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Abstract 

Many studies have noted significant differences among human EEG results when participants or 

patients are exposed to different stimuli, undertaking different tasks, or being affected by conditions 

such as epilepsy or Alzheimer's disease. Such studies often use only one or two measures of 

complexity and do not regularly justify their choice of measure beyond the fact that it has been used 

in previous studies. If more measures were added to such studies, however, more complete 

information might be found about these reported differences. Such information might be useful in 

confirming the existence or extent of such differences, or in understanding their physiological bases. 

In this study I analysed publically-available EEG data using a range of complexity measures to 

determine how well the measures correlated with one another. The complexity measures did not all 

significantly correlate, suggesting that different measures were measuring unique features of the 

EEG signals and thus revealing information which other measures were unable to detect. Therefore, 

the results from this analysis suggests that combinations of complexity measures reveal unique 

information which is in addition to the information captured by other measures of complexity in EEG 

data. For this reason, researchers using individual complexity measures for EEG data should consider 

using combinations of measures to more completely account for any differences they observe and to 

ensure the robustness of any relationships identified. 
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Introduction 

Electroencephalography (EEG) is a common, relatively non-invasion research and diagnostic tool. Its 

one-dimensional signals from localised peripheral regions on the head make it attractive for its 

simplistic fidelity and has allowed high clinical and basic research throughput. When it comes to 

interpreting EEG data, investigators have a wide range of analytical tools at their disposal (Delorme 

& Makeig, 2004; Dauwels et al. 2010) and in recent years have explored a number of novel 

relationships between measures of complexity (Susmáková & Krakovská, 2008; Cao & Slobounov, 

2011; Dauwels et al., 2011; Weiss et al., 2011; Jing et al. 2014; Sitt et al. 2014). Studies which have 

included complexity measures, however, do not regularly include more than one or two such 

measures. For example, Dauwels et al. (2011) include the Lempel-Ziv complexity measure (Lempel & 
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Ziv, 1976) - an algorithmic-based measure - and regularity measures, but ignore potential chaotic 

and fractal measures. This is not to suggest that the LZ complexity measure or that regularity 

measures are meaningless, nor that chaotic and fractal measures are more or less important than 

other measures of complexity, but that all may be measuring different features. Thus, for a more 

complete and robust picture of any relationships found for one complexity measure in EEG data, it 

might be useful for investigators to include other measures in their analyses. 

This study therefore aims to determine whether different measures of complexity of EEG signals 

correlate, and (if so) to what degrees. To do this, a small battery of complexity measures were 

computed for publicly-available normative data and subsequently analysed for correlations. If some 

measures were found not to significantly correlate or correlate fully, this would suggest that these 

measures are detecting unique information which might otherwise have remained hidden to 

investigators who were computing only a single complexity measure from their data.  

 

Methods 

1100 EEG recordings of 1-sec duration from 13 healthy control subjects undergoing a basic 

psychophysics task were obtained from a publicly-available database created by Begleiter (1996) of 

the Neurodynamics Laboratory, State University of New York Health Center, Brooklyn, United States. 

Each recording had 64 channels and was sampled at 256 Hz (3.9-msec epoch). The following 

complexity measures were calculated for each recording: Lempel-Ziv algorithmic complexity (LZ) 

(Lempel & Ziv, 1976), fractal dimension estimation (FD) (Higuchi, 1988), permutation entropy (PE) 

(Bandt & Pompe, 2002), Wiener entropy (WE) (Wiener, 1954), and spectral structure variability (SSV) 

(Singh, 2011). These measures were chosen on the basis of their broad representation of different 

conceptions of 'complexity', including informational theoretic, chaotic/fractal, and computational 

informatic approaches. Many more measures exist than these, however as the principle aim of this 

paper was to determine if differences exist at all, any differences detected in this small cross-section 

of measures would sufficiently illustrate this. Results from the complexity measures were analysed 

by linear regression and significance for relationships between pairs of measures was calculated. 

 

Results 

Of the 10 pairs of measures, eight pairs exhibited highly significant (p<0.0001) correlations while two 

pairs - (i) PE and FD, (ii) WE and LZ - did not significantly correlate (Tables 1 and 2). High degrees of 

spread were noted among all correlations. 

These relationships were visualised using scatter plots (Figures 1 and 2) to help determine if any of 

these relationships may be non-linear. Two such relationships - (i) LZ and FD, (ii) SSV and FD - 

appeared to follow a binomial trend (Figure 3), and binomial regression improved these 

relationships greatly. 
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Table 1. Pearson (r) correlation matrix for each pair of 
complexity measures computed for normative EEG 
recordings. 

 
FD LZ WE PE SSV 

FD - 0.5402 0.4155 -0.0255 0.6517 

LZ 0.5402 - -0.0472 -0.1273 0.5983 

WE 0.4155 0.4155 - 0.3469 0.5977 

PE -0.0255 -0.1273 0.3469 - 0.1672 

SSV 0.6517 0.5983 0.5977 0.1672 - 

 

Table 2. Significance (p) of correlations for each pair of 
complexity measures computed for normative EEG 
recordings. 

 
FD LZ WE PE SSV 

FD - <0.0001 <0.0001 0.3990 <0.0001 

LZ <0.0001 - 0.1174 <0.0001 <0.0001 

WE <0.0001 0.1174 - <0.0001 <0.0001 

PE 0.3990 <0.0001 <0.0001 - <0.0001 

SSV <0.0001 <0.0001 <0.0001 <0.0001 - 

 

Discussion 

Some - but not all - measures of complexity of EEG signals correlate, and to varying degrees. Of the 

many complexity measures available to researchers investigating EEG data, overreliance or 

overconfidence in any single measure therefore seems misplaced. As research groups who have 

attempted to classify or predict sleep stages or conscious states from EEG data have implicitly noted 

(Susmáková & Krakovská, 2008; Weiss et al., 2011; Sitt et al., 2014), no individual measurement can 

reliably predict all possibly relevant physiology. Instead, combinations of measures are needed. In 

the same way, no individual measurement of complexity can reliably predict all possibly relevant 

complexity. 

In part, the results from this study might reflect on a more generalised ambiguity of the concept of 

'complexity'. Who is to say, after all, that more is revealed about 'complexity' by FD than LZ? It 

seems that it cannot be said that either reveal any more or less, since both ultimately treat 

complexity in a different way. Perhaps this only further reiterates the conclusion we can reach from 

this study: by multiplying measures we can reveal information which was previously hidden or 

unknown to us. 

It would be interesting to analyse previously-noted complexity differences - between, for example, 

patients with and without Alzheimer's disease (Dauwels et al., 2010) - to determine if these 

differences were all measuring the same difference. The current study suggests they may not have 

been. And, if not, perhaps more can be learned from the available data; it could even be possible 

that there exists entirely separate complexity dimensions, along which patients progress at different 

rates. Such information could contain physiological, clinical, or other significance. 
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Figure 1. Scatter plots with linear trendlines for pairs of significantly-correlated complexity 

measures. Eight pairs of complexity measures of the EEG signals had a significant (p<0.0001) 

correlation. Although the relationships are significant, high degrees of spread are noticeable and 

some of the relationships may have non-linear components. 

EEG = electroencephalogram; LZ = Lempel-Ziv algorithmic complexity; FD = fractal dimension 

estimate (Higuchi method); PE = permutation entropy; SSV = spectral structure variability; WE = 

Wiener entropy (also known as spectral flatness) 
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Figure 2. Scatter plots with linear trendlines for two pairs of insignificant, uncorrelated complexity 

measures. Two pairs of complexity measures of the EEG signals were insignificant and uncorrelated - 

PE & FD (r=-0.0255, p=0.3990) and WE & LZ (r=-0.0472, p=0.1174). There appears to be no non-

linear components or any evidence of a clear relationship between these pairs of measures. 

EEG = electroencephalogram; LZ = Lempel-Ziv algorithmic complexity; FD = fractal dimension 

estimate (Higuchi method); PE = permutation entropy; WE = Wiener entropy (also known as spectral 

flatness)  

 

 

Figure 3. Scatter plots with binomial regression lines for potential non-linearly-related pairs of 

complexity measures. Two pairs of complexity measures of the EEG signals appeared to have 

noticeable non-linear relationships: (i) LZ and FD; and (ii) SSV and FD. Although these binomial 

relationships were - like their linear relationships - significant (p<0.0001), the binomial regressions 

produced less spread and appear to be truer representations of the relationships. 

EEG = electroencephalogram; LZ = Lempel-Ziv algorithmic complexity; FD = fractal dimension 

estimate (Higuchi method); SSV = spectral structure variability 
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[supplementary file] 

Data spreadsheet 1. Calculated complexity measures for 1100 EEG recordings. The following data 

are the results from MATLAB functions which calculated complexity measures for each EEG 

recording. 

ID = identification code as per Begleiter (1996); LZ = Lempel-Ziv algorithmic complexity; FD = fractal 

dimension estimate (Higuchi method); PE = permutation entropy; WE = Wiener entropy (also known 

as spectral flatness)  
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