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ABSTRACT 

 

Normal cell homeostasis in a tissue requires a delicate balance between cell growth, 

maintenance and death, tightly controlled by an intricate interplay between proto-oncogenes 

and tumor suppressor genes. When the balance is tipped due to genetic or epigenetic lesions 

in such genes, diseases such as cancer may arise.  

MYC transcription factors has been known to regulate up to 15% of mammalian genes 

involved in diverse intracellular programs, including cell cycle regulation, cell growth, 

differentiation, apoptosis, and senescence, and is deregulated in many human cancers. MYC 

recruits different co-factors for activation or repression of transcription, such as MAX or Miz-

1, respectively. MYC is tightly regulated at multiple levels, including transcription, post-

translational modification and turnover. Ubiquitylation is one such control, and although 

ubiquitylation is mainly associated with proteasomal degradation, it has also been shown to 

be involved in non-proteolytic functions such as DNA replication and repair. 

Tumorigenesis is a multistep process that involves activating or inactivating mutations or 

epigenetic changes in more than one gene to confer growth advantages to the cell. MYC is 

known to cooperate with another oncoprotein, RAS, to transform rodent cells. While RAS 

has been found to suppress MYC-induced apoptosis, MYC also inhibits RAS-induced 

senescence, thereby blocking two main anti-tumorigenic mechanisms in the cell and may, at 

least in part, explain the basis for the MYC/RAS cooperativity. 

Inactivation of MYC in mouse tumor models demonstrated tumor regression with well-

tolerated side effects, suggesting that MYC is a potential and suitable target for anti-cancer 

therapy. However, pharmacological targeting of transcription factors is considered difficult 

and no anti-MYC drugs are clinically available today. 

In this thesis, we deepen our understanding on MYC biology by studying different proteins 

that cooperate and interact with MYC (Paper I to III), and identify small molecules that 

would target specific interactions involving MYC (Paper IV).  

In Paper I, we found that oncogenic MYC and RAS do not cooperate to cancel out each 

other’s intrinsic anti-tumorigenic barrier, namely apoptosis and senescence, in normal human 

fibroblasts as they do in murine fibroblasts, even in the absence of the tumor suppressor p53. 

This is in contrast to previous results from human melanocytes, where MYC was reported to 

suppress BRAF- and partially NRAS-induced senescence, thus suggesting that these anti-

tumor barriers are orchestrated differently in different species and in different cell types.  

In Papers II and III, we discovered new regulatory mechanisms for MYC. In Paper II, we 

found that the cyclin-dependent kinase (CDK) inhibitor p27KIP1 (p27) binds MYC and targets 

it for degradation. p27 is upregulated by interferon-ɣ (IFN-ɣ) and by other growth inhibitory 

signals. We also found that IFN-ɣ treatment leads to the degradation of MYC, mediated by 

upregulation of p27. There is significant clinical relevance between high activity of nuclear 



p27 levels and low MYC expression in tumor samples, and this correlates with a good 

prognosis and a positive clinical outcome. This may provide insights into strategies to target 

MYC-driven tumors, for example by finding ways to upregulate p27 expression and activity, 

utilizing IFN-ɣ in treatment modalities, stimulating immune cells to produce IFN-ɣ by 

immunotherapy and finding methods to combine these strategies to combat MYC-driven 

tumors.  

In Paper III, we uncovered a novel F-box protein, FBXO28, that ubiquitylates MYC in a non-

proteolytic manner, and enhances MYC transcriptional activity and downstream pathways. 

Phosphorylation of SCFFBXO28 by CDK1/2 during the cell cycle is required for its efficient 

ubiquitylation of MYC. Depletion of FBXO28 or expression of its dominant negative F-box 

mutant, negates this function and results in reduction of MYC-driven transcription, 

transformation and tumorigenesis. High MYC expression coupled with high FBXO28 

expression and phosphorylation are strong and independent predictors of poor prognosis in 

human breast cancer. Our data suggests that the CDK-FBXO28-MYC axis is a potential 

molecular drug target in MYC-driven cancers, including breast cancer.  

In Paper IV, we conducted a small molecule screen and found, MYCMI-6, that binds MYC, 

inhibits MYC/MYCN:MAX interactions, and impeded tumor cell growth in a MYC-

dependent manner in a variety of tumor cell cultures and in a mouse tumor model of MYCN-

amplified neuroblastoma. Importantly, this compound is highly specific and potent, has a 

good therapeutic window and does not have severe side effects. This discovery provides 

proof of principle of protein-protein targeting. MYCMI-6 can be used as a molecular tool to 

study MYC:MAX interactions and is a good candidate for drug development. 

Altogether, the projects involved in this thesis provide insights into molecular pathways 

involved in MYC oncogenic activity, regulation, and transcription functions, shed light in 

MYC-RAS cooperativity, identified new proteins interacting with MYC and small molecules 

interfering with MYC function. This is of importance not only to increase the basic 

knowledge on mechanisms through which MYC contributes to tumor development, but will 

hopefully also contribute to the development of new therapeutic strategies to combat MYC-

driven cancer in the future. 
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1 INTRODUCTION 

 

1.1 CANCER 

 

In 2018, cancer cases around the world have risen to 18.1 million, leading to 9.6 million 

deaths (Organization, 2018). Cancer is the term used in the scientific literature to refer to a 

progressive and malignant tumor, which is an agglomeration of uncontrollably dividing cells, 

that can grow and spread (metastasize) beyond their boundaries to other organs (Greaves and 

Maley, 2012; Hanahan and Weinberg, 2011). It is not a single disease but rather a systemic 

disease. There are currently 10 hallmarks and common underlying characteristics identified 

that are shared in different combinations across the different cancers, making this complex 

disease more understandable through science (Figure 1) (Hanahan and Weinberg, 2011). Of 

these, sustained proliferative signaling, resistance to cell death, enabling replicative 

immortality, evasion of growth suppressors and genomic instability and mutation will be 

expounded upon later in the introduction and will be connected to the work in this thesis. 

 

Figure 1: The eight hallmarks and two enabling characteristics (Genome instability and mutation, 

and tumor-promoting inflammation) of cancer (adapted from Hanahan and Weinberg (2011)) in 

compliance with the conditions of Elsevier user licence. Copyright © 2011 Elsevier, Inc. 
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Cancer can be caused by genetic or environmental factors, the former leading to cancers at a 

young age (Apostolou and Fostira, 2013; Sorrell et al., 2013), while the latter leads to cancer 

later in life and is estimated to be the cause of 90-95% of all cancers (Anand et al., 2008). 

Environmental factors can be chemical, physical or biological in nature. Numerous types of 

cancers have been caused by both natural and synthetic compounds (Poon et al., 2014; 

Wogan et al., 2004), X-ray and UV light (Borek, 1993), as well as viral infections, for 

example with human papillomavirus (HPV) (White et al., 2014). 

Conventional therapeutic strategies against cancer include chemotherapy, radiotherapy and 

surgery. While these therapies may benefit some patients, they also have disadvantages. 

Chemotherapy is not specific, and can target both tumor and healthy cells, leading to side 

effects such as hair loss and anemia (Caley and Jones, 2012). Further, chemotherapeutic 

drugs can introduce mutations to healthy as well as tumor cells. This is more serious and can 

lead to the development of new, resistant or more aggressive tumors (Caley and Jones, 2012; 

Vogelstein and Kinzler, 1993). Radiotherapy, while mostly targeted to a specific site, may 

also similarly lead to secondary tumors (Drooger et al., 2015). Surgery may avoid these 

unwanted effects but is limited to tumors that are located at non-vital organs, such as breast 

and prostate, and may have unacceptable cosmetic outcomes (Bertozzi et al., 2017).  

Novel approaches, such as immunotherapy and targeted therapies, have been developed more 

recently. In immunotherapy, antibodies, cytokines, transfer of cancer-specific immune cells 

and cancer vaccines, among other strategies, are used to activate the immune system to kill 

tumor cells (Saied et al., 2014; Srivastava and McDermott, 2014; Vanneman and Dranoff, 

2012). Targeted therapy, on the other hand, uses small molecules to directly hit a specific 

protein or group of proteins that contribute to the tumor formation, thereby causing the tumor 

cells to die or stop growing (Widmer et al., 2014). These novel approaches show promise of 

being more personalized. Different therapies can also be combined to achieve a more 

effective treatment (Saied et al., 2014; Vanneman and Dranoff, 2012). However, the 

development of drug resistance, and hence relapse, is still a concern, despite discoveries of 

new therapies (Fong and Park, 2009; Holohan et al., 2013). Thus it is important to identify 

the drivers of tumor growth and optimize treatments. 

 

1.2 ONCOGENES AND TUMOR SUPPRESSOR GENES 

 

Tumorigenesis, i.e. the development of tumors, is a multistep process, involving at least two 

mutations in rodent cells and four to seven mutations in human cells (Hahn et al., 1999; 

Hanahan and Weinberg, 2000; Land et al., 1983; Renan, 1993). Mutations occur randomly 

but when hitting so called “driver genes”, which confer growth advantages to the target cell, 

they are selected for by a process similar to that of Darwinian evolution (Foulds, 1954; 

Nowell, 1976). 



 

 11 

There are two main classes of genes that, when mutated or deregulated, would give a growth 

advantage that contribute to the development of tumors: proto-oncogenes and tumor 

suppressor genes. Both classes of genes exist as part of the normal cell genome and usually 

play important roles in normal cell physiology (Vogelstein and Kinzler, 2004).  

Gain-of-function mutations in proto-oncogenes, resulting in their over-activation, or 

overexpression result in the formation of tumor-promoting so called oncogenes (Vogelstein 

and Kinzler, 2004). Examples of proto-oncogenes are MYC and RAS.  

MYC family of proto-oncogenes, c-MYC, MYCN and MYCL, code for transcription factors 

that control the expression of many genes involved in distinct processes relevant for 

tumorigenesis, including cell growth, apoptosis, metabolism, immortalization, differentiation 

and stem cell function (Meyer and Penn, 2008). Deregulation of MYC expression (Pelengaris 

et al., 2002b) or perturbations in MYC’s degradation (Bahram et al., 2000; Isobe et al., 2009; 

Yeh et al., 2004) have been linked to the development of many types of human tumors. As 

the projects in this thesis are all related to MYC, a chapter will be dedicated to discuss more 

on this proto-oncogene. 

RAS family of proto-oncogenes, HRAS, KRAS and NRAS, encode for membrane-bound 

GTPases that transduces extracellular signals from growth factor receptors to activate 

downsteam effectors (Serrano et al., 1997). It is one of the central regulators of growth factor-

induced cell proliferation and survival in normal and cancer cells. Human cancers often 

contain amplifications of or activating point mutations in RAS (Pratilas and Solit, 2010). RAS 

will be discussed further in later chapters. 

Tumor development also requires inactivating or loss-of-function mutations of tumor 

suppressor genes, such as genes encoding for p53 and retinoblastoma protein (pRB), which 

are the main brakes in the cell cycle, and control cell survival and genome integrity 

(Vogelstein and Kinzler, 2004).  

The p53 protein is a transcription factor that functions in cell growth inhibitory pathways and 

is able to promote cell death, senescence or cell cycle arrest under conditions which exert 

cellular stress. Point mutations disrupting its DNA-binding capacity or increase in factors that 

binds and inactivate its function, like MDM2, are among the common ways to disrupt the p53 

pathway (Oren, 2003; Prives and Hall, 1999; Vogelstein et al., 2000) 

pRB is also a transcription factor and it is one of the proteins that directly control the 

transition from G1 to S phase of the cell cycle, and its activation causes cells to undergo 

arrest in the G1 phase. The RB gene can be inactivated by mutation and the pRB protein is an 

important target of DNA tumor viruses (Classon and Harlow, 2002). 

A delicate balance between cell growth, maintenance and death, tightly controlled by an 

intricate interplay between proto-oncogenes and tumor suppressor genes, governs normal cell 

homeostasis. Genetic or epigenetic lesions in these genes tip the balance, hence leading to the 

development of tumors. 
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1.3 CELL CYCLE  

 

The cell cycle is a precise and regulated process through which cells duplicate and segregate 

their genome and organelles to produce daughter cells and proliferate. The eukaryotic cell 

cycle is divided into four discrete phases: gap1 (G1), DNA synthesis (S), gap2 (G2) and 

mitosis (M). Cells that are resting and non-proliferating exit the cell cycle and enter a 

quiescence state (G0). Cell cycle durations differ between different organisms and even 

between different cell types in an organism. In human, cell cycle of the somatic cells takes 

about 24 hours to complete. The G1, S and G2 phases together make up the cell cycle 

interphase and typically take between 18-22 hours, with the G1 phase being the most variable 

and often the longest. The M phase takes only one hour and is the shortest phase.  

G1 is the phase where the cells monitor if the environmental factors are favorable for 

replication before it decides to proceed with the cell cycle or go into G0. In the presence of 

mitogenic signals and favorable conditions, it will pass a checkpoint, called the restriction 

point (R point), and proceed into the S phase where the DNA is replicated. After replication 

of the genome is completed, the cells go into G2 phase, which is a phase where the cell 

prepares for M phase. G2 contains an important checkpoint to ensure that the DNA is 

correctly duplicated and structurally intact before entering into the M phase. This last phase, 

mitosis, is where the cell divides into two daughter cells, and the process is divided into four 

sub-phases: prophase (condensation of the DNA), metaphase (alignment of duplicated 

chromosomes), anaphase (separation of chromosomes) and telophase (decondensation of the 

DNA). There is another checkpoint mid-mitosis to ensure that chromosomes are properly 

attached to the mitotic spindle before separating. Extracellular signals are able to affect the 

process only in the early G1 phase. After the cell cycle passes the R point, it will proceed 

autonomously according to schedule until the end point, mitosis (reviewed in Nurse (2011)). 

Cell cycle progression is regulated by cyclins, cyclin-dependent kinases (CDKs) and CDK 

inhibitors (CKI). Cyclins bind and activate CDKs, which are serine/threonine kinases that 

phosphorylate substrates of relevance for cell cycle progression. There are four families of 

cyclins, namely Cyclin A, B, D and E, and four CDKs, namely CDK1, 2, 4 and 6, that have 

direct participation in the mammalian cell cycle, although there are more members of the 

family. In general, the levels of S and M phase CDKs are rather constant but their activities 

depend on the availability and levels of cyclins, which fluctuates in a tightly regulated 

manner, in synchronization with the progression through the different phases of the cell cycle. 

The cell cycle is kept in check by CKIs, which negatively regulate the process by inhibiting 

the CDKs. Inhibitors of CDK4/6 (INK4) comprise of  p16INK4A (p16), p15INK4B (p15), 

p18INK4C (p18) and p19INK4D (p19), while the CIP/KIP family p21CIP1 (p21), p27KIP1 (p27) and 

p57KIP2 (p57) inhibit CDK2 and CDK1 complexes (Weinberg, 2014). These CKIs are also 

involved in other cellular processes besides cell cycle progression and will be brought up 

later in this thesis. 



 

 13 

In the G1 phase of the cell cycle, growth factor signaling upregulates the levels of cyclin D1, 

D2 and D3. Cyclin D associates with and activates CDK4 or CDK6, which phosphorylates 

pRB. pRB is a cell cycle brake that controls the R point by interacting with and sequestering 

the transcription factor E2F. At the G1/S border, increased expression of cyclin E, which 

binds and activates CDK2, occurs. Upon hyper-phosphorylation of pRB, which involves 

cyclin D/CDK4/6 and cyclin E/CDK2, E2F is released and will upregulate the expression of 

several proteins required for DNA replication and metabolism (Trimarchi and Lees, 2002). 

On top of this, Cyclin D/CDK4/6 sequesters p27, which inhibits CDK2, and in doing so, 

further increases cyclin E/CDK2 activity and promotes the G1 progression (Polyak et al., 

1994; Reynisdottir et al., 1995). Cyclin E/CDK2, drives the G1 to S phase transition by 

targeting pRB and inducing degradation of p27 via the E3 ligase SKP2 (Elledge and Harper, 

1998; Sheaff et al., 1997; Vlach et al., 1997). Cyclin A, which is one of the proteins induced 

by E2F, starts to pair with CDK2 in the early S phase, where cyclin E is degraded via a 

CDK2-dependant pathway (Welcker et al., 2004). Cyclin A/CDK2 participates in the 

initiation of DNA replication. During the late S phase and into the G2 phase, cyclin A binds 

CDK1, but as the cell cycle proceeds from the G2 to M phase, CDK1 will form complexes 

with cyclin B, and this complex trigger M-phase entry. After mitosis, the level of cyclin 

B/CDK1 drops and the cell waits for a signal to start another cell cycle (Arellano and 

Moreno, 1997) (reviewed in Hydbring et al. (2016)). 

 

 

Figure 2: The mammalian cell cycle. The illustration depicts the cell cycle phases, the cyclin/cyclin-

dependent kinase (CDK) complexes (black) and growth/tumor-inhibitors (orange) involved, and their 

periods of activity during the cell cycle. MYC’s (blue) points of intervention in the cell cycle are also 

depicted (picture from Hydbring et al. (2017), open access). 



 

14 

1.4 SENESCENCE AND APOPTOSIS 

 

Cancers do not arise from a single gene defect. In a normal mammalian cell, the activation of 

a single oncogene triggers intrinsic safeguard mechanisms via tumor suppressor genes, which 

limit its tumorigenic potential and protect the cell. Thus, each mutated or deregulated cancer-

critical genes would only be a contributing factor, and it is only when several genes are 

defective does an invasive cancer develop (Vogelstein and Kinzler, 2004). 

Apoptosis is a “programmed” cell death that dictates the controlled destruction of cellular 

constituents and their ultimate engulfment by other cells. Generally, there are several 

pathways through which apoptosis occur, all leading to the activation of a group of cysteine 

proteases called “caspases” and a complex cascade of events that ends with the final demise 

of the cell. Activated initiator caspases 2, 8, 9 and 10 starts the caspase cascade which acts on 

downstream effector caspases 3, 6, 7 and 14. In the extrinsic pathway, cell surface receptors 

such as FAS induce the apoptosis signal, leading to the activation of caspases 8, after which 

caspase 3 and 7 get activated, leading to apoptosis. The intrinsic pathway is induced by 

cellular stress or via crosstalk with the extrinsic pathway and is controlled by the pro-

apoptotic factors of the BCL-2 family such as BAX, BAK and BID, which target 

mitochondrial membrane and induces cytosolic cytochrome c release. The anti-apoptotic 

family members of the BCL-2, namely BCL-2 and BCL-XL, balances the apoptotic pathway. 

The apoptosis program is normally a homeostatic mechanism to maintain cell populations, 

and occurs during development and aging. It may also be employed as a defense mechanism 

when cells are damaged or in immune reactions (reviewed in Elmore (2007)).  

Senescence is a state of irreversible growth arrest and normally occurs in normal cells as a 

result of telomere erosion through the aging process. The difference between a senescent and 

a quiescent cell is that the former remains metabolically active in the senescent state while the 

latter lies dormant in the G0 phase of the cell cycle. Some senescence cells have been shown 

to be able to secrete factors, including cytokines and chemokines, which can induce responses 

such as inflammation. The secretome is profoundly different from that of a normal cell and is 

called the senescence-associated secretory phenotype (SASP). Senescence can be induced 

prematurely by acute stress signals such as deregulation of oncogenes, which results in 

replicative stress and generation of reactive oxygen species (ROS), and is termed Oncogene-

Induced Senescence (OIS). This often triggers a DNA damage response and is associated 

with increased levels of the tumor suppressor p53, which activates downstream effectors, 

such as the expression of the CKI p21. The p16/pRB pathway has also been shown to be 

important in senescence induction in several cell types (reviewed in Kuilman et al. (2010)). 

As outlined above, p16 in an inhibitor of CDK4/6, and thus prevents the cyclin D/CDK4/6 

complex from hyperphosphorylating pRB. Thus pRB remains bound to the E2F transcription 

factor and inhibits the transcription of the other factors involved in the cell cycle progression, 

hence bringing the cell cycle to a halt (Dublin et al., 1998; Li et al., 2011; Muirhead et al., 

2006; Parry et al., 1995). 
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Both apoptosis and premature senescence can be employed as extreme responses to cellular 

stress and are important tumor-suppressive mechanisms, by quickly eliminating, or 

preventing the growth of damaged or stressed cells, respectively. 

 

1.5 CELLULAR SIGNALING 

 

Cells receive signals from their surrounding environment that dictate the cell fate; if they 

should proliferate, differentiate, die, or go through some other process. These signals can 

come in the form of growth factors, growth inhibitory factors, cytokines and hormones, 

amongst others. Ligands from extracellular space bind and activate their cognate cell surface 

receptors. The receptors in turn transduce the information through the plasma membrane into 

the cytoplasmic intracellular environment to induce signaling cascades that eventually reach 

the cell nucleus to regulate gene expression (Shaw and Cantley, 2006). There are multiple 

signaling pathways and among the major ones are receptor tyrosine kinases (RTK), Wnt, 

Hedgehog (Hh), Notch, nuclear receptors, mTOR, TGF-β, NFkB and JAK/STAT pathways. 

Although the signaling pathways have distinct intermediate players, and there is extensive 

crosstalk between them. The basic mechanism of some signaling pathways that are often 

deregulated in cancer and are of relevance to this thesis will be briefly outlined below.  

 

1.5.1 The RAS, MAPK and PI3K signaling pathways 

 

Receptor tyrosine kinases (RTKs) are similarly structured receptors that transmit signals from 

growth factors. Binding of the ligand leads to dimerization and activation of the receptors, 

which transphosphorylate each other on tyrosine residues. Through the function of adaptor 

proteins such as Grb2, which recognize phospho-tyrosine through its SH2 domain, inactive 

GDP-bound RAS is recruited and converted to its active GTP-bound form and remains 

activated until the GTP is hydrolyzed to GDP. GTP-bound RAS activates the RAF protein 

kinase family, triggering the Mitogen-Activated Protein Kinase (MAPK) pathway. RAF 

phosphorylates and activates MEK, which in turn phosphorylates and activates Extracellular 

signal Regulated Kinase (ERK1/2) protein kinases. ERK functions in activating factors 

involved in protein synthesis in the cytoplasm, and regulating transcription by 

phosphorylating several transcription factors in the nucleus that stimulate cell proliferation 

and growth (Downward, 2003; Finocchiaro et al., 2008; Katz et al., 2007).  

RAS can also activate the Phosphatidyl Inositol-3 Kinase (PI3K) pathway. This pathway is 

also activated for example by Insulin-like Growth Factor (IGF)-1/IGF1-receptor (IGFR) 

RTK, which is involved in cell growth and survival. PI3K is a lipid kinase that 

phosphorylates 2 phosphatidylinositol 4,5-biphosphate (PIP2) to generate PIP3, which is then 
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recognized by and activates the AKT/PKB kinase. Activated AKT signaling inhibits 

apoptosis and promotes cell growth and survival by phosphorylating a number of substrates, 

including caspase 9, Bad, MDM2 (Cantley, 2002; Engelman et al., 2006), and suppressing 

proteins that negatively regulate MYC-mediated cell proliferation such as GSK-3β (Frame 

and Cohen, 2001) and FOXO proteins (Bouchard et al., 2004). PI3K also activates the mTOR 

pathway leading to increased translation. The components of the MAPK and the PI3K 

signaling pathways can interact and crosstalk with each other to promote the growth and 

survival of transformed cells.  

Single activating mutations on RAS are prevalent in some types of human cancers such as 

pancreatic, colon and lung cancers where the frequency of RAS mutations are being as high as 

91%, 42% and 33%, respectively. When this happens, the mutated RAS proteins produced 

become constitutively active and are no longer require upstream signaling for activity. Such 

deregulation in the signaling pathways contributes to one hit on the way to transformation, by 

allowing the cell to acquire self-sufficiency to growth signals, one of the hallmarks of cancer 

(Hanahan and Weinberg, 2011; Vogelstein and Kinzler, 2004).  

 

1.5.2 The Interferon-ɣ and JAK/STAT Pathway 

 

One family of cytokines relevant to this thesis is the Interferons (IFN), which are involved in 

regulating cell growth, antiviral defense and immune response. It comprises of three classes, 

namely IFN-α, −β and-γ, and are further subdivided into two types, type I and II, based on 

their structure, function and stimuli that induce their expression. Type I consists of IFN-α and 

-β, while type II consist only of IFN-γ. IFN-γ has been found to be secreted by several 

components of the immune system, including T helper type 1 (Th1) lymphocytes and natural 

killer (NK) cells, B cells, natural killer T cells and professional antigen-presenting cells 

(APCs) (Stark et al., 1998). This type II interferon plays a role in many biological functions, 

such as in anti-proliferative and anti-viral pathways, activation of macrophages and 

regulation of cell differentiation and apoptosis (Boehm et al., 1997; Hu et al., 2002). IFN-γ 

possesses anti-tumor properties and has in fact been used in some cancer treatment (Gleave et 

al., 1998). 

There are two ways of regulating IFN-γ activity, either by controlling production of IFN- γ or 

modulating the IFN-γ signaling. IFN-γ production is controlled by interleukin 12 (IL-12,) and 

18 (IL-18) in natural killer cells, and by T-cells receptor engagement in T-helper cells. IFN-ɣ 

binds and activates the receptor tyrosine kinases Janus kinases (JAKs), which then 

phosphorylate transcription factors in the cytoplasm called signal transducer and activator of 

transcription (STATs). Upon phosphorylation, STATs translocate into the nucleus, bind 

specific DNA sites and direct the transcription of IFN target genes. There are four known 

mammalian JAKs (JAK1, JAK2, JAK3 and Tyk2) and seven STATs (STAT1, 2, 3, 4, 5a, 5b 

and 6) (Aaronson and Horvath, 2002; Decker and Kovarik, 2000; Stark et al., 1998).  
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STAT1 has shown to be necessary for the anti-proliferative effects of IFNs. For example, 

expression of the CDK inhibitor p21, which is a negative regulator of the cell cycle, is 

upregulated by IFN-γ. On the other hand, the expression of positive cell cycle regulators, like 

MYC, cyclin D3 and CDC25a, is reduced in response to IFN-α (Chin et al., 1996; Kominsky 

et al., 1998; Ramana et al., 2000; Tiefenbrun et al., 1996). In this thesis, we showed that IFN-

γ also mediates MYC degradation (Bahram et al., 2016) (Paper II). 

Other than the JAK/STAT pathway, IFN-γ receptors can also mediate biological responses 

through the RAS/RAF (MAPK) and PI3K pathways (Kalvakolanu, 2003; Stark et al., 1998). 

 

1.6 GENE EXPRESSION AND REGULATION 

 

Most signaling through different pathways is transmitted to the nucleus where it regulates 

gene expression. Many of the targets of mutation or deregulation in cancer are transcription 

factors, such as MYC, p53 and pRB, as have been outlined above. Gene expression can be 

regulated at multiple steps and involves numerous components. In this chapter, only certain 

aspects of the process will be briefly discussed, all in relation to this thesis work. 

 

1.6.1 Chromatin Structure and DNA Accessibility 

 

Genetic information is stored in the DNA, which is nearly 2 meters long for a human cell and 

is tightly packed in a highly organized structure of chromosomes to fit in the cell nucleus. 

The strand of DNA is wrapped around an octamer core consisting of histone H2A, H2B, H3 

and H4 proteins, forming the basic unit of chromatin, the nucleosome, which is then further 

organized to form the chromatin structure. The chromatin structure is highly dynamic and can 

be modulated to make it accessible for proteins involved in transcription, replication and 

DNA repair (Woodcock and Ghosh, 2010). The histone-DNA contact interface can be altered 

by covalent histone modification and chromatin-remodeling complexes, thus regulating gene 

expression (Peterson and Laniel, 2004; Wang et al., 2007a, b). 

Histone modifying enzymes, called writers and erasers, are recruited by transcription 

regulators to covalently add or remove groups of histones marks at histone tails, respectively. 

These groups include acetyl (ac) and methyl (me) of lysine (K) and arginine (R), phospho, 

ubiquitin, SUMO and ribosyl groups. Different combinations of the histone marks code for 

different biological outcomes. Examples of active or repressed histone marks are given below 

(Nicholson et al., 2015; Peterson and Laniel, 2004).  

 Active chromatin/ transcription: H3K4me3, H3K27ac, H3K9ac, H3K79me2 

 Repressed chromatin/ transcription: H3K9me2/3, H3K27me2/3, H4K20me3 
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Histone acetyl transferases (HATs) and histone de-acetyl transferases (HDACs) are examples 

of writers and erasers, for the addition (acetylation) or removal (deacetylation) of acetyl 

groups at histones tails, respectively (Allfrey et al., 1964; Nicholson et al., 2015). GCN5 was 

already known to be a transcriptional co-activator when it was discovered as the first HAT 

(Brownell et al., 1996), thus it became clear that histone modifications can regulate 

transcription directly. Later, other transcriptional co-activators like CBP/p300 were shown to 

have HAT activities while transcriptional co-repressors like SIN3-RPD3 were linked to 

HDAC activities (reviewed in Peterson and Laniel (2004)). 

The different histone modifications can change the charge of the histone tail, and can thereby 

affect the affinity between DNA and nucleosomes, but they also constitute a “histone code” 

controlling the binding of specific non-histone proteins to chromatin. These histone codes can 

be recognized by another group of proteins, called readers, which bind chromatin 

modifications and decipher the chromatin state of the locus. For instance, bromodomain-

containing proteins are readers that bind acetylated histones, while methylated histones 

recruit chromodomain-containing proteins (Nicholson et al., 2015; Yun et al., 2011).  

Histone modifications, chromatin remodeling complexes and other recruited non-histone 

proteins form part of the “epigenetic landscape” , which regulates chromatin structure, and in 

turn affects gene expression in a reversible and highly dynamic manner, without changing the 

DNA sequence ((Jakopovic et al., 2013; Wolffe and Hayes, 1999) reviewed in Peterson and 

Laniel (2004)). DNA methylation is another factor affecting the epigenetic landscape. 

Hypomethylation of promoter DNA is an active mark, which leads to transcriptional 

activation, while hypermethylation is a repressive mark that leads to transcriptional 

repression, in part due to methyl-CpG-binding proteins bound at the methylated DNA, and 

the recruitment of HDACs and chromatin remodeling factors, all leading to a repressive 

transcription mark and repressed chromatin (Ballestar and Wolffe, 2001; Zwart et al., 2001). 

 

1.6.2 Transcription and Transcription Factors  

 

Information encoded in the DNA molecules is transcribed into RNA molecules, after which 

protein-encoding mRNAs are translated into functional proteins (Cramer et al., 2008). The 

transcription is driven by RNA polymerases, comprising of RNA polymerase I, II and III (Pol 

I, II and III), which synthesizes rRNA, mRNA and tRNA, respectively. Protein-encoding 

genes are only transcribed by Pol II, which also transcribes non-coding RNAs like miRNAs.  

Transcriptional regulation occurs mostly during transcription initiation. There are various 

control regions positioned on a protein-encoding gene, namely the core promoter, the 

proximal and distal promoters, enhancers and silencers (Delgado and León, 2006). 

The initiation of Pol II-mediated transcription requires the recruitment of general 

transcription factors (GTFs), such as TFIIB, TFIID, TFIIA, TFIIE, TFIIF and TFIIH, which 
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forms the pre-initiation complex (PIC) and directs the polymerase to the transcription start 

site (TSS). The PIC containing RNA pol II recognizes promoters containing a TA-rich DNA 

sequence called TATA box. TFIID is able to recognize TATA boxes through its subunits 

TATA-binding protein (TBP) and TBP-associated factors (TAFs). Another important 

element called initiator (Inr) sequence is also located within the transcription start site 

(Kornberg, 2007; Moqtaderi et al., 1996).  

DNA-binding transcription factors bind to specific promoter or enhancer DNA sequences in 

target genes that are upstream of the transcription initiation site. When bound to enhancer 

elements, the transcription factor is able to bring a specific promoter to the PIC by looping 

the DNA (Delgado and León, 2006). These two components are then connected by a 

multiprotein complex called the Mediator (Kornberg, 2005; Malik et al., 2005). RNA Pol II 

then leaves the PIC and start synthesizing RNA. Binding of the transcription factor to 

silencers, though, would result in repression of the gene expression (reviewed in Delgado and 

León (2006)). 

Transcription machinery in higher eukaryotes would pause after the initiation steps and 

transcribing few nucleotides. This is known as promoter-proximal pausing and is an 

important mechanism of transcription regulation. In RNA pol II-driven transcription, pausing 

is mediated by DRB sensitivity-inducing factor (DSIF) and negative elongation factor 

(NELF) (Nechaev and Adelman, 2011). CyclinH/CDK7 which are subunits of TFHII 

contributes to clearance of the promoter by phosphorylating the Ser5 residue of the C-

terminal domain (CTD) of RBP1, the largest subunit of RNA polymerase II, thus allowing 

pause release and transcription elongation to proceed (Espinosa, 2010; Hengartner et al., 

1998). Ser 5 phosphorylation by TFIIH also contributes to the recruitment of capping enzyme 

to the 5’ end of nascent mRNA. 

Processive transcription elongation is mediated by positive transcriptional elongation factor b 

(P-TEFb) complex, consisting of CDK9 and cyclin T. It phosphorylates Ser2 of the CTD tail 

and elongation factors DSIF and NELF, leading to the dissociation of DSIF and NELF from 

RNA pol II. Ser-2 phosphorylation also promotes recruitment of the mRNA splicing complex 

3’ as well as processing and termination factors (Ahn et al., 2004; Meinhart and Cramer, 

2004). 

 

1.7 THE UBIQUITIN PROTEASOME SYSTEM 

 

The ubiquitin-proteasome system was discovered as a regulated protein degradation 

mechanism involved in a wide range of cellular processes including the transcription, protein 

quality control, signal transduction, cell cycle, apoptosis, receptor mediated endocytosis and 

metabolic pathways (Ciechanover, 2005). Quite a portion of the human genome is found to 
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be devoted to the ubiquitin pathway, taking into account both proteolytic and non-proteolytic 

functions (Semple et al., 2003).  

The ubiquitin-proteasome system involves two steps. The first step is ubiquitylation, where 

ubiquitin, a 76-amino acid polypeptide (Goldstein, 1974; Goldstein, 1975; Schlesinger et al., 

1975), is attached to the substrate. This is followed by degradation of the ubiquitylated 

substrate by the 26S-proteasome. Ubiquitylation proceeds through three enzymatic steps 

involving at least three types of enzymes. Firstly, ubiquitin is activated by E1, a ubiquitin 

activating enzyme, which forms a thiol-ester bond with the C-terminal glycine on the 

ubiquitin protein an ATP-dependent process. Secondly, ubiquitin is transferred to E2, a 

ubiquitin conjugating enzyme that accepts ubiquitin from the E1 by a transesterification 

reaction. Finally, the ubiquitin is conjugated to its substrate either directly by the E2 or 

through E3 ubiquitin-ligases. E3-ligases are enzymes that can catalyze the conjugation 

process, which results in covalent attachment of ubiquitin to a specific substrate (for reviews 

see (Ardley and Robinson, 2005; Fang and Weissman, 2004; Pickart and Eddins, 2004; 

Weissman, 2001). Upon attachment of one ubiquitin molecule to the target protein, more 

ubiquitins can be attached to a lysine residue on the surface of the first ubiquitin molecule to 

build a poly-ubiquitin chain, or the target protein can remain mono-ubiquitylated (Kim et al., 

2007). Recent studies have indicated that the polyubiquitin chain may already be formed on 

the E2 and E3 enzymes before conjugation to the substrate (Ben-Saadon et al., 2006; Li et al., 

2007). 

There are seven internal lysine residues (K6, K11, K27, K29, K33, K48 and K63) on 

ubiquitin, all of which have been found to participate in ubiquitin-ubiquitin interactions. 

There are several different formations of the polyubiquitin chains. Similar lysine residues can 

be used for conjugating the ubiquitin molecule, creating a homotypic chain, or different 

lysines can be used to form a mixed-linkage chain. Other ubiquitin-like molecules such as 

SUMO can also be conjugated, thus forming a heterologous polyubiquitin chain (for review 

see (Ikeda and Dikic, 2008)). The length of the ubiquitin chain and specific lysine residues 

involved will determine the substrate fate and function, whether to be targeted for 

degradation or other non-proteolytic functions like DNA-repair (Spence et al., 1995), 

transcriptional activation (Adhikary et al., 2005a) or many other processes. 

 

The E3 ubiquitin ligases  

Ubiquitin-E3-ligases are classified into four classes based on their structure motifs: RING 

(Really Interesting New Gene) finger, HECT (Homologous to E6-AP Carboxyl Terminus), 

U-box E3 and PHD (Plant Homeo-Domain)-finger E3 ligases (Deshaies and Joazeiro, 2009; 

Hatakeyama et al., 2001; Rotin and Kumar, 2009; Scheffner and Kumar, 2014). For the 

purpose of this thesis, the RING finger will be briefly discussed on.  
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One of the extensively studied subclass of the RING-finger E3 ligase family is the SCF 

(Skp1-Cullin1-F-box protein) E3 ligase. The SCF complex consists of the Cul1, Rbx1, Skp1, 

and F-box protein subunits. The Cul1 and Rbx1 subunits form a catalytic core that recruits 

the upstream E2 enzyme while the variable F-box subunit mediates interaction with Skp1 and 

also confers substrate specificity to the whole complex (Deshaies, 1999; Jackson and 

Eldridge, 2002; Zheng et al., 2002).  

There are about seventy F-box proteins that have been identified in human genome. They are 

categorized based on their interaction domain, namely F-box proteins containing WD40 

repeats (FBXW), leucin-rich repeats (FBXL) or other domain (FBXO) (Skaar and Pagano, 

2009). 

Some SCF E3 ligases have been shown to play important role during the cell cycle, such as 

the S-phase associated kinase associated protein 2 (SKP2/FBXL1) and FBW7 (FBXW7)  that 

will be mentioned in later chapters in this thesis. We have also discovered a novel E3 ligase, 

FBXO28, which activates transcription via MYC. This will be discussed more in the paper III 

results and discussion. 

 

1.8 MYC 

 

1.8.1 Master Regulator 

 

MYC is the human homologue of the avian myelocytomatosis retroviral oncogene, v-myc, 

first described more than 30 years ago (Hayward et al., 1981; Sheiness and Bishop, 1979; 

Vennstrom et al., 1982). The MYC family of proto-oncogenes comprises of 3 members, MYC 

(c-MYC), MYCN and MYCL, which encode nuclear oncoproteins/transcription factors of the 

basic helix-loop-helix-leucine zipper (bHLHZip) family. MYC has been estimated to regulate 

up to 15% of all genes in humans and coordinate the expression of genes involved in diverse 

intracellular programs, including, but not limited to, cell cycle, proliferation and growth, 

energy metabolism, DNA replication, global RNA production and many biosynthetic 

pathways, as well as differentiation, apoptosis and senescence  (Adhikary and Eilers, 2005; 

Dang et al., 2006; Eilers and Eisenman, 2008; Kress et al., 2015; Larsson and Henriksson, 

2010; Meyer and Penn, 2008). MYC proteins also play important roles in normal 

development and cell physiology. In mice studies, loss of c- and N-MYC had been found to 

be embryonic lethal (Baudino et al., 2002; Charron et al., 1992; Davis et al., 1993; Knoepfler 

et al., 2002; Stanton and Parada, 1992; Stanton et al., 1992), but L-MYC knockout do not 

seem to lead to any phenotypic abnormalities (Pirity et al., 2006).  

MYC controls expression of its target genes for the many different functions by recruiting 

different co-factors for activation or repression of transcription. For its transcriptional and 
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oncogenic activity, MYC must dimerize with MAX, another bHLHZip protein that is 

ubiquitously expressed. The MYC:MAX complex binds to DNA recognition elements at 

target gene promoters, primarily E-box sequence CACGTG or its variants, and activates 

transcription.  MYC represses transcription at alternative DNA sites through association with 

other cofactors such as the transcription factor Miz-1 (Adhikary and Eilers, 2005; Eilers and 

Eisenman, 2008; Meyer and Penn, 2008). MYC also recruits a number of other cofactors, 

such as histone acetyl transferases (HATs), histone methyl transferases (HMTs), ATP-

dependent chromatin remodeling complexes, E3 ubiquitin ligases and kinases, amongst 

others, to up- or downregulate its target genes and execute the different cellular processes 

(Adhikary et al., 2005b; Hydbring et al., 2017; Kress et al., 2015). 

In 2012, studies emerged to propose MYC as a global amplifier of transcription. MYC is 

proposed to interact with all active promoters and enhancers and, upon its upregulation, MYC 

would invade them and amplify the active transcriptional program further. This model 

provides an explanation for why high MYC levels often increase the total RNA content in 

cells (Lin et al., 2012; Nie et al., 2012). This view was opposed by others who stand by the 

idea that MYC regulates specific sets of genes, be it for coding genes, miRNA regulation or 

long non-coding RNAs (lncRNAs), which, however, in turn regulates global gene expression 

(Kress et al., 2015; Sabo et al., 2014). 

Given its central role in transcription and regulation of many cellular processes, it comes as 

no surprise that the MYC family possesses potent oncogenic capabilities and contributes to a 

large number and variety of human tumors (See section: MYC in Cancer). Thus MYC 

expression is tightly regulated and is usually kept at low levels, only to be induced by specific 

cues such as growth factor signaling (Marcu et al., 1992; Wierstra and Alves, 2008). 

 

1.8.2 MYC Structure, Expression and Regulation 

 

The MYC gene is found in all major metazoan lineages and possibly as far back as unicellular 

progenitors (Kress et al., 2015; Young et al., 2011), but is absent in the nematode C. elegans 

(Young et al., 2011). The MYC family of genes consists of three exons. Exon 1 is the target 

site for transcription factors and is noncoding, while exons 2 and 3 contain the coding 

regions. Two promoters at the 5’ end of exon 1 accounts for 90-95% of transcription of MYC 

mRNAs, which are about 2.2 and 2.4 kb, from which MYC proteins of about 64 and 67 kDa 

are translated (DePinho et al., 1987; Katoh et al., 1988; Sawai et al., 1990; Watson et al., 

1983). 

MYC, MYCN and MYCL1 proteins are highly conserved in most of the regions termed the 

MYC homology boxes (MB). The N-terminus of MYC contains MBI (amino acids (aa) 44–

63) and MBII (aa 128–143), which form part of the transactivation domain (TAD; aa 1–143). 

In the central region lies MBIIIa (aa 188–199), which is conserved in MYC and MYCN but 



 

 23 

not in MYCL, MBIIIb (aa 259–270), and MBIV (aa 304–324), the latter containing the 

nuclear localization signal (NLS; aa 320–328). The C-terminus of MYC contains the basic 

region (b; aa 355–369) and the helix–loop–helix–leucine zipper (HLH–LZ; aa 370–439). The 

bHLHZIP component is required for MYC binding to its transcription partner protein, MAX, 

and for full transformation of primary and immortal cells. The basic region confers the 

specificity of binding to canonical and non-canonical E-boxes DNA sequences (Figure 3) 

(reviewed in Meyer and Penn (2008)). 

MYC is regulated at multiple levels, including transcription, translation, post-translational 

modification and turnover.  

The MYC proto-oncogene is a direct target and effector downstream of growth-regulatory and 

oncogenic signaling pathways, such as, but not limited to, RTKs, Notch, WNT, Hedgehog 

and Janus kinase (JAK)–signal transducer and activator of transcription 3 (STAT3) signaling, 

which induce MYC transcription. On the other hand, MYC transcription is repressed by 

transforming growth factor‑β (TGFβ) signaling (reviewed in (Kress et al., 2015; Wierstra and 

Alves, 2008)). Many of these signaling pathways act on proximal promoter elements and 

distal enhancers, including super-enhancers, regulating transcription of the MYC loci 

(reviewed in Dang (2012) and Hydbring et al. (2017)). 

MYC translation can be affected by a number of signaling cascades, such as mTOR signaling 

including mTOR complex 1 (mTORC1)–S6K1, eIF4A and eIF4F, MAPK–HNRPK and 

MAPK–FOXO3A signaling cascades (reviewed in (Hydbring et al., 2017; Kress et al., 

2015)). 

Post-translationally, MYC activity and/or turnover are regulated via a number of 

modifications, such as phosphorylation, acetylation, glycosylation, proteolytic or non-

proteolytic ubiquitylation, and small ubiquitin-related modifier (SUMO)-ylation (Kamemura 

et al., 2002; Vervoorts et al., 2003)(reviewed in Hydbring et al. (2017)). Of interest to this 

thesis is the phosphorylation and ubiquitylation of MYC and will be expanded on later in this 

chapter.  

The MYC protein is very short-lived, with a half-life of about 15–30 min, depending on cell 

type (Gregory and Hann, 2000; Gregory et al., 2003). PI3K and RAS signaling pathways 

have been found to cooperate to increase MYC stability (Sears et al., 1999; Sears et al., 

2000). MYC is then regulated and degraded mainly by the ubiquitin/proteasome system.  

Several E3 ubiquitin ligases have been shown to ubiquitylate MYC with different 

consequences for MYC´s function and stability, including SCFFBXW7, SCFSKP2, 

HUWE1/HECTH9, SCFTRCP, TRUSS, PIRH2, CHIP, SCFFBXL14, SCFFBXO28 and SCFFBX29 

(reviewed in Hydbring et al. (2017)). SCFSKP2, for example, has been shown both to induce 

degradation of MYC and to work as a transcriptional cofactor (von der Lehr et al., 2003). 

FBXW7 is a classical E3 ligase for MYC degradation (Welcker et al., 2004; Yada et al., 

2004; Yeh et al., 2004). 
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Studies on MYC transformation and regulation of its stability and activity has very much 

been focused on the MYC phosphorylation sites Thr58 and Ser62 in the MBI region, which 

has been associated with degradation of MYC by via the E3 ligase FBXW7 (Bahram et al., 

2000; Hann, 2006; Henriksson et al., 1993; Pulverer et al., 1994). A variety of proliferative 

stimuli, for example cytokines, mitogenic signals, UV exposure and DNA damage, activates 

specific kinases to phosphorylate MYC at Ser62 (reviewed in Hann (2006)). Phosphorylation 

at Ser62 stabilizes and activates MYC, and also serves as a platform for Thr58 

phosphorylation by glycogen synthase kinase 3β (GSK3β) (Sears et al., 2000), which in turn 

recruits phosphatase PP2A to dephosphorylate Ser62 and then the E3 ligase FBXW7 to 

degrade MYC (Welcker et al., 2004; Yada et al., 2004; Yeh et al., 2004). 

Our contribution from this thesis work has been the discovery of a novel E3 ligase, 

SCFFBXO28, which non-proteolytically ubiquitylates MYC in a cell cycle dependent manner 

and activates MYC activity of relevance to tumorigenesis (paper III). We have also found a 

new pathway for MYC degradation mediated by IFN-ɣ and p27 pathway (paper II), with the 

involvement of an unknown E3 ligase. These will be further discussed in the results and 

discussion section. 

 

 

Figure 3: MYC structure and interaction partners. Upper part: MYC protein structure with MBI-IV, 

the conserved MYC homology boxes I–IV; Thr-58 and Ser-62, regulatory phosphorylation sites; TAD, 

transcriptional activation domain; NLS, nuclear localization signal; bHLHZip, basic region/helix–

loop–helix/leucine zipper. Lower part: Interacting and regulatory proteins that are of interest for this 

thesis interacting with respective regions. 

 

Negative feedback loops also keep MYC level in check. MYC has been found to represses its 

own promoter in a concentration-dependent manner as a form of homeostatic control 

mechanism (reviewed in Meyer and Penn (2008)). In this complex regulatory mechanism 

MYC target genes loops to control the transcription. For example, PTEN tumor suppressor 

that is activated by MYC, enhances PRC2 activity, which in turn represses many genes, 

including MYC itself (Kaur and Cole, 2012). In another scenario, MYC expression is 

positively regulated by E2F1. MYC, in turn, induces expression of microRNAs miR-17 and 
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miR-20, which downregulate E2F1 transcription factors, hence autorepressing MYC 

expression (O'Donnell et al., 2005). 

Intrinsic anti-proliferative programs are also elicited to counter MYC activity. MYC 

activation under conditions of limited survival factors induces apoptosis by both p53-

dependent and -independent mechanisms (reviewed in Green and Evan (2002); Nilsson and 

Cleveland (2003)). In the absence of CDK2, activation of MYC induces senescence 

(Campaner et al., 2010). The induction of these two phenomena by MYC will be further 

explained in later chapters. 

 

1.8.3 MYC and Cell Cycle 

 

MYC plays an important role in cell cycle progression. In quiescent G0 cells, MYC 

expression is very low. Upon increase in mitogenic signaling, MYC expression is rapidly 

induced and drives the transition from G0 to G1 to from G1 to S phase. It has been shown 

that quiescent cells re-enter the cell cycle and proceed through G1 and S phase upon 

expression of MYC alone, even in the absence of serum factors. Also, it was found that G1 

phase in the cell cycle is often shortened in cells with activated MYC (Bouchard et al., 2004) 

(reviewed in Meyer and Penn (2008)).  

MYC has been shown to directly or indirectly activate most of the cell cycle players, 

including cyclin D/CDK4, cyclin E/CDK2, cyclin A/CDK2, cyclin B/CDK1, E2F1, E2F2, 

and cell division cycle 25A (CDC25A) ((Amati et al., 1998; Bouchard et al., 1999; Coller et 

al., 2000; Galaktionov et al., 1996; Hermeking et al., 2000; Leone et al., 1997; Luscher, 2001; 

Mateyak et al., 1999), also reviewed in Meyer and Penn (2008) and Pelengaris et al. (2002a)). 

These factors are important both for the G1-S phase transition, to drive the cell cycle through 

the R point, and also for G2-M phase transition. Additionally, MYC directly or indirectly 

downregulates or inhibits several cell cycle checkpoint genes, such as CKIs, like p15INK4B, 

p21CIP1, p27KIP1 and GADD45 and GADD153 (Chandramohan et al., 2008; Obaya et al., 

1999; Oster et al., 2002; Seoane et al., 2002; Staller et al., 2001; Wu et al., 2003). 

The complexity of the cell cycle regulation increases with regulatory loops to provide a tight 

control over cell proliferation. One example is that MYC also upregulates miR-17-5p and 

miR-20a, which downregulates E2F translation (O'Donnell et al., 2005). Another example is 

our finding that p27 targets MYC for degradation, as will be discussed in paper II.  
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1.8.4 MYC and Apoptosis 

 

In order to maintain homeostasis, activation or ectopic expression of MYC will induce the 

cell to undergo apoptosis under the conditions where survival factors are limiting. This 

sensitizes cells to stimuli such as death receptor signaling (Fas/TNF-α), DNA damage and 

cancer drugs (reviewed in Nilsson and Cleveland (2003)). MYC-induced apoptosis is 

mediated through two known pathways: p53 upregulation via p19ARF, and cytochrome 

release via BAX activation and/or repression of BCL-XL and BCL-2 (Zindy et al., 1998). 

In tumorigenesis, oncogenic events will hinder the pro-apoptotic function of MYC by 

inducing anti-apoptotic factors, like BCL-2, BCL-XL or BIM, or repressing/ablating pro-

apoptotic factors such as p53 and p19ARF ((Eischen et al., 1999), reviewed in (Meyer and 

Penn, 2008)). It was found that MYC-induced apoptosis is dependent on the level and 

intensity of MYC expression. Low level of activated MYC would lead to proliferation and is 

better at initiating tumorigenesis, while high level of MYC overexpression would lead to 

apoptosis. However, in the presence of anti-apoptotic factors, MYC apoptotic function is 

inhibited and MYC overexpression leads to tumorigenesis (Evan et al., 1992; Murphy et al., 

2008). Consequently, apoptosis can be induced in MYC-driven tumors by reviving the 

abrogated pathways, leading to destruction of the tumor cells (Goga et al., 2007; Meyer et al., 

2006). 

 

1.8.5 MYC and Senescence 

 

Senescence is another anti-proliferative program elicited by MYC overexpression. High 

levels of MYC lead to replication stress and genomic instability. This can lead to premature 

cellular senescence that is independent of the telomere, a condition termed oncogene-induced 

senescence (OIS). Studies have showed that overexpressed MYC can provoke OIS when the 

anti-senescence and DNA repair gene, WRN, is ablated (Grandori et al., 2003). 

Another study showed that CDK2 knockout mouse embryonic fibroblasts would initially 

enter a proliferative state when exposed to MYC activation and then undergo senescence, 

without induction of replicative stress as in the WRN model. This was accompanied by 

upregulation of p21Cip1 and p16INK4a, and thus dependent on the ARF–p53–p21Cip1 and 

p16INK4a–pRb pathways. Moreover, in the Eµ-myc transgenic mouse lymphoma model, 

CDK2 ablation sensitizes cell to MYC-induced senescence, with delayed onset of lymphoma 

(Campaner et al., 2010). 

Paradoxically, MYC plays a dual role with regards to senescence and has been shown to 

suppress senescence induced by other oncogenes. Our group and others have shown that 

MYC suppresses activated RAS/BRAF-induced (BRAF is a downstream effector of RAS) 
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senescence in rat embryonic fibroblast (REF) cells and in a BRAFV600E/MYC mouse lung 

tumor model. Reciprocally, MYC inactivation in this system restores BRAFV600E– and 

NRASQ61R–induced senescence (Hydbring et al., 2010; Juan et al., 2014; Tabor et al., 2014). 

Phosphorylation of MYC at Ser62 has been shown to be required for this suppressive 

function. It was also shown that cyclin E/CDK2 phosphorylates this site, and that the CDK-

inhibitor p27Kip1 and CDK2-selective pharmacological compounds inhibit phosphorylation 

and abrogates this function of MYC (Hydbring et al., 2010). Further, as mentioned above, 

MYC also promotes senescence in the absence of CDK2 (Campaner et al., 2010). Thus in 

this scenario, CDK2 acts as a switch between MYC function in repressing or inducing 

senescence (reviewed in Hydbring et al. (2017)).  

Human melanoma cells expressing mutant BRAFV600E or NRASQ61R has also been shown to 

undergo p16INK4A- or p53-independent senescence upon depletion of MYC. Conversely, 

overexpression of MYC suppresses BRAFV600E– and NRASQ61R–induced senescence in 

melanocytes, albeit more efficiently with the former. This suggests that in melanoma with 

BRAFV600E or NRASQ61R mutations, MYC overexpression functions to sustain tumorigenesis 

by suppressing the innate senescence program that would have otherwise been elicited 

(Zhuang et al., 2008) (see also chapter MYC in Cancer -Oncogene Cooperation).  

 

1.8.6 MYC in Cancer 

 

Despite being subjected to stringent regulation in the cell at many levels, MYC deregulation 

has been found in a wide variety of human malignancies, tallying to more than half of all 

human tumors (Nilsson and Cleveland, 2003; Vita and Henriksson, 2006). The central role of 

MYC in growth control and orchestrating a large variety of genes and pathways, endows 

MYC with strong oncogenic potential. This allows MYC activation to contribute directly to 

and being a driver of malignant transformation (Adams et al., 1985; Gabay et al., 2014; Land 

et al., 1983; Leder et al., 1986; Meyer and Penn, 2008), often correlating strongly with tumor 

progression to advanced stages and poor prognosis (Adhikary and Eilers, 2005; Eilers and 

Eisenman, 2008; Larsson and Henriksson, 2010; Meyer and Penn, 2008; Nilsson and 

Cleveland, 2003). Apart from driving tumor initiation and progression, MYC is also needed 

to maintain the transformed state, even in tumors driven by other oncogenes (Felsher and 

Bishop, 1999; Gabay et al., 2014; Jain et al., 2002; Pelengaris et al., 2002b; Sodir et al., 2011; 

Soucek et al., 2008; Zhuang et al., 2008). 

Among the mechanisms leading to MYC overexpression discovered early in the history of 

MYC research includes insertional mutagenesis, chromosomal translocation and gene 

amplification. Insertional mutagenesis is where a non-mutated cellular gene is activated by 

the insertion of a foreign promoter or enhancer, in this case from a retrovirus. In 

chromosomal translocation, MYC oncogene is juxtaposed to the immunoglobin (Ig) heavy 

chain loci by consistent recombination, which often gives rise to lymphomas (reviewed in 
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Meyer and Penn (2008)). Amplifications of MYC (Alitalo et al., 1983; Dalla-Favera et al., 

1982) and MYCN (which usually is expressed during development and in different immature 

cell types) have been detected across many human neuroblastoma cell lines and tumor 

samples (Kohl et al., 1983; Schwab et al., 1983) and were quickly associated with poor 

patient prognosis (Brodeur et al., 1984; Schwab et al., 1984). In contrast to chromosomal 

translocations of the MYC genes which lead to haematopoietic cancers, activation by 

amplification is often involved in solid human tumors (Meyer and Penn, 2008; Vita and 

Henriksson, 2006). 

There are several other known mechanisms of indirect activation of MYC to date. 

Physiological pathways that activate either MYC or MYCN in normal conditions may 

themselves undergo oncogenic mutations (reviewed in Kress et al. (2015)). Apart from 

activation, enhanced stability of MYC mRNA and protein may also occur as a result of 

deregulation in the various pathways involved (reviewed in Meyer and Penn (2008); (Nilsson 

and Cleveland, 2003). There are also aberrations in other pathways that can prevent removal 

of cells containing activated MYC. One example is p53 or ARF loss of function, which 

disables the cell protective programs like apoptosis, senescence, or cell cycle arrest in the 

event of MYC deregulation, leading to MYC-induced lymphomagenesis (Eischen et al., 

1999). Single-nucleotide polymorphisms (SNPs) affecting proximal promoter elements, distal 

enhancers and super-enhancers that controls MYC transcription also can lead to deregulated 

MYC expression (Dang, 2012; Hydbring et al., 2017). 

Direct mutations in the coding sequence leading to activation, increased stability or reduced 

degradation, are uncommon for MYC, unlike many other oncogenes like RAS. One such 

occurrence in MYC is mutations of the Thr58 and Ser62 residues, leading to stabilized mutant 

proteins. These mutations have been found mostly in Burkitt’s and other lymphomas (Dang, 

2012; Nilsson and Cleveland, 2003). 

Deregulation or activation of MYC alone may not be sufficient to form a tumor as complete 

transformation requires at least two mutations in rodent cells and four to seven mutations in 

human cells (Hahn et al., 1999; Hanahan and Weinberg, 2000; Land et al., 1983; Renan, 

1993). However, MYC overexpression or stabilization, coupled with alterations in the 

apoptotic pathway, results in a pool of cells proliferating uncontrollably with an increased 

risk of acquiring secondary mutations leading to transformation and tumor development (Vita 

and Henriksson, 2006). 

 

Oncogene cooperation  

Studies with MYC not only pioneered the field of oncogene-induced apoptosis. Prior to that, 

experimentations with overexpressed MYC and activated RAS helped established the concept 

of oncogene cooperation (Land et al., 1983). Further work by others increases our 

understanding of the concept better when more cooperating oncogenes partners were found, 
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like MYC and BCL2. The concept of cooperating oncogenes holds true for both human and 

murine systems, albeit with different number of participating aberrations involved (reviewed 

in (Meyer and Penn, 2008)).  

As mentioned in earlier in the MYC and senescence chapter, our group and others had found 

that MYC suppresses activated RAS-induced senescence (Hydbring et al., 2010; Juan et al., 

2014; Tabor et al., 2014). In the same light, RAS has been found to suppress oncogenic 

MYC-induced apoptosis (Kauffmann-Zeh et al., 1997). This explains, at least in part, the 

basis for the MYC/RAS cooperativity that occurs in the rodent system, which is blocking the 

two main anti-tumorigenic mechanisms in the cell. 

One of our thesis projects is to recapitulate the MYC and RAS system in normal human 

fibroblast and examine if these two oncogenes cooperate in the same way in the human cells 

as they do in the rat embryonic fibroblast. The results are discussed later in paper I in the 

Results and Discussions chapter. 

 

1.8.7 Targeting MYC in cancer therapy 

 

The engagement of MYC in many fundamental cellular functions makes it predictable that its 

deregulation has an important role in tumor formation and maintenance. Indeed, MYC has 

been shown to play a role in each of the hallmarks of cancer outlined by Hanahan and 

Weinberg (2011). Within the scope of this thesis, we have only discussed how MYC could 

give rise to cancer through sustained proliferative signaling, resistance of cell death, enabling 

replicative immortality, evasion of growth suppressors and genomic instability and mutation.  

Among the intrinsic tumor suppressor mechanisms triggered by deregulated MYC are 

induction of apoptosis and senescence, and suppression of these programs is vital to 

tumorigenesis. Many experiments have shown that re-enabling the cell suicide pathway can 

force tumor cells to self-destruct (reviewed in Kress et al. (2015); Larsson and Henriksson 

(2010)). 

In mouse tumor models with regulatable MYC expression systems, shut down of MYC often 

leads to rapid and sustained tumor regression, also in tumors driven by RAS, loss of APC etc, 

suggesting that these tumors are “addicted” to MYC (Arvanitis and Felsher, 2006; Jain et al., 

2002). Various tumor models also exhibited regression mediated by apoptosis, senescence 

and/or differentiation upon withdrawal of ectopic MYC expression (reviewed in Dang (2012); 

Kress et al. (2015); Meyer and Penn (2008)). The degenerative phenotypes of normal tissues 

induced by systemic MYC inhibition were rapidly and completely reversible on restoration of 

MYC function, and were shown to be tolerable for the animals (Sodir et al., 2011; Soucek et 

al., 2008). These observations suggest that inhibition of MYC is a possible way of eradicating 

not only MYC-driven tumors, but also those initiated by other oncogenes, making MYC a 
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tempting target for therapy (Alderton, 2011; Castell and Larsson, 2015; Larsson and 

Henriksson, 2010; Prochownik and Vogt, 2010; Vita and Henriksson, 2006). 

Insights into MYC biology and cofactor-interactions have been useful to strategize different 

ways of therapeutically targeting MYC and developing new MYC inhibitors. However, no 

specific anti-MYC drugs are clinically available today (Castell et al., 2018).  

Pharmacological targeting of MYC has proven to be challenging. Several groups have 

attempted to target MYC indirectly through targeting the different pathways regulating MYC 

at different levels, including transcription, translation or stability of the mRNA or proteins, 

but many have limited success due to the multiple ways whereby the tumors can escape 

(Castell and Larsson, 2015; McKeown and Bradner, 2014; Whitfield et al., 2017). One 

strategy that has gained interest recently is the targeting of the bromo and extra terminal 

(BET) domain-containing transcription regulator BRD4, which is important in transcription 

of MYC gene in many cells. BRD4 binds acetylated lysines in histones on the chromatin and 

contributes to the transcription process. A small molecule inhibitor, JQ1, was found to 

interfere this interaction by binding to the domain of BRD4 important for this interaction 

(Fletcher and Prochownik, 2014; McKeown and Bradner, 2014). Pre-clinical models, 

including of hematopoietic cancers and neuroblastoma, indicated that JQ1 is able to inhibit 

tumorigenesis. However, it is found to work only in some tumor types but not others 

(Alderton, 2011; Delmore et al., 2011; Loven et al., 2013; Mertz et al., 2011; Puissant et al., 

2013). 

Another way of devising strategies is to target MYC directly, but that turns out to be not very 

straightforward, due to it lacking enzymatic active sites (Prochownik and Vogt, 2010) and 

being an intrinsically disordered protein (IDP) (Dyson and Wright, 2005).   

Studies into targeting protein-protein interactions (PPIs) of IDP proteins, including of MYC, 

have given insight that it is possible to target limited binding surfaces (Fletcher and 

Prochownik, 2015; Follis et al., 2008; Hammoudeh et al., 2009; Michel and Cuchillo, 2012; 

Prochownik and Vogt, 2010). Since heterodimerization with MAX is crucial for MYC to 

bind to E-boxes for its transcriptional and oncogenic activity (Meyer and Penn, 2008), it is a 

conceivable approach to target MYC:MAX interaction. 

Small molecules inhibitors used successfully to inhibit PPIs (Filippakopoulos et al., 2010; 

Fletcher and Prochownik, 2014; Lane et al., 2010; Saha et al., 2013; Tse et al., 2008; Vassilev 

et al., 2004) and leading to clinical trials (Arkin et al., 2014; Nero et al., 2014), have spurred 

interest of MYC researchers to dive into the search for small molecule inhibitors of 

MYC:MAX interaction. Screening of small-molecule libraries have led to the identification 

of several compounds by different groups. Unfortunately, these compounds have a number of 

limitations including relatively low potency in vitro or in cells, poor specificity or insufficient 

bioavailability in vivo, and thus have not made their way for clinical studies (Fletcher and 

Prochownik, 2015; McKeown and Bradner, 2014; Prochownik and Vogt, 2010; Whitfield et 

al., 2017).  
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In our work, we have identified a compound MYCMI-6 that is able to bind MYC directly 

with high affinity, and inhibit the MYC:MAX interaction efficiently and selectively in vitro 

and in cells. Moreover, this compound is active in vivo and inhibits MYC-dependent tumor 

cell growth with high efficacy without affecting MYC expression (Castell et al., 2018). The 

work will be discussed in more detail in the result and discussion section (paper IV).  
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2 AIMS OF THIS THESIS 

 

Interaction and cooperation between MYC and different cofactors/ proteins are absolutely 

essential for the different functions of MYC and its stability. The overall aim of this thesis is 

to deepen our understanding of several different proteins that cooperate and interact with 

MYC (Paper I to III), and identify small molecules that would target specific interactions 

involving MYC (Paper IV). The outcome is hopefully to identify possible strategies to 

suppress the tumorigenic function of MYC or, alternatively, enhance its anti-tumorigenic 

function, such as induction of apoptosis and senescence, as a way of counteracting MYC in 

cancer cells driven by MYC or other cooperating oncogenes, particularly, RAS. 

 

More specifically, the aims are: 

I. To investigate the oncogenic cooperativity between MYC and RAS in normal human 

fibroblasts with regards to senescence and apoptosis regulation  

 

II. To elucidate the mechanism by which IFN-ɣ inhibits MYC function, in particular via 

p27, and the involvement of ubiquitin-proteosome system 

 

III. Identify novel F-box proteins that has implications in cancer, and characterize the role 

of the novel SCFFBXO28 E3 ubiquitin ligase complex in regulating MYC’s function 

 

IV. To identify and validate small molecules inhibitors of MYC:MAX interaction and to 

evaluate their biological activity and selectivity towards MYC-driven tumor cells vs. 

normal cells  
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3 RESULTS AND DISCUSSIONS 

 

3.1 PAPER I 

 

MYC and RAS are unable to cooperate in overcoming cellular senescence and apoptosis 

in normal human fibroblasts 

 

For several decades, co-expression of MYC and RAS had been known to be sufficient to 

transform cells in rodent based models (Hydbring et al., 2010; Land et al., 1983; Larsson and 

Henriksson, 2010; Meyer and Penn, 2008; Pulverer et al., 1994). The mechanism can be 

partly explained by the capability of RAS to override MYC-induced apoptosis (Kauffmann-

Zeh et al., 1997) and MYC to override RAS-induced senescence (Hydbring et al., 2010). In 

this study, we sought to understand if MYC and RAS cooperate to suppress these fail-safe 

mechanisms in human cells in a similar way as in rodent cells.  

We first aimed to create a stable dual inducible system, so as to avoid transfection 

inefficiencies and instabilities. Such a system would also allow us to easily control the 

expression of the vectors and remove the stress of transient transfection in each setting.  To 

this end, we used normal human BJ fibroblasts that were stably transduced with tetracycline-

regulated H-RASV12 as previously described in Evangelou et al. (2013) and Maya-Mendoza 

et al. (2015), and stably introduced 4-hydroxytamoxifen (OHT)-controlled MycER 

expression/activation system. In this system, MYC activation alone led to apoptosis, whereas 

RAS activation alone led to premature cellular senescence, in line with well-known reports of 

the intrinsic fail-safe programs elicited by these two oncogenes (Evan et al., 1992; Serrano et 

al., 1997). These were accompanied by DNA damage and upregulation of p53 (Figure 4A).  

When the two oncogenes were activated concurrently, the cells undergo apoptosis, DNA 

damage (ɣH2AX) and p53 induction, similar to the cell culture with MYC activation alone. 

The cells that did not undergo apoptosis seemed to be pushed into senescence like the cells 

activated by RAS alone, as shown by β-Gal staining and induction of p16INK4A. However, 

there is a reduced staining in one senescence marker, the histone H3 lysine 9 trimethylation 

(H3K9me3) in these dual-induced cells compared to RAS induction alone (Figure 4, all 

panels). H3K9me3 is associated with cellular senescence in some cells, including BJs, 

depending on the stimulus, and often follow the expression of p16 (Kosar et al., 2011).  

Since p53 plays an important role in oncogene-induced apoptosis and senescence, and we 

observed induction of p53 upon MYC activation, we then stably knocked down p53 using 

short hairpin RNA (shRNA). We found that p53 depletion only rescued cells from 

senescence, both induced by RAS and MYC, but not MYC-induced apoptosis whether with 

or without RAS co-activation. Additionally, the triple insult caused the cell culture to undergo 
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apoptosis after a few days (Figure 5, all panels). Hence, our study shows that MYC and RAS 

do not cooperate to bypass senescence and apoptosis in human BJ cells, even when p53 is 

removed. Additional mutational events must occur, not just for the transformation of normal 

human fibroblasts (Vogelstein and Kinzler, 1993), also for suppression of senescence and 

apoptosis. Unlike the rodent model, coexpression of MYC and RAS in the human BJ model 

is insufficient for the cross suppression of these two anti-tumorigenic processes. 

One possible explanation for the lack of cooperation between these two oncogenes is that 

MYC enhanced, instead of suppressed p16 expression in RAS-induced BJ cells (Figure 4A). 

p16 is known to maintain pRB activity, and thus can lead to reinforcement of the RAS-

induced senescence in fibroblasts. Previous reports had shown that rodent and human cells 

with reduced or loss of p16 expression can overcome RAS-induced senescence (Drayton et 

al., 2003; Huot et al., 2002; Lin et al., 1998; Serrano et al., 1997). 

In contrast to our results, previous studies using human normal melanocytes had shown that 

MYC is able to overcome either BRAF- or NRAS-induced senescence (Zhuang et al., 2008). 

Further, melanomas with activated BRAF/NRAS undergo senescence upon MYC 

knockdown, in a p16- and p53-independent manner. This shows that senescence is regulated 

differently in different cell types. 

We conclude that MYC and RAS do not cooperate by cancelling out each other’s fail safe 

mechanisms in normal human fibroblasts as they do in the rodent fibroblasts, even with the 

removal of the tumor suppressor p53. This indicates that tumorigenesis in human cells takes a 

different route and require other or additional mutations to activate oncogenic pathways 

and/or deactivate tumor suppressor pathways (including senescence and apoptosis) that lead 

to cell transformation and development of cancer. Further, other reports showing that these 

two oncogenes cooperate in normal human melanocytes indicate that senescence regulation 

in different human cell types may work differently. This finding also impact the way we 

study animal models and translate the outcomes into the human system, in this case with 

regards to the transformation process in human cells and extrapolating results into future 

clinical studies. 
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3.2 PAPER II 

 

Interferon-γ-induced p27KIP1 binds to and targets MYC for proteasome-mediated 

degradation 

 

Earlier, our group had shown that CDK2-mediated phosphorylation of MYC at Ser-62 is 

important for MYC’s role in suppressing two barriers of transformation: senescence and 

differentiation. Further, pharmacological and physiological inhibition of CDK2 by CVT313 

or p27 respectively, restored senescence and differentiation (Campaner et al., 2010; Hydbring 

et al., 2010). 

In this paper, we show that p27, via mechanisms independent of CDK2, can also induce 

senescence and degrade MYC through the ubiquitin-proteosome system via its C-terminus.  

Additionally, there is a significant correlation between high expression of active p27 protein 

with low MYC protein level in human breast cancer, with implications in prognosis. 

Firstly, we demonstrated here that p27 is able to override MYC’s suppression of activated 

RAS-induced senescence regardless of MYC Ser-62 status. We then showed that p27 affects 

MYC protein expression levels by inducing degradation of the MYC protein via the 

ubiquitin-proteosome system. 

Expression of p27 protein can be stimulated by grown inhibitory cytokines, such as IFN-ɣ 

and TGF-β. Here, we showed that IFN-ɣ treatment leads to increased degradation of MYC in 

several cell lines; U-937 cells, Colo-320 colon carcinoma cells with amplified MYC and 

human 2fTGH fibrosarcoma cells. This is accompanied by increased MYC ubiquitylation and 

upregulation of p27. A p27 null cell line, p27-/- mouse embryonic fibroblast (MEF), does not 

have reduced MYC protein level upon IFN-ɣ treatment, even though the wildtype MEFs 

does. Thus, IFN-ɣ induces degradation of MYC via the ubiquitin-proteosome system, 

mediated by p27. By using fluorescent reporter protein and BiFC, we localized the IFN-ɣ-

induced degradation of MYC to the nucleus, predominantly in the nucleoli, as previously 

suggested as the site of rapid MYC turnover (Arabi et al., 2005), and in complex with Max. 

The mechanism is dependent on the Jak/Stat pathway but is independent of MYC Thr-58 

phosphorylation site, which is pivotal in MYC’s degradation via Fbxw7. Using dominant-

negative SKP2ΔF mutant, we also showed that SKP2 is not involved in p27-mediated 

degradation of MYC. Hence a new unknown E3 ligase is implicated in p27 degradation of 

MYC. 

We further addressed the mechanism through which p27 promotes degradation of MYC. We 

found that p27 interacts directly with MYC in the nucleus. After mapping the domains, we 

found that MYC binding to p27 requires amino acids 294 – 366 of MYC, which contains the 

MYC Box 4 (MB4), the nuclear localization signal (NLS) and the basic DNA binding region 

of MYC. Binding of p27 to MYC requires the C-terminal part of p27 (amino acids 82 – 198), 
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which contains several regulatory phosphorylation sites such as T187, T157 and T198, and 

the part important for p27 nuclear export. The p27 C-terminus is sufficient to induce MYC 

degradation without involving CDK2 nor affecting MYC mRNA levels. 

We investigated further the correlation between p27 and MYC in human tumors, to tumor 

grade and patient outcome. Selecting the breast invasive carcinoma (BRCA) data set from 

The Cancer Genome Atlas (TCGA) (2012) data portal (Zhu et al., 2009) for sufficient 

statistical power, we found no significant correlation between MYC and p27 expression 

levels as a whole. However, a subpopulation with high p27 expression but low level of 

phosphorylation of p27 at the T157 Akt/Rsk/Pim1 phosphorylation site, which is the 

signature of cytoplasmic p27 that will not affect CDK2 or the nuclear functions of MYC, has 

a strong inverse correlation with MYC protein levels. Correlating this selected group to 

clinical parameters showed a positive correlation with good prognostic markers, namely 

grade 1 tumors, luminal A subtype, estrogen receptor (ER) positivity and Her2 negativity, 

and a negative correlation with poor prognostic markers, namely grade III and IV tumors, 

basal and Her2 subtypes, ER negativity and Her2 positivity. A second subpopulation with 

high p27 and low MYC protein levels, and low phosphorylation of the retinoblastoma protein 

protein (pRb) at CDK-sites (a functional readout of p27 activity) correlated significantly with 

relapse-free patient survival and overall patient survival. 

Taken together, in this paper, we showed that IFN-ɣ-induced p27 induces senescence and 

degrades MYC independently of CDK2 and MYC Thr-58 phosphorylation. This occurred 

through the ubiquitin-proteosome system via an unknown E3 ligase. Additionally, there is a 

significant correlation between high expression of active nuclear p27 protein with low MYC 

protein level in human breast cancer, and this correlates positively with favourable prognostic 

markers, relapse-free patient survival and overall patient survival. These results may support 

immunotherapeutic approaches of targeting MYC-driven tumors in future. 
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3.3 PAPER III 

 

CDK-mediated activation of the SCFFBXO28 ubiquitin ligase promotes MYC-driven 

transcription and tumorigenesis and predicts poor survival in breast cancer 

 

This project was aimed at identifying F-box genes involved in cell proliferation that may 

have a role in tumor growth. Two screens were employed, the first using an siRNA library 

targeting all human F-box genes and the second was on the whole genome, which included 

53 F-box genes. In both screens, FBXO28, a novel uncharacterized F-box protein, is among 

the top candidate that, upon knock-down, led to a highly significant reduction in cell 

proliferation in several tumor-derived cell lines.  

Microarray expression analyses showed that FBXO28 depletion resulted in significant 

downregulation of genes involved in important biological processes including rRNA 

processing, ribosome biogenesis, cell cycle and metabolism. These set of processes are 

reminiscent of those regulated by MYC. Further Gene Set Enrichment Analysis (GSEA) 

confirmed that MYC target genes were downregulated upon FBXO28 depletion and this was 

confirmed by qRTPCR. When FBXO28 and MYC were both knocked down at the same 

time, the proliferation rate was similar to the single knock down of FBXO28. This indicated 

that MYC and FBXO28 are possibly involved in similar pathways, and hence we proceeded 

to characterize FBXO28 and elucidate the relationship between FBXO28 and MYC. 

Mass spectrometric analysis of purified FBXO28 showed serine 344 (S344) to be a specific 

phosphorylation site of the protein. Phosphorylation stabilized the protein and localized it to 

the nucleus. We also found that cyclin A‐CDK2 and cyclin B‐CDK1 phosphorylate this site, 

but not cyclin E‐CDK2, and that phosphorylation of FBXO28 was at the maximum at S-

G2/M phase and minimum at early G1 phase.  

We discovered that FBXO28 forms a SCFFBXO28 ubiquitin ligase with SKP1 and CUL1, 

independently of phosphorylation status. Phosphorylation of the protein at serine 344 enables 

the ubiquitin ligase complex to target MYC for ubiquitylation. Further, we also showed that 

the phospho-mimetic form of FBXO28, S344E-FBXO28, is able to ubiquitylate MYC, but 

not the phospho-deficient S344A-FBXO28. However, cycloheximide chase experiments 

indicated that MYC was not degraded upon ubiquitylation by FBXO28. 

Interaction mapping analysis indicated that FBXO28 binds MYC at the MYC Box II (MBII) 

and possibly the helix-loop-helix leucine zipper (HLH-LZ) domain of MYC. By using in situ 

Proximity Ligation Assay (isPLA), we also showed that FBXO28 co-localizes with MYC 

endogenously in the nucleus, and by chromatin immunoprecipitation assays (ChIP), we 

showed that it binds with MYC in the E‐box region. Thus FBXO28 interacts with and binds 

MYC at the promoters. We also found that upon ubiquitylation by SCFFBXO28 the cofactor 

p300 was recruited to MYC target gene promoters.  
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Knock down of FBXO28 was found to attenuate MYC ubiquitylation. We also found that an 

F‐box deletion mutant, ΔF‐FBXO28, can bind MYC, but as it cannot form the SCF complex, 

ΔF‐FBXO28 failed to ubiquitylate MYC. This suggests that ΔF‐FBXO28 acts in a dominant 

negative way. Interestingly, ΔF‐FBXO28 overexpression also reduced the interaction of p300 

and histone H4 acetylation at MYC target gene promoters, though MYC-MAX binding was 

not significantly affected. Unsurprisingly, overexpression of ΔF‐FBXO28 or FBXO28 knock 

down led to reduced MYC-dependent luciferase reporter gene activity. Taken together, this 

indicated that FBXO28 binds and ubiquitylates MYC in a non-proteolytic manner and 

regulate MYC transcriptional activity of genes important in proliferation.  

We further investigated the role of FBXO28 in tumorigenesis. Interestingly, expression of 

ΔF‐FBXO28 or FBXO28 knock down led to reduction in both colony growth in 2D cultures, 

and MYC-induced transformation in a 3D soft agar assay and tumor growth in vivo in an 

immunodeficient mouse tumor model system. When expressing mutant FBXO28 that is 

incapable of being phosphorylated by CDK1/2 (S344A‐FBXO28), the growth of tumor cells 

slowed down and the ability of MYC to transform p53‐/‐ MEFs was strikingly reduced. This 

suggests that FBXO28 activates MYC in a CDK1/2-dependant manner, possibly in the cell 

cycle. 

Next, we searched through the GeneSapiens System transcriptomics database (www. 

genesapiens.org) and the Oncomine database, and found that FBXO28 is highly expressed in 

various tumor types, such as breast cancer. We further investigated FBXO28 expression in 

gene expression data of 327 primary breast tumor specimens, and found correlation between 

expression of FBXO28 with more than 100 genes, most of which are positive correlation 

when analyzed through ENCODE (http://genome.ucsc.edu/ENCODE/ analyses). There is 

also a significantly high representation of MYC and p300 association at the promoters. 

In order to establish a possible clinical significance of FBXO28 in human breast cancer, we 

analyzed a panel of 144 primary breast cancers for FBXO28 phosphorylation using 

immunohistochemistry on tissue microarray (TMA). We found that most of the tumors 

showed high nuclear intensity, though there was a significant difference in the nuclear 

fraction (NF) of pS344‐FBXO28 between the different tumors. Interestingly, we found a 

correlation between a high NF of pS344‐FBXO28 in samples with other markers of poor 

patient outcome, such as tumor size, high grade and estrogen receptor (ER) ‐negative status. 

Multivariate analysis also indicated that FBXO28 expression and phosphorylation could 

independently predict poor survival. 

In summary, we have identified a novel F-box protein, FBXO28, which is a substrate of 

CDK1/2 and tightly regulated during cell cycle progression. FBXO28 assembles an 

SCFFBXO28 ubiquitin ligase and, upon phosphorylation, ubiquitylates MYC, thereby enabling 

MYC to recruit p300 to promoters of MYC target genes and activate MYC transcription of 

genes important for proliferation. Silencing or aberrant expression of FBXO28 leads to 

attenuation of MYC-driven transcription, proliferation, transformation and tumor growth. We 
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also found that phosphorylated FBXO28 is an independent prognostic marker of poor overall 

survival in breast cancer patients. Hence, the CDK-FBXO28-MYC axis may be a potential 

target for drug discovery for MYC-driven cancers, particularly breast cancer. 
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3.4 PAPER IV 

 

A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and 

MYC-dependent tumor cell proliferation 

 

MYC is involved in many important cell processes and is a key player in tumorigenesis. 

However, to date, no specific anti-MYC drugs have reached clinical development. Previous 

efforts targeting other drivers like EGFR and BRAF have led to resistance via activation of 

redundant pathways, which all activate MYC. It is therefore important to target MYC. The 

best strategy would be to target MYC directly since there is a risk of escape with indirect 

targeting (Castell and Larsson, 2015; McKeown and Bradner, 2014; Whitfield et al., 2017). 

One Achilles’ heel of MYC is its dependency on interacting with MAX protein for its 

transcriptional function, and hence tumorigenesis (Meyer and Penn, 2008). Thus, targeting 

this interaction is a plausible way of crippling MYC function. Attempts by others to target 

other protein-protein interactions had proven to be fruitful and are now in clinical trials but 

yet, there had been limited success in targeting MYC:MAX interaction, namely due to low 

potency, specificity or bioavailability (Fletcher and Prochownik, 2015; McKeown and 

Bradner, 2014; Prochownik and Vogt, 2010; Whitfield et al., 2017). 

In this project, we used a cell-based Bimolecular Fluorescence Complementation (BiFC) 

assay (Kerppola, 2006) in a protein interaction screen that is specifically designed to identify 

small molecules that inhibit MYC:MAX interaction. The main advantage of this assay is its 

use of life cells, and hence it already screens out small molecules that are not able to enter 

cells or that are generally cytotoxic. From a diversity set library of NCI/DTP Open Chemical 

Repository (http://dtp.cancer.gov), we screened 1990 compounds at 25µM concentration and 

identified six molecules for further investigation that we termed MYCMIs (MYC:MAX 

Inhibitors): MYCMI 2, 6, 7, 9, 11 and 14. These compounds reduced the BiFC/CFP readout 

by more than 40%, normalized to DMSO (vehicle), the most potent being MYCMI 6 and 7, 

and do not affect the control pair of bZip transcription factors, namely FOS and JUN. 

These hits were then validated using other techniques. Split Gaussia luciferase (GLuc) assay 

(Remy and Michnick, 2006) is a high/mid-throughput method used to validate that the 

inhibitory effects are on MYC:MAX, and not the fluorescence molecule in BiFC itself or 

other bZip transcription factors (GCN4 homodimer was used for this control). By western 

blot analysis, we also sieved out compounds that reduced MYC protein expression (MYCMI 

7 and 9), as that was not the mechanism of action we were looking for in this case. Our aim is 

to identify compounds that only inhibit the interaction between MYC and MAX, without 

affecting MYC protein levels or other MYC activities. This is due to the experience of others 

who attempted to target MYC indirectly via different pathways that regulate MYC, but have 

met with limited success as there are multiple escape routes for the tumors through other 
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redundant pathways (Castell and Larsson, 2015; McKeown and Bradner, 2014; Whitfield et 

al., 2017). Thus, from this point, we focused on three hits, MYCMI 6, 11 and 14.  

We next applied in situ proximity ligation assay (isPLA) to confirm that the selected 

compounds inhibits endogenous MYC:MAX interactions in cells (Soderberg et al., 2006). 

The readout is nuclear fluorescent dots, and is evaluated by fluorescence microscopy. We 

also performed a titration and found that compound MYCMI-6 has an IC50 of less than 1.5 

µM and MYCMI 11 and 14 has IC50 of about 6 µM for MYC:MAX inhibition. Furthermore, 

MYCMI-6 affected endogenous MYC:MAX interaction already 3 hours after the treatment, 

as shown by coimmunoprecipitation. All the three compounds shows the selectivity for 

MYC:MAX interaction as they do not affect other bZip protein partners FRA1:JUN and 

MAX:MXD1(MAD1). Investigation on the effect of these compounds on transcription of 

MYC target genes ODC1, RSG16 and CR2 revealed that MYCMI-6 reduced the expression 

of all these genes significantly, while MYCMI 11 and 14 only significantly reduced RSG16 

expression. Taken together, these results revealed MYCMI-6 to be the most selective and 

potent inhibitor of MYC:MAX interactions and MYC-driven transcription in vivo. 

Further, we evaluated MYCMI-6 in in vitro assays based on recombinant MYC and MAX 

proteins, microscale thermophosis (MST) and surface plasmon resonance (SPR) (manuscript 

in prep.). In MST assay, a shift in the reading compared to DMSO indicates an effect on the 

conformation of the protein pair. We found MYCMI-6 to cause a thermophoresis shift with a 

Kd of 4.3 +/– 2.9 µM in a mixture with MYC and labeled MAX, but causing minimal change 

in a labeled MAX:MAX mixture. This indicates that MYCMI-6 differentially inhibits 

MYC:MAX interactions.  

SPR analysis can determine the affinity between protein and ligand, and measure the 

interaction kinetics with high sensitivity. In this analysis, MAXbHLHZip that was covalently 

bound to the sensor chip, and MYCMI-6 premixed with MYCbHLHZip was added. 

MYCMI-6 inhibited MYCbHLHZip from binding to MAXbHLHZip with an IC50 of 3.8 +/– 

1.2 µM, which is more efficient than that of other experimental MYC inhibitors 10058-F4 

(Yin et al., 2003) and KJ-Pyr-9 (Hart et al., 2014) we tested here. Further investigations 

indicated that MYCMI-6 binds the bHLHZip domain of Myc directly, and more efficiently 

than other MYC:MAX inhibitors 10074-G5, #474 (10058-F4 analouge) (Wang et al., 2007c) 

and KJ-Pyr-9. MYCMI-6 binding to MAX, MXD1 (MAD1), p53, BSA, YFP or BCL-XL is 

negligible or minimal. All these results point to MYCMI-6 being a direct, selective and 

potent inhibitor of MYC protein. 

Next, we tested if MYCMI 6 (6.25 µM), 11 (25 µM) and 14 (25 µM), with 10058-F4 (64 

µM) as reference, would inhibit MYCN-driven tumor growth in neuroblastoma cell lines with 

or without MYCN-amplification. The growth of MYCN-amplified cell lines were more 

significantly reduced than that of the MYCN-non-amplified cell lines by all four compounds. 

Titration of MYCMI-6 gives an average growth inhibition (GI50) values of 2.5-6 µM for the 

former and 20 µM or higher for the latter group of cell lines. In a cell line where MYCN or 

MYC was hardly detectable (SK-N-F1), there was essentially no response with MYCMI-6. 
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Further, anchorage-independent growth of MYCN-amplified neuroblastoma cell lines were 

inhibited by MYCMI 6, 11 and 14 with GI50 values of less than 0.4, 5 and 0.75 µM, 

respectively. Altogether, these results showed that MYCMI-6 is more potent and selective 

among the MYCMIs and is selected to be the focus of the rest of our study. 

Taking into account the MYC mRNA/protein levels of different cell lines, we analyzed 

available data on the growth inhibitory effects of MYCMI-6 from the NCI-60 diverse human 

tumor cell line panel. We found that MYCMI-6 has a significantly higher growth inhibitory 

effect in human cancer cell lines that have higher MYC mRNA/protein expression, although 

there was no significance based on MYC mRNA data alone. We tested the MYC dependence 

further using Tgr1 rat fibroblast (parental cells), and its MYC-null (H015.19) and MYC-

reconstituted variants (H0Myc3), and found that, similarly, MYCMI-6 treatment has a MYC-

dependent effect. In addition, comparison between the effects of MYCMI-6 on MYCN-

amplified SK-N-DZ neuroblastoma and normal lung (IMR-90) and foreskin (BJ) human 

fibroblasts showed that the compound can be well tolerated by normal human cells at the 

same concentration (12.5 µM) that was highly toxic to a tumor cell with high MYC. Thus, 

this indicates that MYCMI-6 functions in a MYC-dependent manner and has a good 

therapeutic window.  

To evaluate the tumor physiopathology effects of MYCMI-6 in vivo, we used a mouse 

xenograft tumor model where we injected MYCN-amplified SK-N-DZ neuroblastoma cells 

into the flanks of athymic nude mice, and after tumor formation MYCMI-6 or vehicle were 

administered. 1-2 weeks later the mice were sacrificed and evaluated for several parameters. 

We found that there is reduction in MYCN:MAX interaction (by isPLA), tumor cell 

proliferation (by Ki67 staining) and microvascular density (MVD) (by CD31 staining of 

endothelial cells) in MYCMI-6-treated mouse compared to vehicle treatment. On the other 

hand, there is increase in apoptosis (by TUNEL staining), signs of necrosis, hemorrhage and 

scar tissue formation in the compound-treated cells, with only a slight and temporary effect 

on body weight, indicating that the side effects are well-tolerable.  

Taken together, we have found a small molecule, MYCMI-6 that inhibits 

MYC/MYCN:MAX interactions in human and rat cells, in vitro and in vivo (in mouse tumor 

model), and reduced tumor growth or kill tumor cells in a MYC-dependent manner, without 

severe side effects.   
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4 SUMMARY AND CONCLUSIONS 

 

MYC is a master regulator of transcription but its function and regulation is dependent on 

interaction with other proteins and it also works in cooperation with other oncogenes. 

Overexpression of MYC alone leads to apoptosis but not to tumor development. Nonetheless, 

deregulated expression of MYC plays an important role in tumorigenesis. It has even been 

suggested that a low level of MYC expression contributes more to tumorigenesis since a 

higher level of overexpression engages the apoptotic pathway (Murphy et al., 2008). 

However, by cooperating with other oncogenes like RAS, accompanied by deregulation of 

tumor suppressor pathways, high levels of MYC can be tolerated and leads to aggressive 

tumor progression. MYC-driven tumors are often strongly correlated with poor prognosis.  

Inactivation of MYC had been shown to lead to tumor regression with well-tolerated side 

effects (Soucek et al., 2008), often accompanied by senescence (Wu et al., 2007) or apoptosis 

(Soucek et al., 2008). This suggests that MYC is a potential and suitable target for anti-cancer 

therapy. MYC itself is very difficult to target as it is unstructured and does not have an 

enzymatic activity. MYC:MAX interaction is known to be important for the DNA binding 

function of MYC, however, targeting this protein-protein interaction is a challenge because of 

the lack of any enzymatic active site and the intrinsic disordered nature of the proteins. The 

purpose of this thesis was to elucidate the pathway of interaction between overexpressed 

MYC and activated RAS in normal human fibroblasts, and determine if they interact the 

same way in these cell as in their rodent counterpart. We also wanted to identify new MYC 

cofactors and dissect the mechanism by which they interact and may contribute to 

tumorigenesis. Finally, our aim was to also find new strategies to target MYC by identifying 

potent and selective inhibitors of the MYC:MAX interaction.  

In Paper I, we showed that oncogenic MYC and RAS do not cooperate in normal human 

fibroblasts as they do in rat embryonic fibroblasts, to cancel out each other’s intrinsic anti-

tumorigenic barrier, namely apoptosis and senescence, even in the absence of tumor 

suppressor p53. Hence, additional mutations are required for the development of MYC- and 

RAS-driven tumors in human, and to override the intrinsic tumor suppressor pathways of 

these oncogenes. This sheds light on how oncogenic transformation proceeds in human cells.  

In Paper II, we discovered a new pathway and interactors that regulate MYC turnover. We 

found that p27 targets Myc both indirectly through CDK2 and directly by binding MYC, 

resulting in MYC degradation, removal of MYC binding to target gene promoters. This 

resulted in lowered expression of MYC target genes, and senescence and differentiation of 

MYC-driven tumor cells. Since p27 can be stimulated by growth inhibitory cytokines, such 

as IFN-ɣ, we also investigated if IFN-ɣ treatment leads to the degradation of MYC, and it 

does, via the upregulation of p27. Interestingly, we found that this degradation process occurs 

via an E3 ligase that is not currently known in the MYC regulation repertoire. It would be of 

future scientific interest to identify this E3 ligase. We have also found that there is significant 
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clinical relevance between high activity of nuclear p27 levels and low MYC expression in 

tumor samples, and this correlates with a good prognosis and a positive clinical outcome. 

Thus a new strategy to target MYC-driven tumors is by finding ways to upregulate p27 

expression and activity. One of the possible ways is by utilizing IFN-ɣ, which is one of the 

cytokines produced by activated T-lymphocytes. This may provide support to develop 

immunotherapy methods to combat MYC-driven tumors, in particular enhancing IFN-ɣ-

producing T-cells, as a complementary treatment along with molecular therapies targeting 

CDK2 or signaling pathways that enhances p27 expression/activity. 

In Paper III, we uncovered a novel F-box protein, FBXO28, that ubiquitylates MYC in a non-

proteolytic manner, and enhances MYC transcriptional activity and downstream pathways. 

SCFFBXO28 is phosphorylated by CDK1/2 during the cell cycle, which regulates its activity 

and stability, and is required for its efficient ubiquitylation of MYC. When FBXO28 is 

depleted or a dominant negative F-box mutant is overexpressed, it cannot support MYC 

ubiquitylation, and results in reduction of MYC-driven transcription, transformation and 

tumorigenesis. We also found that high MYC expression coupled with high FBXO28 

expression and phosphorylation are strong and independent predictors of poor prognosis in 

human breast cancer. In conclusion, our data suggest that the CDK-FBXO28-MYC axis is a 

potential molecular drug target in MYC-driven cancers, including breast cancer. 

In Paper IV, despite the difficulty in targeting protein-protein interactions, especially that of 

unstructured proteins such as MYC, we found a small molecule that binds MYC and inhibits 

MYC:MAX interaction. We found MYCMI-6 to inhibit MYC/MYCN:MAX interactions in 

human and rat cells, in vitro and in vivo (in mouse tumor model). Further, this compound 

impeded tumor growth and killed tumor cells in a MYC-dependent manner, both in cells and 

in vivo. Importantly, this is achieved with specificity to tumor cells expressing high levels of 

MYC, high potency (low concentration needed), a good therapeutic window and without 

severe side effects. Apart from being a prototype and proof of principle of protein-protein 

targeting, we discovered MYCMI-6 as a unique molecular tool to target MYC:MAX 

pharmacologically with high specificity and efficacy, and it is a good candidate for drug 

development.      

Altogether, the projects involved in this thesis provide insights into molecular pathways 

involved in MYC oncogenic activity, regulation, and transcription functions. We identified a 

difference in pathways of cooperation between oncogenic MYC and RAS in rats and human 

(Paper I), found new cooperating protein partners and possible therapeutic targets (Paper II 

and III), and provided proof of principle/ concept of targeting non-enzymatic protein-protein 

interaction (Paper IV). This will be of importance not only to increase the basic knowledge 

on mechanisms through which MYC contributes to tumor development, but will hopefully 

also contribute to the development of new therapeutic strategies to combat MYC-driven 

cancer in the future. 
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