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As more and more real time spatio-temporal datasets become available at increasing spatial and tempo-
ral resolutions, the provision of high quality, predictive information about spatio-temporal processes
becomes an increasingly feasible goal. However, many sensor networks that collect spatio-temporal
information are prone to failure, resulting in missing data. To complicate matters, the missing data is
often not missing at random, and is characterised by long periods where no data is observed. The perfor-
mance of traditional univariate forecasting methods such as ARIMA models decreases with the length of
the missing data period because they do not have access to local temporal information. However, if spa-
tio-temporal autocorrelation is present in a space–time series then spatio-temporal approaches have the
potential to offer better forecasts. In this paper, a non-parametric spatio-temporal kernel regression
model is developed to forecast the future unit journey time values of road links in central London, UK,
under the assumption of sensor malfunction. Only the current traffic patterns of the upstream and down-
stream neighbouring links are used to inform the forecasts. The model performance is compared with
another form of non-parametric regression, K-nearest neighbours, which is also effective in forecasting
under missing data. The methods show promising forecasting performance, particularly in periods of high
congestion.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades, the availability of (near) real time spatio-
temporal datasets has increased massively, with data routinely
being collected on transportation networks, communications net-
works, networks of environmental monitoring stations, the inter-
net and the world wide web amongst others. As a result, the
traditional problems of data scarcity and lack of computational
power that constrained research in the latter half of the 20th cen-
tury have been replaced with fresh challenges of data mining,
knowledge discovery and forecasting. Modelling of spatio-tempo-
ral data presents a unique set of problems as they often exhibit
spatio-temporal dependence, nonlinearity and heterogeneity,
which violate the normality assumption of classical statistics and
render standard statistical models such as ordinary least squares
(OLSs) ineffective. As a result, there has been great interest in
developing models to deal with such data.

The state of the art in statistical modelling of spatio-temporal
processes represents the outcome of several decades of cross-pol-
lination of research between the fields of time series analysis, spa-
tial statistics and econometrics. Some of the methods described in
the literature include space–time autoregressive integrated moving
ll rights reserved.
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average (STARIMA) models (Pfeifer & Deutsch, 1980) and vari-
ants, multiple ARIMA models, space–time geostatistical models
(Heuvelink & Griffith, 2010; Kyriakidis & Journel, 1999), spatial pa-
nel data models (Baltagi, 2005; Elhorst, 2003; Wooldridge, 2002),
geographically and temporally weighted regression (Huang, Wu,
& Barry, 2010) and eigenvector spatial filtering (Griffith, 2010). In
parallel to the development of statistical space–time models, there
was a multidisciplinary explosion of interest in non-parametric
machine learning methods, and many of these have been success-
fully adapted to work with spatio-temporal data due to their in-
nate ability to model complex nonlinear relationships. Examples
include artificial neural networks, support vector machines and
non-parametric regression techniques, and the texts of Kanevski
and Maignan (2004), Kanevski (2008) and Kanevski, Timonin, and
Pozdnukhov (2009) provide a good introduction to their applica-
tion to spatial problems. Generally, space–time forecasting models
have been developed to be applied to near complete space–time
series where there are few missing data and their performance suf-
fers when large amounts of data are missing.

Unfortunately, missing data is one of the major problems that
impacts on the application of spatio-temporal models to real life
problems. Missing data complicates the application of many
spatio-temporal models, and has been recognised as a problem in
various application areas including environmental monitoring
(Glasbey, 1995; Smith et al., 1996, 2003), video image reconstruc-
tion (Kokaram & et al., 1995) and hydrology (Amisigo & Van De
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Giesen, 2005). Many statistical space–time models require a com-
plete series to ensure the proper ordering of the temporal dimension
and calibration of parameters. Additionally, multivariate statistical
analyses rely on the calculation of means and covariance matrices.
Under missing data, their calculation is usually not admissible.
Covariance matrices calculated from incomplete data may not be
positive semidefinite and may produce negative eigenvalues, thus
affecting the application of methods such as principal components
analysis that rely on eigenvector decomposition (Schneider, 2001).

Missing data is usually a result of failure in the data collection
process, e.g. that caused by a faulty sensor. There are three types:
(1) missing completely at random, whereby the missing points are
independent of each other; (2) missing at random, whereby miss-
ing points are related to the neighbouring points; and (3) not miss-
ing at random, whereby the missing data has some pattern,
possibly linked to a long term sensor malfunction (Qu et al.
(2009)). These failures result in incomplete space–time series and
make accurate forecasting difficult or even impossible as no data
can mean no forecast. The alternative is to calculate estimates of
the missing values. The first two types of missing data can often
be modelled effectively using univariate methods due to their
short length. However, the latter type is more difficult to handle
due to the extended period of missing data where no local tempo-
ral information is available. This will be the focus of this study.

Furthermore, dealing with missing data can be implemented in
two settings, which is known as imputation in an offline setting
and forecasting in an online (real time) setting. Various offline
imputation methods have been used in the spatio-temporal mod-
elling literature, many of them based on principal components
analysis (Smith & et al., 1996) or expectation maximisation
(Schneider, 2001; Smith, Kolenikov, & Cox, 2003). However, there
has not been a great deal of research that has focussed specifically
on dealing with missing data in a real time setting, where its pres-
ence necessitates long range forecasting. One application domain
where researchers have begun to tackle this issue is transport
(van Lint, Hoogendoorn, & van Zuylen, 2005; Whitlock & Queen,
2000). This has been motivated by the frequently high levels of
missing data that are present on traffic monitoring networks.

In the next section, methods that are currently used for online
and offline imputation of traffic data are reviewed. This leads to
the development of a spatio-temporal approach to traffic forecast-
ing under missing data based on kernel-regression, which is intro-
duced in Section 3. Kernel regression is a non-parametric
regression technique that is used to estimate the conditional
expectation of a random variable. It is a memory based pattern
matching method that produces forecasts as a combination of his-
torical data points, weighted by a kernel function. The case study is
presented in Section 4, using unit journey time data collected on
London’s road network. The London Congestion Analysis Project
(LCAP) network is described, and a missing data analysis is carried
out to highlight the missing data issue. The experimental design is
then outlined. The results are presented and discussed in Section 5.
Finally, some conclusions and directions for future research are
given in Section 6.
2. Existing approaches in forecasting under missing data

Providing accurate, up to date information to road users is one
of the primary goals of intelligent transportation systems. Fore-
casting future traffic conditions typically involves the application
of algorithms that forecast based on the current conditions on
the network. Often, this is accomplished by univariate methods,
including statistical time series models such as ARIMA and sea-
sonal variants (Williams et al., 1998), neural networks (Dougherty,
1995; Dougherty & Cobbett, 1997) and non-parametric regression
(Smith, Williams, & Keith Oswald, 2002). Vlahogianni, Golias, and
Karlaftis (2004) provide a good review and Karlaftis and Vlahogianni
(2011) compare the relative merits of neural and statistical
approaches. More recently, there has been an increase in the
application of space–time models to transport network data. This
is a natural progression as traffic networks are systems of flows.
Flows observed at one spatial location at one time will be observed
at another location downstream at a later time. Furthermore,
Lighthill Witham Richards (LWRs) theory states that, in congested
conditions, shockwaves propagate in the opposite direction to the
flow of traffic (Lighthill & Whitham, 1955; Richards, 1956). These
phenomena can be clearly observed on highways, although they
are disrupted by exogenous factors in the urban environment.

Some of the spatio-temporal models that have been success-
fully applied to the forecasting of traffic variables to date include
space–time autoregressive integrated moving average (STARIMA)
(Kamarianakis & Prastacos, 2005), neural networks (van Lint
et al., 2005), Bayesian networks (Queen & Albers, 2008) and state
space models (Stathopoulos & Karlaftis, 2003). For forecasting to
be as successful as possible, it is desirable to have complete data.
However, traffic sensors are notoriously prone to failure, and some
sensor networks can experience capture rates of as low as 10–30%
(Sharma, Lingras, & Zhong, 2004). The missing data issue has led to
considerable interest in the development of offline imputation
methods. More recently, as real time forecasting has become a fea-
sible goal, methods are required to simultaneously deal with miss-
ing data and produce forecasts. In the following subsections, the
current methods for offline imputation and forecasting under miss-
ing data are reviewed.

2.1. Univariate imputation

Missing data is typically dealt with using offline imputation
techniques. In practice, simple time series or factor based ap-
proaches are often used which do not account for the dynamics
of the real traffic situation (Zhong, Lingras, & Sharma, 2004b).
However, in recent years, a number of more sophisticated ap-
proaches have been developed that attempt to improve estimates.
The studies of Zhong et al. (2004a, 2004b) and Sharma et al. (2004)
compared the performance of factor approaches and ARIMA with
genetically trained time delay neural networks (TDNNs) and lo-
cally weighted regression. The models were applied to hourly flows
from permanent traffic counters (PTCs) on the highway network in
Alberta, Canada. The best performing model was a seasonal local
regression model trained by a GA that made use of data from either
side of the failure.

A subsequent study by Zhong, Sharma, and Lingras (2006) pro-
posed a simple imputation method based on pattern matching
using data from before and after the failure. The method extracts
a candidate set of normalised traffic patterns from the historical
dataset and selects the best fitting pattern based on a minimum
squared error (MSE) between the candidate pattern and the pat-
tern under study. This best fitting pattern is then used to impute
the data. The method was tested on traffic count data collected
using permanent traffic counters (PTCs) on the ATR C002181 in
Alberta, Canada and was found to outperform factor approaches,
ARIMA and exponential moving average. The use of a single traffic
pattern for imputation may be appropriate for the smooth, hourly
data used in Zhong et al. (2006), but is unlikely to be sufficient
when applied to data of higher temporal resolution that is
corrupted by noise. This was recognised by Liu, Sharma, and Datla
(2008) who proposed a k-NN method for imputation of missing
traffic data during holiday periods. To determine the k neighbours,
a state vector is defined, augmented with historical averages (after
Smith et al., 2002). To take into account the ranking of the
neighbour set, the weights vary inversely with distance from the



Fig. 1. Spatial extent of the LCAP core links network (originally published in Cheng et al, 2011).
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state vector. The results of Zhong et al. (2004b, 2006) highlight the
effectiveness of simple pattern based approaches for imputation.

Qu et al. (2009) proposed a probabilistic principal components
analysis (PPCA) method for urban traffic flow imputation. The
authors note two desirable properties of PPCA. Firstly, it uses only
the major information and avoids overfitting faced by spline meth-
ods and regression methods. Secondly, the model parameters can
be computed directly from the data via efficient eigenvector
decomposition. The method can also be used to identify outliers
or unusual patterns in the data. Components that cause a notable
increase in variance and covariance in the original variables repre-
sent extreme values. The PPCA method is tested on 5 min flow data
from loop detectors in Beijing, China and is found to outperform
spline and historical imputation methods, particularly when the
ratio of missing data is high. It also produces imputed values that
are statistically consistent with the distribution of flow data.

2.2. Multiple imputation

The methods described thus far all make a single imputation for
each missing point. Their effectiveness is assessed by comparison
with validation data. However, in real situations where the data
is actually missing, this validation data is not available. Therefore,
having some indication of the reliability of the estimated data can
be important. In light of this, multiple imputation is a common ap-
proach. Ni et al. (2005) developed a multiple imputation method
for imputing traffic flow. The idea behind multiple imputation is
to simulate multiple random draws from a population in order to
estimate an unknown parameter. The expectation maximisation
(EM) algorithm is used to generate maximum likelihood estimates
of the missing values and these are used as inputs to a data aug-
mentation (DA) procedure which is run k times. The whole process
is repeated n times to produce n sets of imputed data. The consis-
tency of the missing data estimates can then be examined by ana-
lysing the distribution of the n sets.

Wang, Zou, and Chang (2008) proposed an alternative approach
that combines non-parametric regression techniques with multi-
ple imputation. k-NN is used as the imputation algorithm, with
the historical dataset first being categorised into free-flowing,
moderately congested and highly congested patterns. The current
traffic pattern is then assigned to one of these categories prior to
the k-NNs being computed. A second method further classifies
the data into different subsegments based on road characteristics.
The procedures are carried out multiple times to impute travel
times on 10 roadside detectors on the I-70 in Maryland, USA and
are found to outperform mean substitution and Bayesian forecast-
ing methods. In this method, spatial information is included
through the grouping of sensors into subsegments; however, there
is no discrimination between patterns collected on the sensor in
question and the adjacent sensors.

2.3. Spatio-temporal approaches

Univariate techniques can be very effective but their applicabil-
ity decreases with the length of the period of missing data. Many
imputation methods assume that missing data are sparsely located
within the series so that neighbouring temporal information can be
used for univariate forecasts. This is an unrealistic assumption as



Fig. 2. Location of the test network in Central London. (originally published in Cheng et al, 2011).

Table 1
Description of patch types used to replace missing data.

Patch
type

No. of missing
points

Interpolation method

1 None None
2 1 Average of adjacent observations
3 2–6 Interpolated from adjacent observations
4 >6 Replaced with historical profile data (average of

each time point)

J. Haworth, T. Cheng / Computers, Environment and Urban Systems 36 (2012) 538–550 541
sensors often malfunction and stop collecting data for several con-
secutive time periods, i.e. when data is missing not at random. Sur-
prisingly, the use of spatial information in imputation and
forecasting of traffic under missing data has not received much
attention in the literature, although some notable exceptions exist.
Whitlock and Queen (2000) proposed a dynamic graphical model
for forecasting traffic flows under missing data. In their approach,
the traffic flow at a measurement site is considered to be indepen-
dent of all other sites given its parents, which are its upstream
neighbours. Methods were developed for dealing with situations
where the data from one or more parents and/or children are miss-
ing. It was found that strong apriori knowledge of the missing ser-
ies, which can be assumed in most cases, resulted in good
performance. However, this is dependent on the regression param-
eters being fairly constant over time, which may not be the case in
an urban setting.

van Lint et al. (2005) developed a state space neural network
(SSNN) that is robust to missing data. It was discovered that train-
ing the SSNN with perfect data reduces its capacity to deal with
missing data. By incorporating simple imputation schemes such
as spatial interpolation and exponential smoothing, the algorithm
becomes less sensitive to missing data, despite slight changes in
the statistical properties of the input data. The method was shown
to outperform SSNN with no data imputation on simulated (FO-
SIM) data with up to 40% missing data. Additionally, the method
was tested on real highway data taken from the MONICA system
in the Netherlands and was shown to outperform the online esti-
mator being used at the time. This method highlights the impor-
tance of effective imputation, and it is likely that its accuracy
would be improved further if more accurate techniques were ini-
tially used to impute the missing data in the training set.

2.4. Summary

A range of imputation models have been described in the pre-
ceding subsections with varying degrees of sophistication, ranging
from simple univariate averaging methods to complicated spatio-
temporal neural network architectures which are capable of oper-
ating in a real time forecasting setting. It can be concluded that
univariate methods will usually perform well when the length of
missing data is short but that spatio-temporal models will be more
effective when extended periods of missing data are evident. Addi-
tionally, multiple imputation methods have benefits in terms of
interpreting uncertainty. However, in a real time forecasting
setting, multiple imputation methods are not appropriate as they
are computationally intensive. Computationally efficient models
are needed that are suitable for real time use. In the following



Table 2
Breakdown of data on the test network by patch type, 2009.

Link Count 1 Count 2 Count 3 Count 4 Perc. 1 Perc. 2 Perc. 3 Perc. 4

R1025 6676 884 1673 5743 44.58 5.90 11.17 38.35
R2301 3383 698 2406 8489 22.59 4.66 16.07 56.68
R2007 5291 532 745 8408 35.33 3.55 4.97 56.14
R1616 7875 805 1397 4899 52.58 5.38 9.33 32.71
R524 9689 1418 1970 1899 64.70 9.47 13.15 12.68
R463 10593 768 771 2844 70.73 5.13 5.15 18.99
R1593 12063 899 636 1378 80.55 6.00 4.25 9.20
R2324 10911 1474 1214 1377 72.86 9.84 8.11 9.19
R2085 2233 348 2542 9853 14.91 2.32 16.97 65.79
R432 13901 697 291 87 92.82 4.65 1.94 0.58
R1592 6327 1342 3306 4001 42.25 8.96 26.72
R425 13614 336 306 720 90.91 2.24 2.04 4.81
R2140 10501 584 1362 2529 70.12 3.90 9.09 16.89
R1384 7951 491 992 5542 53.09 3.28 6.62 37.01
R2079 4852 1087 4505 4532 32.40 7.26 30.08 30.26
R1419 14537 160 124 155 97.07 1.07 0.83 1.03
R474 10680 1606 1764 926 71.31 10.72 11.78 6.18
R1447 13634 367 208 767 91.04 2.45 1.39 5.12
R1623 4206 887 4336 5547 28.08 5.92 28.95 37.04
R2052 3084 547 3387 7958 20.59 3.65 22.62 53.14
R448 10261 1593 2377 745 68.52 10.64 15.87 4.97
R2055 12330 1450 1000 196 82.33 9.68 6.68 1.31
Avg. 8845.09 862.41 1696.00 3572.50 59.06 5.76 11.32 23.85
S.D. 3853.96 445.55 1290.33 3100.50 25.73 2.98 8.62 20.70

Fig. 3. Average patch type on the test network over 24 h.

Fig. 4. Average patch types for ei
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section, kernel regression is introduced as a method for forecasting
of space–time series under missing data that is both easy to inter-
pret and simple to implement. In addition, K-nearest neighbours,
which has been shown to be effective in univariate imputation, is
presented as an alternative method since it has not yet been used
in this setting.
3. Kernel regression for space–time forecasting

In the absence of local temporal information, it is necessary to
use local spatial information in order to obtain forecasts. The liter-
ature review in Section 2 revealed that relatively simple pattern
matching techniques such as locally weighted regression and
k-NN can be very successful in univariate imputation of traffic data.
However, there has been little research into the efficacy of such ap-
proaches when temporal information is not available. In this study,
kernel regression is applied to the problem of spatio-temporal traf-
fic forecasting under complete missing data. It is compared with
three additional models; two forms of K-Nearest Neighbours
(KNN) regression and a combined KR and KNN model. These are
introduced in turn in the following subsections. In order to define
these models, it is necessary to firstly define space–time series.
ght links of the test network.



Table 3
Percentage and count of forecastable points for each link in the upstream and downstream directions. ‘‘–’’
Indicates that there is no neighbour. Cells shaded in grey denote links that are removed from the analysis.
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3.1. Space–time series

A space–time series consists of N � S observations zð1Þ1 ; . . . ; zðSÞN of
a spatio-temporal process collected at t = 1, 2, . . . , N times which
are usually equally spaced; and s = 1, 2, . . . , S often irregularly
spaced locations. Under the missing data assumption, the value
of the series z(s)(t + s) at location s at time t + s is modelled as a
function of the value of the series at its spatial neighbours at s + l
at m previous times, where l is a spatial lag determining the sepa-
ration distance, s is the temporal lag determining the forecast hori-
zon and m is the embedding dimension. This leads to an embedded
series with the following form:

zðsÞtþs ¼ f zðsþlÞ
t ; zðsþlÞ

t�s ; . . . ; zðsþlÞ
t�ðm�1Þs

� �
ð1Þ

For ease of presentation, the LHS of Eq. (1) will be denoted Y(s)

and the RHS will be denoted X(s+l), leading to following equation:

Y ðsÞtþs ¼ f ðXðsþlÞ
t Þ ð2Þ

The spatial lag 1 is incorporated into the models using S � S spa-
tial weight matrices W1, W2, . . . , WL that determine the spatial
relationship between neighbouring locations. W1 is a binary [0,1]
matrix that contains all first order spatial relations between road
links, where 1 indicates that two road links are adjacent, zero
otherwise. Spatial weight matrices W2, . . . , WL contain the spatial
relations between road links up to spatial order L. For a given loca-
tion s and weight matrix W1, the space time series zðsÞtþs is con-
structed by concatenating the series for which wsj = 1.

3.2. Kernel regression

Kernel methods are a class of algorithms that are used for pat-
tern analysis tasks, including classification and regression. The best
known example is the support vector machine (SVM), which has
been shown to provide generalisation performance that either
matches or is significantly better than competing methods in a
wide range of applications (Burges, 1998). The performance gain
of kernel methods in general is provided by the use of kernels. A
kernel is a function k that for all x, x0 e X satisfies:
kðx; x0Þ ¼ h/ðxÞ;/ðx0Þ a
�

ngle ð3Þ

where / is a mapping from X to a feature space F (Shawe-Taylor and
Cristianini, 2004):

/ : x! /ðxÞ 2 F ð4Þ

Kernels define similarity functions between data patterns in
high, possibly infinite dimensional spaces, where linear algorithms
are applied to find nonlinear relations. This allows established and
theoretically well founded linear algorithms to be applied to non-
linear problems. Furthermore, explicit evaluation of the coordi-
nates of points in the feature space is not required, making
kernel methods computationally efficient.

In this study, kernel regression (KR) is used for forecasting
space–time series under missing data. Kernel regression (KR) is a
non-parametric regression technique simultaneously developed
by Nadaraya (1964) and Watson (1964) that is used to estimate
the conditional expectation of a random variable. It has been alter-
natively described as a general regression neural network (GRNN,
Specht, 1991). Given a set of n pairs of variables (X1, Y1), . . . , (Xn, -
Yn), the goal of KR is to estimate a regression function of Y on X
according to following equation:

mðxÞ ¼ EðY jX ¼ xÞ ð5Þ

Continuing with the notation from Section 3.1, a KR estimator
for the space–time series can be defined as follows:

Y ðsÞtþs ¼
PD

i¼1kðXðsþlÞ
t ; XðsþlÞ

i ÞY ðsÞiPD
i¼1kðXðsþlÞ

t ; XðsþlÞ
i Þ

ð6Þ

where i = 1, 2, . . . , D are the training data and k is a radial basis
function (RBF) kernel with bandwidth r:

kðx; x0Þ ¼ exp � jjx� x0
2 jj

2r2

 !
ð7Þ

The KR estimator gives a weighted average of the observed
independent variables Y ðsÞi and the denominator ensures that the
weights sum to 1. The RBF kernel in Eq. (7) is a Gaussian (bell-
shaped) function. It assigns higher weight to those training pat-
terns that are closer in Euclidean distance to the testing pattern.



(b)

(a)

Fig. 5. First order spatial weight matrices for the (a) upstream and (b) downstream directions.
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The tunable kernel parameter r determines the bandwidth of the
function, which allows the rate of distance decay to be controlled.
Selecting a large value for r results in a smooth function, while a
small value results in a more complex function. The bell shape of
the Gaussian function ensures that the weights tend to zero as
the distance between the test pattern and the training data in-
creases. Kernel functions of this form have been shown to perform
well in most applications, although many types of kernel have been
defined in different domains (see, for example, Cristianini &
Shawe-Taylor, 2004).
3.3. K nearest neighbours

To provide a benchmark for model performance in the missing
data setting, K Nearest Neighbours (KNN) is used. KNN is a
machine learning technique that has been widely used for classifi-
cation, regression and imputation (see e.g. Mitchell, 1997). The ba-
sic idea is to compute the distance (usually Euclidean) between a
test sample and each of the samples in a training set:

di ¼ kXðsÞt � XðsþlÞ
i k ð8Þ

where i = 1, 2, . . . , D are the training data. A forecast is made as a
function of the K nearest samples in the training set. This function
can take many forms and we consider two popular ones here. The
first and simplest is to produce the output as the average of the
neighbours. Using the notation from Section 3.1 and assuming the
K neighbours have been found, this can be written as equation:

Y ðsÞtþs ¼ 1 K
XK

i¼1

Y ðsÞi

,
ð9Þ



Table 4
Fitted model parameters.

Link Downstream Upstream

KR KNNavg KNndist KNNkernel KR KNNavg KNndist KNNkernel
Sigma K K Sigma K Sigma K K Sigma K

R425 0.075 99 92 0.25 100 0.025 84 100 0.25 84
R463 0.05 33 33 0.1 98
R474 0.05 97 97 0.25 97 0.05 100 100 0.25 100
R524 0.025 93 93 0.1 93
R1384 0.25 100 100 1 100
R1447 0.1 92 92 0.1 92
R1592 0.25 96 100 1 96
R1593 0.075 100 100 1 100 0.05 100 100 1 100
R1616 0.05 100 100 0.1 100
R2007 0.075 100 100 0.25 100
R2052 0.075 100 100 0.25 100
R2079 0.05 100 100 1 100 0.025 87 96 0.25 87
R2085 0.25 98 100 1 98 0.075 100 100 0.1 100
R2140 0.05 99 100 0.5 99 0.1 50 84 1 50
R2301 0.025 82 99 1 82
R2324 0.05 100 100 1 100

Fig. 6. Relationship between K and RMSE for the KNNavg model.
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where K is the number of neighbours. This model will be referred to
as KNNavg. The drawback of this approach is that it ignores the
ranking of the neighbours and assigns them equal weight regardless
of their similarity to the test pattern. This means that the distance
information contained in the ranking is lost. Therefore, a second ap-
proach that may perform better in practice is to apply an inverse
distance weighting function to the neighbours:

Y ðsÞtþs ¼
PK

i¼1 1=d2
i

� �
Y ðsÞiPK

i¼11=d2
i

ð10Þ

This model will be referred to as KNNdist and is similar to the
model used in Liu et al. (2008). It assumes that the usefulness of
a point Y ðsÞi for forecasting varies inversely with the square of the
distance between the corresponding training pattern XðsþlÞ

i and
the test pattern XðsÞt . This gives higher weight to those neighbours
that are closer to the test sample and avoids the issue of giving
high weight to samples that are high ranked neighbours but dis-
similar in terms of distance. The distance function in KNNdist
works in a similar way to the RBF kernel, but has two differences.
Firstly, it does not have a tunable bandwidth parameter and so has
less flexibility. Secondly, the shape of the function is different.
3.4. Combined model

In addition to the KNN and KR models, a third model is tested
that combines the ideas of both, which is referred to as KNNkernel.
It is basically KR on the set of K nearest neighbours and is given in
equation:

Y ðsÞtþs ¼
PK

i¼1k XðsþlÞ
t ;XðsþlÞ

i

� �
Y ðsÞiPK

i¼1k XðsþlÞ
t ;XðsþlÞ

i

� � ð11Þ

Note the difference from Eq. (6) that the summation is over K
rather than D, meaning that this equation has two parameters to
tune; r and K.
4. Case study

In this section, the case study data of travel times collected on
London’s road network is introduced and a data quality assessment
is carried out. The aim of this is to identify the types of missing
data the network faces in order to motivate the use of a spatio-
temporal forecasting approach. Following this, the experimental
design is outlined.
4.1. The LCAP data and test network

London, the capital city of the United Kingdom, is an urban con-
urbation with a population of around 8 million citizens. Being a
city with ancient origins, its ageing transport infrastructure strug-
gles to cope with the demands of modern commuting behaviour
and there has been a long term trend of increasing congestion. Dur-
ing the period from 1980/1992 to 2006/2009, average weekday
travel speeds in London fell by 18% in the morning peak period,
14% in the inter peak period and 12% in the evening peak period.
Overall, London’s roads account for around 20% of the congestion
in the UK, 75% of which is concentrated on just 0.5% of the nation’s
roads (Transport for London, 2010).

The London Congestion Analysis Project (LCAP) network is a sys-
tem of automatic number plate recognition (ANPR) cameras main-
tained by Transport for London (TfL) that monitor journey times on
London’s road network (Fig. 1). The system is link based, and cam-
eras placed at each end of a link read number (license) plates as
vehicles pass them. The individual journey time observations are
averaged over a 5 min period to give the journey time data (in sec-
onds) used in this study. Although data is available for the whole



Table 5
Root mean squared error on the training set.

Link Downstream Upstream Best model

KR KNNkernel KNNdist KNNavg KR KNNkernel KNNdist KNNavg

R425 0.041 0.041 0.040 0.040 0.048 0.048 0.049 0.048 KNNavg Down
R463 0.134 0.136 0.134 0.132 KNNavg Down
R474 0.276 0.271 0.272 0.271 0.250 0.245 0.254 0.245 KNNavg Up
R524 0.098 0.099 0.091 0.099 KNNdist Up
R1384 0.065 0.063 0.064 0.063 KNNkernel Up
R1447 0.100 0.100 0.102 0.100 KNNavg Down
R1592 0.074 0.073 0.073 0.073 KNNkernel Down
R1593 0.250 0.246 0.250 0.246 0.250 0.244 0.247 0.244 KNNkernel Up
R1616 0.080 0.080 0.081 0.080 KR Down
R2007 0.080 0.082 0.089 0.082 KR Down
R2052 0.100 0.100 0.100 0.100 KNNdist Up
R2079 0.071 0.070 0.070 0.070 0.071 0.070 0.071 0.070 KNNavg Up
R2085 0.059 0.059 0.059 0.059 0.059 0.059 0.061 0.059 KR down
R2140 0.043 0.043 0.043 0.043 0.041 0.040 0.040 0.040 KNNkernel Up
R2301 0.043 0.042 0.040 0.042 KNNdist Up
R2324 0.038 0.038 0.038 0.038 KNNkernel Up

Table 6
Root mean squared error on the testing set.

Link HA Downstream Upstream Best model

KR KNNkernel KNNdist KNNavg KR KNNkernel KNNdist KNNavg

R425 0.027 0.043 0.043 0.042 0.043 0.043 0.043 0.043 0.043 HA
R463 0.426 0.192 0.191 0.197 0.200 KNNkern Down
R474 0.576 0.359 0.364 0.364 0.364 0.339 0.346 0.346 0.346 KR Up
R524 0.076 0.082 0.082 0.082 0.082 HA
R1384 0.073 0.051 0.050 0.050 0.050 KNNavg Up
R1447 0.102 0.086 0.089 0.087 0.089 KR Down
R1592 0.055 0.064 0.062 0.062 0.062 HA
R1593 0.186 0.182 0.184 0.183 0.184 0.273 0.248 0.257 0.248 KR Down
R1616 0.292 0.096 0.097 0.097 0.097 KR Down
R2007 0.880 0.087 0.087 0.089 0.087 KR Down
R2052 0.152 0.101 0.100 0.100 0.100 KNNdist Up
R2079 0.130 0.075 0.073 0.073 0.073 0.075 0.075 0.075 0.075 KNNdist Down
R2085 0.129 0.100 0.100 0.100 0.100 0.100 0.102 0.102 0.102 KNNavg Down
R2140 0.056 0.052 0.052 0.052 0.052 0.059 0.056 0.056 0.056 KR Down
R2301 0.250 0.178 0.177 0.177 0.177 KNNavg Up
R2324 0.281 0.199 0.198 0.198 0.198 KNNavg Up

Fig. 7. Testing performance of link 425.
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ANPR network, a subsection is chosen in order to investigate the
feasibility of the methods (Fig. 2). A centrally located network
was chosen because the average link lengths are lower in the cen-
tral area, meaning that neighbouring locations are more likely to
provide meaningful information. The test network comprises 22
links which are those used in Cheng, Haworth, and Wang (2011).
Even on this small network, the link lengths vary considerably,
ranging from 473.4 m to 3.85 km with an average length of 1.4 km.

Thirty-five consecutive Tuesdays beginning on January 6th
2009 were selected for case study. Tuesday data only is chosen
as the behaviour of traffic is known to be different on different days
of the week and Tuesday is presumed to be close to an ‘average’



Fig. 8. Testing results for link 1384.
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weekday, separate from the influences of weekend traffic patterns.
The ANPR camera network was originally installed for operational
purposes so collecting journey time data is a secondary use. It is
prone to missing data as the technology is ageing and fails often.
The cameras also have difficulty identifying number plates in
highly congested conditions where there is insufficient headway
between vehicles. In the following subsection, the frequency and
types of missing data that are present on the network are exam-
ined in detail.
4.2. Missing data analysis

The ANPR data are subject to high levels of missing data, which
are imputed offline by TfL using a process called patching. Patching
involves replacing the missing values with estimates, which vary
according to the number of points that are missing in succession.
In total, there are four patch types, which are coded here from 1
to 4. A description of each patch type is given in Table 1.

The proportion of each patch type has a significant effect on the
usability of the data for forecasting purposes. Patch type 1 is the
desired patch type for obvious reasons as it indicates the presence
of real data. The effect of patch type 2 is likely to be small as it rep-
resents the absence of a single 5 min observation and the replace-
ment value is calculated from the true observed traffic pattern.
Patch type 3 is of more concern, particularly as the size of the
gap increases. Six points missing corresponds to 30 min at the
5 min aggregation, and the dynamics of the traffic pattern can be
lost in this time window. With patch type 4, all local information
about the current conditions on the link is lost. Roughly, the patch
types can be categorised according to the definitions of Qu et al.
(2009), with patch types 2–4 being missing completely at random,
missing at random and missing not at random respectively. Table 2
shows the percentage of each patch type recorded on each of the
links in the test network over the course of 2009.

On examining Table 2, it is evident that missing data is a serious
issue on the LCAP network, the average percentage of patch type 1
is just 59%. Worryingly, the standard deviation of this figure is very
high at 25.7%, indicating that some links have very high data qual-
ity and some have very low data quality. This is reflected in the
average percentage of patch type 4; 23.9% with a standard devia-
tion of 20.7%. However, missing data is less problematic if it is
present at times where accurate forecasts are less important such
as during the night.

It can be seen from Fig. 3 that the lowest capture rates are be-
tween the hours of around 8 pm and 7 am. The most likely reason
for this is fewer cars being on the road at night time and, possibly,
low light conditions affecting the cameras. Between 7 am and
8 pm, the average patch type is between 1.5 and 2. However, there
is significant spatial variation in the level of patching; Fig. 4 shows
the average patch types for eight links in the test network.

It can be seen that while some links such as link R524 and
R2324 have average patch types during the daytime of less than
1.5, other links such as R2301 and R2007 have average patch types
approaching 3. These abnormally low capture rates are caused by
periods where sensors collected no data for a number of consecu-
tive days and can be attributed to data that is ‘‘not missing at ran-
dom’’ (Qu et al., 2009). Times where there are long term sensor
failures are the most difficult to forecast because there is a com-
plete lack of local temporal information. They almost certainly re-
quire a spatio-temporal approach to ensure an acceptable level of
accuracy. It is these situations that we attempt to forecast in this
study.
4.3. Experimental design

For the empirical example, only data between 6 am and 9 pm
are used as the night time data was shown in the previous subsec-
tion to exhibit very high levels of patching. The data are converted
to unit journey times (UJT) to provide a relative measure of link
performance and are normalised to fall within the range [0,1].
The 35 Tuesdays are separated into three sets; 25 days for training
and validation and 10 days for testing. K-fold cross validation is
used to train each of the models. The training data is divided into
k = 5 equal sets and each one is used in turn as the validation set.
Although this means that future information is used to forecast
the past in the training phase, it is assumed that the traffic situa-
tion on consecutive Tuesdays is independent so this does not bias
the model. The values of the parameters that were tested were
K = 1, 2, . . . , 100 and r = 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5,
0.75, 1. The range of r was determined using a rough initial search
for parameter values. In each case, the embedding dimension of the
series is set to 3. Once the models are trained, they are used to fore-
cast the 10 days of testing data.

The high level of missing data complicates the experimental
design because, in order to get results that can be validated, it is
necessary to have unpatched data available for both the target link
and its neighbouring links. Including patched data in the testing
patterns would bias the results as they are often interpolated from
future observations. To get the most comprehensive set of results
possible, the models were tested on all situations where no
patched data were present. Table 3 shows the number and
percentage of forecasts that are possible for each link.
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It can be seen that many of the links have a very low count of
forecastable points. It is decided to remove those links and direc-
tions from the analysis where the percentage of forecastable points
is below 5% (shaded grey in Table 3). This leads to links 432, 448,
1025, 1419, 1623 and 2055 being removed from the analysis com-
pletely. A consequence of the low capture rates is that few of the
links have good data quality data in both the upstream and down-
stream directions, which makes it difficult to create combined fore-
casts. Therefore, it is decided to use upstream and downstream
separately in order to create two forecasts for each link. Two sep-
arate embedded space–time series are created using separate
weight matrices for the upstream and downstream directions,
which are shown in Fig. 5.

4.4. Benchmark model

The performance of the spatio-temporal models is tested
against the best available univariate method. As mentioned in Sec-
tion 2, there are various univariate methods that have been used to
model traffic data but these naturally rely on at least some local
temporal information being available. In the absence of such infor-
mation, the best estimate available is an average over the historical
dataset. Therefore, the benchmark univariate model is the histori-
cal average (HA):

Y ðsÞðtþsÞ ¼
1
P

XP

i¼1

Y ðsÞðt�iqÞþs ð12Þ

where i = 1, 2, . . . , P is the number of days in the training data and q
is the day length. The HA model is one of the simplest forecasting
models available. Therefore, any more sophisticated model must
outperform it as a minimum requirement. As HA does not take into
account current spatial and temporal information, it will only per-
form well when conditions are close to average.

5. Experimental results

Table 4 shows the selected model parameters for each of the
models in the upstream and downstream directions. The KNN
based models tend to have values of k around 100. Fig. 6 shows
the relationship between training error and k for the KNNavg mod-
el. A similar relationship can be observed on each of the other KNN
based models.

Training error decreases rapidly as k increases to a value of
around 20, after which it levels off. Although the minimum errors
are generally found at k � 100, the performance increase from
exceeding this number is minimal. In terms of the KR model, the
optimal values of r vary from 0.05 to 0.25. This reflects the differ-
ences in variability on each of the test links.

Table 5 shows the training performance of each of the models
(the HA model is not shown here as it does not require training).
It can be seen that the performance of each of the models on each
link is generally quite similar, which is due to the fact that they are
all based on the Euclidean distance metric and hence all use a sim-
ilar measure of similarity. The relative training performance of up-
stream and downstream neighbours is also fairly similar in most
cases, indicating that upstream and downstream are equally suit-
able for forecasting under missing data.

Table 6 shows the testing results for each of the models in the
upstream and downstream directions. As was the case in the train-
ing process it can be seen that, for the most part, there is very little
difference in performance between each of the pattern based mod-
els on each of the links. However, the pattern based methods out-
perform the HA method on all but three of the test links. The main
reason for this is that they harness the local spatial information
from the spatial neighbourhood in order to produce forecasts. This
means they are able to capture the current conditions on the road
network. We will now examine two situations in detail; (1) where
the non-parametric models underperform; (2) where the non-
parametric models outperform the benchmark model.

Fig. 7 shows the performance of the models on link 425. For pre-
sentation purposes, only the best performing pattern based meth-
od is shown, which is KNNdist downstream. On this link, the
historical average model performed best. The reason for this is
clear; the pattern of traffic changed little from week to week dur-
ing the test period, with sharp morning and evening peaks ob-
served with an intervening period of lower travel times. The
pattern based models are able to model the general trend; how-
ever, they have a tendency to over forecast some of the peaks,
for example on the AM peaks of the 4th and 6th days of the test
period. The implication of this is that congestion occurred on link
2140 downstream of link 425 at these times but that this conges-
tion remained spatially isolated.

This is contrary to traffic flow theory as congestion is expected
to propagate from downstream to upstream. It is a significant find-
ing because it provides insights into the dynamics of spatio-tempo-
ral autocorrelation on urban road networks. Urban roads are
different to highways because there are various factors that disrupt
the flow of traffic such as signals, pedestrian activity and stationary
vehicles (loading and unloading, etc.). In addition to this many sen-
sor networks, including the one used in this study, are spatially
sparse meaning that there is a lot of uncertainty as to what is hap-
pening between two sensor locations (Qu et al., 2009), particularly
if there are many entries and exits on a particular link. These fac-
tors mean that the strength of the correlation between locations
is dynamic in time and heterogeneous in space, which was a find-
ing of our previous study (Cheng et al., 2011). Sometimes conges-
tion on a section of road will have a spatio-temporal effect and
sometimes it will remain spatially isolated. Although it is beyond
the scope of this study, consideration of which congestion events
are likely to have a spatio-temporal effect and which are likely to
remain isolated will be an interesting topic for future research.

Fig. 8 shows an example where the pattern matching models
outperformed the HA model. On this link (link 1384), there was
considerable variability in UJTs from week to week. On some
weeks, UJT remained low throughout the day. However, there were
2 days in the test period that exhibited unusually high UJT levels
during the AM peak period. These peaks can be seen as non-recur-
rent congestion, i.e. congestion caused by incidents, roadworks,
special events and other unusual events. It is during these types
of events that the availability of accurate current and predictive
information is critical because they have the greatest impact on
road users’ journey times. The historical average model, by defini-
tion, is unable to capture any of this variability and systematically
under or over forecasts the AM peak times. On the other hand, the
pattern matching method successfully captures both of the large
peaks. The implication of this result is that congestion was ob-
served concurrently on link 1384 and its upstream neighbour, link
2140. It is likely that the direction of influence was from down-
stream to upstream in this case in accordance with traffic flow the-
ory. Essentially, the influence of link 1384 on link 2140 is implicitly
captured and used to forecast in the opposite direction. A conse-
quence of this is that there is likely to be a temporal lag in the fore-
cast values, which is evident on the 4th and 6th days. However,
when downstream information is not available, as is the case here,
this is an acceptable compromise.

For the most part, the non-parametric regression algorithms are
also able to model the days where UJT is lower than average,
although they over forecast UJT in the PM peak on some days, nota-
bly the 1st, 2nd and 3rd days. Whilst over estimation of UJTs may
be less of a concern than underestimation in the context of real
time forecasts, this type of error would affect the calculation of
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diagnostic statistics in the data that may be required offline for
operational purposes and must be dealt with in future work. How-
ever, it should be noted that the HA model also overestimates the
first 3 days of the testing set, indicating that link 1384 was experi-
encing a sustained period of lower than average UJTs over this
time. It is possible that this was not reflected in the space of train-
ing patterns, which exposes one of the weaknesses of memory
based approaches.

6. Conclusions

In this study, kernel regression was employed to forecast the fu-
ture values of a space–time series using spatial neighbourhood
information under the assumption of data that is missing not at
random due to sensor failure. Furthermore, three types of KNN
model were built for comparison purposes. Each of the methods
significantly outperforms the historical average benchmark model
in the majority of cases. They have the additional benefit of being
able to forecast situations where the level of the series is higher
than average, indicating strong performance in extreme conditions
when accurate forecasts are more important. The methods all dis-
play similar performance, however, the KR, KNNdist and KNNavg
models are desirable as they have only a single parameter to train.

The methods show promise for application to spatio-temporal
datasets that exhibit high levels of missing data. One of the main
advantages of pattern matching approaches is their ease of inter-
pretation and implementation, which is a benefit over complicated
statistical models and ‘‘black box’’ methods such as neural net-
works. However, they do require a database of training patterns
to be stored and accessed from memory each time a forecast is
made. It is essential that the methods presented here are scalable
for implementation in real time on a network scale as the intention
is to apply them to the entire LCAP network, which comprises
around 1000 road links. They are well suited to this type of appli-
cation for the following reasons: Firstly, the models are trained lo-
cally (one model per location), and as such applying them to a large
network can be seen as an embarrassingly parallel problem (Harris
& et al., 2010). Emerging parallel computing technologies such as
general purpose graphics processing units (GPGPUs) and distrib-
uted computing resources can be used to achieve this goal. Sec-
ondly, the methods described here do not require a fixed model
to be trained. Once the kernel bandwidth and/or number of neigh-
bours have been determined, they respond to changes in the traffic
state in the spatio-temporal neighbourhood and access patterns
from the historical database accordingly. Therefore, the historical
database is not required to remain fixed and the algorithms are
all well suited to online application.

There are many ways in which this could be achieved, the sim-
plest of which is to add each new test pattern to the historical data-
set as it is encountered. However, this would lead to a continual
growth in the size of the dataset and an unacceptable increase in
computation time. To counter this, the size of the dataset could
be fixed and the oldest pattern removed each time a new pattern
is added in a sliding window approach. However, this has the
drawback that some of the more useful patterns may be removed,
while less interesting patterns remain. A more appropriate option
may be to pass each new pattern through a filter, and retain it if
it is novel and discard it otherwise. This process could also be used
to minimise the database size in the model training stage.

A complementary approach that could be taken would be to
examine where the K nearest neighbours are drawn from for each
forecast point. It is likely that they will tend to be drawn from the
training data at similar times of day, which would motivate the
development of seasonal non-parametric regression models. Con-
versely, when dealing with non-recurrent events, the methods
would benefit from access to a wider set of patterns that are not
necessarily local in space but are representative of extreme
conditions.

One of the main difficulties when trying to forecast missing data
by any method is uncertainty about the results. The case study
outlined here considers the simple case of using single upstream
and downstream neighbours to forecast UJT on a road link. One
deficiency of this approach is that it sometimes cannot distinguish
between spatially isolated, short term events and permanent
changes in the traffic state. This highlights the complicated spa-
tio-temporal correlation structures that exist on the road network.
A use of nonlinear correlation measures such as mutual informa-
tion could help to untangle some of these relationships in order
to improve forecasts.

Although the results are promising, there is scope for consider-
ing a larger spatial neighbourhood of upstream and downstream
links. By taking into account conditions on the wider network, it
may be possible to better estimate which events are localised
and which will lead to measurable spatio-temporal effects.
Additionally, the use of more spatial information may provide
some insights into the uncertainty of forecasts. For instance, if
one were to make forecasts using a number of spatial neighbours,
the forecasts could be assessed for their individual consistency and
combined in a multiple imputation setting. This could be further
enhanced through the use of anisotropic kernels, whereby different
kernel bandwidths are trained for each spatial neighbour.
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