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Abstract

This paper characterizes generic equilibrium play in a multi-sender version of Craw-

ford and Sobel’s (1982) cheap talk model, when robustness to a broad class of beliefs

about noise in the senders’observation of the state is required. Just like in the one-

sender model, information transmission is partial, equilibria have an interval form, and

they can be computed through a generalized version of Crawford and Sobel’s forward

solution procedure. Fixing the senders’biases, full revelation is not achievable even as

the state space becomes large. Intuitive welfare predictions, such as the desirability of

consulting senders with small and opposite biases, follow.
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1 Introduction

The transmission of information is an integral part of many economic models, whether

implicitly or explicitly. In certain settings, such transmission is strategic: the side sending the

information may choose the message in order to maximize its payoff. At the same time, the

party receiving the information may be unable to offer incentives that significantly improve

the informativeness of the message.

The seminal work of Crawford and Sobel (1982, henceforth CS) examines such a setting.

A sender observes the state of the world θ ∈ [0, 1], sends a message to the receiver, who

then takes an action. Both the sender and the receiver desire a higher action when θ is

higher, but the optimal action for the sender differs from the optimal action for the receiver.

Talk is cheap in the sense that neither player’s utility depends on the sender’s message. CS

show that equilibria in this setting feature the sender revealing an interval of the state space.

Moreover, there is a finite upper bound on the number of intervals that can be distinguished

in equilibrium, and this bound increases as the sender’s bias relative to the receiver becomes

small.

This paper examines a model very similar to CS’s, but with multiple senders simultane-

ously sending their messages. For example, a policymaker may seek the opinion of multiple

experts. In multi-sender cheap talk games, because the actions that a given sender can

induce depend on what messages other senders use, there exists a large set of equilibria,

and there has so far been little progress in characterizing or refining it. Most existing work,

reviewed later in the introduction, focuses on fully revealing equilibria, whose reasonability

is questioned.

The main results of this paper show that, for an open and dense set of preferences and

prior ("generically"), "robust" equilibria in this model have an interval structure, in that each

message vector reveals an interval of states, just like equilibria in the one-sender CS model.

Moreover, at each boundary between two intervals, only one sender’s message changes,1 so

that senders do not coordinate locally about whether they are in the interval to the left or the

one to the right of the boundary. The sender whose message changes must be indifferent at

the boundary between inducing the action corresponding to the left interval and the action

corresponding to the right interval, just like in CS equilibria. The latter property implies

that the set of these coordination-free equilibria is finite and tractable: each such equilibrium

can be computed through a generalized version of the CS forward solution procedure. This

paper is the first that selects and characterizes a set of equilibria in simultaneous multi-sender

cheap talk.

1I.e. there is no state θ such that two or more senders use a different message on each side of θ.
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The proposed robustness concept requires equilibria to survive the possibility of small

noise - where senders’observations are very close to θ (with high probability) - in the senders’

observations of θ: an equilibrium is (strongly) robust if every player’s strategy remains nearly

optimal. Optimality is in an interim sense: each sender’s message must be nearly optimal

given her observed signal, and the receiver’s action must be nearly optimal given the senders’

messages. This paper’s results hold whether senders are required to have common prior

about the noise, or merely to have common knowledge that noise is small, which allows for

the possibility of heterogeneous priors about the exact form of the noise.2

Many papers have studied the use of perturbations to the information structure to select

equilibria. Most papers in the literature impose few restrictions on these perturbations. As a

result, if heterogeneous prior is allowed, robust equilibria often fail to exist.3 However, when

considering cheap talk specifically, it is natural to restrict, for example, the set of payoff

types: since senders care only about the state and the receiver’s action, a message’s payoff

implication is entirely dependent on the receiver’s strategy. This paper chooses to perturb

information only about the parameter that already fails to be commonly known: the state

θ.4

Theorems 1 and 2 are the main results of this paper. Theorem 2 shows that coordination-

free equilibria (in which no sender ever finds a deviation leading to an out-of-equilibrium

message vector to be nearly optimal) are robust, while, generically, pure-strategy equilibria

that do not lead to the same play as a coordination-free equilibrium at almost all states

fail robustness. The key to this result is that in coordination-free profiles, for any sender i

and at any state θ, the message prescribed for i is nearly optimal whenever other senders

send messages prescribed at a state near θ. Sender i therefore has little incentive to modify

her course of action as a result of small noise. By contrast, in other equilibria, a sender i’s

message at a state can be substantially suboptimal in response to other senders’messages

at nearby states, and with noise, i may believe that the latter messages are likely to be

2Online Appendix C shows that if the robustness concept were relaxed to require only that some "nearby"
strategy profile be nearly optimal, then the results would still hold if heterogeneous priors about noise are
allowed.

3For example, Oyama and Tercieux (2010) show, in finite complete information games, that generically,
an equilibrium is robust only if it is the unique rationalizable action profile. Weinstein and Yildiz (2007) show
a similar result when, instead, interim beliefs are concentrated around the complete information payoffs. (In
fact, Weinstein and Yildiz show that, with the interim approach, imposing common prior would not change
their result.)

4Even only perturbing information about θ, it can still be common 0-belief that payoffs are near the
payoffs of the complete information game, just like in global games (see, for example, Carlsson and van
Damme (1993)).
This paper also differs from most of the literature by requiring only approximate optimality. Haimanko

and Kajii (2015) do so as well in order to guarantee existence of robust equilibria in the Kajii and Morris
(1997) framework.
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sent. The class of small noise examined in Theorem 2 has senders observing a signal near

the true state with certainty. Theorem 1 shows that strong robustness, which allows for a

small probability of the signal being far from the state, generically selects coordination-free

equilibria where every combination of on-path messages form an on-path message vector.5

Several studies have examined simultaneous multi-sender cheap talk. Krishna and Mor-

gan (2001a) note that if the senders’biases are suffi ciently small relative to the state space,

full revelation is achievable: for example, the receiver may threaten an action unappealing

to all parties if the senders’messages diverge.6 Battaglini (2002) notes that fully reveal-

ing equilibria in one-dimensional state spaces rely on implausible out-of-equilibrium beliefs:

in the aforementioned example, were the receiver to face slightly divergent messages due

to noise in the senders’ observations, it would not be a best response to pick a “crazy”

action if the senders are telling the truth or nearly doing so.7 Ambrus and Lu (2014) ex-

hibit equilibria that approach full revelation as the state space becomes large, do not rely

on out-of-equilibrium beliefs, and, as a result, remain optimal for all players with certain

classes of noise in the senders’observations. Rubanov (2015) obtains similar results with a

fixed state space, as the number of senders becomes large. This paper requires, like Ambrus

and Lu (2014) and Rubanov (2015), (approximate) optimality in the perturbed games, but

considers a broader class of perturbations.8 As a result, more equilibria, including the ones

proposed in those two papers, are ruled out. In particular, as long as the biases of the senders

are bounded away from zero, communication robust to the perturbations considered in this

paper is bounded away from full revelation, even as the size of the state space and/or the

number of senders become large.

In terms of the best coordination-free equilibrium for the receiver, in the popular uniform-

5A previous version of this paper showed that coordination-free equilibria also have a desirable property
in a setting without noise. Consider the induced normal-form game played by senders, given a state and
a receiver strategy. In a coordination-free equilibrium (of the cheap talk game), at almost all states, the
Nash equilibrium (of the induced game) is unique among on-path message vectors. Therefore, coordination-
free equilibria are robust to collusion among senders (in the sense that senders cannot jointly deviate to a
different Nash equilibrium of the induced game) if off-path message vectors are ruled out - for example, the
receiver might be able to harshly punish senders if an off-path message vector is observed. At the same time,
equilibria that are not coordination-free generically do not have this property. For example, if all senders
have positive bias, then full revelation is not robust in this sense: the senders could all switch to reporting
θ + ε.

6Thus, when the senders’biases are below a certain threshold determined by the size of the state space,
there is no nontrivial bound on the amount of transmission transmitted, and the direction and magnitude
of sender biases do not impact the receiver’s maximum welfare.

7Ambrus and Takahashi (2008) propose a mild refinement that also rules out full revelation in multi-
dimensional state spaces, subject to a technical condition on the shape of the state space.

8If noise were limited to "replacement noise" (where senders observe the exact state with high probability),
then even with heterogeneous beliefs, the equilibria proposed in Section 3 of Ambrus and Lu (2014), presented
in this paper as Example 2, and in Rubanov (2015) would survive.
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quadratic specification:

- having multiple senders instead of one fails to improve the receiver’s welfare if the

additional senders’biases are no smaller and in the same direction as the first sender’s; and

- if there are senders with a rightward bias and senders with a leftward bias, then as the

state space becomes large, the pair of senders maximizing the receiver’s welfare consists of

the sender with the smallest rightward bias and the one with the smallest leftward bias.

Similar conclusions hold as long as the prior is near uniform and the players’ utility

functions are not too asymmetric about their peak. Krishna and Morgan (2001b) study

sequential cheap talk with two senders, and also find that having senders with opposing

biases is preferable for the receiver. This paper additionally shows, by allowing for more than

two senders, that in coordination-free equilibria, consulting senders beyond the optimal pair

typically yields only modest welfare gains for the receiver. Moreover, the characterization of

coordination-free equilibria provides a way to find the optimal one for the receiver.

Many other issues related to CS have been investigated: multidimensional state space,9

cheap talk that is sequential or occurs through an intermediary,10 refinements in the one-

sender case,11 etc. This paper may contribute to the study of delegation: is it better for the

receiver to retain the decision right and play a cheap talk game, or to delegate the action

to the sender(s)? Melumad and Shibano (1991), Dessein (2002) and Alonso and Matoushek

(2008) study this question in a single-sender setting. Since fully revealing equilibria exist

when there are multiple senders (and when the state space is large relative to the biases),

there has been little scope for studying this question in a multi-sender setting.12 However, if

one expects a coordination-free equilibrium to arise from multi-sender cheap talk, then the

delegation issue becomes nontrivial since coordination-free equilibria cannot approach full

revelation.

9Battaglini (2002, 2004) constructs a fully revealing equilibrium that satisfies a weak robustness condition
when the state space is unbounded. Ambrus and Takahashi (2008) and Meyer, Moreno de Barreda and
Nafziger (2016) study full revelation with bounded state spaces. See Lai, Lim and Wang (2015) and Vespa
and Wilson (2016) for experimental evidence.
Multidimensional states are mostly outside the scope of this paper because, without strong functional form

assumptions, it is diffi cult to construct equilibria (other than babbling and fully revealing) with a bounded
state space due to boundary conditions. Section 7.2 explains that requiring only approximate optimality in
the perturbed game is likely to wield limited power when the state space is multi-dimensional.
10Miura (2014) extends Krishna and Morgan’s (2001b) two-sender analysis of sequential cheap talk to a

two-dimensional state space. Ivanov (2010) and Ambrus, Azevedo and Kamada (2013) consider cheap talk
with intermediaries.
11See, for example, Matthews, Okuno-Funiwara and Postlewaite (1991) and Chen, Kartik and Sobel (2008).

The latter work selects the most informative equilibrium in the CS model, but Miura and Yamashita (2014)
suggest that this may be problematic if there’s a possibility that the model is slightly misspecified.
12Another obstacle in studying delegation with multiple experts is that there are many ways to delegate

authority in such a setting. For example, there are many possible sets of rules by which a committee of
experts may come to a decision.
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2 Model

There are n + 1 players: a set N of senders 1, ..., n and a receiver R. The senders observe

a common state of the world θ ∈ Θ = [0, 1], which is drawn from a probability distribution

F (.) with a continuous density f(.) for which there exist d > 0 and D < ∞ such that

f(θ) ∈ [d,D] for all θ. Each sender’s pure strategy mi : Θ → Mi assigns a message from

a set Mi to each state. Mi is assumed to be large relative to Θ, so that full revelation is

possible. Upon observing message vector m = (m1, ...,mn), the receiver takes action a(m).

Her pure strategies thus take the form a : ×ni=1Mi → Θ.13 When referring to a specific

strategy profile Γ, denote the receiver’s action given m by aΓ(m).

All players’utilities depend on the state θ and the action a ∈ Θ taken by the receiver,

but not (directly) on the message vector m ∈ ×ni=1Mi. Let ui(a, θ) denote player i’s utility

when the action is a and state is θ, for i = 1, ..., n, R. The following standard assumptions

are maintained throughout the paper:

1. all utility functions are Lipschitz continuous;

2. given θ, uR(., θ) is strictly concave with a maximum at a = θ;

3. given θ, ui(., θ) is single-peaked, i.e. is strictly increasing to the left, and strictly

decreasing to the right of its unique maximum, denoted θ + bi(θ);

4. ∃η > 0 such that, for all i ∈ N and θ ∈ Θ, either |bi(θ)| > η or θ + bi(θ) ∈ {0, 1}; and

5. for all i ∈ N , if a < a′, θ < θ′ and ui(a′, θ) ≥ ui(a, θ), then ui(a′, θ
′) > ui(a, θ

′).

Assumption 2 implies that the receiver’s best response is always unique. Assumption 4

and continuity imply that each i is either right-biased (for every θ, bi(θ) > η or θ+bi(θ) = 1)

or left-biased (for every θ, bi(θ) < −η or θ + bi(θ) = 0). Assumption 5 is the commonly

encountered single-crossing condition.

Messages mi and m′i are said to be equivalent in strategy profile Γ if aΓ(mi,m−i) =

aΓ(m′i,m−i) whenever the vectorm−i is composed of messages that are each sent with positive

probability at some θ in Γ.14 Throughout this paper, when a given strategy profile Γ is
13Identifying the action space with Θ allows for an easy statement of the assumption on the receiver’s

preferences (Assumption 2 below).
14This condition must hold even if m−i itself is never sent in Γ. For example, suppose aΓ(1, 1, 1) =

aΓ(1, 1, 2) = aΓ(1, 2, 1) = aΓ(2, 1, 1) = a, while aΓ(2, 2, 2) = aΓ(2, 2, 1) = aΓ(2, 1, 2) = aΓ(1, 2, 2) = a′ 6= a.
Also assume that of these eight message vectors, only (1, 1, 1) and (2, 2, 2) are sent in equilibrium. Then
even though, on path, no sender’s message affects the action, 1 and 2 are not equivalent for any sender: for
example, if sender 1 sends 1 and sender 2 sends 2, then the actions induced by sender 3 through sending 1
and sending 2 are not the same.
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discussed, mi = ( 6=)m′i means that mi and m′i are (not) equivalent in Γ, and m = ( 6=)m′

means that each (some) component of m is (not) equivalent in Γ to the corresponding

component of m′. That is, equivalent messages are treated as if they were the same message.

As is standard for simultaneous multi-sender cheap talk in a continuous type space, this

paper focuses on pure-strategy equilibria in the sense that if a sender mixes between mi and

m′i, then mi and m′i must be equivalent.
15

Even when mi and m′i are not equivalent, we may have a
Γ(mi,m−i) = aΓ(m′i,m−i) for

some m−i sent with positive probability in Γ. The following assumption rules this out when

(mi,m−i) and (m′i,m−i) are both sent on path:

Assumption A: If two message vectors m and m′ both occur on path and induce the

same action, then m and m′ cannot differ in exactly one component.

Assumption A implies that in a set of states where m−i and the induced action are

constant, mi must also be constant, which allows for a simpler description of equilibria. If

the set of states where message vector m is sent in a pure-strategy equilibrium Γ, henceforth

denoted θΓ(m), is an interval (possibly degenerate) for all on-path m, then Γ must satisfy

Assumption A: the receiver’s optimality implies aΓ(m) ∈ θΓ(m) for all on-path m, so that no

two on-path m can induce the same action. Thus, all CS equilibria, all pure-strategy fully

revealing equilibria and all equilibria proposed in the simultaneous unidimensional cheap

talk literature cited in the introduction satisfy Assumption A. Online Appendix B analyzes

the model without Assumption A.16

When referring to a specific pure-strategy profile Γ, it is convenient to denote sender i’s

message at θ by mΓ
i (θ), and to let MΓ

i = {mi : mΓ
i (θ) = mi for some θ ∈ Θ}. Also let

mΓ(θ) = (mΓ
1 (θ),mΓ

2 (θ), ...,mΓ
n(θ)) be the message vector sent at state θ.

The equilibrium concept is weak perfect Bayesian equilibrium (henceforth equilibrium).

Pure strategy profile Γ = (m1, ...,mn, a) and belief rule µ form an equilibrium if:

• for all i ∈ N and all θ ∈ Θ, mi(θ) ∈ arg maxm′i∈Mi
ui(a(m′i,m−i(θ)), θ),

• for all m ∈ ×ni=1Mi, a(m) ∈ arg maxa′∈Θ

∫
θ∈Θ

uR(a′, θ)dµ(m), and

15In the one-sender case, this is without loss of generality (except at the points where the sender’s message
changes) because any two messages leading to the same action are equivalent.
16The pure-strategy assumption and Assumption A can be summarized as follows: restrict attention to

strategy profiles Γ consistent with each sender i having the following lexicographic preferences. Among
messages yielding the highest expected utility, i picks her preferred one under some strict preference ranking
�i,Γ. For example, given the choice between two messages leading to the same outcome, the sender may
pick the simpler one. (�i,Γ is allowed to - but does not have to - depend on Γ in the cheap talk spirit of
messages acquiring their meaning endogenously.)
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• µ(m) is obtained from f(.),m1(.), ...,mn(.) through Bayes’rule whenever m = mΓ(θ)

for some θ ∈ Θ.17

It will sometimes be convenient to abuse notation by using Γ to denote the equilibrium

containing strategy profile Γ.

For simplicity and without loss of generality for equilibrium play, assume throughout this

paper that, in any strategy profile Γ, every message in Mi is equivalent to a message in MΓ
i .

3 Examples and Basic Definitions

This section presents examples of equilibria in multi-sender cheap talk to illustrate that: i)

they can be unintuitive, and ii) the set of equilibria is extremely diffi cult to characterize.

In each of these examples, there are two senders, and the parameters follow the popular

uniform-quadratic specification: θ ∼ U [0, 1] and ui(a, θ) = −(a − (θ + bi))
2 (with bR = 0),

so for all θ, sender i’s utility is maximized at θ+ bi. In both examples, every message vector

in ×ni=1M
Γ
i occurs in equilibrium, so any criterion that only places restrictions on out-of-

equilibrium beliefs, such as Battaglini’s (2002), would not rule out any of these equilibria.

These examples feature pairs of messages (m1,m2) that are sent in some nontrivial in-

terval, but not at all (or almost all) states where they form mutual best responses. This

paper’s robustness concept selects equilibria where such an issue does not arise.

Example 1: No Interval Structure
Suppose b1 = b2 = 0.04. Each sender has two equilibrium messages, x and y. The

prescribed message vector mΓ(θ) is:

- (x, x) if θ ∈ [0, 0.01]\Q;
- (y, y) if θ ∈ ([0, 0.01] ∩Q) ∪ (0.01, 0.18];

- (x, y) if θ ∈ (0.18, 0.51] ∪ ((0.51, 1] ∩Q);

- (y, x) if θ ∈ (0.51, 1]\Q.
It is easy to check that the receiver’s optimal actions are aΓ(x, x) = 0.005, aΓ(y, y) =

0.095, aΓ(x, y) = 0.345 and aΓ(y, x) = 0.755, and that this profile is indeed part of an

equilibrium. As a result, within [0, 0.01], the action following a rational state is 0.095, while

the action following an irrational state is 0.005; a similar situation arises within (0.51, 1].

Thus, outside of [0.01, 0.51], there is no nontrivial interval of states following which the same

messages are sent.

17Senders’strategies and µ must be such that the receiver’s expected utility is well-defined. In particular,
senders’strategies must be measurable, which implies that θΓ(m) is also measurable, for all m.
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Clearly, (x, x) and (y, y) are both mutual best responses on (0, 0.01), and to avoid sending

(x, y) or (y, x), the senders must coordinate in a very precise manner that would be diffi cult

if they observe the true state with noise that has a continuous distribution. Senders face a

similar problem on (0.51, 1).

Example 1 does not have "interval structure" in the following sense. For convenience, let

λ(.) denote the Lebesgue measure.

Definition: Given a pure-strategy profile Γ, a cell in Γ is a maximal interval18 of states

throughout which mΓ remains constant. A proper cell is a cell with positive measure.

Definition: A pure-strategy profile Γ has interval structure if λ(∪I is a proper cell in ΓI) =

λ(Θ).

Example 2: Convoluted Finite Interval Structure
This example is taken from Ambrus and Lu (2014), and shows that even an equilibrium

revealing a finite partition of the state space may seem implausible.

Suppose b1 and b2 are small, and divide Θ into q equally sized blocks, each of which is

divided into q equally sized cells. Both sender’s messages are labeled 1, 2, ..., q and are used

as follows (see Figure 1):

- sender 1 sends message k in the kth cell of each block;

- sender 2 sends message k+ l−1(mod q) in the kth cell of the lth block (when the formula

gives 0, message q is sent).

Figure 1: Example 2

This profile guarantees that every message vector in {1, ..., q}×{1, ..., q} occurs in exactly
one cell, and that any deviation leads to an action at least almost a block away when q is

large. Thus, if the biases b1 and b2 are small with respect to Θ, then the number of blocks can

be large. Therefore, fixing the biases, this construction can yield an almost fully revealing

equilibrium as Θ becomes large.

However, this construction appears to be asking too much of the senders, whose messages

must change very frequently at boundaries between cells. These boundaries are arbitrarily

18That is, mΓ does not remain constant in any connected strict superset of a cell. Cells can be degenerate
intervals (i.e. they can consist of a single state).
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set: for example, with large enough blocks, (1, 1) and (2, 2) are pairs of mutual best responses

anywhere in block 1 suffi ciently far from block 2, so the boundary θ between these cells can be

moved. With noise in the senders’observations, near θ, both senders can be very uncertain

about the message used by the other sender, which can lead to a coordination failure.19

4 Coordination-Free Equilibria

This section proposes a class of "coordination-free" equilibria and derives some of their

properties. The main results of this paper show that coordination-freeness is essentially

required for satisfying the robustness concepts proposed in Section 5.

4.1 Definition

Coordination-free equilibria are defined as follows.

Definition: An equilibrium Γ is coordination-free if it satisfies points 1 and 2 below,

and strictly coordination-free if it satisfies points 1-3.

1. Every cell in Γ (other than, if present, {0} or {1}) is proper, and if θ 6= 1 (resp. θ 6= 0)

is the supremum (resp. infimum) of a cell, then it is also the infimum (resp. supremum)

of another cell.

2. The message vectors sent in any two adjacent cells in Γ differ in exactly one component.

3. If an out-of-equilibrium message vector m′ differs from the message vector m sent in

cell C in only its ith component, then ui(aΓ(m), θ) 6= ui(a
Γ(m′), θ) for all θ ∈ C, where

C denotes the closure of C.

Point 2 implies, by Assumption A, that the induced action differs in any two adjacent

cells, and ensures that Γ does not rely on coordination in the following sense. Consider a

boundary θb between two cells where sender i’s equilibrium messages mi and m′i differ while

senders j 6= i play mj. Point 2 implies that mj is approximately optimal for j regardless of

whether sender i sends mi or m′i and of whether the state is to the left or to the right of

19However, if the noise is in a class such that both senders observe the true state with probability near
1, then senders are able to successfully coordinate. This observation illustrates the difference between this
paper and Ambrus and Lu (2014).
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the boundary. That is, even if sender i makes a "mistake" and sends the wrong message, no

other sender would have a strong incentive to coordinate with i by changing their message.

Point 3 ensures that Γ does not rely on coordination in another sense: since i is always

strictly worse off switching to a message that leads to an out-of-equilibrium message vector

m′ (i.e. m′ ∈ ×ni=1M
Γ
i such that m

′ 6= mΓ(θ′) for any θ′ ∈ Θ), the other senders may find it

less plausible that i would make such a switch. Because, as Proposition 1 will show, there

are finitely many cells in any coordination-free equilibrium, point 3 rules out only a finite

number of values for aΓ(m′).

In the one-sender case, every equilibrium is coordination-free, and strictly so since every

message is (equivalent to) an on-path message.

Example 3: A Multi-Sender Strictly Coordination-Free Equilibrium
As in Section 3, consider a uniform-quadratic setting with two senders. Suppose b1 =

0.01, b2 = 0.1. Each sender has two equilibrium messages, x and y. The prescribed message

vector mΓ(θ) is:

- (x, x) if θ ∈ [0, 0.01];

- (y, x) if θ ∈ (0.01, 0.06];

- (y, y) if θ ∈ (0.06, 0.51];

- (x, y) if θ ∈ (0.51, 1].

The receiver maps every message to x or y, derives beliefs from Bayes’rule, and optimally

responds: aΓ(x, x) = 0.005, aΓ(y, x) = 0.035, aΓ(y, y) = 0.285 and aΓ(x, y) = 0.755.

It is straightforward to check that the above describes a strictly coordination-free equi-

librium. (Point 3 of the definition is vacuous here since every message vector in ×ni=1M
Γ
i

occurs on path.)

4.2 Basic Properties

This subsection presents some properties of coordination-free equilibria.

Proposition 1: The number of cells in any coordination-free equilibrium Γ is bounded

above by λ(Θ)
η
, and every other cell must have size greater than η.

Proof: Let θb be the boundary between two adjacent cells in Γ. Since the message

vectors sent in those cells, denoted m for the right cell and m′ for the left cell, differ in

exactly one component, there must exist a sender i such that ui(aΓ(m), θb) = ui(a
Γ(m′), θb).

By single-crossing, ui(aΓ(m), θ) T ui(a
Γ(m′), θ) for all θ T θb. As a result, m cannot occur
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to the left of θb, and m′ cannot occur to the right of θb, which implies aΓ(m) ≥ θb ≥ aΓ(m′).

Since aΓ(m) 6= aΓ(m′), they must occur on different sides of θb + bi(θb), so we also have

aΓ(m) > θb + bi(θb) > aΓ(m′) (and thus θb + bi(θb) /∈ {0, 1}, which implies |bi(θb)| ≥ η > 0).

Combining these observations yields:

i) aΓ(m)− aΓ(m′) > η, implying the bound on the number of cells, and

ii) either aΓ(m) > θb + η or θb − η > aΓ(m′), implying that at least one of the two cells

has size greater than η. �

Proposition 1 makes clear that for any fixed η, coordination-free equilibria are bounded

away from full revelation: it is not possible to increase information transmission beyond

a certain bound, be it by expanding the state space (as in Ambrus and Lu (2014)) or by

adding senders (as in Rubanov (2015)). Of course, as η → 0, the upper bound on information

transmission approaches full revelation, just like in Crawford and Sobel (1982).

Another property of coordination-free equilibrium play (i.e. the collection of on-path

induced actions and cell endpoints) is that it can be computed using the forward solution

procedure of Crawford and Sobel (1982), given an ordered list stating the identity of the

sender whose message changes at each boundary between two cells.20 Given the receiver’s

leftmost action, denoted θ1, the location of the leftmost cell’s right endpoint, denoted θ2,

is determined by the prior and uR. The indifferent sender at θ2 is given by the list, and

her indifference condition pins down the receiver’s second leftmost action, and so on. If the

last cell’s right endpoint coincides with the right endpoint of Θ, play computed through

this procedure is called candidate play. Clearly, play in a coordination-free equilibrium must

be candidate play. Moreover, if all cell endpoints calculated through forward solution are

monotonic in θ2,21 then the number of candidate play corresponding to each given ordered

list of indifferent senders is either zero (if the list is too long) or one.

However, unlike in the one-sender case, not all candidate play corresponds to play in an

equilibrium - see Online Appendix A for an example. The reason is that there may be an

out-of-equilibrium vector m such that any value of aΓ(m) induces a profitable deviation by

a sender. Proposition 7 in Online Appendix A identifies a suffi cient condition under which

this problem does not arise. This condition is typically satisfied by suffi ciently informative

candidate play if there is at least one sender with a small bias in each direction, and senders’

preferences are not too asymmetric.

20In the one-sender case, this sender is trivially always the only sender, and the length of the list determines
the number of intervals in equilibrium.
21This is Crawford and Sobel’s (1982) condition (M), and is satisfied in the uniform-quadratic case.
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A related observation is that if multiple senders have identical preferences, then delet-

ing all but one of them does not change the set of possible candidate play. Doing so may,

however, shrink the set of equilibria, because it removes ways of assigning messages. Never-

theless, Proposition 7 implies that under the assumptions of the previous paragraph, deleting

duplicate senders does not prevent the most informative candidate play from being part of

a coordination-free equilibrium, and therefore does not affect the receiver’s maximum wel-

fare achievable in a coordination-free equilibrium. Section 6 presents further results about

receiver welfare and sender selection.

5 Robustness

This section introduces the possibility of small noise in the senders’ observations of the

state, and studies equilibria Γ that, for any δ > 0, remain δ-equilibria with any suffi ciently

small noise. Such equilibria are called strongly robust when small noise means that senders’

signals are near the true state with high probability, and robust when small noise means

that senders’signals are near the true state for sure. These concepts are formally defined in

Sections 5.1 to 5.3. The main results of the paper, Theorems 1 and 2, are stated below and

fully presented in Sections 5.2 to 5.4.

The following definitions are used in Theorems 1 and 2.

Definition: An equilibrium Γ is complete if every (m1, ...,mn) ∈ ×ni=1M
Γ
i occurs in

equilibrium.

That is, Γ is complete if no combination of equilibrium messages is an out-of-equilibrium

message vector. Examples 1, 2 and 3 all feature complete equilibria. Note that any complete

and coordination-free equilibrium is also strictly coordination-free.

Definition: Two equilibria are equivalent if at all but a finite number of states, the same
messages are sent, and the receiver’s strategy is the same.

Definition: A statement holds generically if it holds for an open and dense set of vectors
of primitives (u1, ..., un, uR, f) (within the set satisfying the assumptions from Section 2) un-

der the metric d((u1, ..., un, uR, f), (u′1, ..., u
′
n, u

′
R, f

′)) =
√∑

i=1,...,n,R ‖ui − u′i‖2 + ‖f − f ′‖2,

where ‖ · ‖ denotes the sup norm.

For Theorems 1 and 2, let Γ be an equilibrium of the noiseless cheap talk game.

Theorem 1:

13



(a) Generically, if Γ is strongly robust, then it is complete and coordination-free.

(b) If Γ is complete and coordination-free, and no cell in Γ is {0} or {1}, then it is
strongly robust.

Theorem 2:
(a) Generically, if Γ is robust, then it is equivalent to a strictly coordination-free equilib-

rium.

(b) If Γ is strictly coordination-free, then it is robust.

5.1 Noise and Perturbations

Conditional on state θ, each sender i observes a signal si ∈ Θ, whose density is measurable

on Θ×Θ.22 In the noiseless game, we simply have si = θ. The meaning of "small noise" is

formalized below:

Definition: Noise has size less than ε if:

1. for all i ∈ N and θ ∈ Θ, Pr(|si − θ| < ε|θ) ≥ 1− ε; and

2. for all i ∈ N and si ∈ Θ, Pr(|si − θ| < ε|si) ≥ 1− ε.

Definition: Noise has local size less than ε if for all i ∈ N and θ ∈ Θ, |si−θ| < ε surely.

The first definition is inspired by the Ky Fan metric. It says that noise is small when at

any state, each sender’s signal is close to the state with high probability, and when after any

signal, each sender puts a high probability on the state being close to the signal. It does not

rule out the presence of atoms, so for example, the class of "replacement noise" sequences

considered by Battaglini (2002), Section 3 of Ambrus and Lu (2014) and Rubanov (2015),

where each sender observes the true state with probability approaching 1 and observes the

realization of a continuous random variable with full support otherwise, has size converging

to 0. A sequence of noise with size converging to 0 converges in probability to the trivial

signal structure si = θ.

The second definition is more stringent, as it requires that signals be always close to the

state. Such small support is consistent with perturbations in the global games literature.

Replacement noise does not have local size converging to 0 even as the probability of observ-

ing the true state approaches 1. However, a sequence of noise along which senders observe

22This paper’s results do not depend on whether the signals are restricted to be independent, conditional
on θ.
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the closest element of a finer and finer finite grid has (local) size converging to 0. A sequence

of noise with local size converging to 0 converges surely to the trivial signal structure si = θ.

Denoting the probability that agent i puts on event X as Pri(X), given these definitions,

common knowledge that noise has size less than ε means common knowledge that, for any

θ, sj ∈ Θ, agent i and sender j, Pri(|sj − θ| < ε|θ) ≥ 1− ε and Pri(|sj − θ| < ε|sj) ≥ 1− ε.
Similarly, common knowledge that noise has local size less than ε means common knowledge

that |sj − θ| < ε for all senders j ∈ N .

Finally, message vectors m ∈ ×ni=1M
Γ
i that are off-path in the noiseless game can remain

off-path with some small local noise Ξ. The receiver could then have any beliefs after such

m, and thus any optimal action aΞ(m), even when there is common knowledge that noise

has local size less than ε, for any ε > 0. It is then impossible for aΞ(m) to be near aΓ(m)

for all beliefs consistent with Ξ; if robustness were to require this, it would rule out off-path

message vectors and thus imply completeness, which would nullify the effect of the restriction

to local noise. To address this issue, the robustness concept for Theorem 2 applies a different

(and weaker) requirement to off-path message vectors, which assumes that perturbations on

the receiver’s off-path beliefs are small in the following sense:

Definition: A perturbation on the receiver’s off-path beliefs in Γ has size less than γ if,

for any message vector m that is off-path in Γ, the receiver’s belief after m is such that the

optimal action a∗(m) satisfies |a∗(m)− aΓ(m)| < γ.

5.2 Strong Robustness

This subsection presents the definition of strong robustness and Theorem 1.

Definition: Player i’s strategy ri is a δ-best response to opponent strategies r−i if

after any history hi (signal si if i is a sender and message vector if i is the receiver),

E[ui(ri, r−i)|hi] ≥ E[ui(r
′
i, r−i)|hi]− δ for any strategy r′i.

Definition: An equilibrium Γ in the noiseless game is strongly robust if, for every δ > 0,

there exists ε > 0 such that whenever noise has size less than ε, each player’s strategy rΓ
i

(mΓ
i for senders and a

Γ for the receiver) is a δ-best response to rΓ
−i evaluated under sender

i’s belief about the noise.

The above definition can be used either requiring common prior about the noise, or

allowing a larger class of perturbations where it is common knowledge that noise has size
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less than ε (but players’priors may differ). The former leads to a weaker notion of robustness

than the latter. Theorem 1 holds with either interpretation.

Given that small noise can change a sender’s optimal message around cell boundaries even

in the one-sender case, insisting on Γ remaining an exact best response in the noisy game

appears too strong. One interpretation for instead requiring approximate best responses

might be that players incur a small cost when deviating from their noiseless plan of action.

For example, if a player is a committee, it may not be worth convening a meeting to determine

a new strategy when a perturbation makes the original messages slightly suboptimal (for

senders) or only slightly changes the optimal actions (for the receiver). Alternatively, the

noiseless equilibrium may represent an established convention, and it may be costly for a

player to compute an alternative, slightly preferable, course of action. Thus, an equilibrium

is strongly robust when for any positive tolerance of suboptimality, if noise is small enough,

everyone can be expected to stick with her noiseless equilibrium strategy.23

Recall the statement of Theorem 1.

Theorem 1: Consider an equilibrium Γ of the noiseless cheap talk game.

(a) Generically, if Γ is strongly robust, then it is complete and coordination-free.

(b) If Γ is complete and coordination-free, and no cell in Γ is {0} or {1}, then it is
strongly robust.

The appendix presents all omitted proofs. Theorem 1 holds with either common-prior

small noise or only common knowledge that noise is small. The proof makes the weaker

assumption for each part of the result (the former for Theorem 1a, and the latter for Theorem

1b).

Theorem 1a follows from Lemmata 1 and 2, discussed below, and Proposition 4a, stated

below and discussed in Section 5.4.24 Because Γ is trivially coordination-free when |{i ∈ N :

|MΓ
i | ≥ 2}| = 1, the proof assumes |{i ∈ N : |MΓ

i | ≥ 2}| ≥ 2.

Lemma 1: If Γ is strongly robust, then it has interval structure, and λ(θΓ(m)) > 0 for

every m ∈ ×ni=1M
Γ
i (which implies completeness).

23See Jackson et al. (2012) for a discussion of ε-equilibria. Their main result, that selection criteria based
on ε-equilibria of perturbed games have no power, does not apply to the setting considered here: interim
optimality with a continuum of types and discontinuous strategies. It does highlight that conditions similar
to the robustness concept used here are likely to be weak when applied to settings with finitely many types.
24The numbering of Proposition 4, as well as the position of its proof in the appendix, corresponds to its

position in Section 5.4.
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The proof of Lemma 1 has four steps. First, it is shown from the definition of robustness

that aΞ(m), the receiver’s best response to sender strategies in Γ under noise Ξ, must be

close to aΓ(m) whenever Ξ is small. That is, if noise is added and players keep playing Γ,

then the receiver’s action must be almost optimal.

Second, Γ must be complete. If not, then given an off-path message vector m ∈ ×ni=1M
Γ
i ,

one can easily specify small noise Ξ such thatm is most likely to be observed far from aΓ(m).

For example, consider a fully revealing equilibrium, and suppose that the noise is such that

erroneous signals are much more likely when θ ≈ 0.5. Then a sender i with bias 0.1 might

want to deviate when si ≈ 0.4 in order to induce the receiver to take an action near 0.5. For

simplicity, the noise used in the proof has an atomic distribution, but the argument can be

made with more standard distributions as well. The key point is that when m is off-path,

the optimal action after m is very sensitive to the form of the noise.

Third, steps 3 and 4 establish that Γ must have interval structure. Step 3 shows that

every message vector in ×ni=1M
Γ
i must be sent on a set of positive measure. Suppose instead

that some m is sent on a set of measure zero. Then once again, the receiver’s optimal

response to m would be very sensitive to small noise because the set of states where the

receiver expects m can change considerably. For example, if a message vector m is sent

only at 0.1 and 0.9, then with noise, the receiver may believe the m is much more likely to

occur when the state is near 0.9 than 0.1, which can make the best response to m very far

from aΓ(m). Once again, this idea does not require extreme noise distributions like the one

used in the proof for ease of exposition. Step 4 uses a similar argument to show that, even

when every m ∈ ×ni=1M
Γ
i were sent on a set of positive measure, if Γ fails to have interval

structure, then the best response to m is very sensitive to noise that makes it diffi cult to

observe signals inside θΓ(m) but outside a proper cell.

Lemma 2 refers to a property of cells defined as follows.

Definitions: For a given strategy profile Γ with interval structure,

• θb is a left-natural boundary for sender i if it is the right endpoint of a proper cell25 in

Γ, and, denoting the message vector sent in that cell by m, ∃m′′i ∈MΓ
i such that:

(m′′i ,m−i) = mΓ(θ) for some θ ∈ Θ,

ui(a
Γ(mi,m−i), θb) = ui(a

Γ(m′′i ,m−i), θb), and a
Γ(mi,m−i) < aΓ(m′′i ,m−i);

• θb is a right-natural boundary for sender i if it is the left endpoint of a proper cell in

25Formally, if S denotes the cell, θb = supS.
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Γ, and, denoting the message vector sent in that cell by m′, ∃m′′i ∈MΓ
i such that:

(m′′i ,m
′
−i) = mΓ(θ) for some θ ∈ Θ,

ui(a
Γ(m′′i ,m

′
−i), θb) = ui(a

Γ(m′i,m
′
−i), θb), and a

Γ(m′′i ,m
′
−i) < aΓ(m′i,m

′
−i);

• a proper cell is natural if its right endpoint is either left-natural or 1, and its left

endpoint is either right-natural or 0.

Thus, a cell endpoint θb is a left(right)-natural boundary if, coming from the left(right),

some sender would change her message at θb even if others do not, and the message vector

resulting from this change occurs on path. That is, the cell stops at θb "naturally" in the

sense that: (i) given the receiver’s strategy, if the cell extends any further, a sender would

have a profitable deviation; and (ii) this deviation would lead to an action of the receiver

that is determined by on-path play (as opposed to off-path beliefs). In Example 2, the cell

endpoints are not natural boundaries: the senders locally coordinate with each other to avoid

designating a cell in another block, so a sender’s best response at a boundary changes only

because the other sender’s message changes.

Definition: A strategy profile is natural if it has interval structure and all of its proper
cells are natural.

Lemma 2: If Γ is strongly robust, then Γ is natural.

Lemma 2 shows that any right endpoint θb 6= 1 of a proper cell C in a strongly robust

Γ must be left-natural. Denote the message vector sent in C by m. The proof uses single-

crossing and Assumption A to show that, if θb were not left-natural, then for any i ∈ N ,

sender i’s unique approximate best response at θb to m−i is mi. Therefore, given si near θb
and noise Ξ such that sender i believes that, with high probability, all other senders’signals

are in C, sender i’s only nearly optimal message is mi. Since θb is the right endpoint of

C, there must be at least at least one sender j whose message differs from mj at or just to

the right of θb. Therefore, there exists noise Ξ arbitrarily small such that j fails to play an

approximate best response at or just to the right of θb.

Proposition 4a: Generically, if Γ is natural and every message vector in ×ni=1M
Γ
i is sent

on a set of positive measure, then Γ is coordination-free.

Proposition 4a is discussed in Section 5.4, which also shows that all coordination-free

equilibria are natural. The two concepts differ when, in a natural equilibrium, a cell boundary

fails to be left-natural and right-natural for the same sender.
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The proof of Theorem 1b shows that, without noise, at all states in a coordination-free

equilibrium Γ, any sender i’s message is either optimal or very close to being optimal for

all m−i occurring in a small enough neighborhood - there is no strong reason to coordinate

with other senders. (This cannot hold in any equilibrium that is not natural.) Thus, every

sender follows a δ-best response by playing the original profile as long as she believes that

noise is small. The same holds for the receiver since, as long as noise is less than ε, the

message vector following every state at least ε away from boundaries must be the same as

in the noiseless game with high probability.

5.3 Robustness

The completeness result in Theorem 1a is quite restrictive. For example, it implies that the

number of cells in Γ is equal to Πi∈N |MΓ
i |, and thus rules out equilibria where: (i) two or

more senders are informative, and (ii) the number of cells is a prime. As the intuition for step

2 of the proof of Lemma 1 suggests, completeness comes from the fact that when noise has

full support, any pair of messages can be sent in any state. Therefore, a logical step in the

analysis is to examine a more restrictive class of noise distributions: those with small local

size. However, as explained in Section 5.1, restricting only noise on the senders’observation

of the state does not get rid of completeness: perturbations on the receiver’s off-path beliefs

must also be restricted. The proposed robustness concept will therefore be similar to strong

robustness on path, but differ from it off path.

Definition: Player i’s strategy ri is an on-path δ-best response to opponent strate-

gies r−i if after any history hi that can be reached given i’s belief about noise and r−i,

E[ui(ri, r−i)|hi] ≥ E[ui(r
′
i, r−i)|hi]− δ for any strategy r′i.

Definition: An equilibrium Γ in the noiseless game is robust if:

1. for every δ > 0, there exists ε > 0 such that whenever noise has local size less than ε,

each player’s strategy rΓ
i is an on-path δ-best response to r

Γ
−i evaluated under sender

i’s belief about the noise, and

2. in the noiseless game, there exists γ > 0 such that whenever the perturbation on the

receiver’s off-path beliefs has size less than γ, every sender’s strategy mΓ
i is a best

response to mΓ
−i and a

Γ∗, where aΓ∗ denotes the receiver’s best-response to mΓ and her

perturbed off-path beliefs.
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Point 1 of this definition is exactly the same as the definition of strong robustness,

except for the qualifiers "on-path" (for δ-best response) and "local" (for noise size). In fact,

without the word "local," robustness would exactly coincide with strong robustness: because

the latter implies completeness, both the "on-path" qualifier and point 2 of the definition

of robustness would have no effect. Therefore, strong robustness corresponds to robustness,

but with a larger class of noise.

As argued previously, applying point 1 to message vectors m that are off-path even given

noise is too strong: the receiver’s beliefs after such m can be any distribution over Θ. At

the same time, not perturbing beliefs after such m at all is unappealing: it seems unlikely

that off-path beliefs are less subject to perturbations than on-path beliefs. Therefore, point

2 of the above definition requires Γ to survive small perturbations on off-path beliefs. Unlike

in point 1, exact best response is required: since senders’strategies always remain nearly

optimal for small changes in the receiver’s actions, requiring δ-best response would render

point 2 vacuous.

One interpretation of point 2 is that senders know approximately, but not exactly, what

the receiver would do off path. Therefore, robustness requires that their strategies remain

optimal even when their beliefs about the receiver’s off-path actions differ slightly from the

receiver’s actual strategy.

Theorem 2: Consider an equilibrium Γ of the noiseless cheap talk game.

(a) Generically, if Γ is robust, then it is equivalent to a strictly coordination-free equilib-

rium.

(b) If Γ is strictly coordination-free, then it is robust.

Like Theorem 1, Theorem 2 holds whether robustness is understood to hold only with

common-prior small local noise, or more broadly when there is common knowledge that noise

is local and small. Once again, the proof makes the weaker assumption for each part of the

theorem.

Theorem 2a follows from the following results.

Lemma 3: If Γ is robust, then Γ is natural and satisfies point 3 of the definition of

strictly coordination-free equilibrium.

Proposition 4b: Generically, if Γ is natural, then Γ is equivalent to a coordination-free

equilibrium.

Proposition 4b is discussed with Proposition 4a in Section 5.4.

Lemma 3 is the counterpart of Lemmata 1 and 2. The main difference between the proofs

is the replacement of steps 2 and 3 in the proof of Lemma 1. Instead, step 2 in the proof of
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Lemma 3 shows that m ∈ ×ni=1M
Γ
i must be sent on a set of positive measure if m is sent at

two or more states. The intuition is similar to the one for step 3 in the proof of Lemma 1,

but the result does not apply to all m due to the lack of completeness.

Step 3 in the proof of Lemma 3 argues that the set of fully revealed states in Γ has

measure zero. If not, then for any ε > 0, there would exist an interval I of size ε that

includes a continuum of fully revealed states. Let θ be one such state, m = mΓ(θ), and

i be a sender with a continuum of messages in I. Then for any m′i in this continuum of

messages, point 2 of the definition of robustness implies that aΓ(m′i,m−i) must be far from

θ: otherwise, slightly changing it would induce a sender deviation. The rest of step 3 uses

this fact and step 2 to show that, in fact, there can only be countably many such m′i.

The remainder of the proof of Lemma 3 follows the proof of Lemmata 1 and 2, with point 2

of the definition of robustness (which implies point 3 of the definition of strictly coordination-

free equilibrium) ensuring that messages m′i such that (m′i,m−i) is out-of-equilibrium are not

approximately optimal.

Theorem 2b is proved in the same way as Theorem 1b, but additional cases must be

checked due to the potential presence of out-of-equilibrium message vectors and cells {0}
and {1}.

5.4 Relation between Coordination-Free and Natural Equilibria

Proposition 2 establishes basic properties of natural equilibria that are useful for the com-

parison with coordination-free equilibria.

Proposition 2:
(a) In any natural equilibrium Γ, θΓ(m) is connected whenever λ(θΓ(m)) > 0.

(b) In each game, there is a finite upper bound for the number of cells in natural equilibria.

The reasoning for Proposition 2a is simple: by the definition of natural boundary, m

ceases to be optimal at the endpoints of any proper cell where m is sent - and there must be

such a cell because Γ has interval structure and m is sent on a positive-measure set. Single

crossing then implies that θΓ(m) is connected. The proof of Proposition 2b notes that for

every action a induced in a proper cell whose left endpoint θL is not 0, because θL must be

right-natural, there must be another induced action a′ at least η to the left of a such that the

message vectors inducing a and a′ differ in one component. An inductive argument, starting

with the interval [0, η], is then used to obtain the result.
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The remainder of Section 5 argues that generically, a natural equilibrium features the

same play as some coordination-free equilibrium at almost all states. Proposition 3 shows

that one direction of this relation is simple.

Proposition 3: Every coordination-free equilibrium is natural.

Proof: If an equilibrium Γ is coordination-free, then at every cell endpoint θ,

ui(a
Γ(mi,m−i), θ) = ui(a

Γ(m′i,m−i), θ) for some sender i,

where (mi,m−i) is sent in the left cell and (m′i,m−i) is sent in the right cell. Moreover, by

definition, aΓ(mi,m−i) 6= aΓ(m′i,m−i), so θ is a natural boundary. Thus Γ is natural. �

The partial converse of Proposition 3 is more complicated.

Proposition 4: Generically,
(a) If Γ is natural and every message vector in×ni=1M

Γ
i is sent on a set of positive measure,

then Γ is coordination-free.

(b) If Γ is natural, then Γ is equivalent to a coordination-free equilibrium.

The intuition for Proposition 4 is as follows. Suppose profile Γ is natural. Label the

proper cells 0, ..., K from left to right, and let mk denote the message vector sent in cell k.

Let:

• θ0 = 0 and θ2K+2 = 1;

• θ2k denote the boundary between cell k − 1 and cell k;

• θ2k+1 denote the action induced in cell k, i.e. θ2k+1 = aΓ(mk);

• ikR (resp. ikL) denote a sender for whom the boundary between cell k − 1 and k is

right-natural (resp. left-natural);

• Rk < 2k + 1 be such that uikR(θ2k+1, θ2k) = uikR(θRk , θ2k) (Rk ∈ N exists because θ2k

is right-natural); and

• Lk > 2k− 1 be such that uikL(θ2k−1, θ2k) = uikL(θLk , θ2k) (Lk ∈ N exists because θ2k is

left-natural).

Definition: The structure of Γ consists of {ikR}Kk=1, {ikL}Kk=1, {Rk}Kk=1 and {Lk}Kk=1.
26

{ikR}Kk=1 and {Rk}Kk=1 form the right-structure, while {ikL}Kk=1 and {Lk}Kk=1 form the left-

structure.
26A given profile may be described by more than one structure, as there may happen to be multiple ikR’s

or ikL’s at a boundary k.
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By Proposition 2b, K is bounded above, so the number of possible structures is finite.

A natural equilibrium’s right-structure and θ1 (or θ2) fully determine the action induced

at every state that is not a boundary: given θ1, the receiver’s utility function and the prior

density uniquely determine θ2 (and vice versa). Then given θ2, i1R’s utility function and

R1 uniquely determine θ3, and so on. θ1 needs to be such that cell K’s right endpoint is at

1. When Rk = 2k − 1 for all k, this procedure is the same as the forward solution used to

compute single-sender and coordination-free equilibria.

Suppose Γ is coordination-free. Here, for all k = 1, ..., K, it must be that Rk = 2k − 1,

Lk = 2k + 1 and ikR = ikL. Thus, the left-structure is redundant with the right-structure,

and does not impose any additional condition for Γ to be an equilibrium.

By contrast, if play in a natural equilibrium Γ does not correspond to play in a coordination-

free equilibrium in all cell interiors, then at some boundary k, multiple senders change their

message. Proposition 2a implies that in a natural equilibrium, if a message vector is sent in a

proper cell, then no other on-path message vector can induce the same action. This implies

that Rk 6= 2k − 1 and Lk 6= 2k + 1. Thus in this case, the left-structure imposes a sup-

plementary indifference condition. Since the right-structure has already fixed all boundaries

and actions, extra conditions imposed by the left-structure are generically not satisfied.

Example 4 shows that one can build a natural equilibrium that is not coordination-free

given non-generic primitives.

Example 4: Natural Equilibrium that Is Not Coordination-Free
Consider a two-player game that follows the uniform quadratic specification, except that

player 1’s bias b1(θ) is not constant. Instead, b1(θ) = 0.04 for θ ≤ 0.1, and is continuous

and increasing for θ > 0.1. Player 2’s bias is constant at b2 = −0.02.

We look for a six-cell natural equilibrium with the following structure (following the above

notation, from left to right, the cells are labeled 0, 1, 2, 3, 4 and 5, the receiver’s actions are

θ1, θ3, θ5, θ7, θ9 and θ11, and the boundaries between cells are θ2, θ4, θ6, θ8 and θ10):

- right-structure: i1R = 1, i2R = i3R = i4R = i5R = 2, R1 = 1, R2 = 3, R3 = 5, R4 = 1,

R5 = 9;

- left-structure: i1L = i4L = 1, i2L = i3L = i5L = 2, L1 = 3, L2 = 5, L3 = 7, L4 = 11,

L5 = 11.

Note that at θ2, θ4, θ6 and θ10, the structure identifies a single player that is indifferent

between the adjacent actions. However, at θ8, we must have u2(θ1, θ8) = u2(θ9, θ8) and

u1(θ7, θ8) = u1(θ11, θ8). Since neither sender is indifferent between θ7 and θ9 at θ8, such an

equilibrium cannot be coordination-free.
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It is straightforward to show that in order for an equilibrium to have the specified right-

structure, we must have θ1 = 1
900
, θ2 = 2

900
, θ3 = 75

900
, θ4 = 148

900
, θ5 = 185

900
, θ6 = 222

900
, θ7 = 223

900
,

θ8 = 224
900
, θ9 = 411

900
, θ10 = 598

900
and θ11 = 749

900
. Therefore, the specified left-structure can be

achieved only if

u1(
223

900
,
224

900
) = u1(

749

900
,
224

900
).

If this non-generic condition is satisfied, then the following sender strategies are part of a

natural equilibrium with the above structure:

- if θ ∈ [0, 2
900

), m(θ) = (x, x);

- if θ ∈ [ 2
900
, 148

900
), m(θ) = (y, x);

- if θ ∈ [148
900
, 222

900
), m(θ) = (y, y);

- if θ ∈ [222
900
, 224

900
), m(θ) = (y, z);

- if θ ∈ [224
900
, 598

900
), m(θ) = (x, y); and

- if θ ∈ [598
900
, 1], m(θ) = (x, z).

6 Best Coordination-Free Equilibrium for the Receiver

Let the receiver’s maximum expected utility from a coordination-free equilibrium be uR.

This section studies how uR depends on the characteristics of senders available, and all of

the analysis here also applies to strictly coordination-free equilibria.

It is not always the case that replacing a sender by a less biased one will increase uR.

Example 5 shows that doing so may decrease uR, even in the uniform-quadratic specification.

Example 5: Consider a uniform-quadratic game with two senders, where b1 = 0.075

and b2 = −0.0525. It is easy to check that the following strategy profile Γ is part of a

coordination-free equilibrium:

- If θ ∈ [0, 0.008), m1 = 1 and m2 = 1. aΓ(1, 1) = 0.004.

- If θ ∈ [0.008, 0.316), m1 = 2 and m2 = 1. aΓ(2, 1) = 0.162.

- If θ ∈ [0.316, 0.414), m1 = 2 and m2 = 2. aΓ(2, 2) = 0.365.

- If θ ∈ [0.414, 0.812), m1 = 3 and m2 = 2. aΓ(3, 2) = 0.613.

- If θ ∈ [0.812, 1], m1 = 3 and m2 = 3. aΓ(3, 3) = 0.906.

- aΓ(1, 2) = aΓ(1, 3) = 0.2, aΓ(2, 3) = 0.5 and aΓ(3, 1) = 0, so that no deviation to an

out-of-equilibrium vector is induced.

The receiver’s expected utility from Γ is approximately −0.008321.

Now suppose sender 2 becomes less biased, so that b2 = −0.05. It is easy to check that

the following strategy profile Γ′ is part of a coordination-free equilibrium:
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- If θ ∈ [0, 0.3), m1 = 1 and m2 = 1. aΓ(1, 1) = 0.15.

- If θ ∈ [0.3, 0.4), m1 = 1 and m2 = 2. aΓ(1, 2) = 0.35.

- If θ ∈ [0.4, 0.8), m1 = 2 and m2 = 2. aΓ(2, 2) = 0.6.

- If θ ∈ [0.8, 1], m1 = 2 and m2 = 1. aΓ(2, 1) = 0.9.

Because sender 2’s bias is now smaller, the cell size decreases less from left to right at

boundaries where sender 2 switches message. As a result, it can be shown that there can now

be at most 4 nontrivial cells, and that of these, Γ′ is the best one for the receiver, with an

expected utility of − 1
120
≈ −0.008333.27 Therefore, uR has decreased even though sender 2

has become less biased.

Note that because the set of coordination-free equilibria is straightforward to compute,

it was possible in Example 5 to find the receiver’s best coordination-free equilibrium.

If all senders are biased in the same direction, the anomaly illustrated by Example 5 does

not arise. In fact, Proposition 5 shows that in this case, even when multiple senders are

available, only the least biased sender is informative in the receiver’s optimal coordination-

free equilibrium. The intuition is that if the sender whose message changes at a boundary is

not the least biased, then replacing her by the least biased sender (while keeping the number

of cells intact) must shrink the largest cells and expand the smallest ones, which increases

the receiver’s expected welfare.

Proposition 5: Consider the uniform-quadratic case where mini bi = b > 0. In the

receiver’s optimal coordination-free equilibrium, any sender whose bias exceeds b babbles.

Under the uniform-quadratic specification, if there are senders biased in both directions,

and the receiver must choose two senders, picking the least biased sender in each direction

should be near optimal in the sense of maximizing uR. The intuition is as follows: the receiver

would like to keep the size of cells to a minimum. If both chosen senders are biased in the

same direction, then the cell sizes can only increase in that direction, eventually resulting

in very large intervals. Therefore, the receiver should ensure that senders have opposite

biases. Furthermore, the smaller a sender’s bias, the slower cells grow in the direction of the

bias, and the earlier that sender can be used to reduce cell size when going in the opposite

direction.
27Γ′ has cell sizes (0.1, 0.2, 0.3, 0.4). The other coordination-free equilibria with four nontrivial intervals

have cell sizes (0.025, 0.225, 0.325, 0.425), (0.05, 0.15, 0.35, 0.45) and (0.075, 0.175, 0.275, 0.475), which all yield
lower expected utility. With three intervals, even if there were an equilibrium where the intervals were equally
sized, the receiver would still be worse off, with an expected utility of − 1

108 .
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As Example 5 suggests, it is diffi cult to precisely characterize the optimal choice of

senders in general. However, in the limit as Θ becomes large relative to the biases,28 the

above intuition is exactly confirmed.

Proposition 6: Take a sequence {Θl} where each Θl is a closed interval and λ(Θl)
l→∞→

∞. In the uniform-quadratic case with two senders that have biases −b2 and b1, where

b1, b2 > 0 and b1
b2
/∈ Q, then:

(a) in any sequence of coordination-free equilibria {Γl} where each Γl has the maximum

number of cells in a coordination-free equilibrium, the fraction of cells with size in any

interval I ⊆ [0, 4(b1 + b2)] converges to λ(I)
4(b1+b2)

as l→∞;
(b) letting uRl be the receiver’s maximum expected utility for λ(Θl), we have uRl

l→∞→
−2

3
(b1 + b2)2.

Proposition 6a states that if sender biases are −b2 < 0 < b1 and satisfy b1
b2
/∈ Q, the distri-

bution of cell sizes in coordination-free equilibria maximizing the number of cells converges

to U [0, 4(b1 + b2)] as λ(Θ)→∞. The proposition is proved by showing that the number of
cells is not maximized if any cell’s size exceeds 4(b1 + b2). Given this restriction, the size

of the leftmost cell uniquely determines the sequence of cell sizes because at each boundary,

cell size must either increase by 4b1 or decrease by 4b2. As this sequence become longer, the

distribution of its elements converges to U [0, 4(b1 + b2)] whenever b1
b2
/∈ Q.

Proposition 6b states that the receiver’s limit maximum expected utility corresponds to

the distribution of cell sizes from Proposition 6a. It implies that if the receiver is choosing

two senders from a finite pool, then generically29, in the limit λ(Θ)→∞, the best choice is
to pick the least biased sender in each direction. Moreover, the advantage from consulting

senders with opposite biases is striking: if all senders’biases were in the same direction, then

as λ(Θ)→∞, uR → −∞.

Coordination-free equilibria can also be used to study games with more than two senders.

For example, does limiting the number of senders to two (with biases −b2 < 0 < b1) dramat-

ically increase cell sizes relative to consulting more senders with biases within (−∞,−b2] ∪
[b1,∞)? Recall that in the uniform-quadratic case, from left to right, cell size either in-

creases by 4b1 or decreases by 4b2 at each boundary. With two senders, the lower bound on

28Unlike in the rest of this paper, Proposition 6 allows Θ to vary. One could state an equivalent result
holding Θ = [0, 1] fixed by scaling the players’preferences. Varying Θ and fixing preferences simplifies the
exposition.
29That is, if for any two senders i and j, bibj /∈ Q.
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the supremum of cell sizes as λ(Θ) → ∞ generically approaches 4(b1 + b2),30 which is less

than twice the corresponding bound of max{4b1, 4b2} from consulting more senders. There-

fore, the receiver’s loss from ignoring all senders but the least biased in each direction is not

too large.

The intuition presented above extends to situations where preferences are not too asym-

metric about their peak and the prior is not too far from uniform: cell sizes can be kept

smaller when biases are small and opposite. Moreover, the minimum size of the largest

cell is on the order of max{b1, b2} whether there are two senders with biases near −b2 and

b1, or more senders with biases in (−∞,−b2] ∪ [b1,∞). Therefore, once again, the receiver

can come reasonably close to achieving the minimum expected loss by consulting only two

senders biased in opposite directions and with small biases relative to the available pool of

senders.

7 Discussion

7.1 Alternative Robustness Concept

Online Appendix C studies a weakening of (strong) robustness of Γ where a strategy profile

close to Γ, not necessarily Γ itself, is to be interim δ-optimal under noise. It is shown

that Theorems 1 and 2 would still hold provided that, in the noisy setting, only common

knowledge of small noise were assumed. (With, instead, only common-prior noise, it is not

known whether Theorems 1a and 2a would remain true under this alternative robustness

concept.)

The formal definitions of close strategy profiles and of the alternative robustness concepts

are left to Online Appendix C. Lemma 1 is established in a similar way, but the suboptimality

argument establishing Lemma 2, presented in Section 5, cannot be generalized to nearby

profiles in a straightforward way. The proof of Lemma 2 in Online Appendix C relies on a

noise structure where every sender i believes that si = θ for sure, but that sj = max{θ−ε, 0};
thus, players do not share a common prior about the noise. With this noise structure, every

sender i believes that other senders observe a signal (and thus send the message corresponding

to a signal) slightly to the left of si. It is shown inductively, proceeding from left to right,

that, if a cell C were not left-natural, then all senders would send the same messages as they

30If instead b1
b2
∈ Q, the bound is reduced to 4(b1 +b2−gcd(b1, b2)), where gcd(b1, b2) is the largest number

k such that b1
k ,

b2
k ∈ Z. For example, if b1 = 0.02 and b2 = 0.03, then for cells to be kept smaller than

4(b1 + b2) = 0.2, their sizes, from left to right, would be ε, 0.08 + ε, 0.16 + ε, 0.04 + ε, 0.12 + ε, ε, ... The lower
bound on the size of the largest cell is therefore 0.16 = 4(0.02 + 0.03− 0.01).

27



do in C well past the right endpoint of C, resulting in a strategy profile that is not close to

the original one.

The proofs of Theorems 1b and 2b do not change since the robustness concept has been

relaxed, while the proof of Lemma 3, and thus of Theorem 2a, is modified in a similar way

as the proofs of Lemmata 1 and 2.

7.2 Multidimensional State Space

Extending (strong) robustness to a cheap talk game where Θ is multidimensional would

not yield implications as strong as with a single-dimensional Θ. Consider a pure-strategy

equilibrium Γ where, for any δ > 0, there exists ε > 0 such that at any state θ, mΓ
i (θ)

is a δ-best response (given aΓ) to any vector m−i where every component is sent by the

corresponding sender in Γ at some state in the ε-ball around θ. Then, with small enough

noise, for si = θ, sender i believes that mΓ
i (θ) is a 2δ-best response.

For example, suppose Θ ⊂ R2 and is bounded, n = 2, and curve Ci, for i = 1, 2, is the

boundary between sets wheremi andm′i are sent. Then if C1 and C2 cross (as opposed to being

tangent) at some θ∗, (m1,m2), (m′1,m2), (m′1,m
′
2) and (m1,m

′
2) are all sent in Γ arbitrarily

close to θ∗. If, moreover, no message other than mi and m′i is sent near θ
∗, then the property

from the previous paragraph is satisfied around θ∗. As long as C1 and C2 cross whenever they

meet, there are no further restrictions on their shape: they could cross multiple times, one

(or both) of them could be a loop, etc. Therefore, with multidimensional Θ, generalizations

of this paper’s robustness concept would likely fail to yield an easy-to-characterize set of

equilibria, unlike with Θ ⊂ R.

8 Conclusion

This paper has shown that strictly coordination-free equilibria remain interim nearly optimal

for all players for suffi ciently small local noise in senders’observation of the state, and any

equilibrium satisfying this property is generically equivalent to a strictly coordination-free

equilibrium. When the small noise is not required to be local, coordination-free equilibria

where all combinations of on-path messages form on-path message vectors are selected. Both

these results hold whether there is common prior about noise, or it is merely commonly known

that noise is small.

Coordination-free equilibria have a similar structure to one-sender equilibria, in that the

size of the first interval and the identity of the indifferent sender at each boundary determine
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play. This property implies that fixing senders’biases and increasing the size of the state

space cannot make the size of the revealed intervals vanishingly small. The amount of

information loss therefore remains nontrivial, unlike in the fully revealing and almost fully

revealing equilibria examined by the existing literature. This paper’s results may therefore

enable nontrivial comparisons between cheap talk and other ways in which a decision maker

can interact with multiple biased parties that hold relevant information.
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Appendix: Proofs

Proof of Lemma 1: Suppose Γ is strongly robust. Let aΞ denote the receiver’s best

response to {mΓ
j }nj=1 given noise Ξ.

Step 1: For any δ > 0, ∃ε > 0 such that for all noise Ξ with size less than ε, |aΓ(m)−
aΞ(m)| < δ for all m ∈ ×ni=1M

Γ
i .

By the definition of robustness, we know that for any δ > 0, ∃ε > 0 such that for all

noise Ξ with size less than ε, aΓ is a δ-best response to {mΓ
j }nj=1 under Ξ.

Because uR is continuous and strictly concave in a, and Θ is compact, ∃γ(δ) such that, for

all m ∈ ×ni=1M
Γ
i and Ξ with size less than ε, |aΓ(m)− aΞ(m)| < γ(δ), with limδ→0 γ(δ) = 0.

Rewriting δ in lieu of γ(δ) yields the result. ♦

Step 2: Γ is complete.

Suppose instead that m = (m1, ...,mn) ∈ ×ni=1M
Γ
i does not occur in Γ. Then consider

noise Ξ where:

(i) at some θ 6= aΓ(m), each sender i independently observes si = θ with probability 1−ε,
and si = θi with probability ε for some θi where sender i’s message in Γ is mi;

(ii) at all other states, each sender observes the true state.

Clearly, Ξ has size at most εD
d
. For any ε, θ is the only state at which m can occur

in then noisy game, and m can indeed occur at θ. Thus aΞ(m) = θ. By step 1, taking

δ < |aΓ(m)− θ| implies that Γ cannot be robust. ♦

Step 3: For all m ∈ ×ni=1M
Γ
i , λ(θΓ(m)) > 0.

Suppose instead that λ(θΓ(m)) = 0. Then for any θ ∈ θΓ(m) and any ε > 0, ∃θ0(θ) ∈
[θ − ε, θ + ε] such that for some i ∈ N , mΓ

i (θ0(θ)) 6= mi. Let iΓε (θ) be some such i.

At least two senders have at least two equilibrium messages in Γ; assume without loss

of generality that sender 1 is one of them. By step 2, every sender must send each of her

equilibrium messages at a minimum of two states where the message vectors sent by other

senders differ. Let θ′ be such that mΓ
1 (θ′) = m1 and mΓ(θ′) 6= m, and let θ′′ 6= aΓ(m) be such

that mΓ(θ′′) = (m′′1,m2, ...,mn) for some m′′1 ∈MΓ
1 . Consider noise Ξ where:

(i) at state θ′′, sender 1 observes si = θ′′ with probability 1−ε, and si = θ′ with probability

ε;

(ii) at all states θ 6= θ′′ where mΓ(θ) = m, consider a random variable X ∼ U [0, 1]; if

the realization of X is θ, sender iΓε (θ) observes si = θ, while if not, sender iΓε (θ) observes

si = θ0(θ);

(iii) if neither (i) or (ii) applies, the true state is observed.
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Clearly, Ξ has size at most εD
d
. At all states θ 6= θ′′ where mΓ(θ) = m, the receiver

observes m with probability 0; at θ′′, she observes m with probability ε (if m′′1 6= m1) or 1

(if m′′1 = m1); and at all other states, she cannot observe m. Because λ(θΓ(m)) = 0, upon

observing m, the receiver puts probability 1 on θ = θ′′.31 Picking δ < |aΓ(m)−θ′′| completes
the argument. ♦

Step 4: Γ has interval structure.

Let S = ∪I is a proper cell in ΓI. We proceed by contradiction: suppose λ(S) < λ(Θ). Define

C(m) = (Θ\S) ∩ {θ ∈ θΓ(m) : θ < aΓ(m)} and D(m) = (Θ\S) ∩ {θ ∈ θΓ(m) : θ > aΓ(m)}.
First, I argue that there exists m ∈ ×ni=1M

Γ
i such that at least one of C(m) and D(m)

has positive measure. Suppose not. Then λ(C(m) ∪D(m)) = 0 for all m. By step 3, only a

countable number of m can be sent, implying both of the following:

λ({aΓ(m) s.t. m ∈ ×ni=1M
Γ
i }) = 0, and∑

m∈×ni=1M
Γ
i

λ(C(m) ∪D(m)) = 0.

Combining the two relations above yields λ(Θ\S) = 0, which contradicts the hypothesis.

Assume that λ(C(m)) > 0 for some m = (m1, ...,mn) (the argument for the case

λ(D(m)) > 0 is symmetric). By definition, for any θ ∈ C(m), we have θ /∈ S, so for

any ε > 0, ∃θ′ ∈ [θ − ε, θ + ε] such that for some i ∈ N , mΓ
i (θ′) 6= mi. Let iΓ(θ) be some

such i, and consider the following noise Ξ:

(i) at states θ ∈ C(m), consider a random variable X ∼ U [0, 1]; if the realization of

X is θ, sender iΓ(θ) observes si = θ, while if not, sender iΓ(θ) observes si = θ′ for some

θ′ ∈ [θ − ε, θ + ε] where mΓ
i (θ′) 6= mi;

(ii) otherwise, the true state is observed.

Clearly, Ξ has size at most ε, and because conditional on observing m under Ξ and

{mΓ
j }nj=1, the probability of θ ∈ C(m) is reduced (to zero), we have aΞ(m) > aΓ(m). Thus

taking δ < aΞ(m)− aΓ(m) completes the proof. �

Proof of Lemma 2: We proceed by contradiction. Suppose instead, without loss of
generality, that the right endpoint θb 6= 1 of a proper cell C in Γ where m = (m1, ...,mn)

is sent is not left-natural. By the completeness of Γ and the definition of "left-natural," it

follows that for any i ∈ N and m′i ∈MΓ
i \{mi}, either:

i. ui(aΓ(mi,m−i), θb) > ui(a
Γ(m′i,m−i), θb); or

31Heuristically, the density that m is observed and that the state is in θΓ(m) is at most Dλ(θΓ(m)) = 0,
while the density that m is observed and that the state is θ′′ is at least dε > 0.
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ii. ui(aΓ(mi,m−i), θb) = ui(a
Γ(m′i,m−i), θb) and a

Γ(mi,m−i) ≥ aΓ(m′i,m−i).

Case ii can be ruled out: if ui(aΓ(mi,m−i), θb) = ui(a
Γ(m′i,m−i), θb), then Assumption

A implies aΓ(mi,m−i) 6= aΓ(m′i,m−i). Furthermore, a
Γ(mi,m−i) > aΓ(m′i,m−i) would, by

single-crossing, contradict mi being a best response to m−i immediately to the left of θb.

Thus we have ui(aΓ(mi,m−i), θb) > ui(a
Γ(m′i,m−i), θb).

There can be only finitely many actions aΓ(m′′i ,m−i) for m
′′
i ∈ MΓ

i . If not, then at least

two such actions, say a < a′, are within η of each other, which implies that sender i either

strictly prefers a′ whenever θ ≥ a (if bi(.) > 0), or strictly prefers a whenever θ ≤ a′ (if

bi(.) < 0). Given completeness, this contradicts the receiver always playing a best response.

Combining the observations from the two previous paragraphs, it follows that there exists

δ > 0 such that, at θ = θb, sender i’s unique 2δ-best response to m−i is mi. Therefore, given

si ∈ [θb, θb + ε) for small enough ε and any noise Ξ such that sender i believes that, with

suffi ciently high probability, all other senders’signals are in cell C, sender i’s unique δ-best

response to m−i is mi. Therefore, if Γ is strongly robust, then every sender must send mi

both at and immediately to the right of θb. This contradicts θb being the right endpoint of

C. �

Proof of Theorem 1b: Fix δ > 0.

Senders play a δ-best response

After signal si, sender i places probability at least 1 − nε on all senders’signals being
in [si − 2ε, si + 2ε]. Because utilities are continuous and bounded (the latter from Lipschitz

continuity and Θ being bounded), this means that, for ε small enough, all senders are playing

δ-best responses more than 2ε away from cell endpoints.

By the same token, close to a boundary between cells where (mi,m−i) and (m′i,m−i)

are sent, both mi and m′i are δ-best responses because player i places probability near 1 on

others sending m−i.

Close to a boundary between cells where (mi,mj,m−ij) and (mi,m
′
j,m−ij) are sent, since

mi is a δ-best response to both (mj,m−ij) and (m′j,m−ij), the same argument applies.

The receiver plays a δ-best response

Let Sε = {θ ∈ Θ : mΓ(θ′) = mΓ(θ) for all θ′ ∈ [θ − ε, θ + ε]} be the set of states more
than ε away from a cell endpoint. Proposition 1 implies that for any γ > 0, ∃ε(γ) > 0 such

that λ(Sε(γ)) > 1− γ. So for any m ∈ ×ni=1M
Γ
i , under any noise less than ε(γ):

• when θ ∈ Sε(γ) ∩ θΓ(m), the receiver sees m with probability at least 1− nε(γ);

• when θ ∈ Sε(γ)\θΓ(m), the receiver sees m with probability at most ε(γ).

32



Let λ(θΓ(m)) ≡ λm > 0. Upon seeing m, the receiver puts probability at least

(1− nε(γ))(λm − γ)d

(1− nε(γ))(λm − γ)d+ γD + ε(γ)D

on the state being in θΓ(m). As γ → 0, the above quantity still converges to 1. It follows

that as ε(γ)→ 0, the receiver’s optimal action converges to aΓ(m).

Because there are finitely many cells, minm:λm>0 λm exists (and is positive). It follows

that for any δ > 0, it is possible to pick γ > 0 such that under any noise less than ε(γ),

playing aΓ(m) is a δ-best response for the receiver to allm sent in equilibrium in the noiseless

game. �

Proof of Lemma 3: Like in the proof of Theorem 1a, we study the nontrivial case

|{i ∈ N : |MΓ
i | ≥ 2}| ≥ 2.

Step 1: Identical to step 1 in the proof of Lemma 1 for on-path m, and by the definition

of small perturbations for off-path m.

Step 2: For any m ∈ ×ni=1M
Γ
i , if θ

Γ(m) contains two or more elements, then λ(θΓ(m)) >

0.

Since θΓ(m) contains at least two elements, there exists θ∗ ∈ θΓ(m)\{aΓ(m)}.
Suppose instead that λ(θΓ(m)) = 0. Then for any ε > 0 and any θ where mΓ(θ) = m,

∃θ0(θ) ∈ [θ − ε, θ + ε] such that for some i ∈ N , mΓ
i (θ0(θ)) 6= mi. Let iΓε (θ) be any such i,

and consider the following noise Ξ:

(i) at states θ ∈ θΓ(m)\{θ∗}, consider a random variable X ∼ U [0, 1]; if the realization

of X is θ, sender iΓε (θ) observes si = θ, while if not, sender iΓε (θ) observes si = θ′ for some

θ′ ∈ [θ − ε, θ + ε] where mΓ
i (θ′) 6= mi;32

(ii) for all other senders, and for iΓε (θ) at all other states, the true state is observed.

Clearly, Ξ has size at most ε, and aΞ(m) = θ∗ 6= aΓ(m).33 By step 1, taking δ <

|θ∗ − aΓ(m)| completes the proof. ♦

Step 3: The set of fully revealed states in Γ has measure zero.

Consider γ > 0 from point 2 of the definition of robustness. Pick δ < γ, and let ε > 0 be

the corresponding bound on noise from point 1 of the definition of robustness.

32It is not necessary for this proof to allow the possibility that sender iΓε (θ) observes si = θ. However, doing
so ensures that the proof remains consistent with an alternative definition of small local noise additionally
requiring the sender to believe, after any signal, that the state is nearby.
33Heuristically, the density that m is observed and that the state is in θΓ(m) is at most Dλ(θΓ(m)) = 0,

while the density that m is observed and that the state is θ∗ is at least d > 0.
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Let S denote the set of fully revealed states, and suppose instead that it has positive

measure. Then there exists an interval I of size ε such that λ(S ∩ I) > 0. Within S ∩ I, a
continuum of equilibriummessage vectors is sent, so we may assume without loss of generality

that sender 1 has a continuum of equilibrium messages within S ∩ I; let T denote this set of
messages.

Suppose θ ∈ S ∩ I, and let mΓ(θ) = (m1,m2, ...,mn). Consider m′ = (m′1,m2, ...,mn)

where m′1 ∈ T . I now argue that m′ must be sent at some state in Γ. Suppose instead that

θΓ(m′) = ∅. Then consider the following noise Ξ:

(i) when the state is θ, sender 1 observes with equal probability θ and θ′ ∈ S ∩ I where
mΓ

1 (θ′) = m′1, while all other senders observe θ;

(ii) at all other states, everyone observes the true state.

Clearly, Ξ has size at most ε. By the hypothesis that θΓ(m′) = ∅, we have aΞ(m′) = θ:

under Ξ and {mΓ
j }nj=1, m

′ can only arise if the state is θ.

By step 1, |aΓ(m′)−θ| < δ; since δ < γ, this implies θ ∈ (aΓ(m′)−γ, aΓ(m′)+γ). It follows

that point 2 in the definition of robustness is violated: there exists a ∈ [aΓ(m′)−γ, aΓ(m′)+γ]

such that if the receiver’s actions following m′ were a, then sender 1 would have a profitable

deviation at θ (specifically, take a slightly larger (smaller) than θ if sender 1 is biased to the

right (left)).

Thus m′ must be sent at some state in Γ. Because T contains a continuum of messages,

there is a continuum of such m′. By step 2, each must be sent either at only one state or

on a set of positive measure. Because the number of actions such m′ can induce is finite

(as they must be separated by at least η), only finitely many can be sent at only one state.

Moreover, only countably many can be sent on a set of positive measure, which contradicts

the continuum of m′. ♦

Step 4: Γ has interval structure.

Define S, C(m) and D(m) as in the proof of Lemma 1. We proceed by contradiction:

suppose λ(S) < λ(Θ).

Once again, there exists m ∈ ×ni=1M
Γ
i such that at least one of C(m) and D(m) has

positive measure. Suppose not. Then λ(C(m) ∪ D(m)) = 0 for all m. By step 2, only a

countable number of m can be sent at two or more states, implying both of the following:

λ({aΓ(m) s.t. m is sent at two or more states}) = 0, and∑
m is sent at two or more states

λ(C(m) ∪D(m)) = 0.

Combining the two relations above with step 3 yields λ(Θ\S) = 0, which contradicts the
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hypothesis.

The remainder of this step is identical to the remainder of step 4 in the proof of Lemma

1. ♦

The remainder of the proof shows that Γ is natural by following the proof of Lemma

2. The same argument shows that among messages m′i ∈ MΓ
i such that (m′i,m−i) occurs

on path in Γ, mi is the unique approximate best response to m−i at θ = θb. Furthermore,

messages m′i ∈ MΓ
i such that (m′i,m−i) is off-path in Γ cannot be nearly optimal by point

2 of the definition of robustness (which also implies point 3 of the definition of strictly

coordination-free equilibrium). Thus, the last paragraph of the proof of Lemma 2 applies

here. �

Proof of Theorem 2b: By Proposition 1, the number of distinct messages in a

coordination-free equilibrium is finite. Combined with point 3 in the definition of strictly

coordination-free equilibria, this ensures that point 2 in the definition of robustness is satis-

fied.

The rest of this proof is similar to the proof of Theorem 1b. The argument showing that

senders play a δ-best response carries through. For the receiver’s best response, there are

three cases to consider:

a) To message vectors m sent in a cell that is not {0} or {1}
The argument from the proof of Theorem 1b is valid (but can be simplified since the

probabilities are 1 and 0 instead of 1− nε(γ) and ε(γ)).

b) To message vectors m not sent at any state in Γ in the noiseless game

If senders play according to a coordination-free Γ, combining message vectors from ad-

jacent cells will not yield an out-of-equilibrium message vector because only one sender’s

message changes at each boundary. Thus, m must combine messages from non-adjacent

cells, which are separated by more than ε for ε small enough. If noise is less than ε, then m

must be unexpected to the receiver, who is therefore not required to play a δ-best response

after m.

c) To a message vector m sent in cell {0} (analogous argument for {1})
As long as ε is less than the size of any proper cell in Γ, the receiver must believe that

θ ∈ [0, ε] upon observing m if m is on-path according to the receiver’s beliefs about the noise

(if not, then as in case b, the receiver is not required to play a δ-best response). Thus, for ε

suffi ciently small, a(m) = 0 is a δ-best response. �

Proof of Proposition 2a: Because λ(∪I is a proper cell in ΓI) = λ(Θ) and m is sent on a

set with positive measure, m must be sent in at least one proper cell. Suppose that θΓ(m) is
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not connected, and assume without loss of generality that mΓ(θ) = mΓ(θ′) = m for some θ in

a proper cell and θ′ > θ outside that cell. Let θb be the right endpoint of the cell where θ lies.

Because Γ is natural, for some sender i, we have ui(aΓ(mi,m−i), θb) = ui(a
Γ(m′i,m−i), θb)

and aΓ(mi,m−i) < aΓ(m′i,m−i), with m
′
i ∈ MΓ

i . But by single-crossing, this implies that at

θ′ > θb, ui(aΓ(mi,m−i), θ
′) < ui(a

Γ(m′i,m−i), θ
′), so sender i has a profitable deviation at θ′.

�

Proof of Proposition 2b: Let θ ∈ Θ, and consider a proper cell C with left endpoint

θL ∈ (θ, θ + η], where message vector m is sent. By Proposition 2a, m is sent only in

cell C. Because θL must be right-natural for some sender i, we must have aΓ(m) > θL +

bi(θL) > aΓ(m′) for some m′ that is on-path and differs from m in component i only. (Thus

θL + bi(θL) /∈ {0, 1}, which implies |bi(θL)| ≥ η > 0.) Cell C can be of two types:

i. If bi(.) > 0, we must have aΓ(m) > θL + bi(θL) ≥ θL + η, which implies that cell C has

size greater than η. There is at most one such cell for a given θ.

ii. If bi(.) < 0, we must have aΓ(m′) < θL + bi(θL) ≤ θL − η < θ. Therefore, if there are

k < ∞ on-path actions in [0, θ], then at most k actions can be aΓ(m′). By the definition

of "right-natural," each of them corresponds to at most n values of θL. Thus, there are at

most nk such cells for a given θ.

If there are k cells with a left endpoint in [0, θ], there are at most k on-path actions in

[0, θ]. By the above argument, there are then at most nk proper cells with a left endpoint

in (θ, θ+ η]. Because λ(∪I is a proper cell in ΓI) = λ(Θ), every non-proper cell in (θ, θ+ η] must

be the endpoint of a proper cell, so there are at most 2nk cells total whose left endpoint is

in (θ, θ+ η]. By induction, if a finite upper bound for the number of on-path actions in [0, θ]

exists for some θ > 0, then a finite upper bound for the overall number of cells exists as well.

To complete the proof, note that, by cases i and ii above, any proper cell whose left

endpoint is not 0 must induce an action greater than η (for case ii, aΓ(m) > θL > aΓ(m′)+η).

There are therefore at most three inducible actions in [0, η]: the first proper cell’s action and

endpoints. �

Proof of Proposition 4b: The proof of Proposition 4a follows this proof because it
uses Proposition 4b.

Define "structure" as in the main text. Because the number of structures is finite, and

the intersection of finitely many open and dense sets is itself open and dense, it is appropriate

to consider each structure separately. That is, it suffi ces to show that, fixing a natural equi-

librium Γ that is not equivalent to a coordination-free equilibrium, the set P Γ of primitives

such that no natural equilibrium has the structure of Γ contains an open and dense set. To

avoid clutter, the superscript Γ is suppressed in the remainder of the proof.
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Label the sender indifference conditions (i.e. equalities of sender utility) imposed by

the right-structure of Γ as m = 1, ..., K, and label the additional ones imposed by the left-

structure as m = K+1, ...,M . Each of the latter conditions is "additional" in the sense that

the right-structure condition corresponding to the same boundary must refer to different

actions. As argued in the main text, if Γ is not equivalent to a coordination-free equilibrium,

then M ≥ K + 1.

Let dU,fm (θ2, θ4, ..., θ2K) be the magnitude of the difference between the two sides of condi-

tion m when the preference profile is (U, f), the even θ’s (cell boundaries) are θ2, θ4, ..., θ2K ,

and the odd θ’s satisfy θ2k+1 = arg maxa
∫ θ2k+2

θ2k
uR(a, θ)f(θ)dθ for k = 0, ..., K. There-

fore, if the receiver plays a best response, then condition m is satisfied with cell bound-

aries θ2, θ4, ..., θ2K if and only if dU,fm (θ2, θ4, ..., θ2K) = 0. Consider the function d(U, f) =

min0≤θ2≤θ4≤...≤θ2K≤1 maxm d
U,f
m (θ2, θ4, ..., θ2K), which is well-defined since dU,fm is continuous

in (θ2, θ4, ..., θ2K) and {(θ2, θ4, ..., θ2K) ∈ RK : 0 ≤ θ2 ≤ ... ≤ θ2K ≤ 1} is compact. Let
P ′ = {(U, f) : d(U, f) > 0}. By definition, P ′ ⊆ P : if d(U, f) > 0, then there is no

cell boundary sequence θ2, θ4, ..., θ2K such that all M conditions are satisfied. Therefore, it

suffi ces to show that P ′ is open and dense.

P ′ is open: Since dU,fm is continuous in (U, f), d is also continuous in (U, f). Therefore,

P ′ must be open.

P ′ is dense: Let tU,f (θ2) denote the right endpoint of the rightmost cell implied by the

right-structure given θ2 when the primitives are (U, f); it is well-defined whenever ≤ 1 by

the argument in the main text. Let T (U, f) = {θ2 ∈ [0, 1] : tU,f (θ2) = 1}, Uα denote the

preference profile (uα1 , ..., u
α
n, u

α
R) where uαi (a, θ) = ui(αa, αθ) for α ∈ (0, 1] and a, θ ∈ [0, 1

α
],

and fα(θ) = αf(αθ) for α ∈ (0, 1] and θ ∈ [0, 1
α

].

Note that for any θ2 such that tU,f (θ2) ≤ 1, we have tUα,fα(θ2) = 1
α
tU,f (θ2). Therefore,

T (Uα, fα) = {θ2 ∈ [0, 1] : tU,f (θ2) = α}. By the bounds on f and the Lipschitz continuity
of U , tU,f (.) is Lipschitz continuous where tU,f (θ2) ≤ 1. It follows that the graph of tU,f (.)

has finite length, which implies that T (Uα, fα) cannot be infinite on a positive measure of

α. Therefore, there exist α arbitrarily close to 1 such that T (Uα, fα) is finite.

By construction, (U, f) ∈ P ′ when there exists no θ2 ∈ T (U, f) such that the M − K

equalities corresponding to conditions m ≥ K + 1 are all satisfied. Focus on condition

K + 1, let θb be the corresponding boundary, and let j be the sender whose indifference

is required by this condition. Given α such that T (Uα, fα) is finite, in order for condition

K + 1 to be satisfied, one of a finite number (one for each θ2 ∈ T (Uα, fα)) of equalities of

form uj(a, θb) = uj(a
′, θb) must hold. Therefore, there exist arbitrarily small perturbations

of uj around a finite number of pairs (a, θb) such that these equalities do not hold. As
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long as, for all such pairs (a, θb), uj(a, θb) does not appear in the finitely many equalities

corresponding to conditions 1, ..., K for θ2 ∈ T (Uα, fα), these perturbations do not impact

the right-structure for any θ2 ∈ T (Uα, fα). This is generically the case: for a given θ2, no

other condition can involve uj(a, θb) (or else it would be redundant with condition K + 1),

so perturbing uj(a, θb) can only impact the right-structure for a different θ
′
2 ∈ T (Uα, fα) if

a boundary in the right-structure corresponding to θ′2 happens to fall on θb. Therefore, for

any (U, f), there exists an arbitrarily close (U ′, fα) ∈ P ′, as desired. �

Proof of Proposition 4a: Since every message vector in ×ni=1M
Γ
i is sent on a set of

positive measure, by Proposition 2a, θΓ(m) is a non-trivial interval for all m ∈ ×ni=1M
Γ
i .

Then, if Γ were not coordination-free, it would also not be equivalent to a coordination-free

equilibrium. By Proposition 4b, Γ would not natural, which violates the hypothesis. �

Proof of Proposition 5: Consider a coordination-free equilibrium Γ with K + 1 cells,

labeled 0, 1, ..., K, and let i(k) be the sender whose message changes between cell k − 1 and

cell k, for k = 1, ..., K. Letting ck be the size of cell k, we have ck = ck−1 +4bi(k). To see this,

suppose that the boundary between cells k−1 and k is θb. Then the actions corresponding to

these cells are θb− ck−1

2
and θb + ck

2
, respectively. Thus ui(k)(θb− ck−1

2
, θb) = ui(k)(θb + ck

2
, θb),

which is equivalent to bi(k) + ck−1

2
= ck

2
− bi(k), or ck = ck−1 + 4bi(k), as desired. It follows that

ck = c0 + 4
∑k

l=1 bi(l).

Since
∑K

k=0 ck = 1, we have (K + 1)c0 + 4
∑K

k=1

∑k
l=1 bi(l) = 1, or c0 =

1−4
∑K
k=1

∑k
l=1 bi(l)

K+1
.

Suppose bi(k∗) > b for some k∗ ∈ {1, ..., K}, and let bj = b. Consider alternative candidate

play Γ′ with K + 1 cells labeled in the same way, where the sender whose message changes

between cell k − 1 and cell k is i′(k) =

{
i(k) if k 6= k∗

j if k = k∗
. Let c′k be the size of cell k. Note

that Γ′ exists since c′0 =
1−4

∑K
k=1

∑k
l=1 bi′(l)

K+1
>

1−4
∑K
k=1

∑k
l=1 bi(l)

K+1
= c0 ≥ 0. Furthermore, it

must be that c′k > ck for all k = 0, ..., k∗ − 1, and c′k < ck for all k = k∗, ..., K. Thus, the

smallest cells become bigger, while the largest cells become smaller. Because the receiver’s

expected loss is
∑K

k=0

∫ ck
0

(x − ck
2

)2dx = 1
12

∑K
k=0 c

3
k, which is strictly convex, the expected

loss is strictly smaller under Γ′ than under Γ.

Iterating this argument implies that there exists a candidate play Γ∗ with K+1 cells and

where sender j is the only non-babbling sender, and that the receiver is strictly better off

under Γ∗ than under Γ. Furthermore, because only one sender has more than one equilibrium

message in Γ∗, we need not worry about off-path play and know that Γ∗ is part of an

equilibrium. �

Proof of Proposition 6a: First, note that by Proposition 7 (see Online Appendix A),
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as λ(Θl) becomes large and for a fixed maximum block size, every candidate play is part

of a coordination-free equilibrium. This proof considers equilibria where no cell has size

above 4(b1 + b2), which implies a bound on block size. Therefore, off-path play need not be

considered.

By the first paragraph of the proof of Proposition 5, going from left to right, the size of

cells either increases by 4b1 or decreases by 4b2 at each boundary.

Consider a coordination-free equilibrium Γ that has no cell with size above 4(b1 + b2).

If a cell in Γ has size in (0, 4b2], then the indifferent sender at its right endpoint must be

sender 1: the next cell cannot be smaller by 4b2. If a cell in Γ has size greater than 4b2,

then the indifferent sender at the right endpoint must be sender 2: by assumption, the next

cell cannot be bigger by 4b1. Thus, in any such Γ, the size of the leftmost cell uniquely

determines the sizes of all cells: if a cell size is above 4b2, the next cell is smaller by 4b2;

otherwise, it is bigger by 4b1.

It follows that, labeling cells sequentially with integers, and letting the size of cell 0 be

4c(b1 + b2), the size of cell k is 4(b1 + b2)〈k b1
b1+b2

+ c〉, where 〈x〉 denotes the fractional part of
x if x /∈ Z, and 1 if x ∈ Z. Since b1

b2
/∈ Q, we have b1

b1+b2
/∈ Q, and it follows that the numbers

in the sequence 〈k b1
b1+b2

+ c〉Kk=0 ≡ {xk}Kk=0 are uniformly distributed over (0, 1] as K → ∞,
i.e. for each interval I ⊆ (0, 1], limK→∞

1
K+1
|{k : xk ∈ I, 0 ≤ k ≤ K}| = λ(I) (Hardy and

Wright, 1960, Theorem 445).

It remains to be shown that if Γ maximizes the number of cells, then none of its cells has

size exceeding 4(b1 + b2). Suppose a coordination-free equilibrium Γ has K + 1 cells, whose

sizes are denoted s0, ..., sK , with max{sk}Kk=0 > 4(b1 + b2). Then another coordination-free

equilibrium Γ′ with at least K + 2 cells, whose sizes are denoted s′0, ..., can be built using

the following steps:

i. Let s′0 = 4(b1 + b2)〈 s0
4(b1+b2)

〉, and extrapolate additional cells so that none has size
exceeding 4(b1 + b2) in the unique way described in paragraph 3 of this proof. This implies

that s′k = 4(b1 + b2)〈 sk
4(b1+b2)

〉 for all k = 0, ..., K. By assumption, the right endpoint of cell

K in Γ′ occurs at least 4(b1 + b2) to the left of the right endpoint of Θ. Therefore, at least

one more cell will fit in the remaining space.

ii. Increase the sizes of the cells in Γ′ so that they fill Θ. �

Proof of Proposition 6b: By the first paragraph of the proof of Proposition 5, fixing
the indifferent sender at each boundary in the uniform-quadratic case, the size of every cell is

strictly monotonic in the size of the leftmost cell. Thus, all boundaries are strictly monotonic

in the leftmost inducible action. It follows that each structure (as defined in Section 5.4)

admits a unique candidate play. Because the number of structures is finite, the number of

coordination-free equilibria is finite, so uRl is well-defined.
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Consider the construction of Γ′ from Γ in the final part of the proof of Proposition 6a.

Step (i) enhances the receiver’s average welfare (for the area covered by cells), as cells with

sizes above 4(b1 + b2) are replaced by cells with sizes at or below 4(b1 + b2), while cells with

sizes at or below 4(b1+b2) retain their sizes. Step (ii) decreases the receiver’s average welfare.

However, because the total amount by which cells in Γ′ must be expanded is bounded above

by 4(b1+b2), the effect on the size of each cell, and thus on receiver’s average welfare, vanishes

as l →∞. Therefore, letting vRl denote the receiver’s maximum expected utility, when the

state space is Θl, from a coordination-free equilibrium where no cell size exceeds 4(b1 + b2),

we have:

lim
l→∞

uR
l = lim

l→∞
vR

l =

∫ 4(b1+b2)

0
−x3

12
dx∫ 4(b1+b2)

0
xdx

= − 1

24

[
x2
]4(b1+b2)

0
= −2

3
(b1 + b2)2,

where the integrand −x3

12
in the numerator is the contribution of a cell of size x to the

expected loss when λ(Θ) = 1, the denominator normalizes for the size of Θ, and the limit

distribution of cell sizes is U [0, 4(b1 + b2)] by Proposition 6a. �
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Online Appendix A: Relation between Candidate Play

and Equilibrium Play in Coordination-Free Equilibrium

First, consider the following example illustrating two ways in which candidate play can fail

to be equilibrium play.

Example 6: Consider candidate play with two senders whose biases satisfy b1(.) < 0

and b2(.) > 0, and three cells where the equilibrium message vectors are, from left to right,

(L,L), (H,L) and (H,H) (so that (L,H) is out-of-equilibrium). It is easy to think of two

cases where any location of aΓ(L,H) induces a deviation:

a) Sender 1 has a small leftward bias while sender 2 has a large rightward bias, such that

the middle interval (H,L) is very small, and the rightmost interval (H,H) is very big (see

Figure A.1). Then choosing aΓ(L,H) < aΓ(H,H) induces sender 1 to deviate from H to

L near the left end of the (H,H) interval, choosing aΓ(L,H) > aΓ(H,H) induces sender 1

to deviate near the right end of the (H,H) interval, while choosing aΓ(L,H) = aΓ(H,H)

induces sender 2 to deviate from L to H near the right end of the (L,L) interval.

Figure A.1: Case a

b) Sender 2 dislikes aΓ(L,L) so much that, at the boundary θ1 between (L,L) and (H,L),

u2(a, θ1) > u2(aΓ(L,L), θ1) for all a > θ1. Similarly, sender 1 dislikes aΓ(H,H) so much

that u1(a, θ2) > u1(aΓ(H,H), θ2) for all a < θ2. Since aΓ(H,H) > aΓ(L,L), it is impossible

for aΓ(L,H) to be simultaneously less than aΓ(L,L) and greater than aΓ(H,H), so once

again a deviation is always desired.

The following derives a condition under which candidate play is guaranteed to constitute

equilibrium play.

Let Ui(θ) = {u : ∃a1 6= a2 ∈ Θ s.t. ui(a1, θ) = ui(a2, θ) = u} be the set of utilities
achieved for sender i at state θ by two distinct actions. By the single-peakedness of ui, these

actions must be on opposite sides of sender i’s ideal action θ+ bi(θ). Let a−i (u, θ) < a+
i (u, θ)

be these actions. Then let Ai = maxθ∈Θ maxu∈Ui(θ) max{ θ+bi(θ)−a−i (u,θ)

a+i (u,θ)−(θ+bi(θ))
,
a+i (u,θ)−(θ+bi(θ))

θ+bi(θ)−a−i (u,θ)
} be a

measure of how asymmetric sender i’s utility function can get around its peak θ + bi(θ): if

ui is perfectly symmetric, as in the quadratic case, then Ai = 1, and the more asymmetric

it is, the higher Ai.
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Given candidate play, call an i-block a maximal interval of states where each sender other

than i sends a single message. Clearly, every block is a union of cells, and an i-block with

more than one cell is formed when sender i’s message changes at a boundary. For example,

with two senders and three cells numbered 1, 2 and 3 from left to right, if the message

pairs are (m1,m2), (m1,m
′
2) and (m′1,m

′
2) in cells 1, 2 and 3 respectively, then there are two

1-blocks (cell 1; cells 2 and 3) and two 2-blocks (cells 1 and 2; cell 3). Note that a given

i-block and a given j-block can overlap for at most one cell because each boundary can be

crossed by only one block.

Proposition 7: Given candidate play Γ, let kΓ
i denote the size of the largest i-block, and

let xΓ
i = (1+Ai)(k

Γ
i +maxθ∈Θ |bi(θ)|) for each i whose message changes at some boundary. If

the sum of the two largest xΓ
i is less than λ(Θ) = 1, then there exists a strictly coordination-

free equilibrium where:

• play is described by Γ; and

• each player i’s messages can be ordered so that mi(θ) is non-decreasing.

Proof of Proposition 7: Given candidate play Γ, assign messages as follows: in the

leftmost cell, all senders send 1, and at every boundary where a sender’s message changes,

that sender’s message increases by 1. This message assignment rules out the following

scenario: in a cell where the assigned message vector is m = (m1, ...,mn), a sender (without

loss of generality, sender 1) wants to deviate to m′1, and m
′ = (m′1,m2, ...,mn) occurs on the

equilibrium path. To see this, assume without loss of generality that aΓ(m′) > aΓ(m). Then

it must be that in the cell immediately to the right of the one where m is sent, the message

vector is m′′ = (m′′1,m2, ...,mn) for some m′′1 possibly equal to m
′
1, so a

Γ(m′) ≥ aΓ(m′′).

Since within the cell where m is sent, sender 1 prefers aΓ(m) to aΓ(m′′), by single-crossing,

she also prefers aΓ(m) to aΓ(m′) and cannot desire a deviation.

Therefore, the only concern is to place the receiver’s actions after off-path message vectors

without inducing a deviation. For any off-path message vector m, there are at most two

senders whose deviation can induce m. To see this, normalize messages by subtracting a

constant to each sender’s messages such that m = (0, ..., 0). If a sender i can induce m by

deviating from a negative message when all others send 0, then when i sends 0, all other

senders’messages must be nonnegative. Thus only one other sender can deviate to m, and

must do so from a positive message. The symmetric argument holds as well, so at most one

sender can deviate to m from a positive message, and at most one sender can deviate to m

from a negative message.
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Now suppose sender i can deviate to induce m. The set of states from which she can

do this must constitute an i-block, which has size at most kΓ
i . Denote the left and right

endpoints of the i-block by θL and θR, the leftmost and rightmost inducible actions within

the i-block by aL and aR, and assume without loss of generality that bi(.) > 0. Then a

deviation by i will not be induced if either:

- a(m) > θR + maxθ∈Θ |bi(θ)|+ Ai(θR + maxθ∈Θ |bi(θ)| − aR); or

- a(m) < min{aL, θL + minθ∈Θ |bi(θ)| − Ai(aL − (θL + minθ∈Θ |bi(θ)|))}.
Therefore, letting Di = maxθ∈Θ |bi(θ)| − minθ∈Θ |bi(θ)|, the maximum range where a

deviation can be induced is:

max{(Ai + 1) max
θ∈Θ
|bi(θ)|+ Ai(θR − aR) + (θR − aL), (Ai + 1)(kΓ

i +Di)− Ai(aR − aL)}

< (Ai + 1)(kΓ
i + max

θ∈Θ
|bi(θ)|) = xΓ

i ,

where the inequality follows from θR−aR, θR−aL < kΓ
i , Di < maxθ∈Θ |bi(θ)|, and aR−aL ≥ 0.

If the ranges for the two potential deviators do not cover Θ, then it is possible to place

aΓ(m) without inducing a deviation. The result follows. �

The proof of Proposition 7 shows that if messages are assigned as stated, then no deviation

to an on-path message vector is ever desired, and at most two senders, each from one block,

can deviate to an out-of-equilibriummessage vector. An i-block of size k is associated with an

interval of size at most (1+Ai)(k+maxθ∈Θ |bi(θ)|) where placing an out-of-equilibrium action
would cause a deviation by sender i. Therefore, the total area where an out-of-equilibrium

vector cannot be placed is at most the sum of the two largest xΓ
i .

In the uniform-quadratic specification, as shown in the first paragraph of the proof of

Proposition 5, cell size changes by 4bi (from left to right) at a boundary where sender i’s

message changes. Thus, if bi > 0, cells grow from left to right, and vice versa. It follows

that:

- cells can be kept small if, in each direction, there is a sender with a small bias; and

- large i-blocks must contain large cells (relative to |bi|) at one end.
Thus, the most informative candidate play must only have small i-blocks if, in each

direction, there is a sender with a small bias. In this situation, any suffi ciently informative

candidate play Γ will have small kΓ
i , and therefore small x

Γ
i = 2(kΓ

i + |bi|), for all i ∈
N . Proposition 7 implies that such Γ corresponds to play in a strictly coordination-free

equilibrium where messages are assigned so that each is used on a connected set of states.

As a result, for each i ∈ N , there exists an order on MΓ
i such that sender i’s strategy is
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monotonic.1

A similar reasoning can be applied whenever the receiver’s preferred action in each cell

is not far from its center2, and Ai is close to 1 for each sender. Therefore, in such settings,

Proposition 7 (combined with Theorem 2 motivating strictly coordination-free equilibria)

provides a justification for focusing on monotonic strategies when studying the most infor-

mative equilibria, if a sender with small bias is available in each direction.

Online Appendix B: Analysis Without Assumption A

This section dispenses with Assumption A, and allows for noise where players have hetero-

geneous prior, as long as there is common knowledge that noise is small. Then, if there

is no state θ and pair of actions between which two senders are both indifferent at θ,3 the

implications of Theorems 1 and 2 about the function aΓ ◦mΓ mapping state to action in a

(strongly) robust equilibrium Γ still hold: it must generically correspond to candidate play

computed by forward solution (and, for strong robustness, be complete).

Definition: Given a pure-strategy profile Γ, let a supercell in Γ be a maximal interval

of states throughout which aΓ ◦mΓ remains constant.

Definition: A proper supercell in Γ is natural* if, denoting its endpoints as θ1 < θ2 and

its induced action as a:

• (right-natural*) whenever θ1 6= 0, ∃θ′ such that aΓ(mΓ(θ′)) = a and that, for some

i ∈ N , ∃m′i ∈MΓ
i such that:

(m′i,m
Γ
−i(θ

′)) = mΓ(θ) for some θ ∈ Θ, and

ui(a
Γ(m′i,m

Γ
−i(θ

′)), θ1) = ui(a, θ1) and aΓ(m′i,m
Γ
−i(θ

′)) < a; and

• (left-natural*) whenever θ2 6= 1, ∃θ′′ such that aΓ(mΓ(θ′′)) = a and that, for some

1Given a strictly coordination-free equilibrium Γ, it is not always possible to obtain a monotonic strictly
coordination-free equilibrium through a reassignment of messages. Consider Example 3, and change m1 in
(0.51, 1] to z 6= x, y so that sender 1’s strategy becomes monotonic. Message vector (x, y) is now out-of-
equilibrium. If aΓ(x, y) is placed anywhere other than 0.285 and 0.755, then sender 1 would have a profitable
deviation to x at some θ ∈ (0.06, 1]. But placing aΓ(x, y) at 0.285 or 0.755 violates point 3 of the definition
of strictly coordination-free equilibrium.

2This happens whenever F is not too far from being uniform and uR is not too asymmetric.
3This assumption holds for generic biases (i.e. whenever no two biases are exactly equal) within the class

of quadratic loss preferences from Section 3.
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j ∈ N , ∃m′′j ∈MΓ
i such that:

(m′′j ,m
Γ
−j(θ

′′)) = mΓ(θ) for some θ ∈ Θ, and

uj(a
Γ(m′′j ,m

Γ
−j(θ

′′)), θ2) = uj(a, θ2) and aΓ(m′′j ,m
Γ
−j(θ

′′)) > a.

Definition: An equilibrium is natural* if its strategy profile has interval structure, and

all of its proper supercells are natural*.

The definition of natural* proper supercell implies that, in Γ, mΓ(θ′) can be sent only at

and to the right of θ1. Since aΓ(mΓ(θ′)) = a, we have θ1 ≤ a and, by a similar argument,

a ≤ θ2. It follows that there is at most one proper supercell inducing a. As a result, a

left-structure and a right-structure can be defined for a natural* equilibrium Γ in the same

way as for natural equilibria, but using supercells rather than cells. The argument in the

proof of Proposition 4(b) carries through: if aΓ ◦mΓ does not correspond to candidate play,

then the conditions imposed by the structures would be too numerous and thus, generically,

would not be satisfied. In this context, that argument implies the following result:

Proposition 4*: Generically, if Γ is natural*, then the endpoints and induced action

for all proper supercells in Γ can be computed by forward solution.

The results corresponding to Theorems 1 and 2 in the main text are as follows.

Theorem 1*: Suppose that whenever ui(a, θ) = ui(a
′, θ), we have uj(a, θ) 6= uj(a

′, θ)

for all j 6= i ("no simultaneous indifference," henceforth abbreviated NSI). Then:

(a) Generically, if Γ is strongly robust, then it is complete and corresponds to a forward

solution (i.e. it has interval structure, and the endpoints and induced action for all proper

supercells in Γ can be computed by forward solution.).

(b) If Γ is coordination-free and complete and has finitely many cells, and no cell in Γ is

{0} or {1}, then it is strongly robust.

Theorem 2*: Assume NSI. Then:
(a) Generically, if Γ is robust, then it corresponds to a forward solution.

(b) If Γ is strictly coordination-free and has finitely many cells, then it is robust.

The proofs of Theorems 1(b) and 2(b) remain valid for Theorems 1*(b) and 2*(b).

These arguments rely on the number of cells being finite, which needs to be assumed here:

while coordination-freeness still guarantees a finite number of supercells, within a given

supercell, there could now be infinitely many cells. (For example, if aΓ(mi,mj,m−ij) =
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aΓ(m′i,mj,m−ij) = aΓ(mi,m
′
j,m−ij), then there could be a supercell where the message vec-

tor sent switches infinitely many times between (mi,mj,m−ij), (m′i,mj,m−ij) and (mi,m
′
j,m−ij).

This can pose problems if aΓ(mi,mj,m−ij) 6= aΓ(m′i,m
′
j,m−ij).)

By Proposition 4*, to prove Theorem 1*(a), it suffi ces to show the following lemmata.

Lemma 1*: If Γ is strongly robust, then it is complete, has interval structure, and

{m : mΓ(θ) = m for some θ ∈ Θ} is finite.
Lemma 2*: If Γ is strongly robust and NSI holds, then Γ is natural*.

Proof of Lemma 1*: The proof of Lemma 1, which shows λ(θΓ(m)) > 0 for all m ∈
×ni=1M

Γ
i and interval structure, carries over.

Fix any δ ∈ (0, 1
4
), and suppose instead that {m : mΓ(θ) = m for some θ ∈ Θ} is

infinite. Then, for any ε > 0, ∃m0 such that λ(θΓ(m0)) ∈ (0, ε). Fix such m0, and let

Θ0 = θΓ(m0) and Θi = {θ ∈ Θ\Θ0 : mΓ
i (θ) = m0

i }. Let Θ′ ⊂ Θ\Θ0 be a nontrivial set of

states such that the receiver’s best response conditional on θ ∈ Θ′, denoted a′, is outside

(aΓ(m0)−2δ, aΓ(m0)+2δ). (Θ′ exists for ε suffi ciently small.) Denote the ex ante probability

that θ ∈ S by F (S).

Since λ(Θ0) < ε, for any θ ∈ Θ0, ∃θ0(θ) ∈ (θ − ε, θ + ε) such that for some i ∈ N ,

mΓ
i (θ) 6= mΓ

i (θ0(θ)). Let iΓε (θ) be some such i.

Consider noise Ξ where:

(i) at states θ ∈ Θ′, for each i ∈ N , with probability εmin{ 1
n
, F (Θi)
F (Θ′)}, sender i observes

si ∈ Θi according to density proportional to the prior, and with the remaining probability,

si = θ; observations are independent across senders;

(ii) at states θ ∈ Θ0, consider a random variable X distributed according to a continuous

density g, where g(0) > 0; if the realization of X is 0, sender iΓε (θ) observes si = θ, while if

not, sender iΓε (θ) observes si = θ0(θ);

(iii) if neither (i) or (ii) applies, the true state is observed.

It is straightforward to check that, by construction, Ξ has size at most ε. With ex ante

probability F (Θ′)εn
∏n

j=1 min{ 1
n
,
F (Θj)

F (Θ′) }, the receiver observes m
0 and the state is in Θ′; with

ex ante probability 0, the receiver observesm0 and the state is in Θ0; and with the remainder

probability, the receiver does not observe m0. Therefore, for ε suffi ciently small, aΞ(m0) = a′

is more than δ away from aΓ(m0). By step 1 of the proof of Lemma 1, Γ is then not strongly

robust. �

Proof of Lemma 2*: Like for Lemma 2, we proceed by contradiction. Suppose instead,
without loss of generality, that a proper supercell C in Γ with right endpoint θb is not left-

natural*. Consider the following classes of noise:
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Noise (ε,N1, ..., Nn,−)

- Each sender i believes that sj = max{θ− ε, 0} for j ∈ Ni ⊆ N\{i}, and that sj = θ for

j /∈ Ni.

- The receiver believes that all senders observe the true state.

- These beliefs are common knowledge.

Noise (ε,N1, ..., Nn,+)

- Each sender i believes that sj = min{θ + ε, 1} for j ∈ Ni ⊆ N\{i}, and that sj = θ for

j /∈ Ni.

- The receiver believes that all senders observe the true state.

- These beliefs are common knowledge.

Case A: θb ∈ C
Fix an arbitrary ε > 0, and denote mΓ(θb) = m and mΓ(θb + ε) = mε. Since θb ∈ C, we

have aΓ(m) = a.

Since Γ is strongly robust, for any δ > 0, there exists ε suffi ciently small so that sender

i’s δ-optimality at si = θb under noise (ε,Ni, N−i,+) implies

ui(a
Γ(mi,m

∗
−i), θb) ≥ ui(a

Γ(mε
i ,m

∗
−i), θb)− δ,

where m∗j = mj if j /∈ Ni and m∗j = mε
j if j ∈ Ni. Moreover, sender i’s δ-optimality at

si = θb + ε under noise (ε,N\(Ni ∪ {i}), N−i,−) implies

ui(a
Γ(mε

i ,m
∗
−i), θb + ε) ≥ ui(a

Γ(mi,m
∗
−i), θb + ε)− δ.

Therefore, we must have

ui(a
Γ(mε

i ,m
∗
−i), θb)→ ui(a

Γ(mi,m
∗
−i), θb) as ε→ 0. (1)

By Lemma 1*, |MΓ
i | is finite for all i ∈ N , so (1) implies that for any ε suffi ciently small,

ui(a
Γ(mε

i ,m
∗
−i), θb) = ui(a

Γ(mi,m
∗
−i), θb). (2)

Fix ε > 0 such that aΓ(mε) 6= a and (2) hold; such ε must exist, or else θb would not be

an endpoint of C.

Observation 1:
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(i) Suppose (2) holds, mi 6= mε
i , mj 6= mε

j, and a
Γ(mi,mj,m

∗
−ij) = a for some m∗−ij ∈

×k 6=i,j{mk,m
ε
k}. Then either aΓ(mε

i ,mj,m
∗
−ij) = aΓ(mi,m

ε
j ,m

∗
−ij) = aΓ(mε

i ,m
ε
j ,m

∗
−ij) 6= a,

or at least one of these three actions is equal to a.

(ii) If NSI additionally holds, then we have aΓ(mε
i ,mj,m

∗
−ij) = a, aΓ(mi,m

ε
j ,m

∗
−ij) = a,

or both.

Proof of Observation 1: (i) Suppose aΓ(mε
i ,mj,m

∗
−ij) > a. Then ui(aΓ(mi,mj,m

∗
−ij), θb) =

ui(a
Γ(mε

i ,mj,m
∗
−ij), θb) implies θb + bi(θb) ∈ (aΓ(mi,mj,m

∗
−ij), a

Γ(mε
i ,mj,m

∗
−ij)). We also

have uj(aΓ(mε
i ,mj,m

∗
−ij), θb) = uj(a

Γ(mε
i ,m

ε
j ,m

∗
−ij), θb). If a

Γ(mε
i ,m

ε
j ,m

∗
−ij) 6= a, then ei-

ther:

a) aΓ(mε
i ,m

ε
j ,m

∗
−ij) > aΓ(mε

i ,mj,m
∗
−ij), so that θb + bj(θb) > aΓ(mε

i ,mj,m
∗
−ij). In this

case, since aΓ(mε
i ,mj,m

∗
−ij) > aΓ(mi,mj,m

∗
−ij) and uj(a

Γ(mi,mj,m
∗
−ij), θb) = uj(a

Γ(mi,m
ε
j ,m

∗
−ij), θb),

we have either aΓ(mi,m
ε
j ,m

∗
−ij) = aΓ(mi,mj,m

∗
−ij), or a

Γ(mi,m
ε
j ,m

∗
−ij) > aΓ(mε

i ,m
ε
j ,m

∗
−ij).

The latter is not possible since both aΓ(mi,m
ε
j ,m

∗
−ij) and a

Γ(mε
i ,m

ε
j ,m

∗
−ij) would be to the

right of θb + bi(θb), and sender i must be indifferent between these actions at θb. Therefore,

aΓ(mi,m
ε
j ,m

∗
−ij) = aΓ(mi,mj,m

∗
−ij) = a.

b) aΓ(mε
i ,m

ε
j ,m

∗
−ij) ∈ (a, aΓ(mε

i ,mj,m
∗
−ij)), so that θb+bj(θb) ∈ (aΓ(mε

i ,m
ε
j ,m

∗
−ij), a

Γ(mε
i ,mj,m

∗
−ij)).

It follows that either aΓ(mi,m
ε
j ,m

∗
−ij) = a, or aΓ(mi,m

ε
j ,m

∗
−ij) > aΓ(mε

i ,mj,m
∗
−ij). The lat-

ter is ruled out since sender i cannot be simultaneously indifferent between a and aΓ(mε
i ,mj,m

∗
−ij),

as well as between aΓ(mε
i ,m

ε
j ,m

∗
−ij) > a and aΓ(mi,m

ε
j ,m

∗
−ij) > aΓ(mε

i ,mj,m
∗
−ij).

c) aΓ(mε
i ,m

ε
j ,m

∗
−ij) < a, so that θb + bj(θb) ∈ (aΓ(mε

i ,m
ε
j ,m

∗
−ij), a

Γ(mε
i ,mj,m

∗
−ij)). It

follows that aΓ(mi,m
ε
j ,m

∗
−ij) < aΓ(mε

i ,mj,m
∗
−ij). Then, a

Γ(mi,m
ε
j ,m

∗
−ij) 6= a is not possible

since sender i cannot be simultaneously indifferent between a and aΓ(mε
i ,mj,m

∗
−ij), as well

as between aΓ(mε
i ,m

ε
j ,m

∗
−ij) < a and aΓ(mi,m

ε
j ,m

∗
−ij) < aΓ(mε

i ,mj,m
∗
−ij).

d) aΓ(mε
i ,m

ε
j ,m

∗
−ij) = aΓ(mε

i ,mj,m
∗
−ij). Since sender i must be simultaneously indif-

ferent between a and aΓ(mε
i ,mj,m

∗
−ij), as well as a

Γ(mε
i ,m

ε
j ,m

∗
−ij) = aΓ(mε

i ,mj,m
∗
−ij) and

aΓ(mi,m
ε
j ,m

∗
−ij), we have either a

Γ(mi,m
ε
j ,m

∗
−ij) = aΓ(mε

i ,m
ε
j ,m

∗
−ij), or a

Γ(mi,m
ε
j ,m

∗
−ij) =

a.

A symmetric argument applies if aΓ(mε
i ,mj,m

∗
−ij) < a.

(ii) By NSI, i and j cannot be indifferent between aΓ(mi,mj,m
∗
−ij) = a and the same

other action at θb, so by (2), we cannot have aΓ(mε
i ,mj,m

∗
−ij) = aΓ(mi,m

ε
j ,m

∗
−ij) 6= a. Thus,

if aΓ(mε
i ,mj,m

∗
−ij), a

Γ(mi,m
ε
j ,m

∗
−ij) 6= a, by part (i), we have aΓ(mε

i ,m
ε
j ,m

∗
−ij) = a. But

then, at θb, i is indifferent between aΓ(mi,mj,m
∗
−ij) = a and aΓ(mε

i ,mj,m
∗
−ij), while j is

indifferent between aΓ(mε
i ,m

ε
j ,m

∗
−ij) = a and aΓ(mε

i ,mj,m
∗
−ij). This again cannot occur by

NSI. �

Therefore, if mi 6= mε
i , mj 6= mε

j, and a
Γ(mi,mj,m

∗
−ij) = a, then it is possible to change

a component of (mi,mj,m
∗
−ij) from its value in m to its value in mε without changing the
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induced action. Doing so and iterating the process yields aΓ(mi,m
ε
−i) = a for some i ∈ N .

Substituting this into (2) with m∗−i = mε
−i gives

ui(a, θb) = ui(a
Γ(mε), θb). (3)

Moreover, by i’s optimality at θb + ε in the noiseless game and single-crossing, we cannot

have a > aΓ(mε). It follows that a < aΓ(mε), which, together with (3), implies that θb is

left-natural* after all.

Case B: θb /∈ C
Now denote mΓ(θb) = m′ and mΓ(θb − ε) = mε. Since θb /∈ C, we have aΓ(m′) 6= a.

Since Γ is strongly robust, for any δ > 0, there exists ε suffi ciently small so that sender

i’s δ-optimality at si = θb under noise (ε,Ni, N−i,−) implies

ui(a
Γ(m′i,m

∗
−i), θb) ≥ ui(a

Γ(mε
i ,m

∗
−i), θb)− δ,

where m∗j = m′j if j /∈ Ni and m∗j = mε
j if j ∈ Ni. Moreover, sender i’s δ-optimality at

si = θb − ε under noise (ε,N\(Ni ∪ {i}), N−i,+) implies

ui(a
Γ(mε

i ,m
∗
−i), θb − ε) ≥ ui(a

Γ(m′i,m
∗
−i), θb − ε)− δ.

By a similar reasoning as in Case A, we have that for any ε suffi ciently small,

ui(a
Γ(mε

i ,m
∗
−i), θb) = ui(a

Γ(m′i,m
∗
−i), θb). (4)

Fix ε > 0 such that (4) holds, and note that aΓ(mε) = a 6= aΓ(m′). The remainder of the

proof is symmetric to the argument in Case A. �

Similarly, by Proposition 4*, to prove Theorem 2*(a), it suffi ces to prove the following

Lemma.

Lemma 3*: If Γ is robust and NSI holds, then Γ is natural*.

Proof of Lemma 3*: Steps 1 to 4 of the proof of Lemma 3 carry over to show interval
structure. The following observation can be obtained by strengthening step 2 of the proof

of Lemma 3:

Observation 2: For any δ > 0, there exists ε(δ) > 0 such that if θΓ(m) 6= ∅ and

λ(θΓ(m)) < ε(δ), then sup θΓ(m)− inf θΓ(m) < 3δ.

10



Proof of Observation 2: Suppose not, so that for any ε > 0, ∃ε ∈ (0, ε) such that

θΓ(m) 6= ∅, λ(θΓ(m)) < ε, and sup θΓ(m) − inf θΓ(m) ≥ 3δ. For such m, there exists

θ∗ ∈ θΓ(m) such that |θ∗ − aΓ(m)| > δ.

Since λ(θΓ(m)) < ε, for any θ where mΓ(θ) = m, ∃θ0(θ) ∈ [θ − ε, θ + ε] such that for

some i ∈ N , mΓ
i (θ0(θ)) 6= mi. Let iΓε (θ) be any such i, and consider the following noise Ξ:

(i) at states θ ∈ θΓ(m)\{θ∗}, consider a random variable X ∼ U [0, 1]; if the realization

of X is θ, sender iΓε (θ) observes si = θ, while if not, sender iΓε (θ) observes si = θ′ for some

θ′ ∈ [θ − ε, θ + ε] where mΓ
i (θ′) 6= mi;

(ii) for all other senders, and for iΓε (θ) at all other states, the true state is observed.

Clearly, Ξ has size at most ε, and aΞ(m) = θ∗. By step 1 of the proof of Lemma 3, Γ is

not robust. �

In the remainder of this proof, adopt the notation from the proof of Lemma 2*.

Case A: θb ∈ C, a 6= θb

Note that (1) still holds. If (2) still holds for ε suffi ciently small, then the argument in

Lemma 2* carries through. For (2) not to hold for ε suffi ciently small, it must be that for

any ε > 0, there are infinitely many distinct mε for ε ∈ (0, ε). Observation 2 implies that

this can only be the case if there exists a sequence {εk}∞k=1 converging to 0 as k → ∞ such

that aΓ(mεk)→ θb as k →∞.
An approximate version of Observation 1(i) that converges to Observation 1(i) as ε→ 0

can be obtained by making a similar argument and using (1). If at θb, i (resp. j) is

indifferent between a and some action ai (resp. aj), then by NSI and the finiteness of N ,

minj 6=i |ai− aj| > 0. A similar argument as in the proof of Observation 1(ii) thus shows that

if NSI holds, then as ε→ 0, we have aΓ(mε
i ,mj,m

∗
−ij)→ a, aΓ(mi,m

ε
j ,m

∗
−ij)→ a, or both.

Now consider aΓ(mε
i ,m−i). By point 2 in the definition of robustness, if (mε

i ,m−i) were

off-path, we could not have ui(a′, θb) = ui(a, θb) whenever |a′ − aΓ(mε
i ,m−i)| < γ. This

implies, by (1), that (mε
i ,m−i) must occur on path for all suffi ciently small ε. Because any

two distinct on-path actions induced by message vectors differing in only one component are

separated by at least η (see the second-to-last paragraph of the proof of Theorem 1a), we have

that for all i and suffi ciently small ε, ui(aΓ(mε
i ,m−i), θb) = ui(a, θb). Taking m∗−ij = m−ij in

the previous paragraph implies that for at least n − 1 senders i, we have aΓ(mε
i ,m−i) = a

for suffi ciently small ε.

(i) If aΓ(mε
i ,m−i) = a for suffi ciently small ε for all i, then as ε → 0, we must have

aΓ(mε
i ,m

ε
j ,m−i)→ a for all pairs (i, j). To see this, note that, at θb, i (resp. j) must be nearly

indifferent between aΓ(mε
i ,m

ε
j ,m−i) and a

Γ(mi,m
ε
j ,m−i) = a (resp. aΓ(mε

i ,mj,m−i) = a),

which, by NSI and the finiteness of N , can occur only if aΓ(mε
i ,m

ε
j ,m−i) is near a. Iterating
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this reasoning (which also applies when aΓ(mε
i ,m−i)→ a as ε→ 0) yields aΓ(mε)→ a 6= θb,

which contradicts the existence of {εk}∞k=1 noted earlier.

(ii) If instead there exist arbitrarily small ε such that aΓ(mε
1,m−1) 6= a, the above iterative

reasoning can still be used with senders 2, ..., n, so that aΓ(m1,m
ε
−1) → a as ε → 0. Since

u1(aΓ(m1,m
ε
−1), θb)− u1(aΓ(mε), θb)→ 0 as ε→ 0, for small ε, aΓ(mε) must be near either

a or a′ 6= a, where u1(a′, θb) = u1(a, θb). The existence of {εk}∞k=1, combined with a 6= θb,

implies that we must have a′ = θb. Since u1(aΓ(mε
1,m−1), θb) = u1(a, θb) for suffi ciently small

ε, and there exist arbitrarily small ε such that aΓ(mε
1,m−1) 6= a, there also exist arbitrarily

small ε such that aΓ(mε
1,m−1) = a′ = θb. Because, for suffi ciently small ε, (mε

1,m−1) occurs

on path, if aΓ(mε
1,m−1) = θb 6= a, (mε

1,m−1) must occur both to the left and to the right of

θb. This is not possible: because u1(aΓ(mε
1,m−1), θb) = u1(a, θb), in one of the two cases, by

single-crossing, sender 1 strictly prefers inducing aΓ(m1,m−1) = a to aΓ(mε
1,m−1) 6= a.

Case B: θb /∈ C
Adopt the notation of case B of the proof of Lemma 2*. Like in case A of this proof, if

(4) holds for suffi ciently small ε, then we are done. Once again, by Observation 2, if there is

no ε suffi ciently small such that (4) holds, there must exist a sequence {εk}∞k=1 converging to

0 as k → ∞ such that aΓ(mεk) → θb as k → ∞. Here, since mε are sent inside C for small

ε, we have aΓ(mε) = a for small ε. Thus, a = θb.

Proceeding like in case A (with mΓ(θb) and aΓ(mΓ(θb)) taking the place of m and a, re-

spectively), in subcase (i), we have aΓ(mε)→ aΓ(mΓ(θb)). Here, this implies a = aΓ(mΓ(θb)),

which contradicts θb /∈ C.
In subcase (ii), we have that a must be equal to either aΓ(mΓ(θb)) or a′ 6= aΓ(mΓ(θb)),

where u1(a′, θb) = u1(aΓ(mΓ(θb)), θb). Since a 6= aΓ(mΓ(θb)) (because θb /∈ C), we have

a′ = a = θb. The remainder of the argument is analogous to case A.

Case C: θb ∈ C, a = θb

Because C is proper with right endpoint θb, the receiver’s optimality implies that there

exists another proper supercell C ′ with left endpoint θ′b > θb where the induced action is also

θb. Moreover, θ
′
b cannot be right-natural: otherwise, some message vector inducing action θb

would be sent only to the right of θ′b, which cannot be the case.

If θ′b ∈ C ′, then the situation is symmetric to case A (now the endpoint θ′b and induced
action θb cannot be equal), so we are done. Moreover, we cannot have θ

′
b /∈ C ′: by the first

paragraph of case B, this is possible only if θ′b is the action induced in C
′, which is not the

case here. �
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Online Appendix C: Near Robustness

This section introduces weaker robustness concepts, near robustness and strong near robust-

ness, that require a "nearby" strategy profile, rather than the exact original strategy profile,

to be approximately optimal under noise. As stated in the main paper, Theorems 1 and 2

remain true provided that heterogeneous priors about the noise are allowed.

The closeness of strategy profiles is defined as follows.

Definition: Given a profile Γ, messages mi and m′i are (Γ, δ)-close if for any m−i ∈
×j 6=iMΓ

j , |aΓ(mi,m−i)− aΓ(m′i,m−i)| < δ.

Definition: Given a profile Γ, profile Γ′ is δ-close to Γ if:

1. MΓ′
i = MΓ

i ;

2. for any proper cell C in Γ or Γ′, mΓ′
i (si) and mΓ

i (si) are (Γ, δ)-close for all si ∈ [inf C+

δ, supC − δ];

3. letting aΞ and aΞ′ be the receiver’s best responses given noise Ξ to the senders’strategies

in Γ and Γ′ respectively, ∃ε > 0 such that, for all m ∈ ×ni=1M
Γ
i , |aΞ(m)− aΞ′(m)| < δ

whenever the size of Ξ is less than ε, and aΞ(m) and aΞ′(m) exist; and

4. |aΓ(m)− aΓ′(m)| < δ for all m ∈ ×ni=1M
Γ
i .

Points 1 and 4 in the definition of δ-closeness simply require that the senders use the

same messages in Γ′ as in Γ, and that the receiver takes a nearby action after every message

vector. Point 2 restricts the senders’strategies by requiring the use of the similar messages

in Γ and Γ′ in proper cells at least δ away from boundaries.4 However, this condition has

no power when dealing with sender strategies that do not feature intervals: it is diffi cult

to directly determine whether two sender profiles with complicated structures are "close."5

Point 3 addresses this issue by using the receiver’s best response to evaluate how close sender

profiles are to each other. Noise is used because, in some cases, two sender profiles could

generate the same receiver actions without noise while generating far apart actions with

small noise; such profiles ought to be considered distant.

4The requirement can be weakened to allow a small probability of deviation and/or deviation on a small
set of states.

5For example, suppose that within some interval, strategy mΓ
i assigns mi within the set of irrational

numbers and m′i elsewhere. Strategy m
Γ′

i is identical to mΓ
i everywhere except on the said interval, where

it assigns mi within the set of transcendental numbers and m′i elsewhere. It is unclear by simple inspection
how "close" mΓ

i and m
Γ′

i should be considered.
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For instance, consider Example 2, and shift all cell boundaries and receiver actions by

less than δ. The resulting profile is δ-close to the original one: points 1, 2 and 4 are clearly

satisfied, and point 3 is as well because as ε → 0, we must have aΞ(m) → aΓ(m) and

aΞ′(m)→ aΓ′(m).

The definitions for strong near robustness and near robustness parallel the ones for strong

robustness and robustness.

Definition: An equilibrium Γ in the noiseless game is strongly near-robust if, for every

δ > 0, there exists ε > 0 such that whenever there is common knowledge that noise has

size less than ε, there exists a δ-close strategy profile Γ′ where each player’s strategy rΓ′
i is a

δ-best response to rΓ′
−i evaluated under sender i’s belief about the noise.

Definition: An equilibrium Γ in the noiseless game is near-robust if:

1. for every δ > 0, there exists ε > 0 such that whenever there is common knowledge

that noise has local size less than ε, there exists a δ-close strategy profile Γ′ where each

player’s strategy rΓ′
i is an on-path δ-best response to rΓ′

−i evaluated under sender i’s

belief about the noise, and

2. in the noiseless game, there exists γ > 0 such that whenever the perturbation on the

receiver’s off-path beliefs has size less than γ, every sender’s strategy mΓ
i is a best

response to mΓ
−i and a

Γ∗, where aΓ∗ denotes the receiver’s best-response to mΓ and her

perturbed off-path beliefs.6

A profile with the characteristics of Γ′ will be called a δ-supporting profile. Γ′ is interim

δ-optimal, where each player’s payoffs are evaluated under her own beliefs.

With these definitions, Theorems 1 and 2 hold with no change. The proofs of Theorems

1b and 2b still apply: they allow for heterogeneous priors, and Γ is δ-close to itself for all

δ > 0. The proofs of Lemmata 1 to 3, which imply Theorems 1a and 2a, are modified as

follows.

Modified proof of Lemma 1: Suppose Γ is strongly near-robust. Given Γ and Γ′, let

aΞ and aΞ′ denote the receiver’s best response to {mΓ
j }nj=1 and {mΓ′

j }nj=1, respectively, given

noise Ξ.
6Point 2 is the same as in the definition of robustness.
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Step 1: For any δ > 0, ∃ε > 0 such that for all noise Ξ with size less than ε, |aΓ(m)−
aΞ(m)| < δ for all m ∈ ×ni=1M

Γ
i .

By the definitions of strong near robustness and δ-closeness, we know that for any δ > 0,

∃ε > 0 such that for all noise Ξ with size less than ε, ∃Γ′ such that:

• aΓ′ is a δ-best response to {mΓ′
j }nj=1 under Ξ;

• |aΓ(m)− aΓ′(m)| < δ for all m ∈ ×ni=1M
Γ
i ; and

• |aΞ(m)− aΞ′(m)| < δ for all m ∈ ×ni=1M
Γ
i .

Because uR is continuous and strictly concave in a, and Θ is compact, the first point im-

plies that ∃γ(δ) such that, for all m ∈ ×ni=1M
Γ
i , |aΓ′(m)−aΞ′(m)| < γ(δ), with limδ→0 γ(δ) =

0. Therefore, |aΓ(m)− aΞ(m)| < 2δ + γ(δ) for all m ∈MΓ
i and Ξ with size less than ε.

Rewriting δ in lieu of 2δ + γ(δ) yields the result. ♦

The remainder of the proof (steps 2 to 4) is unchanged. �

Lemma 2 is now proved in two steps, numbered 5 and 6 (numbering continued from the

proof of Lemma 1). Suppose a boundary θb in Γ is not left-natural, such as the boundary

between the first two cells in Example 2, and consider the following beliefs about noise:

each sender believes that she observes the true state while all other senders observe si =

max{θ − ε, 0}, the receiver believes that all senders observe si = θ, and these beliefs are

common knowledge. Let m be the message vector sent to the left of the boundary - (1, 1) in

our example. The proof applies the definition of δ-closeness to show that in a δ-supporting

profile Γ′, for δ small enough, m must be sent in a neighborhood to the left of θb− δ. Then,
for ε small enough, m must also be sent between θb − δ and θb − δ + ε: upon observing a

signal in that range, each sender believes opponents will sendm−i, and in turn must sendmi,

which gives i expected payoff at least δ higher than any other message, for δ small enough.

Because θb is not left-natural, this argument can be iterated past θb+δ, which means that no

δ-supporting profile can exist. Therefore, Γ must be natural. This intuition bears parallels

to the global games contagion argument (except for the heterogeneous prior).

Like for steps 2 to 4, the noise distribution used for steps 5 and 6 does not have to be

atomic. For example, the argument carries through if each sender instead believes that other

senders’signals are distributed according to U [max{θ−ε, 0}, θ].7 Unlike for steps 2 to 4, the
argument uses noise where the prior is heterogeneous.

7Point 2 of the definition of closeness can also be relaxed: if a message vector close to m must be sent in
Γ′ with probability near 1 in some interval Im to the left of θb − δ, then the unraveling reasoning remains
valid for suffi ciently small ε (in particular, ε < |Im|).
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Modified proof of Lemma 2: We proceed by contradiction. Suppose instead, with-
out loss of generality, that the right endpoint θb 6= 1 of a proper cell C in Γ where

m = (m1, ...,mn) is sent is not left-natural. Denote the measure of this proper cell by

λ.

Step 5: ∃δ > 0 such that for all i ∈ N and m′i ∈ MΓ
i \{mi}, ui(a′, θ) + δ < ui(a, θ)

for all θ ∈ [θb − δ, θb + δ], a′ ∈ [aΓ(m′i,m−i) − δ, aΓ(m′i,m−i) + δ], and a ∈ [aΓ(mi,m−i) −
δ, aΓ(mi,m−i) + δ].

By the definition of "left-natural," for any i and any m′i ∈MΓ
i \{mi}, either:

(i) ui(aΓ(m′i,m−i), θb) < ui(a
Γ(mi,m−i), θb),

(ii) (m′i,m−i) is sent on path in Γ and aΓ(mi,m−i) = aΓ(m′i,m−i), or

(iii) (m′i,m−i) is not sent at any state in Γ and ui(aΓ(m′i,m−i), θb) = ui(a
Γ(mi,m−i), θb).

Because ui is continuous, if (i) holds, then ui(a′, θ) < ui(a, θ) for all θ in a non-degenerate

interval around θb, and all a′ and a suffi ciently near aΓ(m′i,m−i) and a
Γ(mi,m−i) respectively.

Therefore, it suffi ces to show that for any m−i, there are finitely many aΓ(m′i,m−i) occurring

on the equilibrium path. This must be true since any two such actions must be separated

by at least η (see the second-to-last paragraph of the proof of Theorem 1a).

Case (ii) cannot arise by Assumption A.

Case (iii) cannot arise by step 2. ♦

Step 6: Let δ < min{δ, λ
2
, η}. Then, for any ε ∈ (0, λ − 2δ), there is no δ-supporting

profile for Γ under the following beliefs about the noise:

- Each sender believes that they observe the true state and that other senders observe

max{θ − ε, 0}.
- The receiver believes that all senders observe the true state. (For the sake of complete-

ness - this will not matter.)

- These beliefs are common knowledge.

By the definition of δ-closeness, in any δ-supporting profile Γ′, it must be that for suf-

ficiently small ε, for all i, and for all si ∈ [θb − δ − ε, θb − δ), mΓ′
i (si) is (Γ, δ)-close to mi.

Now suppose mΓ′
i (si) 6= mi. Then, for some m′−i, a

Γ(mΓ′
i (si),m

′
−i) 6= aΓ(mi,m

′
−i). By com-

pleteness, both (mΓ′
i (si),m

′
−i) and (mi,m

′
−i) occur on path in Γ, so by the same reasoning

used at the end of case (i) of step 5, we must have |aΓ(mΓ′
i (si),m

′
−i) − aΓ(mi,m

′
−i)| > η.

This contradicts mΓ′
i (si) being (Γ, δ)-close to mi since δ < η. Thus mΓ′

i (si) = mi for all

si ∈ [θb − δ − ε, θb − δ).
Now suppose sender j observes sj ∈ [θb − δ, θb − δ + ε). She believes that all senders

i 6= j observed si ∈ [θb − δ − ε, θb − δ), and therefore will send mi. By step 5, her unique
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δ-best response is mj. Since this holds for all senders, we have that for all i and for all

si ∈ [θb − δ, θb − δ + ε), mΓ′
i (si) = mi.

Iterating the above argument, it follows by step 5 that for all i and for all si ∈ [θb−δ, θb+δ],
mΓ′
i (si) = mi. By definition, Γ′ can be δ-close to Γ only if, for all i, mΓ

i (si) = mi for all

si ∈ [θb, θb + δ − δ], which contradicts θb being the right endpoint of C. Therefore, Γ′ is not

a δ-supporting profile of Γ. ♦

Under the beliefs about noise in step 6, there is common knowledge that noise is less

than ε. We therefore conclude that Γ is, in fact, not strongly near-robust. �

Modified proof of Lemma 3: Modify step 1 as in the proof of Lemma 1. Steps 2 to
4 are unchanged. Step 5 and 6 follow the modified proof of Lemma 2, as adjusted below.

Step 5: Same statement as step 5 in the proof of Lemma 2, and same argument in cases

(i) and (ii).

Case (iii) is ruled out by point 2 in the definition of near robustness and the continuity

of ui. ♦

Step 6: Same statement as step 6 in the proof of Lemma 2, except that δ is chosen to be

also less than γ from the point 2 in the definition of near robustness. Then, to show that, for

small enough ε, mΓ′
i (si) = mi for all si ∈ [θb− δ− ε, θb− δ), proceed again by contradiction.

The argument is the same if, for some m′−i, both (mΓ′
i (si),m

′
−i) and (mi,m

′
−i) occur on path

but induce different actions in Γ. If not, then (mΓ′
i (si),m−i) is off path in Γ, and point 2 in

the definition of near robustness implies |aΓ(mΓ′
i (si),m−i) − aΓ(mi,m−i)| ≥ γ. This again

contradicts mΓ′
i (si) being (Γ, δ)-close to mi since δ < γ.

The remainder of the proof is identical to the analogous part of the modified proof of

Lemma 2. �
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