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An f-structure on a manifold M is an endomorphism field ϕ satisfying ϕ3 + ϕ = 0. We call an
f -structure regular if the distribution T = kerϕ is involutive and regular, in the sense of Palais.
We show that when a regular f -structure on a compact manifold M is an almost S-structure,
it determines a torus fibration of M over a symplectic manifold. When rank T = 1, this result
reduces to the Boothby-Wang theorem. Unlike similar results for manifolds with S-structure or
K-structure, we do not assume that the f -structure is normal. We also show that given an almost
S-structure, we obtain an associated Jacobi structure, as well as a notion of symplectization.

1. Introduction

Let (M,η) be a cooriented contact manifold. The Boothby-Wang theorem [1] tells us that if
the Reeb field ξ corresponding to the contact form η is regular (in the sense of Palais [2]),
then M is a prequantum circle bundle π : M → N over a symplectic manifold (N,ω),
where π∗ω = −dη and η may be identified with the connection 1-form. Conversely, let M be
a prequantum circle bundle over a symplectic manifold (N,ω), and let η be a connection 1-
form. Given a choice of compatible almost complex structure J for ω, let G(X,Y ) = ω(JX, Y )
be the associated Riemannian metric onN, and let π̃ denote the horizontal lift of vector fields
defined by η. We can then define an endomorphism field ϕ ∈ Γ(M,End(TM)) by

ϕX = π̃Jπ∗X, (1.1)

and a Riemannian metric g by g = π∗G+η⊗η. If we let ξ be the vertical vector field satisfying
η(ξ) = 1, then (ϕ, ξ, η, g) defines a contact metric structure on M [3]. In particular, we note
that ϕ is an f-structure on M. By construction, we have ϕ2 = −IdTM + η ⊗ ξ, from which it
follows that ϕ3 + ϕ = 0.
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In [4, 5], Blair et al. consider compact Riemannian manifolds equipped with a regular
normal f-structure ϕ and show that such manifolds are the total space of a principal torus
bundle over a complex manifold N, and that in addition, N is a Kähler manifold if the
fundamental 2-form of the f-structure is closed (i.e., if M is a K-manifold). Saenz argued in
[6] that if thisK-structure is an S-structure, then the symplectic form of the Kähler manifold
N is integral.

While the results in [5, 6] provide us with a generalization of the Boothby-Wang
theorem, the proofs in [5] (and by extension, the argument in [6]) rely in several places on
the assumption that the f-structure ϕ is normal. Since this assumption is not required in the
original Boothby-Wang theorem, it is natural to ask what can be said if this assumption is
dropped for f-structures of higher corank. In this note, we use a theorem of Tanno [7] to
show that if M is a compact almost S-manifold, in the sense of [8], then M is a principal
torus bundle over a symplectic manifold whose symplectic form is integral. (More precisely,
the symplectic form will be a real multiple of an integral symplectic form.) Not surprisingly,
this tells us that requiring ϕ to be normal is the same as demanding that the base of our torus
bundle be Kähler.

This “generalized Boothby-Wang theorem” is one of a number of similarities between
manifolds with almost S-structure and contact manifolds. In the final section of this paper
we demonstrate two more. First, there is a natural notion of symplectization: given an almost
S-manifold M, there is an open, conic, symplectic submanifold of T ∗M whose base is M.
Second, a choice of one-form (expressed in terms of the almost S-structure) allows us to
define a Jacobi bracket on the algebra of smooth functions on M, giving us in particular a
notion of Hamiltonian vector field on manifolds with almost S-structure.

2. Preliminaries

2.1. Regular Involutive Distributions

Let F ⊂ TM be an involutive distribution of rank k. We briefly recall the notion of a regular
distribution in the sense of Palais and refer the reader to [2] for the details. Roughly speaking,
the involutive distribution F is regular if each point p ∈ M has a coordinate neighbourhood
(U,x1, . . . xn) such that

{

(

∂

∂x1

)

p

, . . . ,

(

∂

∂xk

)

p

}

(2.1)

forms a basis for Fp ⊂ TpM, and such that the integral submanifold of F through p intersects
U in only one k-dimensional slice. When F is regular, the leaf space F = M/F is a smooth
Hausdorffmanifold, and the quotient mapping πF : M → F is smooth and closed. WhenM
is compact and connected, the leaves of F are compact and isomorphic and are the fibres of
the smooth fibration πF : M → F.

In particular, a vector field X on M is regular if each p ∈ M has a neighbourhood
U through which the integral curve of X through p passes only once. If M is compact, the
integral curves of a regular vector field are thus diffeomorphic to circles. Applying this fact
to the Reeb vector field of a contact manifold gives part of the proof of the Boothby-Wang
theorem.



ISRN Geometry 3

2.2. f-Structures

An f-structure on M is an endomorphism field ϕ ∈ Γ(M,End TM) such that

ϕ3 + ϕ = 0. (2.2)

Such structures were introduced by Yano in [9]; many of the facts regarding f-structures are
collected in the book [10]. By a result of Stong [11], every f-structure is of constant rank. If
rank ϕ = dimM, then ϕ is an almost complex structure on M, while if rank ϕ = dimM − 1,
then ϕ determines an almost contact structure on M.

It is easy to check that the operators l = −ϕ2 and m = ϕ2 + IdTM are complementary
projection operators; letting E = l(TM) = imϕ and T = m(TM) = kerϕ, we obtain the
splitting

TM = E ⊕ T = imϕ ⊕ kerϕ (2.3)

of the tangent bundle. Since (ϕ|E)2 = −IdE, ϕ is necessarily of even rank. When the corank
of ϕ is equal to one, the distribution T is automatically trivial and involutive. However, if
rank T > 1, this need not be the case, and one oftenmakes additional simplifying assumptions
about T . An f-structure such that T is trivial is called an f-structure with parallelizable kernel
(or f ·pk-structure for short) in [8]. We will assume that an f ·pk-structure includes a choice
of a trivializing frame {ξi} and corresponding coframe {ηi} for T ∗, with

ηi(ξj
)

= δi
j , ϕ(ξi) = ηj ◦ ϕ = 0, ϕ2 = −Id +

∑

ηi ⊗ ξi. (2.4)

(This is known as an f-structure with complemented frames in [4]; such a choice of frame
and coframe always exists.) Given an f ·pk-structure, it is always possible [10] to find a
Riemannian metric g that is compatible with (ϕ, ξi, ηj) in the sense that, for all X,Y ∈
Γ(M,TM), we have

g(X,Y ) = g
(

ϕX, ϕY
)

+
k
∑

i=1

ηi(X)ηi(Y ). (2.5)

Following [8], we will call the 4-tuple (ϕ, ξi, ηj , g) a metric f ·pk structure. Given a metric f ·pk-
structure (ϕ, ξi, ηj , g), we can define the fundamental 2-form Φg ∈ A2(M) by

Φg(X,Y ) = g
(

ϕX, Y
)

. (2.6)

Remark 2.1. Our definition of Φg is chosen to agree with our preferred sign conventions in
symplectic geometry; however, many authors place ϕ in the second slot, so our convention
here uses the opposite sign of that found for example in [5, 8].
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We will call an f-structure ϕ regular if the distribution T = kerϕ is regular in the sense
of Palais [2]. An f ·pk-structure is regular if the vector fields ξi are regular and independent.
An f ·pk-structure is called normal [4] if the tensor N defined by

N =
[

ϕ, ϕ
]

+
k
∑

i=1

dηi ⊗ ξi (2.7)

vanishes identically. Here [ϕ, ϕ] denotes the Nijenhuis torsion of ϕ, which is given by

[

ϕ, ϕ
]

(X,Y ) = ϕ2[X,Y ] +
[

ϕX, ϕY
] − ϕ

[

ϕX, Y
] − ϕ

[

X,ϕY
]

. (2.8)

When ϕ is normal, the +i-eigenbundle of ϕ (extended by C linearity to TCM) defines a CR
structure E1,0 ⊂ TCM. Regular normal f-structures are studied in [5], where it is proved
that a compact manifold with regular normal f-structure is a principal torus bundle over a
complex manifoldN. If the fundamental 2-formΦg of a normal f-structure is closed, then the
f-structure is called a K-structure, and M a K-manifold. For a compact regular K-manifold
M, the base N of the torus fibration is a Kähler manifold. A special case of a K-manifold is
an S-manifold. On an S manifold, there exist constants α1, . . . , αk such that dηi = −αiΦg for
i = 1, . . . , k. Two commonly considered cases are the case αi = 0 for all i, and the case αi = 1
for all i. In the language of CR geometry, the former case is analogous to a “Levi-flat” CR
manifold,

while the latter defines an analogue of a strongly pseudoconvex CR manifold
(typically, strongly pseudoconvex CR manifolds are assumed to be of “hypersurface type,”
meaning that the complementary distribution T has rank one; see [12]).

A refinement of the notion ofS-structurewas introduced in [8]: a metric f ·pk-structure
(ϕ, ξi, ηj , g) which is not necessarily normal is called an almost S-structure if dηi = −Φg

for each i = 1, . . . , k. An f-structure ϕ is called CR-integrable in [8] if the +i-eigenbundle
E1,0 ⊂ TCM of ϕ is involutive (and hence, defines a CR structure). It is shown in [8] that an
f ·pk-structure is CR-integrable if and only if the tensorN given by (2.7) satisfiesN(X,Y ) = 0
for all X,Y ∈ Γ(M,E), where E = imϕ, whereas for a normal f ·pk-structure, N must
vanish for all X,Y ∈ Γ(M,TM). In [13] it is proved that a CR-integrable almost S-manifold
admits a canonical connection analogous to the Tanaka-Webster connection of a strongly
pseudoconvex CRmanifold. For the relationship between this connection and the ∂b operator
of the corresponding tangential Cauchy-Riemann complex, as well as an application of this
relationship to defining an analogue of geometric quantization for almost S-manifolds, see
[14].

In this paper, we will define an almost K-structure to be a metric f ·pk-structure for
which dΦg = 0, and we will define an almost S-structure more generally to be an almost
K-structure such that dηi = −αiΦg for constants αi ∈ R, for i = 1, . . . , k.

3. Properties of Almost K and Almost S-Structures

Let (ϕ, ξi, ηi) be an f ·pk-structure on a compact, connected manifold M. Let g be a
Riemannian metric satisfying the compatibility condition (2.5), and let Φg denote the
corresponding fundamental 2-form. Let E = imϕ, and T = kerϕ denote the distribution
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spanned by the ξi. It is easy to check that the distributions E and T are orthogonal with
respect to g, and that the restriction of Φg to E ⊗ E is nondegenerate, from which we have
the following lemma.

Lemma 3.1. X ∈ Γ(M,T) if and only if ι(X)Φg = 0.

Proposition 3.2. Let (ϕ, ξi, ηi, g) be a metric f ·pk-structure. Then T = kerϕ is involutive whenever
dΦg = 0.

Proof. Let X,Y ∈ Γ(M,T), and let Z ∈ Γ(M,TM). Then, using Lemma 3.1 above, we have

dΦg(X,Y,Z) = X ·Φg(Y,Z) + Y ·Φg(Z,X) + Z ·Φg(X,Y )

−Φg([X,Y ], Z) −Φg([Y,Z], X) −Φg([Z,X], Y )

= −Φg([X,Y ], Z).

(3.1)

Therefore, if dΦg = 0, then ι([X,Y ])Φg = 0, and thus [X,Y ] ∈ Γ(M,T), which proves the
proposition.

Let us now suppose that (ϕ, ξi, ηi, g) is an almost S-structure, so that the 1-forms ηi

satisfy dηi = −αiΦg for constants αi, some of which may be zero. The following results were
proved in [8] in the case that αi = 1 for all i; we easily see that the results remain true in our
more general setting.

Proposition 3.3. If (ϕ, ξi, ηj , g) is an almost S-structure, then L(ξi)ξj = [ξi, ξj] = 0 for all i, j =
1, . . . , k.

Proof. Since the fundamental 2-form Φg of an almost S-structure is closed, the distribution T
is involutive. Thus we may write [ξi, ξj] =

∑

caijξa. But for any a, i, j ∈ {1, . . . , k}, we have

caij = ηa([ξi, ξj
])

= ξi · ηa(ξj
) − ξj · ηa(ξi) − dηa(ξi, ξj

)

= αaΦg

(

ξi, ξj
)

= 0. (3.2)

Proposition 3.4. If (ϕ, ξi, ηj , g) is an almost S-structure, then L(ξi)ηj = 0 for all i, j = i, . . . , k.

Proof. We have L(ξ)ηj = d(ηj(ξi)) + ι(ξi)dηj = −αj(ι(ξi)Φg) = 0.

We remark that several other results from [8] hold in this more general setting, but
they are not needed here. To conclude this section, we state a theorem due to Tanno [7].

Theorem 3.5. For a regular and proper vector fieldX on a manifoldM, the following are equivalent.

(i) The period function λX of X is constant.

(ii) There exists a 1-form η such that η(X) = 1 and L(X)η = 0.

(iii) There exists a Riemannian metric g such that g(X,X) = 1 and L(X)g = 0.

In the above theorem, the period function λX : M → R is defined by

λX
(

p
)

= inf
{

t > 0 | exp(tX) · p = p
}

. (3.3)
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If M is noncompact, the value λX(p) = ∞ is possible. Part (iii) of the above tells us that X is
a unit Killing field for the metric g. Using this result, Tanno was able to give a simple proof
(which is reproduced in [3]) of the Boothby-Wang theorem [1].

4. The Structure of Regular Almost S-Manifolds

As noted above, from [5], a compact manifold with regular normal f-structure is a principal
torus bundle over a complex manifold N, and N is Kähler if M is a K-manifold. If M is an
S-manifold with Φg = −dηi for each i, then by [6], the symplectic form on N is integral. We
now dispense with the requirement that the f-structure on M be normal, and state a similar
result for almost S-manifolds.

Theorem 4.1. Let M be a compact manifold of dimension 2n + k equipped with a regular almost
S-structure (ϕ, ˜ξi, η̃i, g̃) of rank 2n. Then there exists an almost S-structure (ϕ, ξi, ηi, g) on M for
which the vector fields ξ1, . . . , ξk are the infinitesimal generators of a free and effective T

k-action on
M. Moreover, the quotientN = M/T

k is a smooth symplectic manifold of dimension 2n, and if the αi

such that dη̃i = −αiΦg̃ are not all zero, then the symplectic form onN is a real multiple of an integral
symplectic form.

Proof. By assumption, the vector fields ˜ξ1, . . . , ˜ξk are regular, independent, and proper, and
by Proposition 3.2, the distribution T = span{˜ξ1, . . . , ˜ξk} is involutive. Thus, by the results of
Palais, N = M/T is a smooth manifold, and π : M → N is a smooth fibration whose fibres
are the leaves of the distribution T . SinceM is compact, the fibres are compact and isomorphic
[2]. For each i = 1, . . . , k, we have η̃i(˜ξi) = 1 and L(˜ξi)η̃i = 0. Thus, by Theorem 3.5, the period
functions λi = λ

˜ξi
are constant. We rescale by setting ξi = λi˜ξi and ηi = (1/λi)η̃i. We still

have ηi(ξj) = δi
j , and note that the associated metric g for which (ϕ, ξi, ηi, g) is an almost S-

structure differs from g̃ only along T , so thatΦg = Φg̃ . Each ξi now has period 1, and since the
vector fields ξi all commute, they are the generators of a free and effective T

k-action on M.
The argument for local triviality is the same as in [5], so we do not repeat it here. Thus, we
have that M is a principal T

k-bundle over N = M/T . The infinitesimal action of R
k is given

by

X =
(

t1, . . . , tk
)


−→ XM =
∑

tiξi, (4.1)

from which we see that η = (η1, . . . , ηk) is a connection 1-form on M: we have ι(XM)η = X
and L(XM)η = 0 for all X ∈ R

k.
Now, we note that the fundamental 2-form Φg is horizontal and invariant, since

ι(X)Φg = L(X)Φg = 0 for all X ∈ Γ(M,T), and thus there exists a 2-form Ω on N such that
π∗Ω = Φg . Since π∗dΩ = dΦg = 0, Ω is closed, and since π∗Ωn = Φn

g /= 0, Ω is nondegenerate,
and hence symplectic.

Finally, let us suppose that one of the αi is nonzero; without loss of generality, let us say
α1 /= 0. By the same argument as above, the vector fields ξ2, . . . , ξk generate a free T

k−1-action
on M, giving us a fibration p : M → P . Now, since L(ξi)ξ1 = L(ξi)η1 = 0 for i = 2, . . . , k,
the vector field ξ1 and 1-form η1 are invariant under the T

k−1-action. We can thus define a
1-form η on P by η(X) = η1(p̃X), where p̃X denotes the horizontal lift of X with respect to
the connection 1-form defined by η2, . . . , ηk, and a vector field ξ on P by ξ = p∗ξ1. Note that
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dη(X,Y ) = dη1(p̃X, p̃Y ). We then have η(ξ) = 1, andL(ξ)η = ι(ξ1)dη1 = 0, so that Theorem 3.5
applies to the pair (η, ξ). It follows that ξ generates a free action of S1 = R/Z on P , giving us
the T

1-bundle structure q : P → N. Since π = q ◦ p, it follows that

dη(X,Y ) = dη1(p̃X, p̃Y
)

= −α
1

λ1
(π∗Ω)

(

p̃X, p̃Y
)

= −α
1

λ1
q∗Ω(X,Y ). (4.2)

Thus, P is a Boothby-Wang fibration over (N, (α1/λ1)Ω), from which it follows that the
symplectic form (α1/λ)Ω must be integral (see [15]), and hence Ω is a real multiple of an
integral symplectic form.

Remark 4.2. Note that since the last part of the argument is valid for any pair of nonzero
constants αi, αj , from which it follows that for each i, j for which αi and αj are nonzero, we
must have αi/λi · λj/αj ∈ Q.

Conversely, we have the following theorem.

Theorem 4.3. Suppose thatM is a principal T
k-bundle over a symplectic manifold (N,ω), equipped

with connection 1-form η = (η1, . . . , ηk) such that there exist constants α1, . . . , αk for which dηi =
−αiπ∗ω. Then M admits an almost S-structure.

Proof. The proof is essentially the same as the proof given in [4] when N is Kähler, if we
omit the proof of normality. Given a choice of compatible almost complex structure J and
associated metric G, we can define an f-structure ϕ by ϕX = π̃Jπ∗X, where π̃ denotes the
horizontal lift with respect to η. If we let ξ1, . . . , ξk denote vertical vectors such that ηi(ξj) = δi

j ,
and define the metric g by

g(X,Y ) = π∗G(X,Y ) +
∑

ηi(X)ηi(Y ), (4.3)

then it is straightforward to check that the data (ϕ, ξi, ηj , g) defines an almost S-structure on
M. (Note that Φg = π∗ω, so that dηi = −αiΦg .)

Remark 4.4. We can also use the results of Tanno [7] to show that the vector fields ξ1, . . . , ξk
of an almost S-structure are Killing. Let π̃ denote the horizontal lift defined by η. Then we
can define a Riemannian metric G on N by G(X,Y ) = g(π̃X, π̃Y ) for any X,Y ∈ Γ(N,TN),
where g is the metric of the almost S-structure on M. It follows that g = π∗G +

∑

ηi ⊗ ηi,
whence g(ξi, ξi) = 1 and L(ξi)g = 0 for i = 1, . . . , k. Moreover, the endomorphism field J ∈
Γ(N,End(TN)) defined by JX = π∗ϕπ̃X is easily seen to be an almost complex structure on
N that is compatible with G, and the symplectic form Ω then satisfies Ω(X,Y ) = G(X, JY ).

Remark 4.5. If M is only an almost K-manifold, it is not clear that we can expect any
analogous result to hold, since the proof in [5] for a K-manifold does not work without
normality, and Tanno’s theorem cannot be applied if L(ξi)ηj /= 0 for all i, j, and this need not
hold if dηj is not a multiple of Φg .

Remark 4.6. If M is noncompact, then as noted below the statement of Tanno’s theorem, the
period λi of one of the ξi could be infinite, in which case ξi generates an R-action onM instead
of an S1-action.
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5. Symplectization and Jacobi Structures

We conclude this paper with a discussion of the relationship between almost S-structures
and related geometries intended to reinforce the view that almost S-structures deserve to
be viewed as higher corank analogues of contact structures. (However, see also [16] for
the notion of k-contact structures, which, from the point of view of Heisenberg calculus,
are also deserving of the title of higher corank contact structure. From this perspective,
almostS-structures are perhapsmore analogous to contact metric structures, or even strongly
pseudoconvex CR structures, although they are not CR-integrable in general.)

Recall that a stable complex structure on a manifoldM is a complex structure defined
on the fibres of TM ⊕ R

k for some k. Given an f ·pk-structure (ϕ, ξi, ηj) on M, we obtain a
stable complex structure J ∈ Γ(M,End(TM ⊕ R

k)) by setting JX = ϕX for X ∈ Γ(M,E), and
defining Jξi = τi and Jτi = −ξi, where τ1, . . . , τk is a basis for R

k. As explained in [17], a stable
complex structure determines a Spinc-structure onM.

Alternatively, (and with some abuse of notation), we can think of the above complex
structure on each fibre TxM × R

k as coming from an almost complex structure on M × R
k

obtained from the f-structure ϕ. With this point of view, we note that it is possible to
define a “symplectization” analogous to the symplectization of a cooriented contact manifold,
provided that our f ·pk-structure is an almostS-structure, with at least one of the αj (such that
dηj = −αjΦg) nonzero. As above, we let TM = E⊕T denote the splitting of the tangent bundle
determined by the f-structure, and let E0 ∼= T ∗ = span{ηi} ∼= M × R

k denote the annihilator
of E. It is then possible to find an open connected symplectic submanifold E0

+ of T ∗M whose
tangent bundle is TxM × R

k. For concreteness, let us use the identification E0 ∼= M × R
k, and

with respect to coordinates (x, t1, . . . , tk), let

α =
k
∑

i=1

tiη
i, (5.1)

and define ω = −dα. (We are abusing notation here slightly; technically we should write π∗ηi

in place of ηi, where π : M × R
k → M is the projection onto the first factor.) Using the fact

that dηi = −αiΦg for each i, we have

ω=
∑

ηj ∧ dtj +
(
∑

tjα
j
)

Φg. (5.2)

Define τ ∈ C∞(E0) to be the function given in coordinates by τ =
∑

αjtj . Note that since
ηi ∧ ηi = dti ∧ dti = 0, we have

(

k
∑

i=1

ηj ∧ dtj

)k

= k!η1 ∧ dt1 ∧ · · · ∧ ηk ∧ dtk. (5.3)

We also note that Φm
g = 0 for m > n. Thus, using the binomial theorem, we find that the

top-degree form ωn+k has only one nonzero term; namely,

ωn+k =
(n + k)!

n!
η1 ∧ dt1 ∧ · · · ∧ ηk ∧ dtk ∧

(

τΦg

)n
. (5.4)
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Thus, ωn+k is a volume form on the open subset E0
+ of E0 defined by τ > 0, and hence ω is a

symplectic form on E0
+.

Next, we will show that for certain choices of section η ∈ Γ(M,E0) we obtain a Jacobi
structure on M defined in a manner analogous to the Jacobi structure associated to a choice
of contact form on a contact manifold. We recall that a Jacobi structure onM is given by a Lie
bracket {·, ·} on C∞(M) such that for any f, g ∈ C∞(M) the support of {f, g} is contained in
the intersection of the supports of f and g. Jacobi structures were introduced independently
by Kirillov [18] and Lichnerowicz [19]; a good introduction can be found in [20].

Again, we assume M is equipped with an almost S-structure with the constants αj

such that dηj = −αjΦg not all zero. Our first goal is to define a notion of a Hamiltonian vector
field Xf associated to each function f ∈ C∞(M). To begin with, let ξ =

∑

bjξj be an arbitrary
section of T = kerϕ, and let η =

∑

cjη
j be an arbitrary section of E0 ∼= T ∗. We will narrow

down the possibilities for ξ and η as we consider the properties we wish the vector fields Xf

to satisfy. The idea is to generalize the approach used to define Hamiltonian vector fields on
a contact manifold (M,η). Recall that on manifold equipped with a contact form η, where
we define Φ = −dη, the Reeb vector field ξ is defined by ι(ξ)η = 1 and ι(ξ)Φ = 0. A contact
Hamiltonian vector field Xf satisfies the equations ι(Xf)η = f and ι(Xf)Φ = df − (ξ · f)η.
Lichnerowicz showed in [21] that these are the necessary and sufficient conditions for eachXf

to be an infinitesimal symmetry of the contact structure: it follows that for each f ∈ C∞(M),
L(Xf)η = (ξ · f)η.

We wish to impose similar conditions on ξ, η and (the yet to be defined) Xf in the
case of almost S-manifolds. We already know that ι(ξ)Φg = 0, by Lemma 3.1, so we begin by
adding the requirement that η(ξ) =

∑

bjcj = 1. Next, we give our definition of a Hamiltonian
vector field.

Definition 5.1. Let η and ξ be as above. For any f ∈ C∞(M), we define the Hamiltonian vector
field associated to f by the equations

ι
(

Xf

)

ηj = αjf, for j = 1, . . . , k, (5.5)

ι
(

Xf

)

Φg = df − (

ξ · f)η. (5.6)

Remark 5.2. Note that the above equations uniquely define Xf , by the nondegeneracy of the
restriction of Φ to E = imϕ. The constants αj are the same ones such that dηj = −αjΦg . One
can check that if we began with aj in place of the αj , we would be forced to take aj = αj for
consistency reasons. (In particular, this will be necessary if the bracket we define below is to
be a Lie bracket.) Moreover, this gives us the identity

L(

Xf

)

ηj = αj(ξ · f)η (5.7)

for each j = 1, . . . , k; we would otherwise have an unwanted term of the form (aj−αj)df . Note
that on the right-hand side of the above equation we have η and not ηj ; this is unavoidable
with our definition of Xf .

We can fix the coefficients of ξ by requiring that ξ be the Hamiltonian vector field
associated to the constant function 1, as is standard for Jacobi structures (see [20]). It is easy
to see that (5.5) then immediately forces us to take ξ =

∑

αjξj ; that is, the coefficients bj are
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equal the constants αj . Thus, ξ is essentially determined by the almost S-structure, although
η is constrained only by the condition η(ξ) = 1, so the Jacobi structure we define below cannot
be considered entirely canonical (as one might expect). From the requirement that η(ξ) = 1, it
follows that for each f ∈ C∞(M), we have

L(

Xf

)

η =
∑

cjL
(

Xf

)

ηj =
∑

cjα
j(ξ · f)η =

(

ξ · f)η, (5.8)

again in analogy with the contact case. Note that the normalization η(ξ) = 1 also implies that
dη = −Φg . We are now ready to define our bracket on C∞(M).

Definition 5.3. Let M be a manifold with almost S-structure, with constants αj not all zero.
Let ξ =

∑

αjξj , and let η be a section of E0 such that η(ξ) = 1. We then define a bracket on
C∞(M) by

{

f, g
}

= ι
([

Xf,Xg

])

η. (5.9)

The bracket is clearly antisymmetric, and one checks (using the identity ι([X,Y ]) =
[L(X), ι(Y )]) that

{

f, g
}

= Xf · g −Xg · f + Φg

(

Xf,Xg

)

= Xf · g − (

ξ · f)g. (5.10)

Note that since the definition of the Hamiltonian vector fields depended on the choice of
η, the bracket depends on η, even though η no longer appears explicitly in either of the
above expressions for the bracket. From the latter equality we see that the support of {f, g}
is contained in the support of g, and by antisymmetry it must be contained in the support
of f as well. Thus, the bracket given by (5.9) is a Jacobi bracket provided we can verify the
Jacobi identity. Since the Jacobi identity is valid for the Lie bracket on vector fields, it suffices
to prove the following proposition.

Proposition 5.4. Let {f, g} be the bracket on C∞(M) given by (5.9). Then the vector field X{f,g}
corresponding to the function {f, g} is given by X{f,g} = [Xf,Xg].

Lemma 5.5. For each i = 1, . . . , k, we have [ξi, Xf] = Xξi·f .

Proof. From Propositions 3.3 and 3.4, we know that [ξi, ξj] = 0 and L(ξi)ηj = 0 for any i, j ∈
{1, . . . , k}; from the latter, it follows easily that L(ξi)Φg = 0 as well. The result then follows
from the uniqueness of Hamiltonian vector fields, since

ι
([

ξi, Xf

])

ηj =
[L(ξi), ι

(

Xf

)]

η
j = αjξi · f,

ι
([

ξi, Xf

])

Φg = L(ξi)
(

df − (

ξ · f)η) = d
(

ξi · f
) − (

ξ · (ξi · f
))

η.
(5.11)

Lemma 5.6. For each i = 1, . . . , k, we have ξi · {f, g} = {ξi · f, g} + {f, ξi · g}.
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Proof. We have, using Lemma 5.5 and the fact that [ξi, ξ] = 0 in the second line,

ξi ·
{

f, g
}

= ξi ·
(

Xf · g
) − ξi ·

((

ξ · f)g)

= Xf ·
(

ξi · g
) − (

ξ · f)(ξi · g
)

+Xξi·f · g − ξ
(

ξi · f
)

g

=
{

f, ξi · g
}

+
{

ξi · f, g
}

.

(5.12)

Proof of Proposition 5.4. We need to show that ι([Xf,Xg])ηj = αj{f, g} for each j = 1, . . . , k,
and that ι([Xf,Xg])Φ = d{f, g} − (ξ · {f, g})η. First, since ι(Xg)η =

∑

cjα
jg = g, we have

ι
([

Xf,Xg

])

η
j = L(

Xf

)

ηj(Xg

) − ι
(

Xg

)L(

Xf

)

ηj = αjXf · g − ι
(

Xg

)

(

αjξ · f
)

η = αj{f, g
}

.

(5.13)

From Lemma 5.6, we have ξ · {f, g} = {f, ξ · g} − {g, ξ · f} = Xf · (ξ · g) −Xg · (ξ · f), and, thus,

ι
([

Xf,Xg

])

Φg = L(

Xf

)(

dg − (

ξ · g)η) − ι
(

Xg

)

(

−d(ξ · f) ∧ η +
(

ξ · f)Φg

)

= d
(

Xf · g
) −Xf ·

(

ξ · g) − (

ξ · g)(ξ · f)η +Xg ·
(

ξ · f)η
− gd

(

ξ · f) − (

ξ · f)(dg − (

ξ · g)η)

= d
(

Xf · g − (

ξ · f)g) − (

Xf ·
(

ξ · g) −Xg ·
(

ξ · f))η
= d

{

f, g
} − ξ · {f, g}η.

(5.14)
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