
METHODS FOR GEOMETRIC DATA VALIDATION OF 3D CITY MODELS

D. Wagnera,*, N. Alamb, M. Wewetzerc, M. Priesc, V. Coorsb

a University of Tehran, Tehran, Iran – dwagner4@gmx.at
b Hochschule für Technik Stuttgart – University of Applied Sciences, Stuttgart, Germany –

[nazmul.alam | volker.coors]@hft-stuttgart.de
c Beuth Hochschule für Technik – University of Applied Sciences, Berlin, Germany – [mwewetzer | pries]@beuth-hochschule.de

Commission VI, WG VI/4

KEY WORDS: Geometry, Validation, CityGML, 3D city model, Requirements, Validation Rules, Tolerances

ABSTRACT:

Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the
data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however
a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent
typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata.
3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus,
concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal
validation and detection of inconsistent or wrong geometry according to a predefined set of rules.
A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces
which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole
feature must be 2-manifold.
In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on
several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water
tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each
check is specified, with a special focus on the discussion of tolerance values where they are necessary.
The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and
planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked,
after self-intersections outside of defined corner points and edges are detected, among additional criteria. Self-intersection might lead
to different results, e.g. intersection points, lines or areas. Depending on the geometric constellation, they might represent gaps
between bounding polygons of the solids, overlaps, or violations of the 2-manifoldness.
Not least due to the floating point problem in digital numbers, tolerances must be considered in some algorithms, e.g. planarity and
solid self-intersection. Effects of different tolerance values and their handling is discussed; recommendations for suitable values are
given.
The goal of the paper is to give a clear understanding of geometric validation in the context of 3D city models. This should also
enable the data holder to get a better comprehension of the validation results and their consequences on the deployment fields of the
validated data set.

1.1 INTRODUCTION

The relevance of high quality geo data is considered as a key
factor for development of down-stream applications and their
commercial and public usability. In the past, data quality was
mostly referred as accuracy of geo data products and
consistency with respect to the real world situation, e.g.
(Arsanjani, Barron, Bakillah, & Helbich, 2013), (Zielstra &
Zipf, 2010). Researching quality concepts for 3D data extends
this definition of data quality to another field, which can be
summarized as inherent or internal data quality (cf. Section 3).
In this context, data quality can be defined as the grade of
compliance with a predefined standard or data model, plus
application and user dependent extensions.
One of the most common data models for 3D buildings on a city
scale is CityGML, adopted as an OGC standard in version 2.0
in 2010. CityGML includes a semantic model in addition to the
GML-based geometric model. Hence validation of consistency
of semantics and geometry is a major research field.
Prerequisite for investigating consistency issues is the

validation of XML Schema and geometry. For schema
validation, commercial tools produce reliable results, however,
geometry validation of simple features such as polygons or
solids is a more complicated task due to the special
characteristics of the geometry model used in CityGML.
In this paper, we present algorithms and methods for geometry
validation of CityGML models and discuss fundamental
questions related with the task.

2. GEOMETRY MODEL OF CITYGML

CityGML 2.0 is based on GML 3.1. The geometry features
available in CityGML can be regarded as a profile of the GML
features (Kolbe, Gröger, & Plümer, 2005). Some additional
restrictions are specified in the standard and have to be
considered, such as only planar surfaces may be used, and line
strings may have only straight line segments. Solids usually do
not have inner shells, although it would be allowed by the
standard.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-729-2015

729

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/189128509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The following definitions of geometric primitives are based on
GML 3.1, (Coors & Gröger, 2010) and (OGC, 2006).
Points usually are gml:Point features and consist of coordinate
triples or gml:posList features consisting of a list of coordinates
where the number of elements can be divided by the coordinate
dimension.

outer ring

inner ring

Figure 1: Inner and outer ring sharing one common point.

outer ring

inner ring

Figure 2: Inner and outer ring sharing two points, resulting in a

disconnected polygon

Figure 3: Extrusion of Figure 1, resulting in a non-manifold

edge (red)

A gml:LinearRing is a finite sequence of points where the first
and last point are identical (closeness) and all other points are
different. Edges are implicitly defined as a straight line
connection of two neighboring points. Two edges may touch
each other only in their start and end points, other points of
intersection or touching are not allowed (no self-intersection).
A gml:polygon is a surface patch with a planar gml:LinearRing
as outer border and one or several inner rings. All rings must be
coplanar, the surface of the polygon uses planar interpolation.
All LinearRings must not intersect with each other. The inner
rings must be located completely inside the boundaries of the
outer ring; they may intersect with the outer ring at one point.
No inner ring may be located inside another inner ring.
Polygons are orientable surfaces where the orientation is
determined by the order of the points (usually the outer face is
defined counter clockwise). Several connected polygons form a
composite surface (a list of orientable surfaces).
There is still some debate about the question if outer and inner
rings are allowed to touch in one single point. The problem can
be considered solved for 2D polygons (Oosterom, Quak, &
Tilssen, 2005). Linear rings describing a polygon may touch in
one common point (Coors & Gröger, 2010). Thus, sharing a

single point is normally permitted (Figure 1), whereas sharing
two or more points is not allowed (Figure 2).
For 3D features, it is also makes sense to prohibit the
connection of an inner ring with the outer ring in more than one
point for most scenarios, because the volume of the solid would
be no longer connected (Ledoux, 2013),(Kazar, Kothuri, van
Oosterom, & Ravada, 2008). Consider the polygon in Figure 1
as the ground surface of a simple LoD1 building. The 3D
geometry of this building would be a simple extrusion of the
polygon along its normal, as shown in Figure 3. This results in a
non-manifold edge (marked with the red line); the edge is
shared by 4 polygons (2 from the inner and 2 from the outer
ring). Therefore we consider this geometry as invalid.
A solid is the basis for 3D geometry. A solid is delimited by its
outer shell, and may have inner shells which represent cavities
inside the solid. Each shell of a solid is represented by a
composite surface connected in a topological cycle (an object
whose boundary is empty). Ongoing discussion (e.g. during the
Quality Interoperability Experiment of OGC (Coors & Wagner,
2015)) suggest that inner shells are not used by the CityGML
community, which is the reason for neglecting them in the
following description.
Volumetric features such as buildings should be modeled as
Solid features in CityGML, however, many data sets use
MultiSurface geometry instead. In the latter case, a collection of
polygons has no meaning, although we can assume in many
cases that they are supposed to represent a closed volume when
a building is modeled.

3. VALIDATION OF GEOMETRIC FEATURES

According to ISO 19114 data quality can be evaluated with
direct or indirect methods, where the direct methods are again
subdivided into internal and external (Figure 4).

Figure 4: Classification of data quality evaluation methods

(ISO 19114)

External validation is not part of this discussion. Thus the
accuracy of point referring to real-world reference points is not
considered. The reason for this is that most 3D models are
generated from 2D data which should have this kind of quality
information as meta data (e.g. cadastral data) or from 3D data
with a known accuracy, usually laser point clouds or
photogrammetric point clouds. The errors of the source data sets
are propagated to the 3D model.
We focus on the inherent correctness and consistency of the
geometry, hence validating features such as planarity of
polygons or compliance of solids. The validation can be divided
into two main groups of checks:

• polygon validation, which is usually applicable for
MultiSurface elements. Each polygon is checked
individually,

• and solid validation, investigating the spatial
combination and topology of a group of polygons for
Solid elements.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-729-2015

730

In both cases, a clear definition of the features concerned and a
set of rules which should be adhered to, is necessary. How these
can be extracted is shown in the next sections.

3.1 Point Accuracy

Independent of the element used, the accuracy of the points is
determined by the number of decimal places. Depending on the
generation process of the model, points might have a high
number of positions after the decimal point what might result in
problems when using floating point computations (Becker,
2006). It makes sense to round coordinate numbers in these
cases to a useful amount, e.g. four decimal places. In a data set
with Gauss-Krüger coordinates, this results in a point accuracy
of 1 mm with a rounding error in the next place.
Moreover, it is important to notice that topological relationships
are not stored explicitly. That means, corner points of a 3D
geometric feature are stored independently for each of the
bounding surfaces, e.g. three times for a cube, each representing
the same point. In some cases, there might be differences which
cause deficiencies in the model, e.g. it would not be watertight
if it is a solid. To avoid such errors resulting from to many
decimal places, the same rounding procedures as outlined above
is used.
Rounding is preferred to snapping these coordinates to a
common position in order to enable detection of modeling
defects above a certain threshold (here: 1 mm).

3.2 Polygon Validation

CityGML is based on geometry features of GML 3.1. The
definitions below are based on the detailed description in
(Coors & Gröger, 2010) which is based on the GML standard,
although it implies some difficulties as discussed in Section 2.
Validation of polygons according to the definitions above
results in the following set of checks.

3.2.1 Minimum number of points
Although seemingly obvious, in some models degenerated
LinearRings are contained, e.g. consisting of only three points
or less with first and last point identical, which is not sufficient
to model an area. Therefore, a LinearRing should consist of at
least 4 points. The check counts the number of entries in the
sequence. The result is pass/fail including the ID of the
LinearRing and the number of points (CP-NUMPOINTS).

3.2.2 Nullarea
The linear ring delimits an area greater than 0 (Figure 5).
Collinearity is checked for all points. The result is pass/fail
including the ID of the LinearRing (CP-NULLAREA).

3.2.3 Closeness
A LinearRing must be closed meaning the first and last point of
the sequence defining the LinearRing must be identical (Figure
6). The check compares the coordinates of first and last point of
the sequence. If the coordinates are not rounded, a tolerance
should be defined. The result is pass/fail including the ID of the
LinearRing (CP-CLOSE).

3.2.4 Duplicate Points
A LinearRing must not have duplicate points, with exception of
start and end point (Figure 7). The check compares the
coordinates of all points with each other. If the coordinates are
not rounded, a tolerance should be defined. The result is
pass/fail including the ID of the LinearRing and the coordinates
of duplicate points (CP-DUPPOINT).

Figure 5: Degenerated LinearRing

Figure 6: Closeness error of LinearRing feature

Figure 7: Self Intersection and Duplicate Point errors

3.2.5 Self-Intersection of polygon edges
Two edges can intersect only in one start-/ end-point (Figure 7).
Other points of intersection or touching are not allowed (to
account for rounding errors or polygons which are not perfectly
planar, a small tolerance ε ∈ ℝ is allowed). The check
intersects all edges with each other. An error is detected when
the result is not empty. In this case, the result is pass/fail
including the ID of the LinearRing and the coordinates of the
intersection point (CP-SELFINT).

3.2.6 Planarity
Checking the planarity is done in two steps. At first we fit a
plane to the points of the outer ring and afterwards we calculate
the distance of each point of the outer and inner rings to the
plane. If the distance of one point exceeds the given tolerance ε,
the polygon is marked as non-planar. We adopted the algorithm
proposed by (Eberly, 2015) and use least squares where the
distance is measured orthogonally to the proposed plane and not
in the x-, y- or z-direction of the coordinate system, as
illustrated in Figure 8 and Figure 9. Using an approach with an
energy function leads to an eigenvalue problem, where the
eigenvector of the smallest eigenvalue is the normal vector of
the plane we are looking for. Since we are dealing with a real
symmetric 3x3 eigensystem, we find the solution by applying
the iterative Jacobi eigenvalue algorithm. The position vector of
our plane is defined by the average of the points of the outer
ring. Figure 10 shows an exaggerated warped blue quadrangle
and its orange fitting plane. The dashed lines indicating the
orthogonally measured distance from the corner points of the
linear ring to the plane.
We use a tolerance ε of 0.01m as deviation for a point from the
plane. This seems to be small for an ordinary family home. But
this is mainly driven by the self-intersection algorithm for solids
which intersects polygons pair wise (cf. section 3.3, Solid Self
Intersection) and relies on the projection if these polygons on
their fitting plane. There for the polygons should be as planar as
possible, to receive reliable results. The value is based on
experience and showed to be a fair trade-off between the needs
of the self-intersection algorithm and existing real life models.
The result is pass/fail including the ID of the LinearRing and
the deviation in meters (CP-PLAN).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-729-2015

731

x

y

Figure 8: Line fitting done with vertical regression
(in y-direction)

x

y

Figure 9: Line fitting done with orthogonal regression

Figure 10: Overdone warpage of a quadrangle (blue) and its

fitting plane (orange)

3.3 Solid Validation

The performance of the algorithms of solid checks depends on
the planarity of the polygons forming the solid. Non-planar
surfaces might yield incorrect results under certain conditions.
To avoid these problems the tolerance should be as small as
possible. However, it is possible to validate a Solid geometry
with relatively large tolerance settings to allow only the
detection of big folds.

3.3.1 Minimum Number of Polygons
The smallest solid is a tetrahedron, consisting of four triangles.
Therefore, the minimum number n of polygons to define a valid
solid is four, when they are situated in different planes. The
result includes the ID of the erroneous geometry
(CS-NUMFACES).

3.3.2 Solid Self-Intersection
The solid self-intersection check is realized by pair wise
intersections of polygons of a solid. The planarity of the
polygons, as described above, is mandatory, because the
problem is transformed into two dimensions to avoid issues
with skew warped polygons. Additionally
the shape of a surface of a non-planar outer ring is not defined
in CityGML.
Let us suppose we have a triangle and a quadrangle situated as
shown in Figure 11. In the first step we calculate the fitting
plane of each polygon and project each polygon on its plane, as
shown in Figure 12. The advantage of this procedure is that
both polygons can only intersect at the intersection straight line

(dashed) of the planes, unless the planes are parallel. We
intersect each polygon with the intersection straight separately
and get the domain of each intersection, as shown in figure
Figure 13 and Figure 14 as green line. By intersecting both
domains we retrieve the intersection between both Polygons,
see Figure 15.

Figure 11: Initial position. A triangle (polygon 1) intersects
with a quadrangle (polygon 2)

Figure 12: Intersection of the fitting planes of both polygons

Figure 13: Intersection of polygon 1 with plane of polygon 2

Figure 14: Intersection of polygon 2 with plane of polygon 1

Figure 15: Combined intersection results of both polygons
(intersection marked with red line)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-729-2015

732

If both polygons are located in the same plane a special
treatment is necessary. In this case we intersect each edge of a
polygon with the other one and determine if it is located
partially or in fully inside the polygon. Merging these
information lead to a 2D-domain, reflecting the area of
overlapping of both polygons. This can result in a fully
embedded polygon intersection type, where one polygon is
completely contained in the other one or a simple partially
embedded polygon intersection type as shown exemplary in
Figure 16. Besides the “normal intersection” as shown in figure
Figure 15 and the before mentioned we also take into account if
to adjacent polygons intersect at an edge, without sharing the
start or end point. We call this type of intersection “embedded
edge”. Like embedded polygons we distinguish between
partially and fully embedded edges. Figure 17 shows different
configuration types for edges and the resulting intersection
types. Please note, that the black edges actually lie on top of
each other and are “pulled” beside for clarity, which is also
indicated by the gray dashed line. The resulting intersection is
marked by the red line. Figure 17 shows a partially embedded
edge, where both edges don’t share a common point and no
black edge is completely covered by the other one. Figure 17
shows a tricky configuration. If both edges share a common
point, as indicated by the black dashed line, the intersection
type will be set to partially embedded edge. Otherwise it will be
set to fully embedded edge. Figure 17 shows fully embedded
edge intersection type where the second edge is completely
embedded in the first one.
Like the planarity check we are using 0.01m as tolerance to
check for coincident points and 0.5° for parallel edges. This
also implicates that the length of an intersection interval below
0.01m is treated as intersection point and not line. These tight
error bounds result from experience and ensured reliable results
especially for the intersection type embedded edge.
The result is pass/fail providing the IDs of the intersecting
polygons, the type and the geometric details of the intersection
(CS-SELFINT).

Figure 16: Partially embedded polygons
intersection type (overlapping intersection in red)

Figure 17: Partially (a, b) and fully (c) embedded intersection
type (overlapping intersection in red)

3.3.3 2-Manifoldness
The shell of a solid consists of a composite surface. Therefore it
must be 2-manifold. 2-mannifoldness is a complex requirement,
validated by several checks.
A valid intersection of two polygons of a solid either contains a
common edge, a common point of a linear ring, or is empty.
Common edges and points must be elements of both polygons.
Any edge of a solid must be incident to exactly two common
polygons, otherwise the solid can not be 2-manifold.
Two checks compare all edges of the solid and fails if the
number n of incident polygons is not equal to 2. The IDs of the
solid and the edge concerned are reported. Two different error
types can occur:

• n = 1: There is an outer edge which bounds a hole in the
solid geometry, i.e. the solid is not watertight
(CS-OUTEREDGE)

• n > 2: Topological error which violates the 2-
manifoldness. In Figure 18 there is an edge shared by
four polygons (CS-OVERUSEDEDGE).

Figure 18: Topological error caused by an edge with 4 adjacent

polygons

In case of a common point incident to several polygons, 2-
manifoldness might not exist. This happens when the
neighborhood of the point is not topologically equivalent to a
disc (Figure 19). The graph GS = (VP,EP) of polygons and edges
which are meeting in point pi is connected for all p. Each vertex
v ∈ VP represents exactly one polygon which contains p. Two
vertices are connected with an edge e ∈ EP if the polygons
represented by these vertices have a common edge that is
bounded by p. If the graph finds more than one loop for
connected polygons at a vertex then an umbrella error occurs.
The result includes the ID of the solid and the coordinates of the
point (CS-UMBRELLA).

Figure 19:Topological error caused by a non-manifold point

3.3.4 Consistent orientation
The members of the composite surface forming the shell of a
solid must have consistent orientation (cf. Section 2), i.e. their
face normals should all be directed towards the inside of the
solid or opposite. Consequently, the direction of the edges of
two neighboring polygons must be opposite. In Figure 20,
polygon A is anti-clockwise oriented whereas polygon B is
clockwise oriented. Both polygons are incident to a common
edge. The direction of the respective edges is the same which
causes an error. If all or most of the edges of a polygon have

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-729-2015

733

wrong orientation then its orientation is wrong. The result
includes the ID of the polygon (CS-FACEORIENT).

Figure 20: Inconsistent orientation of polygons

Figure 21: Orientation error of a roof polygon

By definition, normal vectors of the polygons must point
towards the outside of the solid (Figure 21). If consistency of
the orientation of all polygons is validated, the direction of their
normal vectors must be checked. This is done by calculating a
normal vector of a polygon and then intersect it with all other
polygons of the solid. The number of intersections shall be odd
in case it points towards the outside of the solid, even, in case it
points towards the inside. The solid has valid orientation when
the number of intersection points is odd. In case of error, the ID
of the solid is reported (CS-FACEOUT).

3.3.5 Connected component
The shell of a solid must be connected in a topological cycle.
This results in a connected geometry for each solid.
Disconnected geometries can not be modeled as different part of
the same solid (Figure 22). Validation of this requirement is
done by generating a graph GS = (VP,EP) of polygons and
edges. The result must be a connected graph which contains all
polygons and edges of the solid. The check reports the ID of the
solid in case of error.

Figure 22: Disconnected solid

4. HIERARCHY AND DEPENDENCY OF CHECKS

Customizing validation rules depends on user requirements. The
SIG3D modeling handbook provides a guideline but the user
might have own preferences or limitations depending on the
application and deployment of the model. Some geometry
checks are depending on others (Table 1). Checks in the first
column are dependent on those marked with an ‘X’ in the
respective row, e.g. the planarity check (F) accepts a geometry
feature as input only when it has passed the checks for
minimum number of points (A), closeness of the LinearRing
(B), nullarea (C) and duplicate points (D) without errors. All
polygon checks are independent of the solid checks.

Table 1. Dependencies of geometry checks

 A B C D E F G H I
A
B
C X X X
D X X
E X X X X
F X X X X
 G X X X X X
H X X X X X X X
I X X X X X
J X X X X X
K X X X X X
L X X X X X X X X
M X X X X X
N X X X X X
Legend:

A Minimum number of points
B Closeness
C Nullarea
D Duplicate points
E Self-Intersection of polygon edges
F Planarity
G Minimum Number of Polygons
H Solid Self-Intersection
I Edge adjacent to less than two polygons
J Edge adjacent to more than two polygons
K Inconsistent Orientation
L Orientation towards inside of solid
M Unconnected components
N Non-2-manifold point (umbrella)

Checks A-F are polygon checks, H-N are solid checks

Solid checks are generally performed only for Solid geometries
and are only executed when all polygons have a minimum
number of four points, are bounded by closed LinearRings
without duplicate points, and have an area greater than zero.
Planarity is only required for solid self-intersection and
determination of correct orientation of all polygons.
MultiSurface geometries can also be checked with the solid
checks, if required. This might be helpful in situations where
real-world solids have been modeled as MultiSurface

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-729-2015

734

geometries but their solid characteristics is requested for further
analysis.

5. CONCLUSION AND OUTLOOK

Geometry definitions are given by standards such as ISO 19107
and GML. Their interpretation for 3D geometry is not
unambiguous. Consequently, rules for valid 3D geometries may
differ along with user requirements.
Validation of these rules should be done by a modularized
approach, where for each restriction one or more check routines
are applied. As the definition of 3D geometries is not
unambiguous, a suggestion for solid geometry in CityGML
models is discussed, where we recommend to prohibit common
points of inner and outer rings of a polygon.
Based on this, we describe a set of basics checks. These checks
can be combined to satisfy different users’ needs and enable
testing of complex requirements such as water-tightness of
solids. Besides the basic methods used, we point out the
importance of tolerances during the validation process as well
as the dependency of some checks on other lower level checks.
The set of checks presented above for geometry validation of
CityGML models is implemented in the software package
CityDoctor (Wewetzer et al., 2013) in JAVA and C++ as proof
of concept. Tests on real-world data sets and on synthetic
models have been done extensively, latest during the CityGML
Quality Interoperability Experiment of OGC (Coors & Wagner,
2015), and showed that general requirements for 3D city models
can be validated with this approach.
The success of the strategy was confirmed in comparison with
other approaches for geometric validation. Future development
should focus on validation of semantic features and the
coherency of semantics and geometry.

ACKNOWLEDGEMENTS

Special thanks to Shelly and David Eberly of Geometric Tools,
for sharing and offering their knowledge about least squares
fitting.
The project CityDoctor was funded by German Ministery for
Education and Research (BMBF) and performed as a joint
research project of University of Applied Sciences Stuttgart
(HFT) and Beuth Hochschule für Technik Berlin.

REFERENCES

Arsanjani, J. J., Barron, C., Bakillah, M., & Helbich, M. (2013).
Assessing the Quality of OpenStreetMap Contributors together
with their Contributions. Proceedings of the AGILE.
http://www.agile-online.org/Conference_Paper/CDs/agile_2013
/Short_Papers/SP_S4.2_Arsanjani.pdf

Becker, P. (2006). Errors in Floating-point Calculations.
http://petebecker.com/js/js200007.html (27. Sep 2015)

Coors, V., & Gröger, G. (2010). Handbuch für die
Modellierung von 3D Objekten - Teil 1: Grundlagen (Regeln
für valide GML Geometrie-Elemente in CityGML).
SIG3D Quality Wiki.
http://wiki.quality.sig3d.org/index.php/Handbuch_f%C3%BCr_
die_Modellierung_von_3D_Objekten_-_Teil_1:_Grundlagen_(
Regeln_f%C3%BCr_valide_GML_Geometrie-Elemente_in_Cit
yGML) (27. Sep 2015)

Coors, V., & Wagner, D. (2015). CityGML Quality
Interoperability Experiment des OGC. Publikationen der
Deutschen Gesellschaft für Photogrammetrie, Fernerkundung
und Geoinformation e.V., 24, Köln, Germany.

Eberly, D. (2015). Geometric Tools.
http://www.geometrictools.com/Documentation/LeastSquaresFi
tting.pdf (27. Sep 2015)

Kazar, B. M., Kothuri, R., van Oosterom, P., & Ravada, S.
(2008). On valid and invalid three-dimensional geometries.
Advances in 3D geoinformation systems, pp. 19–46. Springer.
http://link.springer.com/chapter/10.1007/978-3-540-72135-2_2
(27. Sep 2015)

Kolbe, T. H., Gröger, G., & Plümer, L. (2005). CityGML:
Interoperable access to 3D city models. Geo-information for
disaster management, pp. 883–899, Springer.

Ledoux, H. (2013). On the validation of solids represented with
the international standards for geographic information.
Computer-Aided Civil and Infrastructure Engineering, 28(9),
693–706.

OGC (2006). OpenGIS implementation specification for
geographic information — simple feature access. Open
Geospatial Consortium.

Oosterom, P., Quak, W., & Tilssen, T. (2005). About Invalid,
Valid and Clean Polygons. P. F. Fisher (Ed.) Developments in
Spatial Data Handling (Vol. Part 1, pp. 1–16). Leicester, UK:
Springer Berlin Heidelberg.

Wewetzer, M., Falkenhausen, J., Wagner, D., Alam, M. N.,
Pries, M., Coors, V., & Fischer, J. (2013). Verbundprojekt
CityDoctor - Entwicklung von Methoden und Metriken zum
Qualitätsmanagement virtueller Stadtmodelle.
Forschungsbericht 2012 - Angewandte Forschung zur Stadt der
Zukunft, pp. 15–21. Berlin, Logos Verlag.

Zielstra, D., & Zipf, A. (2010). A comparative study of
proprietary geodata and volunteered geographic information for
Germany. 13th AGILE international conference on geographic
information science,
http://agile2010.dsi.uminho.pt/pen/shortpapers_pdf/142_doc.pd
f (27. Sep 2015)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-729-2015

735

