated spiking along with inhibition neuron responses. We investigate the 

neuronal spiking patterns in Parkinson’s disease through our proposed model. We then 

compare this model with some of well know models [1, 2] to study the effect of DBS 

waveforms in terms of desynchronization of pathological oscillations and energy efficiency 

[9]. We also propose new Gaussian waveforms embedded with interphase delays, to 

increase the efficacy and efficiency of stimulation.  This novel Gaussian waveform is used 

in a populational model of BG to investigate various targets for DBS.  Additionally, we  

propose a 3 dimensional model based on the Izhikevich formulation [43]. Low cost 

computation of this model guarantees the simulation of large neuronal population. We also 

consider the synaptic connections within all neurons based on more realistic models to 

examine the synchrony in the Cortico-BG network along with LFP assessments. Our model 
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is able to generate the membrane voltages of the BG neurons, temporal firing patterns, and 

synchrony dynamics seen in experimental recordings [82]. This model is used to further 

test our novel closed loop (adaptive) stimulation protocol called Frequency Adjustment 

Stimulation (FAS) [25]. Our protocol adjusts the frequency of stimulation according to the 

level of synchrony observed by the LFP signal. For instance, HFS is only applied at the 

peaks of LFP signal where the synchronization is relatively high and the stimulation 

frequency declines as the synchronization level reduces. Closed loop adjustment of the 

frequency of stimulation shows better desynchronization while being energy efficient [3]. 

In addition, frequency adaptation has more therapeutic effects since various symptoms of 

PD correlate with different range of stimulation frequencies [27, 83]. 

Additionally, we proposed a new pipeline for TMS navigation to improve the 

quality of patient specific models while providing a tool for clinicians to better target and 

stimulate brain regions. The proposed pipeline is run by MATLAB software (Mathworks 

Inc.) with minimum system requirements of 2.7 GHz processor and 8 GB of memory.  

3.2 Proposed Hyperbolic Model of Single Neuron 

The Hyperbolic model can be used to study the neuronal firing patterns of cells 

with dopamine deficiency. This model is an extension over previously bi-dimensional 

models such as the Izhikevich model [2] and Adaptive Exponential Integrate and Fire 

(AdEx) model [84] which allows more flexibility by simply reducing the number of 

parameters in order to generate various spiking patterns. Due to the ambiguous nature of 

neuronal responses and the partial differential equations that can model them, we consider 

a hyperbolic differential equation to model all types of bursting behavior. This idea comes 
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from the vast applications of hyperbolic functions to solve differential equations. The 

proposed mathematical model can be formulated as follows:  

  
ௗ௩

ௗ௧
ൌ ߙ cosh ቀ௩ି௩ೝ೐ೞ೟

ఉ
െ 1ቁ െ ߳ െ ܪ ൅  ሺ3.1ሻ																											ܫ

ܪ݀
ݐ݀

ൌ 	 ߬ுሺ݊ுݒ െ  ሺ3.2ሻ																																																												ሻܪ

We considered the insulation of cell membrane around a neuron as a capacitor 

which is defined by parameter ߙ. Current I in this model represents the ionic movement 

through cell gates (inward Calcium and Sodium ionic velocity), resulting in action potential 

or voltage spikes. In existence of current I, the membrane voltage would increase and 

generate spiking patterns until it reaches a threshold value and should be reset to a resting 

state via  ݒ௥௘௦௧. The sharpness of spikes can be modified through ߚ. The ߳ parameter is an 

experimentally determined parameter, related to the general gate voltage of inward 

Calcium, Sodium and outward Potassium currents.  Equation 3.2 can determine the rate of 

spikes along with their resting and peak times. Simply, by changing parameters in these 

equations, one can observe different types of neuronal firing. As shown in Figure 3.1, with 

the selection of  ߙ ൌ 75000	, ߚ ൌ 1000	, ௥௘௦௧ݒ ൌ െ62.5	, ߳ ൌ 16	, ߬ு ൌ 0.02	, ݊ு ൌ 	0.2, 

we can see the tonic bursting behavior of neurons spiking. We tested a single tonic spike 

generated in our model ( ଵܵ) with the actual recordings of STN neurons (ܵଶ) using the Cross 

Correlation (CC) measure as shown in Equation below. 

ሺܥܥ ଵܵ, ܵଶሻ ൌ 	
∑ ሺௌభି௠௘௔௡ሺௌభሻሻሺௌమି௠௘௔௡ሺௌమሻሻ
ಽ
೟సభ

ට∑ ሺௌభି௠௘௔௡ሺௌభሻሻమ ∑ ሺௌమି௠௘௔௡ሺௌమሻሻమಽ
೟సభ

ಽ
೟సభ

        (3.3) 
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L is the length of a spike, and as shown in Table 3.1, the hyperbolic model and AdEx 

models obtained the maximum CC values with actual recording of STN spikes [85].  

 

Figure 3.1 Different spiking patterns generated by Hyperbolic model 

Furthermore, the hyperbolic model is able to generate switching firing patterns of 

STN neurons caused by Parkinson’s Disease. This switching behavior from tonic to bust 

cannot be obtained by Izhikevich or AdEx.  Physiologically inspired models can obtain 

slightly higher CC [34] but the large parameter set of these models will significantly reduce 

the computational performance in terms of simulation and upswing time (Table 3.1). In 

terms of number of parameters, the hyperbolic model has 5 parameters in total (excluding 

the reset potential). The number of parameters for Izhikevich and AdEx is 4 and 6, 

respectively. Figure 3.1 shows various types of single neuronal responses that can be 

generated by this model. The responses include tonic spikes, tonic burst, Phasic spike,  

phasic burst and etc. 
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Table 3.1 Comparison of Hyperbolic Model with Well-known Neuron Models 

 Izhikevich 
[2] 

AdEx [84] Humphries et al 
[34] 

Hyperbolic 
[81]  

Number of Parameters 4 6 9 3 to 5 
Simulation Time(s) 0.108 0.152 0.424 0.084 
Upswing Time(s) 0.0014 0.0011 0.0034 0.0005 

CC 0.785 0.809 0.813 0.827 
 

Table 3.2 Parameters of Hyperbolic Model 

Spiking Patterns Parameters  
 ࡴ࢔ ࡴ࣎ ࣕ ࢚࢙ࢋ࢘࢜ ࢼ ࢻ 

Single spike 75000 950 -62.5 16 0.021 0.2 
Bursting spike 69000 1000 -61.5 16.1 -0.026 -1 

Single to Burst switching 71000 965 -62.5 15.7 -0.02 -1 
Constant Current 74000 1000 -55.5 16.6 0.1 0.25 

Absence of Dopamine 75000 1000 -62 16.2 0.02 0.2 
Presence of Dopamine 75000 1000 -62.5 16.9 0.1 0.36 

 

 3.3    BG Population Model to Investigate the Effects of DBS 
Waveforms 

This model adopts the basic differential equations of cells by [1] in an 

interconnected manner to stimulate involving neurons in the basal ganglia such as the STN, 

GPe, GPi and Thalamic (Th) neurons. The governing equations for Th, STN, GPe and GPi 

neuron are as follows: 

௛்ܥ
ௗ௏

ௗ௧
ൌ 	െܫ௅ െ ே௔ܫ െ ௄ܫ െ ்ܫ െ ܫீ ௉௜→்௛ ൅  ௌெ஼   (3.4)ܫ

ௌ்ேܥ
ௗ௏

ௗ௧
ൌ 	െܫ௅ െ ே௔ܫ െ ௄ܫ െ ܫீି்ܫ௖௔െܫ ௉௘→ௌ்ே ൅ ஽஻ௌܫ ൅  ௕௜௔௦  (3.5)ܫ
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௉ாீܥ
ௗ௏

ௗ௧
ൌ 	െܫ௅ െ ே௔ܫ െ ௄ܫ െ ܫௌ்ே→ீ௉௘൅ீܫି்ܫ௖௔െܫ ௉௘→ீ௉௘ ൅ ஽஻ௌܫ ൅  ௕௜௔௦     (3.6a)ܫ

௉௜ீܥ
ௗ௏

ௗ௧
ൌ 	െܫ௅ െ ே௔ܫ െ ௄ܫ െ ܫௌ்ே→ீ௉௜൅ீܫି்ܫ௖௔െܫ ௉௘→ீ௉௜ ൅ ஽஻ௌܫ ൅  ௕௜௔௦   (3.6b)ܫ

where the conductance values for Leaky, Sodium, Potassium and T-type low threshold 

spiking currents are 0.05, 3, 5 and 5 
௠ௌ

௖௠మ and the equilibrium potentials are -70, 50, -75 and 

0 mV, respectively. ܫௌெ஼ is the sensory motor cortex current representing the effect of other 

cells in the cortex on Th neurons. ܫௌெ஼ is defined as the normal distributed pulse train with 

frequency of 14 Hz and coefficient variance of 0.2 with each pulse having the amplitude 

of 3 
ఓ஺

௖௠మ and duration of 5 ms, in order to generate the unordinary signal train of motor 

cortex. ீܫ ௉௜→்௛ represents the inhibitory currents from a GPi neuron to each Thalamic 

neuron with the conductance of 0.17 
௠ௌ

௖௠మ and equilibrium potential of -85 mV. Conductance 

values for Leaky, Sodium, Potassium, Calcium and T-type low threshold spiking currents 

are 2.25, 37, 45, 2 and 0.5 
௠ௌ

௖௠మ and the equilibrium potentials are -60, 55, -80, 140 and 0 

mV, respectively. ீܫ ௉௘→ௌ்ே represents the inhibitory currents from 2 GPe neurons to each 

STN neuron with the conductance of 0.5 
௠ௌ

௖௠మ and equilibrium potential of -85 mV. ܫ௕௜௔௦ is 

set to 29 
ఓ஺

௖௠మ for the healthy case and 20 
ఓ஺

௖௠మ for the Parkinsonian case and finally, ܫ஽஻ௌ is 

the deep brain stimulus used in the model. Conductance values for Leaky, Sodium, 

Potassium, Calcium and T-type low threshold spiking currents are 0.1, 120, 30, 0.15 and 

0.5 
௠ௌ

௖௠మ and the equilibrium potentials are -65, 55, -80, 120 and 0 mV, respectively and 

these values are the same for GPe and GPi neurons. ܫௌ்ே→ீ௉௘ represents the excitatory 

currents from 2 STN neurons to each GPe neuron with the conductance of 0.15 
௠ௌ

௖௠మ and 



32 
 

equilibrium potential of 0 mV. ீܫ ௉௘→ீ௉௘ represents the inhibitory currents from 2 GPe 

neurons to each GPe neuron with the conductance of 0.5 
௠ௌ

௖௠మ and equilibrium potential of 

-85 mV.  ܫௌ்ே→ீ௉௜ represents the excitatory currents from 2 STN neurons to each GPi 

neuron with the conductance of 0.15 
௠ௌ

௖௠మ and equilibrium potential of 0 mV. ீܫ ௉௘→ீ௉௘ 

shows the inhibitory currents from 2 GPe neurons to each GPi neuron with the conductance 

of 0.5 
௠ௌ

௖௠మ and equilibrium potential of -85 mV. ܫ௕௜௔௦ is set to 20 
ఓ஺

௖௠మ for the healthy case 

and 8 
ఓ஺

௖௠మ for the Parkinsonian case in Equation 3.5 and 22 
ఓ஺

௖௠మ for the healthy case and 12 

ఓ஺

௖௠మ for the Parkinsonian case in Equation 3.6. 

Each GPe cell has inhibitory projections to two STN, GPi and GPe neurons while 

each STN neuron has 2 excitatory connections to two GPe and two GPi neurons, as shown 

in Figure 3.2. GPi neurons act as an output connection to Thalamic neurons with 1 

inhibitory connection. This model also considers an irregular frequency pulse train as an 

input to the thalamic cells, exemplar of the accumulated current from the sensory motor 

cortex region. Many studies have attempted to examine the therapeutic effect of DBS 

waveforms on patients with Parkinson’s disease [21, 52, 53] along with more 

computationally based studies such as [3, 12, 15, 18, 22]. However, the effect of DBS pulse 

modification with a delay in a complex network of the basal ganglia has not been fully 

investigated. A typical waveform to be used as DBS is consisted of Cathodal pulse 

followed by a longer extent of an Anodal pulse [39]. 
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Figure 3.2 BG network model and various DBS waveforms 

In order to have a charge balanced we must carefully define the cathodic to anodic 

pulse width ratio which in our study we set this ratio to 1:3.3 to guarantee enough time for 

the depolarization of the membrane potential to have the maximum efficiency of DBS. We 

compared a group of waveforms with a delay between the Cathodic and Anodic phases in 

the computational network of the basal ganglia to see how these DBS signals can activate 

the resting neurons along with the reduction of neuronal synchronization. These signals are 

rectangular pulses, sinusoid and Gaussian along with 3 biphasic waveforms with a delay 

between the cathodic and anodic parts, which we call Pulse Delay Pulse (PDP), Sinusoid 

Delay Sinusoid (SDS) and Gaussian Delay Gaussian (GDG) waveforms. All these 

waveforms were able to decrease the synchronization of GPe and GPi cells with a cathodic 

amplitude of 200 ܣߤ, pulse duration of cathodic phases were 0.3 ms which is enough to 

elicit an action potential with minimum energy consumption [14] and for the anodic phase 

the amplitude of -20 ܣߤ and duration of 1 ms was assigned. The delay of 0.7 ms showed a 

promising value for the activation of resting neurons in our basal ganglia network. We 

defined our DBS signals in the form of a cathodic phase followed by a delay and then 
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followed by an anodic phase. With this configuration, we were able to achieve the 

activation of resting neurons while having a fixed optimum delay length. The effect of a 

Gaussian delay Gaussian waveform has not been studied before which we showed is the 

most practical waveform for deep brain stimulation in terms of energy consumption, 

desynchronization of GPe/GPi cells and performance of proper elicitation of action 

potential within the network. Figure 3.2 shows the waveforms we used in the computational 

basal ganglia model.  

3.4 Proper DBS targets for PD symptoms 

Retrospective studies show that DBS targeting must be selected based on the 

patient’s condition. In order to restore the thalamic relay activity, STN-DBS has the highest 

functionality, while GPe-DBS might inhibit the thalamocortical relay activity [86]. STN-

DBS increases the risk of dyskinesia, and therefore should not be used for patients with L-

dopa induced dyskinesia. It is known that the motor functionality of patients with STN-

DBS and GPi-DBS increases, and symptoms such as tremor, rigidity and dyskinesia 

improve gradually under both STN and GPi DBS surgeries [87].  In recent studies, the 

GPe-DBS has shown higher effect in treating bradykinesia and akinesia than GPi-DBS 

[88]. Due to PD, the neural activity in the nuclei of the basal ganglia neurons changes in 

terms of mean firing rate and discharge patterns. We discuss the effect of Gaussian DBS 

signals applied to different targets with three metrics: Average Action Potentials (AAPs), 

Synchronization Level (SL) and Energy Consumption (EC).  

3.4.1 Average Action Potentials (AAPs) 
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Using a threshold of -20 mV, the Action Potentials (APs) of neurons is calculated 

and the average of these APs is obtained for 1000 GPi neurons in our model. The reason 

for measuring only the AAPs of GPi neuron is that the GPi neurons provide inhibitory input 

to the Th neurons, which is considered as the output of the model. In addition, alteration in 

GPi firing pattern is directly associated with symptoms of PD [89].  

3.4.2 Synchronization Level (SL) and Energy Consumption 
(EC) 

There are several methods to measure the level of synchrony with the neuronal 

population [9, 11, 17] or . Here, we measure the extent of synchronization by considering 

the order parameters based on the aggregated phases of all neurons [90]. Based on this 

method, measuring the Synchrony Level SLሺtሻ would be more comprehensive, since the 

phases of neurons define the extent of synchrony.                      

SLሺtሻ = | ଵ
ே
∑ ݁௜ఘ೙ሺ௧ሻே
௡ୀଵ |           (3.7) 

ሻݐ௡ሺߩ ൌ ݐሺߨ2 െ ௕ାଵݐ௕ሻ/ሺݐ െ  ௕ሻ  (3.7a)ݐ

 ௕ is the onset time of the bth   burstݐ ሻ denotes the phases of each neuron andݐ௡ሺߩ

[18]. SLሺtሻ ranges from 0 to 1 indicating no or full synchrony. The total amount of Energy 

Consumed (EC) by the whole DBS protocol can be described by [90]: 

 EC = ௉್ܰ೔ ׬ IDBSሺݐሻ݀(3.8)          ݐ 

௉್ܰ೔ is the total number of pulses used in Pbi(t). The more pulses are applied (HFS), 

the more energy is consumed and since our protocol only applies HFS under high 

synchronization, we expect less EC value compared to amplitude modulation methods [16, 

18].   
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3.5 Adaptive Frequency Adjustment Stimulation   

3.5.1  BG 3D Model 

We proposed a 3 D model of basal ganglia neurons based on Izhikevich formulation 

[43]. The schematic of the model is shown in Figure 3.3. Each nucleus has a population of 

125 neurons with their interconnections [91]. These neuronal subpopulations are aligned 

in a 5ൈ5 symmetric cubic space, as shown in Figure 3.3.  

 

Figure 3.3 The 3D network of BG neurons 

 

Each STN neuron has excitatory connections to 2 GPe and 2 GPi neurons. GPe 

neurons have inhibitory connections to 2 STN neurons and finally, there is one inhibitory 

synopsis from each GPi to a Th neuron [42]. We considered a local field of connections 

between all pairs of neurons within each nucleus (Figure 3.3), to match the local 

connectivity developed by hippo-campus studies [92].    

It has been shown that glutamatergic synapses exist in the STN neurons [93], the 

connections of Globus Pallidus neurons are mediated by ܣܤܣܩ஺ receptors [94, 95] and 
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local interneuron synapses control the Thalamic circuitry [50]. Therefore, we considered 

the excitatory coupling between neurons in each subpopulation which is overlooked in 

many computational models of the BG [14, 18, 96]. These synaptic connections within 

each nucleus were obtained by the following equation as a function of the membrane and 

resting state voltages ܸ௝ and ܧௌ
௝, respectively. 

ௌܫ
௝ ൌ ݃ௌሺܸ௝ െ ௌܧ

௝ሻ∑ ௜ܹ௝ ௌܵ
ே
௜ୀଵ                 (3.9)  

where ܫௌ
௝ is the total synaptic currents from all neurons of a specific nucleus to 

neuron j. The membrane conductance ݃ௌ was set to 1.5, 3.5, and 10 for the Th, STN, and 

GP populations, respectively, to assure the desired connections. In order to reflect the 

strength of the connections within each nucleus, we account the synaptic weights W based 

on the distance between each pair of neurons. Therefore, ∑ ௜ܹ௝
ே
௜ୀଵ  in Equation 3.9 denotes 

the sum of all weights from N neurons in the population to neuron j. These weights were 

measured as follows. 

௜ܹ௝ ൌ ݁
షቛ೙೔ష೙ೕቛ

మ

మ഑మ               (3.10) 

In Equation 3.10, ฮ݊௜ െ ௝݊ฮ
ଶ
 is the Euclidean distance between neuron i and neuron 

j. The parameter ߪ was set small to ensure that relatively far neurons receive weak and 

negligible connections from each other as opposed to primary projecting neurons and 

interneurons, where stronger connections are needed.   The synaptic dynamic ௌܵ in 

Equation 3.9 was defined by a first order process to reduce the computational cost of a 

large network. 
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ௗௌೄ
ௗ௧

ൌ 	െߙௌ ௌܵ ൅ ݐሺߜ െ ܶሻ          (3.11) 

where ߙௌ and ܶ represent the reverse potential and the time of presynaptic spikes, 

respectively [97]. The excitatory and inhibitory synapses between different BG cells were 

defined by Equation 3.12. ௝ܵ in this equation stands for the summation of all presynaptic 

dynamics. In case of inhibitory connections from GPe to STN, ௝ܵ consists of 2 presynaptic 

currents, while ௝ܵ would have only one presynaptic current for the GPi-Th connections. 

௦௬௡ܫ
௜→௝ ൌ ݃௜௝ ௜ܵሺܸ௝ െ ௦௬௡ܧ

௝ ሻ          (3.12) 

We also considered a random pulse train ܫௌெ஼, modeling the aggregated inputs from 

sensory motor cortex to Th (Figure 3.3). The amplitude of this current was set to 12 ܣߤ 

with pulse width of 2.8 ݉ܵ. After general initialization of our BG model, the governing 

membrane voltage equation for each neuron type was achieved by an extension over the 

Izhikevich spike formulations [2] as below: 

dVTh

dt
=0.04VTh

2+5VTh+140-uTh+IS
Th+ISMC-Isyn

GPi→Th  (3.13) 

dVSTN

dt
=0.04VSTN

2+5VSTN+140-uSTN+IS
STN+IN

STN-Isyn
GPe→STN+IappSTN+e-DIDBS   (3.14) 

dVGPe

dt
=0.04VGPe

2+5VGPe+140-uGPe+IS
GPe+IN

GPe+IappGPe-Isyn
STN→GPe  (3.15) 

dVGPi

dt
=0.04VGPi

2+5VGPi+140-uGPi+IS
GPi+IN

GPi+IappGPi-Isyn
STN→GPi  (3.16) 

du 

dt
=a(bV 

2-u )  (3.17) 

The term ݁ ି஽ in Equation 3.14 provides an exponentially debilitating effect on how 

each neuron is influenced by the DBS current, where ܦ is the Euclidean distance between 



39 
 

the neuron and the electrode. ݑௌ்ே incorporates an Ordinary Differential Equation ODE 

such as Equation 3.17 with different adjusting parameters stated in Table 3.3.  

Table 3.3 Parameters of 3D BG Model 

  (࡭ࣆሺ࢖࢖ࢇࡵ  a  b  c  d  ࡿࢻ 

Th 0.5 0.02 0.2 -65 5 0 

STN 0.5 0.01 0.27 -65 8 1 

GPe 0.3 0.2 0.26 -65 0 0.2 

GPi 0.3 0.2 0.26 -65 0 0.3 

Synaptic 

Currents 

݃ீ௉௘→ௌ்ே = 

1.5 

݃ௌ்ே→ீ௉௘ = 

2.5 

݃ீ௉௘→ீ௉௘ = 

1.5 

݃ௌ்ே→ீ௉௜ = 

2.5 

݃ீ௉௜→ீ௉௜ = 

1.5 

݃ீ௉௜→்௛ = 2.3 

- = ௉௘→ௌ்ேீܧ

85 

- = ௉௘→ீ௉௘ீܧ ௌ்ே→ீ௉௘ = 0ܧ

65 

- = ௉௜→ீ௉௜ீܧ ௌ்ே→ீ௉௜ = 0ܧ

65 

 ௉௜→்௛ = -65ீܧ

   

 

 

 

    

3.5.2  FAS Protocol 

Rhythmic oscillation of the STN neurons interacting with the GPe cells has been 

observed in PD [98]. This rhythmic nature can be captured by the LFPs of STN neurons. 

We used the same location as the DBS electrode was targeted to measure the LFP of the 

STN neurons according to the following Equation [18, 99]. 

LFPSTN(t)=
R

4π
∑ ISTNi(t)

Dic

N
i=1           (3.18) 

where ܴ is the extracellular resistance set to 1, assuming to be homogenous 

throughout the population. ܦ௜௖ is the Euclidean distance between neuron i and the center 

of population where the LFP recording electrode is placed (Figure 3.3). ܫௌ்ே௜ሺݐሻ is 

composed of all currents on the left hand side of Equation 3.13-3.16 for the ݅	௧௛ STN 

neuron. The LFP signal is then filtered using a damped oscillator as follows. 
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xሷ+ωxሶ+ω2x=KSLFPSTN(t)          (3.19) 

where ߱ denotes the frequency of oscillation and is approximated at 62 
௥௔ௗ

௦௘௖
 since 

the period of each oscillation is around 100 ݉ܵ (߱ ൌ	 ଶగ
்
ሻ.		ܭௌ is a scaling coefficient set 

to 0.01 in this filter. The output of the damped oscillator is often delayed due to the filtering 

process. Thus, the feedback stimulator signal ܵܨሺݐሻ is defined by shifting  ݔሶ  by half of the 

period of oscillation. This is essentially a linear delayed feedback used in closed loop 

stimulations [100]. 

FSሺtሻ= IDBS(KLFPm(t)t)                (3.20) 

LFPm(t)= xሶ ቀt-
T

2
ቁ -xሶ ሺtሻ                   (3.20a) 

where ܨܮ ௠ܲሺݐሻ is the filtered and delayed LFP signal. ܶ ൌ 	 ఠ
ଶగ

 is the period of 

oscillation and ܭ is the feedback gain set to 2. The ܵܨሺݐሻ acts as a linear delayed feedback 

control to adjust the frequency of the stimulation signal ܫ஽஻ௌ. We introduce a Frequency 

Adjustment Stimulation (FAS) method in our work to be able to alter the frequency of 

stimulation based on the amplitude severity of the filtered LFP signal. Generally, high 

peaks of ݔሶሺݐሻ denote higher synchronization and HFS has been proven to have better 

efficiency in desynchronization [101]. However, continuous HFS increases the risk of 

tissue damage while decreasing the battery lifetime [102, 103]. The FAS in our proposed 

method tends to send HFS during the peak of ݔሶሺݐሻ and slightly decrease the frequency of 

stimulation as the peak of ݔሶሺݐሻ descends. This allows for enhancing the synchronization 

process while addressing tissue safety concerns. The amount of energy consumed by the 
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DBS device is reduced since HFS is only used for short periods of ݔሶሺݐሻ peaks. Lower 

energy consumption reduces the need for costly battery replacement surgeries. In addition, 

variant stimulation frequencies have been shown to have different therapeutic effects based 

on the symptoms of the patients [104, 105]. The schematic of the delayed feedback loop 

with the proposed FAS protocol is shown in Figure 3.4. 

 

Figure 3.4 Closed loop (Adaptive) paradigm for FAS method 

3.6 Neuronavigation TMS Pipeline 

Here, we propose a new pipeline for navigated TMS systems. The goal is to 

generate a 3D volume of the brain regions from the individual MRIs and measure the 

magnetic field on these 3D models. This allows physicians to go through various areas of 

the brain to define proper targets for TMS fields. Additionally, TMS effects can be 

measured by the Electromyography (EMG) potentials which can help physicians better 

localize and stimulate with the TMS device [68, 106]. Trackers on the TMS provide real-

time tracking of the coil coordinates [107]. The combination of TMS coil coordinates and 

EMG is often used to improve the quality of cortical maps in neuronavigation systems 

[108]. The schematic of the proposed neuronavigation TMs pipeline is shown in Figure 

3.5.  
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Figure 3.5  The proposed pipeline for the neuronavigation TMS systems. 

At first, the structural MR images of each patient are used to segment the brain 

volumes. For these segmentations we used an extended tissue probability mapping based 

on [109]. We used tissue probability maps to get the spatially varying prior distributions 

[110]. Then, the probability of class/tissue k at the voxel i is measured by:   
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Pሺci=k|γሻ=	
γkbik

∑ γjbij
k
j=1

   (3.21) 

Where γ represents the weight and bij is the value of the jth tissue probability at 

voxel i. Once all tissues (skin, skull, CSF, WM, GM) were segmented, we decouple them 

with the assumption that subsequent surfaces are fully contained within each other [71]. 

The next step is to generate and optimize surfaces using adaptive meshing [111]. 

Furthermore, we used 2 metrics to evaluate the generated tetrahedral meshes.  The Signed 

Inverse Condition Number (SICN) which measures the sensitivity and uncertainty of 

meshes to small changes or errors of input data [112-114] and Gamma test which measures 

the quality of inscribed and circumscribed radiuses [114], are performed.   

As shown in Figure 3.5 if there are errors found after the surface meshing step, 

MeshFix [115] will modify the 2D tetrahedral meshes and new surfaces will be generated. 

In the next step, the 2D surface meshes are transformed into 3D volume meshes. In order 

to validate the volumes, we defined a set of points on a specific brain region such as skull 

on the MR T1-weighted images and checked the distance between these points and the 

actual segmented volume by the equation below: 

l= nොx0-หprojv-wห   (3.22) 

where nො is the unit norm of the shortest vector to the surface, x0 is the normal vector 

and หprojv-wห represents the projection of a plane vector w onto v. After validating meshes, 

we calculate the magnetic field of TMs coils by equations 2.14 and 2.15. The center of 

each coil is the coordinate used for field modeling. These voxel coordinates are then 

transformed to continuous coordinates using the Freesurfer software [116] as following: 
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Vox2ras= ቂہxۂ ۂyہ ۂzہ ۂcہ
0 0 0 1

ቃ        (3.23) 

Where x, y and z are 3 ൈ 1 vectors defining the direction cosine which provides the 

orientation of the image volume in real space [117]. The modules of navigated TMS 

pipeline are mostly run on MATLAB. However, for visualization of results we can use 

other software tools such as Freeview [74], GMSH [114] or MATLAB.  
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CHAPTER 4: IMPLEMENTATION AND TESTING 

All the proposed neuronal models were developed and tested in MATLAB 

software. We used a set of mathematical methods for testing each proposed contributions 

as follows: For the hyperbolic model proposed, we measured the number of firings under 

various conditions and compared it with experimental recordings as shown in Table 3.2. 

The irregular firing patterns of PD are generated by the model and compared with the LFP 

recordings of monkeys. As shown in Equation 3.3, cross correlation is used for comparison 

of the results with other methods. 

 Stimulation waveform effects were investigated through synchrony analysis 

(Equation 3.7). Additionally, we measured the amount of energy consumed by each 

stimulation waveform according to Equation 3.8. We investigated the effect of interphase 

delay on the amount of energy consumed by simply increasing the delay length and 

measuring the total energy usage of the DBS protocol. Mutual Information (MI) and Phase 

Locking Values (PLV) methods were also used as metrics of evaluating the amount of 

pathological oscillations as below: 

ሺܫܯ ுܻ, ஽ܻ஻ௌሻ ൌ 	∑ ∑ ௒ܲಹ௒ವಳೄ
௜௝ ln	ሺெ

௝ୀଵ
ெ
௜ୀଵ

௉ೊಹೊವಳೄ
೔ೕ

௉ೊಹ
೔ ௉ೊವಳೄ

ೕ ሻ    (4.1) 

where ௒ܲಹ௒ವಳೄ
௜௝ is the estimated joint probability of the outcomes i and j for the 

signals and ௒ܲಹ
௜  is the estimated probability distribution of the ith outcome of ுܻ. 
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For PLV analysis, first of all, we must extract the instantaneous phases from the signals 

using a Hilbert transform as below: 

߮௒ ൌ 	 tanିଵሺ
ுሺ௒ሻ

௒
ሻ     (4.2) 

where H(Y) is the Hilbert transform of signal Y. In order to see how well the firing 

patterns of STN, GPe and GPi neurons under DBS ( ஽ܻ஻ௌ) is phase locked to the healthy 

condition ( ுܻ), we can use the following measure: 

PLVሺ ுܻ, ஽ܻ஻ௌሻ ൌ 	
ଵ

௅
ቚ∑ ݁௝ቀఝೊಹିఝೊವಳೄቁ௅

௜ୀଵ ቚ  (4.2) 

We tested the desynchronization efficiency of various DBS targets by correlation 

coefficient analysis. Correlation coefficient analysis based on the desired APs can be a 

metric to measure the synchronization level among GPi neurons.  For the population of 

1,000 GPi neurons, we extracted the number of APs for each non-overlapping frames of 

10 mS. This provides a function of the number of APs based on each frame for every GPi 

neuron. Equation 4.4 shows the number of APs for neuron i in l consecutive frames: 

 FiሺIሻ= ∑ API      (4.4) 

Then, the correlation coefficients of 1,000 Fi functions are calculated from 

Equation below: 

 















L

1t

2)F jF j(
L

1t

2)FiFi(

L

1t
)F jF j)(FiFi(

)F j,FiCC(

        (4.5) 

L is the number of elements in each function. For GPi population of 1,000 neurons, a 
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1,000 by 1,000 elements correlation matrix MC between all GPi neurons is generated 

using Equation 4.5. The total number of values in matrix MC with significant correlation   

( 05.0 ) is called nc, while the total number of elements in MC is denoted by nτ. The 

synchronization level (SL) for the GPi neurons is finally derived by the Equation below: 

SLൌ	 nc
nr

  (4.6) 

The FAS method: We used Equations 3.13-3.16 to implement the 3-D Volumetric 

Model in MATLAB. The firing patterns of all neuronal types were extracted and the 

measured LFP signal was used for the FAS protocol. Additionally, with Fourier transform 

we measured the Power Spectral Density of STN-LFPs under various stimulation 

protocols. Furthermore, we investigated the effect our proposed FAS method on large 

neuronal population model. 
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CHAPTER 5: RESULTS  

5.1 Simulation of the Hyperbolic Model 

STN Neurons show three different types of firing patterns: bursting, irregular and 

rhythmic. The bursting patterns usually occur with high frequency spikes, which in humans 

would vary from 18 to 28 spikes per seconds [118]. Irregular patterns are considered as 

randomly rapid inter spike firings. Finally, the rhythmic patterns generate single spikes 

with multiple peaks. It is shown by the measurement of STN spiking that both tonic and 

burst patterns exist [85]. Based on the current value of membrane potential, STN neurons 

can change their firing patterns from single spike mode to bursting patterns. This transition 

between two modes is observed via our mathematical model. Recordings of STN neurons 

spikes reveal that the single spike peak is between -35 to -70 mV and burst spikes generate 

the membrane potential of -42 to -60 mV [85].  

 

Figure 5.1 Single, burst and switching mode of STN neurons spiking generated by the proposed Hyperbolic 

Model. 

Figure 5.1 shows single spiking, burst spiking and the switching pattern from single 

spikes to burst spikes generated by our model using MATLAB. Scientists believe that there 
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is a relation between excessive bursting patterns in STN neurons and Parkinson’s disease 

[119]. The important question now is how the firing patterns of STN neurons, considering 

their apparent features, are related to Parkinson’s disease. Generally, Parkinson’s disease 

is accompanied by loss of dopamine innervation, leading to abnormal burst firing patterns 

in STN neurons. Researchers explained that dopamine may suppress synoptically triggered 

burst firing patterns, in the meantime, this suppression of burst firing patterns could be a 

result of a synaptic current.  

 

Figure 5.2 Absence (left) and presence (right) of dopamine in STN neuronal firing 

In Figure 5.2, we modified our model to obtain both firing patterns of STN neurons 

in presence and absence of dopamine which has been recorded in related works [120]. The 

absence or presence of dopamine in our model is defined by parameters ߬ு and ݊ுwhich 

represent the decay rate and sensitivity of spikes, respectively.  ߬ு is set to 0.02 and 0.1 to 

model the absence and presence of dopamine in STN neurons respectively. ߬ு is much 

lower in the case of dopamine depletion compared to when dopamine is present which 

provides a faster decay time. Also, ݊ு is set lower for absence of dopamine in comparison 

with the presence of dopamine condition. This ݊ு	parameter modification in case of 

dopamine depletion along with faster decay time due to low value of ߬ ு guarantees enough 

time for the transition of tonic spiking into burst firing patterns. In the presence of 
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dopamine, the transition is almost diminished, providing a more tonic pattern (Figure 5.2) 

due to higher values of  ߬ு and ݊ு. 

5.2 Therapeutic Effects of Novel DBS Waveforms 

We applied different pulse shapes as deep brain stimulators to investigate the 

energy consumed along with the number of times that the DBS signals failed to elicit an 

action potential by using Equation 3.8. We used the basic pulse, Sinusoid and Gaussian 

[14] waveforms and compared them to the modified waveforms with a delay between the 

cathodic and anodic phases, called Pulse delay Pulse (PDP), Sinusoid delay Sinusoid (SDS) 

and Gaussian Delay Gaussian (GDG). From the recording of the neuronal firing rates in 

monkeys [119, 121, 122], we expect to see an increase in the firing rate of GPi and STN 

after implementing the DBS signals, while GPe neurons show the reduced firing rate. In 

Figure 5.3, the mean firing rate of STN, GPe and GPi cells increased from PD condition to 

DBS implemented condition. From Healthy to PD condition, a decrease in the rate of GPe 

neurons is observable which is consistent with the recording data [3]. All six DBS 

waveform types successfully increased the rate of spiking in Thalamic, STN, GPe and GPi 

cells but the amount of this boost in neuronal firing was lower for GPe neurons while being 

stimulated by a GDG waveform, which promises better results in diminishing the effects 

of Parkinson’s disease [122]. The relative increase in firing rates of GPe and GPi cells from 

PD to DBS implemented condition was corresponding to the experimental recordings in 

which the GDG and PDG waveforms in our model reached the highest comparability to 

the actual data [21].  
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Figure 5.3 Cost evaluation of various DBS waveforms 

Synchronization of brain waves is the basis of functional connectivity for neural 

decoding [123]. There are several bivariate techniques to study the synchronization in 

firing patterns of brain cells [124], namely, the mutual information, phase locking and 

synchronization levels based on the correlation coefficient [11]. STN, GPe and GPi 

neurons fire with various patterns under different DBS waveforms, therefore the similarity 

and synchronization of these firing responses compared to the firing pattern of these 

neurons under healthy condition is investigated by Mutual Information (MI) and synchrony 

Level (SL) as shown in Figure 5.4. 

 

Figure 5.4 MI and SL values under different stimulation waveforms 
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The GDG was able to decrease the cathodic amplitude for eliciting an action potential 

because the cathodic Gaussian waveform will depolarize the membrane of the basal ganglia 

cells while the gradual decrease of the following anodic Gaussian phase will act as an extra 

delay for the depolarization process creating a less sensitive waveform to the anodic phase 

(Figure 5.5A). The GDG waveforms reached the delay threshold faster than SDS and PDP. 

In this figure, the duration of the anodic phase is 3.3 times of the cathodic phase and the 

ratio of the cathodic to anodic phases are set to 10:1. The threshold of the delay to reach 

the amplitude of 200	ܣߤ, capable of eliciting action potentials was 0.32, 0.43 and 0.65 mS 

with respect to GDG, SDS and PDP waveforms. The obtained cathodic amplitude to elicit 

action potential for PDP waveform was 30% lower than previous studies [3], while SDS 

and GDG had even lower amplitudes than PDP. The optimal values for these waveforms 

are shown in Figure 5.5B. GDG had the lowest cathodic amplitude while being able to 

function with relatively lower amplitude of the anodic phase compared to the SDS 

waveform (-19	ܣߤ for GDG anodic and -23 ܣߤ for SDS).  

 

Figure 5.5 Optimal amplitude of DBS waveforms with respect to the delay length 
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We replaced the Hodgkin-Huxley formulation with Izhikevich and Hyperbolic and 

compared the cost as we increased the network size. Network size in Figure 5.6 represents 

the number of neurons in each nuclei. As we reach large networks, hyperbolic outperforms 

both Izhikevich and Hodgkin-Huxley models. 

 

Figure 5.6 Energy consumption of different neuronal population models with respect to the network size. 

5.3 Discussion of DBS Targets 

We investigated the average firing rates of STN, GPe and GPi neurons under 3 

different conditions (STN-DBS, GPe-DBS and GPi-DBS), as shown in Table 5.1. In this 

table, we compared the results of Gaussian DBS with rectangular pulses. It can be observed 

that both Gaussian and rectangular DBS signals performed similar in terms of firing 

patterns. The AAPs shown in this table is obtained over a firing period of 1s of GPi neurons. 

AAPs under STN-DBS were higher for all neuron types compared to GPe-DBS and GPi-

DBS. This explains the high desire to target STN  under DBS for PD patients with tremor, 

rigidity and bradykinesia [48]. Although GPe-DBS provides the lowest amount of AAPs 

for all neurons, it can be used for patients with akinesia [125].  
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Table 5.1 AAPs of Basal Ganglia Neurons 

DBS Signal 
Form 

DBS 
Target 

AAPs  

 STN GPe GPi 
Gaussian STN-DBS 198 102 132 
Gaussian GPe-DBS 186 76 108 
Gaussian GPi-DBS 188 74 124 

Rectangular STN-DBS 192 104 127 
Rectangular GPe-DBS 190 81 98 
Rectangular GPi-DBS 185 73 117 

 

When it comes to measuring the synchronization of GPi neurons, Gaussian DBS 

was more promising in comparison with rectangular pulses, as can be seen in Figure 5.7. 

The SL (Equation 3.7) under healthy and PD conditions were 0.21 and 0.78, respectively. 

This higher synchronization due to PD was reported in [126]. The lowest SL was achieved 

by targeting GPi neurons with Gaussian signals. Gaussian DBS signals targeted at any 

location within the basal ganglia achieved lower SL compared to rectangular DBS signals. 

This states that Gaussian DBS waveforms are as efficient as rectangular pulses in terms of 

desynchronization of GPi neurons. The EC was measured by Equation 3.8 in the basal 

ganglia model with Gaussian and rectangular DBS signals targeted at different locations. 

As shown in Figure 5.7, Gaussian signals were able to activate the basal ganglia neurons 

with less amount of energy compared to rectangular DBS signals. Gaussian signals for 

DBS guarantee the minimum EC compared to any other signal form such as pulse, 

rectangular, ramp, exponential and sinusoid [14]. The lower EC would help PD patients to 

avoid a costly battery replacement surgery which is a critical challenge in DBS technology.  
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Figure 5.7 SL and EC computation for various DBS waveforms and targets 

5.4 FAS Method Outcomes 

In order to compare the effectiveness of FAS method we investigated some well-

studied protocol such as Pulsatile delayed feedback [18], High Frequency Stimulation 

(HFS) [20, 102]and Variant Frequency stimulations (VFS) [27]. Similar to FAS the 

Pulsatile method uses the non-linearly delayed LFP signal as the control variable, however 

this control signal is used to modulate the amplitude of the DBS signal rather than its 

frequency [18]. HFS and VFS protocols on the other hand work in an open loop manner 

where the stimulation signal is pre-defined. The traditional HFS delivers high frequency 

pulses (> 130 Hz) for the duration of stimulation therapy [26, 105], while in the VFS 

protocol, fixed period blocks of high and low frequency stimulations are delivered 

according to a preset combinations such as HFS-LFS-LFS-LFS-HFS [27].  

STN neurons had spontaneous firings at frequencies of 6 Hz and 8 Hz under healthy 

and PD conditions, respectively (Figure 5.8A, B). Although the healthy firing patterns 

matches the low firing rate characteristic of the STN cells observed in [127], the STN 

firings frequency under PD state was lower than actual recordings (30 Hz) [128] since 

certain connections in our model were strengthened. Under healthy condition, both GPe 
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and GPi neurons fire repetitive spikes, however in the PD state, the firing patterns changes 

to tonic bursts [3, 129]. According to [128] and Figure 5.8C, the firing rate of the STN 

neurons slightly increases from healthy to PD states. 

 

Figure 5.8 BG model neuronal firings and validation 

In order to validate the dynamics of our BG model, we compared the average firing 

rates of STN, GPe and GPi neurons with the experimental recordings of normal (healthy) 

and MPTP-treated monkeys [122]. The results are shown in Table 5.2 and the firing rates 

(Spikes/s) are measured for both healthy and PD conditions [130]. As shown in Table 5.2, 

STN neurons fired more under PD conditions which is consistent with the experimental 

data and previous BG models [3, 122]. Similar to the recordings of MPTP-treated monkeys 

the firing rates of GPe neurons decreases under PD condition while GPi firing increases. 

All neuron types showed increased oscillatory behavior from healthy to PD conditions in 

the dominant frequency range of 8-15 Hz consistent with the experimental recordings 

[122]. 
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Table 5.2 Characteristics of Neuronal Firings 

 

The LFP is measured from a population of 125 STN neurons placed in a cubic area 

with 5 mm edges, according to Equation 3.18. The LFP signal is then filtered by the 

damped harmonic oscillator mentioned in Equation 3.19, to obtain ݔሶ . Figure 5.9 shows the 

original LFP with its filtered signal where the rhythmic behavior of the STN population is 

observable.  

 

Figure 5.9 LFP and its filtered and delayed results 

The LFP is measured from a population of 125 STN neurons placed in a cubic area 

with 5 mm edges, according to Equation 3.18. The LFP signal is then filtered by the 

damped harmonic oscillator mentioned in Equation 3.19, to obtain ݔሶ . Figure 5.9 shows the 
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  Proposed Method Experimental Recordings 
[122] 

  Healthy PD Healthy MPTP 
 

Spikes/S 
STN 12.5 16.7 23.2 37.3 
GPe 69.2 58.4 66.1 48.5 
GPi 76.8 85.6 73.5 78.1 

Percentage of neurons 
oscillating between 8-15 Hz 

STN 0.16% 63.20% 0% 50% 
GPe 12% 28% 9.10% 27.50% 

     
Percentage of neurons 

oscillating higher than 15 Hz 
STN 0.80% 11.2 0% 7.10% 
GPe 3.20% 4.80% 0% 2.50% 
GPi 5.60% 4% 3% 2.90% 

 
Percentage of bursting neurons 

with 8-15 Hz oscillations 

STN 0% 9.6% 0% 21.4% 
GPe 44% 26.4% 50% 0% 
GPi 8% 53.6% 0% 52.9% 
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original LFP with its filtered signal where the rhythmic behavior of the STN population is 

observable.  

The FAS protocol incorporates the frequency modulation of ܫ஽஻ௌ according to the 

amplitude of the feedback signal, as illustrated in Figure 5.10. The adjustment of the 

stimulation signal ܫ஽஻ௌ according to the amplitude of the feedback signal is done via 

Equation 3.20. For high amplitudes of the feedback signal, an HFS stimulation signal 

(130Hz) is applied and as the amplitude descends, the frequency of stimulation shifts 

proportionally to lower frequencies until it eventually reaches a LFS (40Hz) stimulation 

signal. In order to avoid an irreversible charge deposit and tissue damage [101, 102], each 

period of stimulation signal concludes cathodic and anodic phases with a delay in between 

[10, 18, 127], as illustrated in Figure 3.3. This adjustment of ܫ஽஻ௌ provides a charge 

balanced stimulus, impeding nervous tissue damages. The length of the cathodic, delay and 

anodic phases for the stimulus signal were set to 0.2, 0.5 and 2 mS, respectively,  to 

guarantee a total charge close to zero for the biphasic stimulus pulse.  

 

Figure 5.10 Adjusted stimulation signal by FAS protocol. 

The Power Spectral Density (PSD) of the filtered LFP signal under healthy and PD 

states are depicted in Figure 5.11.  
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Figure 5.11 The normalized PSD of the LFP measurements for healthy, PD and different stimulation 
methods 

Under healthy condition, the highest power occurred at 8 Hz and other peaks of the 

PSD were due to subsequent harmonics of the LFP signal. Our model was able to show a 

broad PSD peak at lower beta band at 14 Hz. This high power spectrum reflects the 

synchronous dynamics of the STN neuronal population firings. The STN population 

resonating with the GPe neurons causes the appearance of 34 Hz oscillation in PD. Both 

FAS and Pulsatile were able to suppress these oscillations, however, the 34 Hz oscillation 

was more suppressed by FAS compared to the Pulsatile protocol. Also, the first peak in the 

PSD of the FAS and pulsatile methods falls within the first peak of healthy PSD. FAS beta 

band oscillations were similar to [131] where irregular or adaptive frequency stimulation 

are shown to suppress the high beta band oscillations better than HFS or other closed-loop 

stimulation methods. On the other hand, HFS method shows to suppress the 14Hz 

oscillation, however from its PSD, we can see it does not match the healthy conditions 

oscillations. The PSD of HFS shows a main peak of oscillation at 23 Hz and a smaller 

oscillations at 43 Hz. The dynamics of PD in our model are shown through the spectrogram 

and raster plots of 125 STN neurons (Figure 5.12). We can observe a high synchronization 
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at low frequencies in the spectrogram of PD which is a significant property of pathological 

networks [129].  

 

Figure 5.12 Raster plot and Spectrogram comparison of various open loop and closed loop stimulation 
protocols 

Applying the DBS currents shows desynchronizing effects particularly at the low 

frequencies, as shown via the spectrograms of Figure 5.12. Comparing the spectrograms 

of 4 different stimulation protocols, we conclude that all stimulations were able to 

desynchronize the network at low frequencies, however closed loop FAS and Pulsatile 

methods were more effective. It was also observed that the power densities depicted by the 

spectrograms were more spread, which is consistent with patterns seen in patients 
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undergoing L-Dopa treatments [132]. According to the power density scale shown in the 

color bars of Figure 5.12, the FAS protocol achieves the highest desynchronization of the 

STN population.  

5.5  Neuronavigation TMS Pipeline Results 

As explained in section 3.6, the pipeline for the proposed neuronavigatin system 

has multiple modules, each requiring a specific software. Here, we present the results of 

each module based on Figure 3.5. The MRI data used in this study was obtained from the 

SimNIBS example files [75] as shown in Figure 2.8. The segmentation results for 1 slice 

of a T1 weighted MR image is shown in Figure 5.13.  

 

Figure 5.13 MRI tissue segmentaion 

After decoupling the segmented areas and generating the surface and volume 

meshes, the surface mesh qualities are evaluated by 2 metrics of SICN and Gamma as 

shown in Figure 5.14. If the quality of the generated surface meshes was not satisfying, we 

run MeshFix to improve the quality [115].  
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Figure 5.14 3D Volume meshes of segmented areas of MR images. 

Once we obtain the desired 3D volume meshes (Figure 5.14), we need to validate 

to see if these volumes are reasonably registered with the MR images. For this, we 

manually define some point markers on the MR T1 weighted images and measure the 

distance of these points to the actual surface. In Figure 5.15 we can see that marker points 
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are relatively aligned with the 3D model of the skull and the average distance measured by 

Equation 3.22 was 1.37 voxel.  

 

Figure 5.15 Model Validation with marker point trackers. 

 

 Furthermore, we measured the distance of marker points to VM, GM, CSF, Skin 

and Skull as shown in Table 5.3. For each volume type, we manually selected 20 marker 

points and measured the distance to the closest point on the surface. The low distance 

results on this table show a reasonable 3D volume extraction method from the MR images 

as explained in section 3.6.  
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Table 5.3 Distance Measure of Manually Selected Marker Points to the Various Brain Volumes.  

Marker Point WM GM CSF Skull Skin 

1 0.854 2.12 1.707 -0.043 -0.513 

2 1.401 1.850 -0.512 0.536 -0.489 
3 -3.055 2.661 -2.922 0.332 0.771 
4 4.089 3.011 1.064 4.732 0.698 
5 3.119 -0.907 1.089 0.904 1.833 
6 2.648 -2.585 1.349 0.331 1.826 
7 -0.372 -1.114 -0.057 3.565 1.679 
8 -1.277 0.540 -0.859 -0.339 1.560 
9 1.266 1.847 -0.574 -1.204 2.452 

10 1.598 1.432 1.126 -2.0816 1.333 
11 2.504 2.679 1.089 -0.842 -0.749 
12 1.488 0.719 0.897 2.915 1.894 
13 3.918 0.214 0.559 0.947 -1.263 
14 0.079 1.617 -2.044 -1.079 0.251 
15 -2.842 -2.050 0.054 -0.628 0.450 
16 -3.713 0.338 0.198 1.677 -1.234 
17 -1.094 -0.258 1.811 1.036 -0.818 
18 0.922 -1.148 1.912 1.488 1.026 
19 1.638 0.836 1.065 2.148 0.904 
20 -2.217 0.469 0.736 -0.584 1.007 

Average Distance 2.004 1.419 1.082 1.371 1.137 

 

After the validation step, we need to adjust the voxel based coordinates to continuous 

coordinates, as described in equation 3.23. We used Freesurfer software for this 

transformation due to its robust method and clear visualization [74]. The obtained brain 

volumes with proper coordinates were then used to calculate the TMS Magnetic fields. We 

assumed a circular TMS coil placed over a specific location based on the EEG cortical 

map. The coil was placed at 4 mm distance from the surface of the head. The results were 

generated with MATLAB and SimNIBS software, as shown in Figure 5.16. In this figure, 

we showed the generated electrical fields due to the induced TMS magnetic fields, when 

the TMS coil is placed over AF4, C3, CP6 and Pz from the EEG cortical map. 
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Figure 5.16 Electric fields induced by the TMS coil on the GM surface. 
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CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS 

In neurodegenerative disorders such as PD, deep brain stimulation (DBS) is a desirable 

approach when the medication is less effective for treating the symptoms. DBS 

incorporates transferring electrical pulses to a specific tissue of the central nervous system, 

obtaining therapeutic results by modulating the neuronal activity of that region. 

In this research, we presented a mathematical model to generate various neuronal 

spiking patterns. The key advantage of this hyperbolic model is the fact that it has low 

computational complexity and can produce various neuronal firing patters by only 

adjusting very few parameters. Additionally, we showed how modification of DBS 

waveforms in the network of the basal ganglia can be beneficial in comparison with 

standard rectangular DBS used in surgeries. Moreover, we implemented novel Gaussian 

signals with interphase delays on a more complex network of the basal ganglia, considering 

the interactions between various cell types. With Gaussian pulses for stimulation, we were 

able to reduce the delay period, which is safe to be used without causing tissue damage. In 

terms of energy consumption of DBS waveforms, we showed that placing the delay 

between two parts of the pulse balanced signal would significantly decrease the energy 

consumption and therefore provides a longer life time of Implantable Pulse Generator 

(IPG), avoiding costly replacement surgeries.  

We also developed a 3-D computational model of four nuclei within the basal ganglia 

according to the reduced order model of Izhikevich. We significantly reduced the 

computational cost, while reliably capturing the neural activations and LFPs. The lower 
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computational cost provided the opportunity to investigate the effect of DBS on large-scale 

networks. Our model was able to generate the beta-band oscillations at 34 Hz with the burst 

firings of the STN neurons under PD or dopamine depletion. The FAS protocol in this 

research was incorporated in a delayed feedback closed loop manner. Adapted signals in a 

delayed feedback method can reduce the side effect of tissue damage, enhance the 

desynchronization performance and increase the battery life. Furthermore, as the beta-band 

oscillation does not appear consistently, closed loop stimulation of the beta-band with more 

pulses at higher synchronization and less at lower synchronization is more efficient than 

the traditional open loop stimulations. The FAS protocol has shown to be more efficient in 

the suppression of the STN oscillations along with generating a mixture of firing responses, 

which has been associated with the efficiency of DBS. 

Finally, we proposed a neuronavigation system for TMS therapy which allows fast and 

robust stimulation of brain regions based on EEG cortical map. At the moment, this system 

is only available for single coil stimulation, however we aim to develop a multi coil 

neuronavigation system to improve the quality of stimulation [133]. The ultimate goal is 

to develop a new pipeline for fast and real-time multi-channel TMS stimulation.   
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