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Inferring dynamic biochemical networks is one of the main challenges in systems biology. Given experimental data, the objective
is to identify the rules of interaction among the different entities of the network. However, the number of possible models fitting
the available data is huge, and identifying a biologically relevant model is of great interest. Nested canalyzing functions, where
variables in a given order dominate the function, have recently been proposed as a framework for modeling gene regulatory
networks. Previously, we described this class of functions as an algebraic toric variety. In this paper, we present an algorithm that
identifies all nested canalyzing models that fit the given data. We demonstrate our methods using a well-known Boolean model of
the cell cycle in budding yeast.

1. Introduction

Inferring dynamic biochemical networks is one of the
main challenges in systems biology. Many mathematical and
statistical methods, within different frameworks, have been
developed to address this problem, see [1] for a review of
some of these methods. Starting from experimental data
and known biological properties only, the idea is to infer
a “most likely” model that could be used to generate the
experimental data. Here the model could have two parts.
The first one is the static network which is a directed graph
showing the influence relationships among the components
of the network, where an edge from node y to node x
implies that changes in the concentration of y could change
the concentration of x. The other part of the model is
the dynamics of the network, which describes how exactly
the concentration of x is affected by that of y. Due to
the fact that biological networks are not well understood
and the available data about the network is usually limited,
many models end up fitting the available information, and
the criteria for choosing a particular model are usually
not biologically motivated but rather a consequence of the
modeling framework.

A framework that has long been used for modeling gene
regulatory networks is time-discrete, finite-space dynamical
systems. This includes Boolean networks [2], Logical models
[3], Petri nets [4], and algebraic models [5]. The latter
is a straightforward generalization of Boolean networks to
multistate systems. Furthermore, in [6], it was shown that
logical models as well as Petri nets could be viewed and
analyzed as algebraic models. The inference methods we
develop here are within the algebraic models framework. To
be self-contained, we briefly describe this framework and
state some of the known results that we need in this paper,
see [5–8] for more details. Throughout this paper, we will
be talking about gene regulatory networks; however, the
methods apply to biochemical networks in general.

Suppose that the gene regulatory network that we want
to infer has n genes and that we have a set D of r state
transition pairs (s j , t j), j = 1, . . . , r. The input s j and the
output t j are n-tuples of 0 and 1 encoding the state of genes
x1, . . . , xn. Real-time data points are not Boolean but could be
discretized (and in particular, could be made Boolean) using
different methods [9]. The goal is to find a model:

f = ( f1, f2, . . . , fn
)

: Fn2 −→ Fn2 , (1)
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such that for j = 1, . . . , r:

f
(

s j
)
=
(
f1
(

s j
)

, . . . , fn
(

s j
))
= t j . (2)

Notice that, since any function over a finite field is a
polynomial, each fi is a polynomial. An algorithm that finds
all models f is presented in [5]. This is done by identifying,
for each gene i, the set of all possible functions for fi. This set
can be represented as the coset f + I , where f is a particular
such function, and I ⊂ F2[x1, . . . , xn] is the ideal of all
Boolean polynomials that vanish on the input data set, that
is, I = I({s1, . . . , sr}). The algorithm in [5] then proceeds
to find a particular model from the model space f + I . The
chosen model, which is the normal form of f in the ideal
I , depends on the term ordering used in the Gröbner bases
computation. So different ordering of the variables (genes)
might lead to the selection of different models. This presents
a problem as the term ordering, which is a needed for
computational reasons, clearly influence the model selection
process.

Several modifications have since been presented to
address this problem. For example, in [10], using the
Gröbner fan of the ideal I , the authors developed a method
that produces a probabilistic model using all possible normal
forms. Other improvements on this algorithm can be found
in [11, 12].

Another approach toward improving the model selection
process is by restricting the model space f + I by requiring
not only that the chosen model fits the data but also
satisfing some other conditions, such as its network being
sparse or scale-free, the polynomials fi being monomials, the
dynamics of the model having some desirable properties such
as fixed points are the only limit cycles (i.e., starting from
any initialization, the model always reaches a steady state),
or that the model is robust and stable which could roughly
mean that the number of attractors in the phase space is
small. In a nutshell, some but not all functions in the model
space f + I are biologically relevant, and hence restricting
the space to only relevant models will improve the model
selection process.

By desiring a particular property, several classes of func-
tions have been proposed as biologically relevant functions
such as biologically meaningful rules [13], certain postclasses
of Boolean functions have been studied in [14], and chain
functions in [15], to name few. Another class of Boolean
functions, which was introduced by Kauffman et al. [16], is
called (nested) canalyzing functions (NCF), where an input
to a single variable exclusively determines the value of the
function regardless of the values of all other variables. This
is a natural characterization of “canalisation” which was
introduced by geneticist Waddington [17] to represent the
ability of a genotype to produce the same phenotype regard-
less of environmental variability. Indeed, known biological
functions have been shown to be canalyzing [18, 19], and
Boolean nested canalyzing networks to be robust and stable
[16, 19, 20].

For the purpose of restricting the model space f +
I of all Boolean polynomial models to NCFs only, we

previously studied nested canalyzing functions, gave nec-
essary and sufficient conditions on the coefficients of a
boolean polynomial function to be nested canalyzing, and
showed that NCFs are nothing but unate cascade functions
[7]. Furthermore, in [8], the class of all nested canalyzing
functions is parameterized as the rational points of an affine
algebraic variety over the algebraic closure of F2. This variety
was shown to be toric, that is, defined by a collection of
binomial polynomial equations. In this paper, we present
an algorithm that restricts the model space to only nested
canalyzing functions by identifying all NCFs from the model
space f + I that fit the given data set.

In the next section, we briefly recall some definitions and
results from [7, 8]. Our algorithm is presented in Section 3,
and its implementation in Singular is discussed in Section 4.
Before we conclude this paper, we demonstrate the algorithm
in Section 5, where we identify all nested canalyzing models
for the cell cycle in budding yeast using time course data from
the Boolean model in [21].

2. Nested Canalyzing Functions: Background

We recall some of the definitions and the results from [7,
8] that we need to make this presentation self-contained.
Throughout this paper, when we refer to a function on
n variables, we mean that h depends on all n variables,
that is, for i = 1, . . . ,n, there exists (a1, . . . , an) ∈ Fn2
such that h(a1, . . . , ai−1, ai, ai+1, . . . , an) /=h(a1, . . . , ai−1, 1 +
ai, ai+1, . . . , an).

Definition 1. Let h be a Boolean function on n variables, that
is, h : Fn2 → F2:

(i) the function h is a nested canalyzing function (NCF)
with respect to a permutation σ on the n variables,
canalyzing input value ai and canalyzed output value
bi, for i = 1, . . . ,n, if it can be represented in the form:

h(x1, x2, . . . , xn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 if xσ(1) = a1,

b2 if xσ(1) /= a1, xσ(2) = a2,

b3 if xσ(1) /= a1, xσ(2) /= a2,

xσ(3) = a3,
...

...

bn if xσ(1) /= a1, . . . , xσ(n−1) /= an−1,

xσ(n) = an,

bn if xσ(1) /= a1, . . . , xσ(n) /= an;
(3)

(ii) the function h is nested canalyzing if h is nested
canalyzing with respect to some permutation σ ,
canalyzing input values a1, . . . , an and canalyzed
output values b1, . . . , bn, respectively.

Remark 2. The definition above has been generalized to
multistate functions in [22], where it is also shown that
the dynamics of these functions are similar to their Boolean
counterparts. In [23], the authors introduce what they called
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kinetic models with unate structure, which are continuous
models having the canalization property, and they presented
an algorithm for identifying such models.

Using the polynomial form of any Boolean function, the
ring of Boolean functions is isomorphic to the quotient ring
R = F2[x1, . . . , xn]/J , where J = 〈x2

i −xi : 1 ≤ i ≤ n〉. Indexing
monomials by the subsets of [n] := {1, . . . ,n} corresponding
to the variables appearing in the monomial, the elements of
R can be written as

R =
⎧
⎨

⎩

∑

S⊆[n]

cS
∏

i∈S
xi : cS ∈ F2

⎫
⎬

⎭. (4)

As a vector space over F2, R is isomorphic to F2n
2 via the

correspondence:

R 	
∑

S⊆[n]

cS
∏

i∈S
xi ←→

(
c∅, . . . , c[n]

) ∈ F2n
2 . (5)

The main result in [7] is the identification of the set of
nested canalyzing functions in R with a subset Vncf of F2n

2 by
imposing relations on the coordinates of its elements.

Definition 3. Let σ be a permutation of the elements of the
set [n]. We define a new order relation <σ on the elements
of [n] as follows: σ(i)< σσ( j) if and only if i < j. Let rσS be
the maximum element of a nonempty subset S of [n] with
respect to the order relation <σ . For any nonempty subset S
of [n], the completion of S with respect to the permutation σ ,
denoted by [rσS ], is the set [rσS ] = {σ(1), σ(2), . . . , σ(rσS )}.

Note that, if σ is the identity permutation, then the
completion is [rS] := {1, 2, . . . , rS}, where rS is the largest
element of S.

Theorem 4. Let h ∈ R, and let σ be a permutation of the
set [n]. The polynomial h is nested canalyzing with respect
to σ , input value ai and corresponding output value bi, for
i = 1, . . . ,n, if and only if c[n] = 1 and, for any proper subset
S ⊆ [n]:

cS = c[rσS ]

∏

σ(i)∈[rσS ]\S
c[n]\{σ(i)}. (6)

Corollary 5. The set of points in F2n
2 corresponding to the set of

all nested canalyzing functions with respect to a permutation σ
on [n], denoted by Vncf

σ , is defined by

Vncf
σ =

⎧
⎪⎨

⎪⎩

(
c∅, . . . , c[n]

) ∈ F2n
2 : c[n] = 1, cS = c[rσS ]

×
∏

σ(i)∈[rσS ]\S
c[n]\{σ(i)}, for S ⊆ [n]

⎫
⎪⎬

⎪⎭
.

(7)

It was shown in [8] that Vncf
σ is an algebraic variety, and

its ideal I(Vncf
σ ) is a binomial prime ideal in the polynomial

ring F2[{cS : S ⊆ [n]}], where F2 is the algebraic closure of
F2. Namely,

Iσ = I
(
Vncf
σ

)

=
〈

c[n] − 1, cS − c[rσS ]

∏

σ(i)∈[rσS ]\S
c[n]\{σ(i)} : S ⊂ [n]

〉

.

(8)

Furthermore, the variety of all nested canalyzing func-
tions is

Vncf =
⋃

σ

Vncf
σ , (9)

and its ideal is

I
(
Vncf

)
=
⋂

σ

Iσ . (10)

In the next section, we identify the set f + I with the
rational points in an algebraic affine variety. This will allow
us to identify all nested canalyzing functions in the model
space f + I .

3. Nested Canalyzing Models

Recall that we are given the data set D =
{(s1, t1), . . . , (sr , tr)} ⊂ Fn2 × Fn2 . The model space could
be presented by the set f + I , where f = ( f1, . . . , fn) and, for
i = 1, . . . ,n,

fi(x1, . . . , xn) =
r∑

j=1

t j,i

n∏

e=1

(
1−

(
xe − s j,e

))
. (11)

In particular, fi is a polynomial that interpolates the data for
gene i and I is the ideal of points of {s1, . . . , sr}. Furthermore,
the ideal I is a principal ideal in the ring R/J :

I = I({s1, . . . , sr})

=
r⋂

j=1

I
({

s j
})

=
r⋂

j=1

〈
x1 − s j,1, . . . , xn − s j,n

〉

=
r⋂

j=1

〈

1−
n∏

e=1

(
1−

(
xe − s j,e

))〉

=
〈 r∏

j=1

⎛

⎝1−
n∏

e=1

(
1−

(
xe − s j,e

))
⎞

⎠

〉

.

(12)

Now a polynomial h ∈ fi + I if and only if h =
fi + g(x1, . . . , xn)

∏r
j=1(1 − ∏n

e=1(1 − (xe − s j,e))), for some
polynomial g, say g = ∑

H⊆[n] bH
∏

i∈Hxi. By expanding
the right-hand side and collecting terms, we get that
h = ∑

S⊆[n] WS(bH , s j , t j)
∏

l∈Sxl, where for S ⊆ [n], the
coefficient WS(bH , s j , t j) is determined by bH , s j , t j for all
H ⊆ [n] and j = 1, . . . , r.

The proof of the following theorem follows directly from
Theorem 2.4.2 in [24].
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Theorem 6. Consider the ring homomorphism:

Φ : F2[{cS : S ⊆ [n]}] −→ F2[{bH : H ⊆ [n]}] (13)

given by, for S ⊆ [n],

cS �−→WS

(
bH , s j , t j

)
. (14)

Then ker(Φ) is the ideal of all polynomials that fit the data set
D. In particular, the rational points in the variety V(ker(Φ)) is
the set of all models that fit the data set D, namely f + I .

Since the ideal of all NCFs is I(Vncf), the following
corollary is straightforward.

Corollary 7. The ideal of all nested canalyzing functions that
fit the data set D is I(Vncf) + ker(Φ).

Remark 8. It is clear that the model space of Boolean
functions is huge, since the number of monomials grows
exponentially in the number of variables. For example, if a
function has 5 inputs, there are 25 = 32 different monomials
in 5 variables, and hence 232 = 4, 294, 967, 296 different
Boolean functions. This clearly shows that a search for NCFs
inside the model space is computationally not feasible, which
justifies the need for algorithms like the one above.

4. Algorithm

In this section, we present an algorithm for identifying all
nested canalyzing models from the model space of a given
data set.

Input. A wiring diagram, that is, a square matrix of dimen-
sion n, describing the influence relationships among the n
genes in the network. For each variable xi, a table consisting
of the rows (s j,i1 , . . . , s j,is , t j,i), j = {1, . . . , r}, where i1, . . . , is
are the indices of the genes that affect xi, as specified in the
wiring diagram.

Output. For each variable, the complete list of all nested
canalyzing functions interpolating the given data set on the
given wiring diagram. A function is in the output if it is
nested canalyzing in at least one variable order. If needed,
the code can easily be modified to find only nested canalyzing
functions of a particular variable order.

Algorithm 9. It is a well-known fact, that a Gröbner basis for
the kernel of Φ is a basis for 〈{cS−WS : S ⊆ [n]}〉 intersected
with the ring F2[{cS : S ⊆ [n]}] ([24], Theorem 2.4.2)
Using a similar notation as above, the algorithm is outlined
as follows:

use ring F2[{x1, . . . , xn, bS, cS : S ⊆ [n]}];

define I(Vncf) as ideal in F2[{cS : S ⊆ [n]}];

define h =∑H⊆[n] bH
∏

i∈Hxi;

define q =∑H⊆[n] cH
∏

i∈Hxi;

compute the polynomial p that generates I as in (12);

for each variable xi do

(1) compute fi as in (11);

(2) let g = fi + h∗ p; its coefficients are the same as
WS above;

(3) compute a Gröbner basis G for the ideal
generated by the coefficients of g − q using any
elimination order to eliminate all bS from G;

(4) concatenate generators of G and I(Vncf);

(5) compute the primary decomposition of G +
I(Vncf) to obtain necessary and sufficient con-
ditions on the coefficients of all NCFs fitting the
data set D;

End.

An implementation of this algorithm is available as a Singular
library [25, 26].

5. Application: Inferring the Cell Cycle
Network in Budding Yeast

The interactions among proteins constitute complex molec-
ular networks that regulate cell behavior such as the decision
to undergo cell division. We use data points generated by
a previously published model of the cell-cycle regulatory
network of the budding yeast Saccharomyces cerevisiae to
demonstrate the algorithm described in this paper [21]. The
model is a Boolean model, where nodes represent proteins
and edges describe protein interactions that are either
activating or inhibiting. Proteins are updated according to
a threshold rule, that is, a protein is activated, respectively
deactivated, if the weighted sum of the activating input
proteins is greater than, respectively less than, the weighted
sum of the inhibiting input proteins. The model contains
the key regulators of the cell cycle process and the known
interactions among these regulators. This model captures the
known features of the global dynamics of the cell cycle, it is
robust and stable, and the trajectory of the known cell-cycle
sequence is a stable and attracting trajectory as it has 1764
states out of the total number of 2048 states. The remaining
states are distributed into 6 small trajectories.

In this section, we use the time course corresponding to
the biological cell-cycle sequence, see Table 1, to infer nested
canalyzing models of the cell cycle. That is, assuming the
same wiring diagram as the threshold model in [21], we use
our algorithm to identify, for each gene in the network, all
nested canalyzing functions that fit the cell cycle sequence.

We start by describing the model. There are twelve
nodes that represent eleven proteins and a start signal. The
proteins are members of the following three classes: cyclins
(Cln1,2, Cln3, Clb1,2, and Clb5,6), inhibitors, degraders,
and competitors of cyclin complexes (Sic1, Cdh1, Cdc20,
and Cdc14), and transcription factors (SBF, MBF, Swi5, and
Mcm1/SFF). This simplified network (Figure 1) is almost
identical to the network in [21], where the only difference is
that we do not force self-degradation, as it was added to some
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Table 1: The temporal evolution of the Boolean cell-cycle model in [21]; corresponding to the biological cell-cycle sequence.

Time Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc14,20 Clb5,6 Sic1 Clb1,2 Mcm1/SFF

1 1 0 0 0 1 0 0 0 1 0 0

2 0 1 1 0 1 0 0 0 1 0 0

3 0 1 1 1 1 0 0 0 1 0 0

4 0 1 1 1 0 0 0 0 0 0 0

5 0 1 1 1 0 0 0 1 0 0 0

6 0 1 1 1 0 0 0 1 0 1 1

7 0 0 0 1 0 0 1 1 0 1 1

8 0 0 0 0 0 1 1 0 0 1 1

9 0 0 0 0 0 1 1 0 1 1 1

10 0 0 0 0 0 1 1 0 1 0 1

11 0 0 0 0 1 1 1 0 1 0 0

12 0 0 0 0 1 1 0 0 1 0 0

13 0 0 0 0 1 0 0 0 1 0 0

SBF

Cln1,2

Cdh1

Mcm1
/SFF

Swi5

Sic1
Clb5,6

MBF

Cln3

Clb1,2

Cdc20
and

Cdc14

Figure 1: The simplified cell cycle network in budding yeast, which
is based on the model in [21].

nodes in the network because they did not have inhibitors,
but without biological justification [21]. Furthermore, we
do not impose activation or inhibition in the network.
As we do not use threshold functions but more general
boolean functions, a variable can both increase and decrease
the concentration of another substrate, depending on the
concentrations of other proteins.

Li et al. [21] use their model to generate a time course
of temporal evolution of the cell-cycle network, shown in
Table 1. This time course is in agreement with the behavior
of the cell-division process cycling through the four distinct
phases G1, S (synthesis), G2, and M (mitosis).

We used this time course along with the network as the
only input to the algorithm to obtain all nested canalyzing
functions that interpolate the time course. In the fifth
column of Table 2, we list the number of NCFs for each
protein. By requiring the Boolean function to be nested
canalyzing, we have significantly reduced the number of
possible functions for each protein as it is evident when com-
paring the numbers in the third and fifth columns of Table 2.

However, even after this reduction, there are 330, 559, 488
possible nested canalyzing models that fit the time course in
Table 1. To reduce this number more, one needs to use addi-
tional time courses or request that the models incorporate
additional biological information about yeast cell cycle.

5.1. Dynamics. To analyze the dynamics of the resulting
nested canalyzing models, we randomly sampled 2000
models and analyzed them. The average number of basins
of attraction (components) per network is 3.09, and the
average size of the component containing the given trajectory
is 1889. In only 6 models, the trajectory in Table 1 is not
in the largest component; however, the average size of the
component containing the trajectory is 833.5.

These results clearly show that nested canalyzing models
for the cell cycle network are in agreement with the original
threshold model of Li et al., and since such models are known
to be robust and stable, any of these models could be used
as a model for the cell cycle in budding yeast. Furthermore,
especially when there is no evidence for choosing a particular
type of functions, a nested canalyzing function has an
advantage over other possible choices.

5.2. Comparison with Random Networks. To understand the
effect of the network itself on its dynamics, we sampled 2000
models on the same network, where the local function of
each gene in each one of these models is chosen randomly
from all possible functions in the model space. We found that
the given cell cycle trajectory has oftentimes much smaller
basin of attraction, and hence random functions on the
cell cycle network could not in general produce the desired
dynamics. A comparison of the statistics from the sampled
networks is shown in Figures 2 and 3.

6. Conclusion

In this paper, we have presented an algorithm for identifying
all Boolean nested canalyzing models that fit a given time
course or other input-output data sets. Our algorithm uses
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Table 2: For each protein i, we list the number of inputs, the number of possible Boolean functions (the cardinality of fi + I), the number
of nested canalyzing functions with the given number of inputs, and finally the number of nested canalyzing functions in the model space
fi + I .

Protein (i) Inputs fi + I NCFs
NCFs in
fi + I

Cln3 1 1 2 1

MBF 3 8 64 2

SBF 3 8 64 2

Cln1,2 1 1 2 1

Cdh1 4 2048 736 12

Swi5 4 2048 736 14

Cdc20 and
Cdc14

3 8 64 4

Clb5,6 3 8 64 3

Sic1 5 224 10,634 336

Clb1,2 5 224 10,634 61

Mcm1/SFF 3 8 64 2
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Figure 2: Nested canalyzing functions with the wiring diagram
in Figure 1 interpolating the time course in Table 1. x-axis: size of
basin of attraction for given trajectory; y-axis: number of networks
observed, out of 2000.
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Figure 3: Not nested canalyzing functions with the wiring diagram
in Figure 1 interpolating the time course in Table 1. x-axis: size of
basin of attraction for given trajectory; y-axis: number of networks
observed, out of 2000.

methods from computational algebra to present the model
space as an algebraic variety. The intersection of this variety
with the variety of all NCFs, which was parameterized in
[8], gives us the set of all NCFs that fit the data. We
demonstrate our algorithm by finding all nested canalyzing
models of the cell cycle network form Li et al. [21]. We
then showed that the dynamics of almost any of these
models is strikingly similar to that of the original threshold
model. Unless the chosen model is required to meet other
conditions, and in that case the model space will be reduced
further, any one of the models that our algorithm found is
an acceptable model of the cell cycle process in the budding
yeast.

One limitation of the current algorithm, which we left
for future work, is that it does not distinguish between
activation and inhibition in the network as we do not have
a systematic method of knowing when a given variable in a
(nested canalyzing) polynomial is an activator or inhibitor.

As our algorithm relies heavily on different Gröbner-
based computations, the current implementation in Singular
allows a given gene to have at most 5 regulators. This is due
to the fact that the number of monomials then is 32 which is
already a burden especially when the primary decomposition
of an ideal is what we are after. We are working on a
better implementation so that we can infer larger and denser
networks.
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